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Construction of a Degree-Day Snow Model in the Light 
of the ”Ten Iterative Steps in Model Development”  
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a Laboratory of Water Resources, Helsinki University of Technology (tkokko@cc.hut.fi) 

b Integrated Catchment Assessment and Management Centre, The Australian National University 
c Department of Mathematics, The Australian National University 

 

Abstract: Jakeman et al. [2006] discuss minimum standards for model development and reporting and offer 
an outline of ten iterative steps to be used in model development. They present the main steps and give 
examples of what each step might include (especially what choices are to be made), without attempting the 
formidable task of compiling a comprehensive check list of the model-development process. This study 
reports construction of a simple degree-day snowmelt model in the light of the ten iterative steps. Such a 
modelling approach has been widely used in operational hydrology, where the motivation is to produce as 
reliable as possible snowmelt discharge predictions for streamflow forecasting. There were meteorological 
and snow cover data available from a research site in southern Finland. These data were used in the 
development, parameterisation and diagnostic checking of the model in the manner presented in the ten steps. 
The ten step procedure was found to provide an incentive to a more systematic model analysis – including 
dianostic checks and uncertainty analyses – that often receives less attention in environmental modelling 
studies.  
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1. INTRODUCTION 

In constructing and using mathematical models it is 
essential to be aware of the purpose of the model, 
as well as the limitations, uncertainties, omissions 
and subjective choices that warrant attention. The 
best way to improve the quality of modeling 
studies is to generate wider awareness of what the 
whole modelling process entails, what choices are 
made, what constitutes good practice for testing 
and using models, how the results of using models 
should be viewed, and what questions model users 
should be asking of model developers. This 
amounts to specifying good modelling practice, in 
terms of development, reporting and critical 
reviewing of models. 

Jakeman et al. [2006] discuss minimum standards 
for model development and reporting and offer an 
outline of ten iterative steps to be used in model 
development.  They name the main steps and give 
examples of what each step might include 
(especially what choices are to be made), without 
attempting the impossible task of compiling a 
comprehensive check list of the model-
development process. This study reports 
construction of a degree-day snow model in the 
light of the ten iterative steps of Jakeman et al. 
[2006]. 

  

2. DEFINITION OF THE PURPOSES FOR 
MODELLING (STEP 1) 

A snow model is an essential part in quantifying 
the hydrological cycle in cold regions and therefore 
can have many uses. Its utility will be enhanced if 
its development is tailored to the intended purpose, 
available data and prior knowledge. A significant 
proportion of the annual runoff in cold regions may 
occur during a period of just a few weeks in spring, 
arising from snowmelt. A typical purpose for snow 
modelling is to provide an estimate of snowmelt 
input to be used in streamflow forecasting. 
Streamflow forecasts are necessary for issuing 
flood warnings and making water regulation 
decisions. The main objective is to produce daily 
snowmelt discharge series, but the model must also 
produce an estimate of the water stored in the snow 
pack. The latter information can be compared 
against field measurements, which allow updating 
of the estimated water storage.  

 

3. SPECIFICATION OF THE MODELLING 
CONTEXT: OBJECTIVES, SCOPE AND 
RESOURCES (STEP 2) 

The model needs to describe snow accumulation in 
the affected area of the watershed. When there is 
snow accumulated on the ground and enough 



 

 

energy available, the model should describe 
snowmelt. The model is developed with the 
specific focus of producing as reliable as possible 
daily snowmelt discharge predictions for 
streamflow forecasting. It does not need to be 
capable of describing the physics of snowmelt, e.g. 
heat content, liquid water percolation within the 
snowpack or metamorphism of snow. The model 
structure is aimed to be transferable to other 
regions with seasonal snow cover, but parameter 
values should preferably be calibrated for each new 
site. 

The model needs to operate at a daily time-scale, 
for decisions are required on such a basis, and it 
produces estimates of 

- total snowmelt discharge [mm d-1] 

- average areal snow water equivalent (SWE) 
[mm]  

The prediction lead time will depend on what 
decisions are to be based on the predictions, and 
could be as short as one day ahead. The maximum 
practicable lead time is determined by the quality 
of the available weather forecast, and is unlikely to 
be much longer than 5 days. The areal snowmelt 
discharge is required for streamflow forecasting in 
snow-affected areas, and areal SWE is necessary 
for calibrating and validating the model 
satisfactorily. 

