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Abstract: Current model identification strategies often have the objective of finding the model or model 
structure which provides the best performance in reproducing the observed response of a system at hand. 
Such a strategy typically favours more complex (bottom-up) models with a higher degree of freedom and 
thus larger flexibility. While this bias can be reduced through punishing models for being more complex, real 
advancements in our understanding with respect to appropriate system representations are made if we 
quantify the extent to which our model is consistent with the available data. In particular the idea of an 
optimal parameter set is very weak in the context of highly uncertain environmental modelling exercises 
using uncertain data and models. This paper discusses the problem of testing model consistency with the aim 
of falsifying models that are inconsistent with observations or underlying assumptions (e.g. stationary model 
parameters). Such a strategy can then be included in a general framework for evaluating performance, 
uncertainty and consistency for model identification.  
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1. INTRODUCTION 

Environmental models are widely used in 
research and operational settings. Applications 
range from predicting watershed response for 
hydrologic design or forecasting, to evaluate the 
feasibility of water resources management 
strategies under climate change, to predict the 
impact of land use changes on the water balance 
or ecology, or as load models for water-quality 
investigations. Available models vary widely in 
complexity, underlying process descriptions and 
assumptions, spatial resolution etc. A recurring 
problem is the identification of an appropriate 
model given the modelling objective, the 
available data and the characteristics of the 
hydrologic system to be modelled [Wagener et 
al., 2004]. This model identification problem has 
at least two main elements [Sorooshian and 
Gupta, 1985]: [1] the identification (development 
or selection) of one or more appropriate model 
structure(s), and [2] the identification (estimation) 
of one or more appropriate parameter set(s) with 
this (these) model structure(s). Woolhiser and 
Brakensiek [1982] concluded that objective 
methods of choosing the best model (structure) 

had not yet been developed and that this choice 
remains part of the art of hydrologic modelling. 
This statement is still valid. 
 
In the past, the search for the appropriate model 
to represent a given system was largely driven by 
identifying the one model structure/parameter set 
combination that minimizes (or maximizes) some 
measure of performance. This measure of 
performance was typically one or more numerical 
objective functions that calculate the aggregated 
distance between the observed and simulated 
variable of interest. Such a strategy typically 
favours more complex (bottom-up) models with a 
higher degree of freedom and thus larger 
flexibility. We can punish models for being more 
complex through the use of information criteria 
[e.g. Jakeman and Hornberger, 1993], but these 
have generally not been developed for highly 
complex and non-linear models like the ones we 
are typically using. The traditional approach also 
does not properly exploit the information 
provided by the comparison of observed and 
simulated time-series since it aggregates the 
differences into one (or very few) numerical 
values. More sophisticated approaches are 



 

required to drive model development forward 
[Wagener, 2003]. 
 
In this paper we will discuss the problem of 
model (structure) identification.  We will do so 
first by discussing the characteristics of 
hydrologic models and the consequence of 
hydrologic model characteristics for model 
identification. We will subsequently suggest 
characteristics that an identification procedure 
under uncertainty should contain. This discussion 
is based on the following premises:  

1. The search for optimal models is of 
limited use in the face of major 
uncertainties and should be replaced by a 
search for consistent models (we discuss 
the term consistent below).  

2. Model identification strategies need to 
expose where and when models fail and 
work as diagnostic (learning) tools, 
rather than optimization tools.  

3. Model structure comparison needs to 
include a comparison of model 
components, not just overall model 
structures, to be of real value.    

  

2. THE NATURE OF ENVIRONMENTAL 
MODELS 

The response of a watershed to precipitation 
inputs can be conceptualized as a number of 
spatially distributed and highly interrelated water, 
energy and vegetation processes. Any computer-
based model of watershed behavior must, 
therefore, implement this conceptualization using 
appropriately coupled systems of parametric 
mathematical expressions; with parameters 
allowing for flexibility in adapting the model to 
different (but conceptually similar) watersheds. 
These parameterizations can be of different levels 
of complexity, but are, by definition, much 
simpler than nature itself.  

Two important characteristics of this modeling 
process are relevant to our discussion. First, every 
environmental model, regardless of how spatially 
explicit, is to some degree a lumped 
approximation of a heterogeneous world, so that 
its parametric equations describe the real-world 
processes as being aggregated in space and time. 
Consequently, at least some (if not all) of the 
model parameters lose some degree of direct 
physical interpretation (or representativeness) and 
measurability, and should therefore be understood 
as being ‘‘conceptual’’ or ‘‘effective’’ parameters 
(Figure 1).  Further, in virtually all cases the scale 
at which effective parameters are defined (by the 
model) is different (mostly larger) from the scale 

