
Brigham Young University
BYU ScholarsArchive

International Congress on Environmental
Modelling and Software

3rd International Congress on Environmental
Modelling and Software - Burlington, Vermont,

USA - July 2006

Jul 1st, 12:00 AM

Application of Test-Driven Development
Framework for Environmental Software: A Case
Study in Long-Term Photosynthetic Process
Simulation
Yasuyuki Egashira

Miyuki Shibata

Korekazu Ueyama

Koich Yamada

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for
inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more
information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

Egashira, Yasuyuki; Shibata, Miyuki; Ueyama, Korekazu; and Yamada, Koich, "Application of Test-Driven Development Framework
for Environmental Software: A Case Study in Long-Term Photosynthetic Process Simulation" (2006). International Congress on
Environmental Modelling and Software. 119.
https://scholarsarchive.byu.edu/iemssconference/2006/all/119

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2006?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2006?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2006?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2006/all/119?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Application of Test-Driven Development Framework for
Environmental Software:

A Case Study in Long-Term Photosynthetic Process
Simulation

Yasuyuki Egashiraa, Miyuki Shibataa, Korekazu Ueyamaa and Koich Yamadab

a Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531 Japan
b Department of Materials and Life Science, Seikei University, Musashino, Tokyo 180-8633, Japan

Abstract: In test-driven development, programs for tests are written before coding the main program, and
using software frameworks for support testing, implementation of the program becomes easy by the frequent
and low cost feedback of these tests. In this work, application of test-drive development framework for
environmental software was attempted. As a case study, a simulator for photosynthesis and plant growth was
developed using JUnit framework as a base of testing tool for test-driven development. In development
phase, test case class which checking all equations in the model is constructed first, using JUnit with some
extensions. And afterward, simulator for the model is developed, with the aid of this test case class. The test
case class and the simulator were developed independently by different programmers and checking
misunderstandings of equations, in addition to simple coding errors. This test code is also utilized during
application phase of the model simulator. All equations in the model are tested for every simulation
calculation, therefore, some rare combination of variables which results exceptional case of some equation
will be checked and then users to be alerted. 2 years of simulation with 1 hour time-step was performed
using series of measured data of photo-irradiation, temperature, humidity, and wind speed at an arid land in
Leonra, Western Australia. The simulation, running with the test case class, was alerted to the unsatisfied
leaf energy balance equation in some conditions. Afterwards, it became clear that the empirical equation for
gas exchange conductance was the cause of such errors. The case study showed that utilization of the test
case class successfully found an error, easy to fix but difficult to find.

Keywords: Test-Driven Development; Framework; Modeling

1. INTRODUCTION

Test-driven development is now becoming popular
programming technique in many fields. According
to this technique, programmer writes tests before
coding the program, and with the aid of a software
framework, they can perform the automated tests.
Implementation of the program becomes easy by
the frequent and low cost feedback of these tests,
and quality of the program will be improved. In
this way, the program product is guaranteed to be
the same as what was intended [Beck 2003].
However, such tests are not aimed to guarantee the
soundness of the program, nor the suitability in
application.

In the case of environmental software, such as
simulator of ecological phenomena, the suitability
of the program in application is mainly examined.
Agreement between program and intended model,

and soundness of the model itself are often
implicitly assumed. Some researchers focused on
this point, and proposed software frameworks,
such as EcoBAS [Benz, 2001], ECLPSS
[Wenderholm, 2005][Woodbury, 2002], in order
to overcome the troubles on the agreement
between program and model. Within such software
frameworks, models are described by documents
in specific format defined by each framework, and
program source codes are automatically generated
from such documents. Consequently, the program
generated is guaranteed to be in agreement with
the model described in its original document.
However, such framework will require some
restriction for the program development.
Soundness of the environmental model is more
difficult to guarantee, because, there remains
possibility that some rare combination of variables
cause exceptional case for some equation in the
model, even after intentional tests.