Kuusisto [1984] studied data from eight snow 
courses in Finland, and concluded that the relative 
standard error in measuring the snow water 
equivalent along the course was typically in the 
range from 1 to 4 mm during the accumulation 
period, and from 4 to 8 mm during the melt period. 
The model performance will be assessed against 
these accuracies. When snowmelt prediction more 
than one day ahead is undertaken, the greatest 
source of uncertainty is likely to be the inaccuracy 
inherent in the weather forecast. 

As driving data the model requires  

- daily precipitation [mm d-1] over the area 

- daily index of energy [depends on the input 
variable used, usually air temperature [°C] 

The spatial scope/boundary is the catchment 
located upstream of that point for which a 
streamflow forecast is required. We assume that 
inputs which cross the boundaries (e.g. as wind-
blown snow drifts) are negligible. 

 

 

 

4. CONCEPTUALISATION OF THE 
SYSTEM, SPECIFICATION OF DATA 
AND OTHER PRIOR KNOWLEDGE 
(STEP 3) 

Figure 1 shows a schematic conceptualising the 
two main snow processes to be described, namely 
accumulation of snow and snowmelt. 

It seems reasonable to start by assuming that the 
above processes are homogeneous over the 
catchment, warranting a catchment description 
lumped to the extent that each parameter can be 
treated as a single value applying to the entire 
catchment. This assumption requires the following 
prerequisites be fulfilled. Firstly, the 
meteorological variables (precipitation, air 
temperature) should not exhibit large spatial 
variability; this assumption is easily jeopardized 
e.g. in mountainous terrain.  Secondly, there should 
not be significant spatial differences in the snow 
processes within a catchment. This assumption is 
violated if the catchment comprises substantial 
areas that differ in land use (e.g. mature forest vs. 
open field). However, even then it may be 
justifiable to use areally-averaged single parameter 
values. For streamflow forecasting, snowmelt 
predictions are only an input to an eventual 
forecasting model that can to some extent, via its 
updating facility, correct for errors arising from the 
lumped catchment description.  

Snowfall always accumulates to the snowpack. 
Snowpack can also retain liquid water, and hence 
rainfall also accumulates in the snowpack until the 
liquid water-retention capacity of the snowpack is 
exceeded. 

Snow melts when there is sufficient energy 
available for the phase change from the solid to the 
liquid phase. When snow melts, liquid water is 
retained in the snow pack until its retention 
capacity is exceeded, then the excess is discharged. 
The retention capacity is related to the amount of 
ice in the snowpack. 

Clearly, there is a need to determine the form of 
precipitation (snowfall or rain). This is rarely 
observed directly, so the form is estimated usually 
based on the air temperature. Gauging precipitation 
is quite challenging, because typically not all 
precipitation is captured in the gauge. In the case 
of snowfall, this gauging error can be up to 80% 
[Førland et al., 1996]. Typically rainfall is also 
corrected for undercatch, but the correction is 
smaller than for snowfall. 

Snowmelt can be thought to occur when air 
temperature is above 0 °C. Air temperature can be 
used as a surrogate for energy available to melt 
snow, and snowmelt can be thought to occur 



 

 

always when air temperature is above 0 °C. It is 
noteworthy that radiation absorbed in the 
snowpack can cause snowmelt even when the air 
temperature above the snow surface is negative. 
The liquid water retained in the snowpack can 
freeze when the temperature is below 0 °C. 
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Figure 1. Schematic conceptualisation of snow 
processes. 

For this exercise, there are data available from an 
open site in Siuntio, southern Finland. There are 
daily measurements of precipitation and air 
temperature for the period extending from Dec 1, 
1996 to Apr 30, 2000. For the same period there 
are SWE measurements at intervals varying from 2 
to 20 days (average 6 days). The daily temperature 
measurement is time-averaged from more frequent 
measurements. When considering single melt 
events, the rate of snowmelt is not necessarily a 
linear function of temperature, and hence time-
averaging does affect results. Time-averaging of 
temperature is perhaps even more critical with 
regard to determining the form of precipitation. 
The time-average is not necessarily a good 
estimate of the temperature at the time of a 
precipitation event. However, it can be presumed 
that when averaging over several events the errors 
caused by using time-averaged daily temperatures 
become smaller. 

Precipitation was measured with a weighing gauge, 
and temperature was measured at two metres above 
the ground with a Vaisala Humicap sensor. Snow 
water equivalent was estimated from a matrix of 12 
snow sticks, where snow depth was measured at 
each stick and snow density was measured at three 
locations. The annual maximum snow water 
equivalent has an important role in determining the 
flood potential in springtime. The model 
uncertainty will later be assessed in terms of the 
annual maximum snow water equivalent.   