at which measurements can be made in the field. 
Therefore, the correspondence between the field 
measurements of ‘‘parameters’’ and the effective 
parameters defined in the model can become very 
weak, and it becomes necessary to resort to an 
indirect process of parameter estimation to select 
parameters values (sets) that produce simulations 
that closely resemble the observed behavior (i.e. 
that emulates the behavior of the real world 
system in relation to the modeler’s needs and 
objectives). In this process of parameter 
estimation (often called model calibration) the 
value of the parameter is adjusted so as to bring 
the model simulated input–output behavior into 
close correspondence with the system input–
output behavior observed in the field. While 
environmental models usually contain several 
such parameters which cannot be assumed to 
have direct physical (measurable) interpretation, 
it is often assumed that their values should have 
physical relevance, insofar as they are believed to 
correspond to inherent and invariant properties of 
the environmental system. It is also important to 
note that the state variable within the model (or 
within the model element, i.e. a spatial sub-unit of 
the model) is an ‘‘effective’’ state, e.g. the 
distribution of moisture content within the model 
(element) domain is usually lumped into a single 
aggregate quantity (and less commonly 
represented as a statistical distribution of this 
variable within the particular element). This issue 
must be taken into account when attempting to 
assimilate data into an environmental model.  

 
Figure 1. Heterogeneous real world represented 
by homogeneous model element (though a sub-

grid distribution might be included) using 
effective model parameters, θ, and states, x.  

A second characteristic of environmental models 
is the common practice of specifying/selecting the 
model structural equations prior to any modeling 
being undertaken. However, there appear to be no 
well-defined pathways or objective procedures 
that will lead to unambiguous selection of an 
appropriate model structure. Rather, this process 



 

is influenced by a combination of factors 
including observations about the characteristics of 
the watershed, available data, modeling objective 
and personal preference. 

 

3. MODEL IDENTIFICATION UNDER 
UNCERTAINTY   

Recent detailed reviews and discussions of 
hydrologic and environmental model 
identification have been published in Gupta et al. 
[2005], and Wagener and Gupta [2005]. These 
papers discuss the lack of an identification 
framework that considers all the main sources of 
uncertainty (data, model structure and parameters, 
states), the lack of diagnostic capabilities and the 
need for a shift in paradigm away from the search 
for optimal models. The approach taken here is 
that any model identification strategy should 
explore at least three dimensions [Wagener, 
2003]: performance, uncertainty and assumptions. 

 

3.1 Performance  

In the past, the search for an optimal performing 
model was strongly present in the research 
literature. However, the presence of model 
structural errors, problems of overly complex 
models and data uncertainty, and our inability to 
develop a well-defined calibration problem 
should lead to the conclusion that a unique and 
optimal model cannot be robustly identified. An 
optimal model (parameter set) will very likely 
change with the chosen objective function, when 
multiple response variables are considered, with 
the inclusion of more sources of uncertainty etc. 
The search for optimal models is, however, 
necessary to answer for example the question 
whether a model structure is flexible enough to 
reproduce the behavior of a particular system. 
Searches for optimal models in high-dimensional 
parameter spaces will for a while continue to be 
done using intelligent optimization algorithms 
[e.g. Yang et al., in Press] since exhaustive 
searches will remain limited despite increasing 
computational power.  

In general, the notion of optimality of models 
should be replaced by a notion of consistency. If 
we can identify all those models that are 
consistent with the observations of the 
environmental system at hand – while considering 
the uncertainties present – then we can more 
honestly start to analyse how much discriminative 
power our data contain. The question of what 
constitutes a consistent model has to be answered 
for each individual modelling study and will 

differ for different cases. The notion of 
consistency should also be extended to the 
modelling of ungauged sites, usually achieved 
through a process of model regionalization. 
Model regionalization will add even more 
uncertainties and will make the search for an 
optimal model at the ungauged site an illusion. 
Instead we can apply a consistency approach 
again, as for example shown by McIntyre et al. 
[2005]. 

 

3.2 Uncertainty 

There has also been a gradual move from 
procedures that focus on the identification of a 
single best model towards procedures that seek to 
reduce the uncertainty in the predictions of all 
possible models in the presence of uncertainty 
using various types of ensemble methods (Figure 
2). This notion is in line with a move from a 
philosophy of ‘‘optimization’’ towards a 
philosophy of ‘‘consistency’’ (i.e. finding models 
that are consistent with the behavior of the real 
world system). A variety of methods to create 
ensembles of simulations exist.  Beven and Freer 
[2001] remind us that a good starting point is the 
realization that any model identification 
procedure consists of answering these three 
questions:  
 

1. What constitutes a behavioral model? 
2. How to identify the subset of behavioral 

models in the feasible model space? 
3. How to propagate behavioral predictions 

into the output space, while considering 
the uncertainty in the input data, model 
states, boundary conditions, etc.? 

 
A wide variety of definitions and methods are 
currently available that attempt to answer these 
three questions, but there is little guidance 
regarding which approach to apply under specific 
circumstances. Progress is likely to come both 
from research by individual groups and by 
comparison studies involving larger scale 
participation and including as many different 
techniques as possible. 
 