In this work, application of test-driven
development framework for environmental
software was attempted. To ensure the agreement
between model and software, test case class
checking all equations in the environmental model
was constructed first, using software framework
for test-driven development. And afterward,
simulator for the model was developed, with the
aid of this test case class.

Additionally, this test case class was also utilized
during application phase of the model simulator, in
order to check the soundness of the model. All
equations in the model were tested for every
simulation calculation, so, if some rare
combination of variables caused exception to some
equation, users were to be alerted. In this way,
soundness of the model is ensured at least for the
conditions calculated.

As a case study, development of a growth
simulator for arid land plant, including
photosynthesis process model, was attempted. A
long-term simulation by developed program was
also performed and examined.

2. SOFTWARE TOOLS AND METHOD

2. 1 JUnit

As a software framework supporting test-driven
development, JUnit was selected in this case study.
JUnit is an open source Java testing framework

used to write and run repeatable tests. It was
originally written by Erich Gamma and Kent Beck.
(Website: http://www.junit.org)
At the start of the development process, all
equations in the model were listed, and all
variables appearing in equations were also listed.
Before coding of tests and simulator, a class
named "Data" class was prepared, for the purpose
of holding all variables in the list. This data class
has properties that correspond to variables, in
other words, when a variable named "X" is in the
list, object of this data class has "setX" method to
write the value to it, and also has "getX" method
to read the value from it. A simulation class, which
contains implementation of simulation algorithm,
was designed to read input variables from given
data class object and, after calculation, write
results to it. A test case class was also prepared in
order to check all equations listed, using the values
held in the data class object. In development phase,
“TestRunner” classes prepared in JUnit
framework were employed to perform this test
case class to support simulation class development.

A main program of the simulator, developed for
running simulation class during application phase,
was incorporated with "TestRunner" function.
This program set up input variables to a data class
object, gives it to the simulation class to perform
calculation, and afterwards, passes it to the test
case class to check the results (Fig.1). The main
program displays the calculated results and/or
stores them into a file, and when test case class
finds out an exception, this main program displays
alert message. As shown in Fig.1, within main
program, test case class is activated after
simulation class, but during the process of
software development, test case class was
developed first, and then the implementation of
simulation class followed.

2.2 Assertion method for test equations

JUnit framework provides methods for checking
equivalence of two variables. For example

assertEquals(
java.lang.String message,
double expected,
double actual,
double delta)

method in junit.framework.Assert class compares
two double variables "expected" and
"actual". And if their difference exceeds
"delta" value, message held in the first argument
of this method will be displayed.

Application Data

object
Simulator

object Test class

create instance

create instance
set input
variables

get input
variables

set output
variables

run test

alert errors
If necessary

get variables

Application Data
object

Simulator
object Test class

create instance

create instance
set input
variables

get input
variables

set output
variables

run test

alert errors
If necessary

get variables

Fig. 1. Method call relations between test class and
simulation class.

When examining equivalence of left and right
terms of equations, tolerance for comparison is
often given as a relative value. However, in this
"assertEquals" method, value of "delta" is defined
as absolute value. Moreover, some equations are
given in the form of balance between more than
two terms. So, when an extension of
"junit.framework.TestCase" class was developed,
two methods for checking equations were
implemented.
One is a method for checking equivalence of left
and right terms in the equation. And its signature
is

assertEquation(
java.lang.String message,
double left_term,
double right_term,
double relative_tolerance,
double absolute_tolerance).

 In this method, relative tolerance can specify
directly. Input of absolute tolerance, or both two
tolerances, can be omitted and in such case,
previously defined values are used instead.
The other is a method for checking equations in
the form of balance of terms. Its signature is

assertEquation(
java.lang.String message,
double[] terms,
double relative_tolerance,
double absolute_tolerance).

This method check the sum of values in "double"
array defined as second argument. If the sum is
recognized as non-zero value, with the tolerances
defined as third and fourth arguments, this method
will cause alert. Additionally, like first method
described here, tolerances can be omitted.