5. SELECTION OF MODEL FEATURES 
(STEP 4)  

Following the principle of starting simply, the 
model is a lumped conceptual model, based on the 
prior knowledge and assumptions listed in Section 
4. It is composed of storage compartments with 
contents updated daily. Output predictions are 
made at the same time step. It is not necessary to 
impose detailed physics in the model [e.g. Morris, 
1983; Jordan, 1991] that might lead to a complex 
numerical scheme for its solution. The modest data 
used in this exercise do not warrant application of 
complex models. Also, the end purpose of 
forecasting, where corrective updating can improve 
model performance, makes it unnecessary. We also 
do not see a role for empirical artificial intelligence 
type model families such as neural nets. While 
these have been applied to similar problems such 
as prediction of runoff from rainfall [e.g. Anctil et 
al., 2004], they tend to perform best in data-rich 
situations and where there is little theoretical 
knowledge of how to represent the processes. 

 

6. CHOICE OF HOW MODEL STRUCTURE 
AND PARAMETER VALUES ARE TO BE 
FOUND (STEP 5) 

Model structure has been determined according to 
the conceptualisation of the snow accumulation 
and snowmelt process described in Section 4. The 
model structure is tested in Section 9 by studying 
the identifiability and sensitivity of model 
parameters. If necessary, the model structure can 
be modified. Alternative model structures might 
coalesce some of the processes or expand their 
details. Those parameters whose values cannot 
reliably be fixed a priori are calibrated against 
SWE measurements and checked against the values 
suggested in the literature. When SWE 
measurements are not available, we rely on the 
literature values. 

 

7. CHOICE OF ESTIMATION 
PERFORMANCE CRITERIA AND 
TECHNIQUE (STEP 6) 

The model is calibrated using the sum of squared 
errors (SSE) as an optimisation criterion: 

( )∑ −=
i

sim
i

obs
i yySSE 2   (1) 

where obs
iy  and sim

iy  are the observed and 
simulated SWE values, respectively, at time step i. 
The calibration parameters are adjusted to 
minimise the SSE. Parameter estimation is 



 

 

conducted simply by sampling the feasible 
parameter domain and selecting those parameter 
values that yield the best model performance. This 
is computationally demanding but is viable with 
this simple model. The advantage is that exhaustive 
sampling will deliver valuable information about 
parameter correlations, and it will reliably locate 
the global optimum instead of a local optimum, 
assuming that the selected parameter sampling 
domain includes the global optimum and that the 
sampling discretisation is fine enough. 

 

8. IDENTIFICATION OF MODEL 
STRUCTURE AND PARAMETERS (STEP 
7) 

Model structure is first determined according to the 
conceptualisation of the snow accumulation-
snowmelt process, but it can be altered based on 
the results of model diagnostics in Section 9. 

 

8.1 Form of precipitation 

Below a certain threshold temperature Tp [ºC], all 
precipitation is assumed to fall as snow, and above 
the same temperature as rain. In mathematical 
terms, 
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where fr [-] is the fraction of rainfall, fs [-] is the 
fraction of snowfall, and T [ºC] is the air 
temperature. 

 

8.2 Correcting the precipitation for 
gauging error 

For rainfall Pr [mm d-1] and snowfall Ps [mm d-1] 

totsss

totrrr

PfcP
PfcP

=
=     (3) 

where cr [-] and cs [-] are the correction 
coefficients for rainfall and snowfall, respectively, 
to correct for the proportions of rainfall and 
snowfall not registered by the gauge. Ptot [mm d-1] 
is the gauged precipitation. According to Førland 
et al. [1996], the correction coefficients for 
measuring precipitation in an open site, depending 
on wind conditions at the gauge, range from 1.02 
to 1.14 for rainfall, and from 1.05 to 1.80 for 
snowfall. In forested sites the effect of interception 
can be accounted for in the correction coefficients, 
which may lead to values below unity.  