3.3 Assumptions 

One approach to model diagnostics is the test of 
assumptions underlying the developed model 
structure. Testable assumptions include 
evaluating whether parameter sensitivity is 
highest during those periods (response modes) in 
which parameters (model components) are 
expected to dominate the model response. As a 



 

simple example, a baseflow recession component 
should be sensitive during long dry spells over 
the summer. If insensitivity of the parameter is 
found during such a period, assuming that this is 
not due to interaction with other parameters 
describing the same period, then the model 
component described by the parameter needs to 
be revisited and probably modified.  

Another assumption that is testable is the time-
invariance of the model parameters. If the 
posterior probability distributions for different 
model parameters are conditioned on those 
periods for which the parameter shows 
sensitivity, then a tightening of the probability 
distribution function (pdf) is to be expected. The 
area of highest probability during different 
response modes should be in the same region of 
the parameter space. If this region varies, e.g. 
sometimes high parameter values perform better 
and sometimes low values, than a violation of the 
time-invariant assumption has been found. The 
reasons for this violation need to be investigated 
to suggest model structural improvements. 
Reasons could include different processes being 
lumped into a single model component or an 
apparent change of this physical characteristic of 
the watershed with time (e.g. vegetation change). 

These two assumption tests can be implemented 
using Kalman filter based [e.g. Beck, 1987] or 
Monte Carlo based approaches [e.g. Wagener et 
al., 2003]. Wagener et al. [2003] developed a 
modification of the generalized Likelihood 
Uncertainty Estimation [GLUE, Beven and Freer, 
2001] algorithm, in which a randomly sampled 
population of parameter sets is conditioned on 
different periods of the response variable time-
series (e.g. streamflow) using a smoothing 
approach. 

 

3.4 Consequence for Comparison Studies 

A range of comparison studies have been 
performed in the past. These were either more or 
less global initiatives (MOPEX, DMIP, HEPEX, 
PILPS etc.) or studies performed by individuals 
or small groups. These studies generally compare 
a wide range of hydrologic models with respect to 
their performance in reproducing streamflow at 
the watershed outlet. Typical conclusions are that 
the difference in performance often decreases 
once a certain level of model complexity is 
reached (about 5 parameters), unless there are 
considerable differences in process descriptions 
that render certain models unsuitable to represent 
a particular system [e.g. Jakeman and 
Hornberger, 1993].  

However, many studies have shown that it is 
difficult to draw conclusions above the ones just 
stated. This has improved somewhat through the 
consideration of multiple objectives in the 
evaluation process [Gupta et al., 2005]. It is likely 
though that any identification study that includes 
multiple possible model structures will be 
inconclusive if the comparison simply 
investigates the performance of the ‘complete’ 
model structure. What is meant by this is that it is 
very difficult to separate out how far model 
structures are different if only the overall output 
of the model is compared to that of other models.  
Put differently, there are too many degrees of 
freedom in the models (and too few data points in 
the experiments) to make profound statements 
about the functional behavior of different models.   
 
A better picture would be obtained if outputs of 
the individual model components would be 
compared, e.g. how different is the description of 
interception or evapotranspiration? While we 
generally do not have measured data available to 
compare these outputs against, we can at least 
compare them against each other and decide 
whether one process description is closer to 
another one with respect to our understanding of 
what should happen with respect to the system 
under investigation. Such an approach might also 
lead us to question our understanding, particularly 
if a variety of possible models cannot be falsified. 
A result of this type might lead us to collect new 
data to test model components separately and find 
out which system representation is more likely. 
This general approach requires that a synthetic 
testing stage be included in the comparison study. 
A step not usually considered in model 
identification.  Hence we advocate shifting away 
from a paradigm of simple model 
intercomparison, towards a paradigm of model 
deconstruction and controlled comparison. A 
more detailed analysis might also help us in 
identifying whether we are dealing simply with 
different mathematical implementations of the 
same process understanding, or whether the 
differences go beyond that.  
 

5.     CONCLUSIONS 

The process of model identification has long been 
dominated by the search for more powerful 
optimization algorithms or better objective 
functions. We think that this approach is unlikely 
to yield significant improvements since the 
identification problem is ill-defined in the 
presence of model structural and data errors. A 
paradigm shift needs to occur (and is already 
occurring) in which we move away from the  



 

 
Figure 2. This figure shows a modelling procedure in which a model is constrained using observations of the 

input-response behavior of the real-world system. 

 

notion of an optimal model towards an ensemble 
of models that are consistent with the 
observations of the environmental system at hand. 
This move needs to include the search for 
approaches that work as diagnostic or learning 
tools which help us improve the model structure 
while extracting as much information from the 
observations as possible with respect to how 
model behaviors differ. 
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