List 1 demonstrates the usage of the second type of
assertEquation method. Source code for the test
method for checking a following equation is
shown in list 1(a),

 Ia+La-Le-SH-Lambda*Eleaf = 0. (1)

Firstly, an array variable with five double values is
declared, because Eq.1 is representing balance
between five terms. Secondly, all values of
variables appearing in this equation are read out
from data object by “getX” methods. Then, the
values of each five terms in Eq.1 are calculated

List 1(b) Example of error message

junit.framework.AssertionFailedError: Energy balance equation not satisfied
 +1028.8… +899.6… -988.5… -859.5… -80.2…[= 0.099…] != 0 with allowance=1.0E-6,
absAllowance=1.0E-10
at junit.framework.Assert.fail(Assert.java:47)
at jp.….TestSimulationBase.assertEquation(TestSimulationBase.java:1271)
at jp.….TestSimulationBase.assertEquation(TestSimulationBase.java:1277)

...
at junit.framework.TestSuite.run(TestSuite.java:203)
at junit.framework.TestSuite.runTest(TestSuite.java:208)

...

List 1(a) Test code example.

public void testEqTleaf() throws Exception {
double[] terms = new double[5];

double Ia = data.getD_I_a();
double La = data.getD_L_a();
double Le = data.getD_L_e();
double SH = data.getD_S_H();
double Lambda = data.getD_Lambda();
double Eleaf = data.getD_E_leaf();

terms[0] = Ia;
terms[1] = La;
terms[2] = -Le;
terms[3] = -SH;
terms[4] = -Lambda*Eleaf;

 assertEquation("Energy balance equation not satisfied", terms, 1.0E-06);
}

and stored in the array. Finally, the array is handed
to the assertEquation method so as to check the
summation of the array. In other words, the
assertEquation method check that the summation
of the elements is not recognized as non-zero
value
In this example, the relative tolerance, the third
argument in assertEquation method, is defined as
1.0E-6. This means, if the summation exceeds
1.0E-6 of the maximum among the absolute value
of values stored in the array, then the equation will
be recognized as an exceptional case. If so, an
error message stored in the String object defined
as first argument of this method will be displayed,
with some additional information about the cause
of exception, as shown in list 1(b). Additionally,
the fourth argument in assertEquation method is
omitted and pre-defined value is used in this case.

3. CASE STUDY

To ensure the advantage of application of test-
driven development framework, a case study on
developing a simulator of a plant growth model in
arid environment was attempted. A long-term
simulation by developed programs was also
performed and examined.
The plant growth model is based on a
photosynthesis process model combined with a
carbon balance model of plant bodies in order to
simulate growth of plants, and, the adaptation
effects of plants on dry conditions are included in
the photosynthesis process model. Model
development and estimation of parameters in the
model were performed using the measurement
results of a sample of Eucalyptus camaldulensis
tree grown at a site located in Leonora, Western
Australia where mean annual rainfall is around

200 mm/y. Continuous measurements of soil water
content at 0.5, 1.0, 2.0 m from the soil surface
were conducted at this site. Data of solar
irradiation, air temperature, humidity and wind
speed are also available.

3.1 Model and simulator

Following the model described in Amthor [1994],
the process model of leaf photosynthesis consists
of three parts. First is a part which represents
photo-reactions and enzyme reactions of
photosynthesis, second is a part which estimates
the gas exchange of water and carbon dioxide
through the stoma, and last is a part which
calculates energy balance equation including
absorption of light, radiation, and latent heat loss
by transpiration of water.

In order to express the effect that trees are adapted
for dry conditions, the equation for stomatal
conductance, Gs (mol/m2s) in the gas exchange
part, was modified so that conductance of stoma
will change with the averaged soil water potentials.
The equation is similar to the Ball’s equation [Ball,
1987] as show below.

minS
s

net
S G

VPDLC
A

mG +
×

= (2)

Where netA is net photosynthesis rate (μmol/m2s),

sC is CO2 mol fraction at leaf surface (μmol-
CO2/mol), VPDL is vapor pressure deficit at leaf
(Pa). Values of m and minSG are given by the
function of soil water potentials.

set upper and lower limit of Tleaf

Do until energy balance equation satisfied (by van Wijngaarden-Deker-Brent method)

Do until CO2 balance equation satisfied (by van Wijngaarden-Deker-Brent method)

set upper and lower limit of CC

Solve Equation for Anet
Solve Equation for Gs
Solve Equation for CO2 balance

End do

End do

Solve Equation for Energy balance of leaf

set upper and lower limit of Tleaf

Do until energy balance equation satisfied (by van Wijngaarden-Deker-Brent method)

Do until CO2 balance equation satisfied (by van Wijngaarden-Deker-Brent method)

set upper and lower limit of CC

Solve Equation for Anet
Solve Equation for Gs
Solve Equation for CO2 balance

End do

End do

Solve Equation for Energy balance of leaf

Fig. 2. Outline of procedure for solving the photosynthesis model.

 Gs is related to netA , so, leaf temperature and CO2
concentration in the leaf cell, CC (μmol- CO2/mol),
affect to the value of Gs through photosynthesis
rate. Meanwhile, Gs also affect to temperature and

CC by changing transpiration and CO2 exchange
rate through stoma. Therefore, consistent values
for both leaf temperature and CC must find out
during simulation calculation. As shown in Fig.2,
duplicated root-finding algorithm was employed in
the simulator. Inner root-finding algorithm solves
carbon dioxide balance equation to find out CC ,
and, outer root-finding algorithm solves energy
balance equation to find out leaf temperature. As a
root-finding algorithm, the "van Wijngaarden-
Deker-Brent method", a modification of "bisection
method", was employed.

3.2 Implementation phase

As mentioned before, test case class was
implemented first, and then simulation class was
developed. Writing a test class code is simple and
straightforward task, in contrast to implementation
of simulation algorithm. And repeated and
frequent test using the test class was helpful for
development of somewhat complicated simulation
programs.
Additionally, test case class and simulation class
were separately developed by different person.
This practice sometimes triggered useful
discussion about understanding of the detail of the
model equation.

3.3 Application phase

Using the simulator developed, two years of
simulation with 1 hour time-step was performed
using series of measured data sets of photo-
irradiation, temperature, humidity, and wind speed
at an arid land in Leonra, Western Australia.

In almost all time steps, calculation results pass the
test successfully. But in rare cases, combination of
input variables cause error message. Cases of
nighttime without photo-irradiation, at the same
time 100 % of humidity were responsible for such
errors. The error messages indicated the
unsatisfied energy balance equation(Eq.1), and the
leaf temperatures (Tleaf), derived from this
equation by root-finding algorithm, seems
miscalculated.

Figure 2 shows the residual of energy balance
equation (Eq.1) as a function of the assumed leaf
temperature (Tleaf). With typical conditions, the
residual changes with the Tleaf continuous and
monotonous manner. In contrast, with error-

reported conditions, the residual changes
monotonous but discontinuous manner. The root-
finding algorithm is trying to find out the Tleaf at
cross point of horizontal axis and residual energy
curve, so, in such cases, discontinuous point of the
curve is reported as the balance point. Therefore,
the cause of the error is not a problem of
calculation method, rather, is a problem of model
equations.

Examination of the model equations gives
following explanation as the cause of this
discontinuous energy curve.

The cause of discontinuity is the Eq.(2), an
empirical equation gives the relationship between
net photosynthesis rate (netA) and stomatal
conductance (Gs). Under dark conditions, no
photosynthesis reaction occurs but respiration rate
remains, so netA becomes negative value. In such
case, Eq.2 gives negative value as Gs, and this
value is replaced by a minimum limit of stomatal
conductance during actual simulation. However,
when both 100 % humidity condition and air
temperature higher than Tleaf are realized, the
value of VPDL also takes negative value, and then,
stomatal conductance takes large positive values.
In changing Tleaf, the value of Gs is jumping up
from the minimum limit to some large positive
value, around the air temperature.
This discontinuity is the result of both negative

netA and negative VPDL. The negative netA is not
uncommon, and was already taking care. But
negative VPDL is the result of 100 % humidity
condition, which is uncommon, especially in arid
lands.

Checking negative VPDL, this problem was easily
avoided. But, such exceptional case of model

18.185 18.195 18.205 18.215

6

4

2

0

-2

Tleaf [℃]

R
es

id
ua

l o
f e

ne
rg

y
ba

la
nc

e
eq

ua
tio

n
[W

/m
2]

18.185 18.195 18.205 18.215

6

4

2

0

-2
18.185 18.195 18.205 18.215

6

4

2

0

-2

Tleaf [℃]

R
es

id
ua

l o
f e

ne
rg

y
ba

la
nc

e
eq

ua
tio

n
[W

/m
2]

Fig. 3. Residual of energy balance equation (Eq.1)
for a leaf as a function of Tleaf. Blue line show the
exceptional case, dark and 100 % humidity. And
red line corresponds to the simulation with fixed
equation.

equation seems very difficult to find out, because
there will be no message on exception nor error
during root-finding calculation, without aids of the
test case class. Additionally, combination of
conditions responsible for such exceptional case is
not typical and not likely to be selected as a
sample case for examination of simulator and
evaluation of model. Utilization of the framework
of test-driven development method was shown to
be useful to find the error, difficult to find
otherwise, in this case study. The author expects
that the utilization of this technique is also useful
in other cases.

4. CONCLUSION

In this work, application of framework for the test-
driven development to environmental software
was attempted. The test case class was utilized not
only for development phase but also for
application phase of the simulator. The case study
showed that utilization of the test case class
successfully found an error, easy to fix but
difficult to find.

5. ACKNOWLEDGEMENTS

This work was conducted under the supports of the
Global Environment Research Fund of The
Ministry of Environment (GHG-SSCP Project)
and CREST of JST (Japan Science and
Technology Agency).

6. REFERENCES

Amthor, J. S., Scaling CO2 photosynthesis
relationships from the leaf to the canopy,
Photosynthetic Research, 39,321-350,1994.

Ball, J. T., E. W. Woodrow, and J. A. Berry, A
Model Predicting Stomatal Conductance and
its Contribution to the Control of
Photosynthesis Under Different Environmetal
Conditions, Progress in Photosynthesis
Research, IV, 5.221-5.225, 1987.

Beck, K., Test-Driven Development By Example,
Addison-Wesley, Boston, 2003.

Benz, J., R. Hoch, and T. Legovic, ECOBAS -
modelling and documentation, Ecological
Modelling, 138, 3–15, 2001.

Egashira, Y., M. Shibata, K. Ueyama, H. Utsugi,
N. Takahashi, S. Kawarasaki, T. Kojima, and
K. Yamada., Development of tree growth
simulator based on a process model of
photosynthesis for Eucalyptus camaldulensis
in arid land, In proceeding of Desert
technology VIII (DT8), Nasu, Japan,
November 28 – December 2, 2005.

Wenderholm, E., Eclpss: a Java-based framework
for parallel ecosystem simulation and
modeling, Environmental Modelling &
Software, 20(9), 1081-1100, 2005.

Woodbury, P. B., Beloin, R. M., Swaney, D. P.,
Gollands, B. E., and Weinstein, D. A., Using
the ECLPSS software environment to build a
spatially explicit component-based model of
ozone effects on forest ecosystems,
Ecological Modelling, 150(3), 211-238, 2002.

	Brigham Young University
	BYU ScholarsArchive
	Jul 1st, 12:00 AM

	Application of Test-Driven Development Framework for Environmental Software: A Case Study in Long-Term Photosynthetic Process Simulation
	Yasuyuki Egashira
	Miyuki Shibata
	Korekazu Ueyama
	Koich Yamada

	Microsoft Word - Egashira_revised2_.doc