8.3 Snowmelt 

It is proposed that the rate of snowmelt is linearly 
related to the air temperature above the melting 
temperature. This can be written as 

( )




≤=
>−=

melt

meltmeltd

TTm
TTTTkm

0
 (4) 

where m  [mm d-1] is the melt rate, kd  [mm °C-1 d-

1] is the degree-day factor for melt, and Tmelt [°C] is 
the temperature where melting of snow is initiated. 
The value of Tmelt is close to 0 °C, but can be 
allowed to differ slightly from it. Such a deviation 
can, for instance, account for a systematic 
difference between the air temperature at the 
measurement station and the temperature at the site 
where snow water equivalent is modelled. Air 
temperature has a strong relationship with altitude, 
and hence a difference in the elevation of the 
weather station and the modelling site easily results 
in a systematic bias of temperature measurements. 
Bergström [1990] reports that the degree-day 
factor for melt ranges from 1.5 to 4 mm °C-1 d-1 in 
operational streamflow forecasting applications in 
Sweden.  

 

8.4 Freezing 

Analogously to snowmelt, the rate of freezing f 
[mm d-1] is written as 

( )




≥=

<−=

melt

meltmeltf

TTf
TTTTkf

0
  (5) 

where kf [mm °C-1 d-1] is the degree-day factor for 
freezing. 

 

8.5 Liquid water retention capacity of a 
snowpack 

The liquid water retention capacity of a snowpack 
is related to the water equivalent of ice in the snow 
pack, i.e. 

rIL =max     (6) 

where Lmax [mm] is the maximum amount of liquid 
water in the snow pack, r [-] is the retention 
parameter, and I [mm] is the water equivalent of 
ice in the snowpack. 

 

8.6 Mass balance for the snowpack 

The following equation gives the mass balance for 
the water equivalent of ice in the snowpack (see 
Figure 1). 



 

 

mfP
dt
dI

s −+=    (7) 

The following equation gives the mass balance for 
the liquid water L [mm] retained in the snow pack 
(see Figure 1). 

maxLLfmP
dt
dL

r ≤−+=   (8) 

When liquid water input (Pr + m - f) cannot fit into 
the liquid water store, i.e. the value of L exceeds 
Lmax, the excess liquid water above  Lmax becomes 
snowmelt discharge d [mm d-1]. 

 

8.7 Rain/melt 

Rain/melt is snowmelt discharge when there is 
snow on the ground, and rainfall in snow-free 
periods. 

 

8.8 Parameter values 

Tmelt, cs, kd, kf, and r are calibrated against 
measured SWE values. Tf is set equal to Tmelt. cr is 
fixed to 1.05, according to the value suggested in 
Førland et al. [1996]. 

 

9. MODEL TESTING INCLUDING 
DIAGNOSTIC CHECKING (STEP 8) 

This section explores how well model parameter 
values can be identified from the available data, 
and how sensitive the model output is to parameter 
values. 

 

9.1 Identifiability of model parameters 

To test the model structure, the identifiability of 
model parameters is explored by uniformly 
sampling the calibration parameter space at the 
intervals shown in Table 1. The minimum and 
maximum values were selected in such a manner 
that values found in literature reside within the 
prescribed ranges [e.g. Vehviläinen, 1992; and 
Kuusisto, 1984]. The step values were set in such a 
manner that the total number of trials did not grow 
overly large to be run on a personal computer. 

In this section the time period from Dec 11, 1996, 
to Apr 28, 1999 is used in assessing the capability 
of the model in reproducing the measured SWE 
values. The model performance is evaluated in 
terms of the Nash and Sutcliffe [1970] efficiency 
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where obs
iy  is the observed SWE value at time 

step (day)  i, sim
iy  is the simulated value at time 

step i and obsy is the mean observed value, and N 
is the number of observations. 

Table 1.  Sampling space of snow model 
parameters (4 574 934 trials). 

Parameter     Min     Max Step Unit 
cs 0.7 2.5 0.1 - 

Tmelt -2 2 0.2 °C 
kd 0 10 0.4 mm °C-1 d-1 
kf 0 1 0.05 mm °C-1 d-1 
r 0 0.8 0.04 - 

 

The maximum ENS obtained for the calibration 
period was 0.97. For all parameter combinations 
that yielded an ENS greater than 0.96, correlations 
between parameter values were computed (Table 
2), and marginal frequency distributions of the 
parameter values were graphed (Figure 2). 
Threshold of 0.96 was set in order to select only 
well behaving models but still to guarantee a 
sufficiently large sample (over 1000 parameter 
combinations) for the analysis shown below. 
Correlations were computed from 

yx
yx

yx
σσ

=ρ ),cov(
,

    (9) 

where ρx,y is the correlation between variables x 
and y, and σx and σy are standard deviations of x 
and y, respectively. 

Table 2.  Parameter correlations. 

  cs Tmelt kd kf r 
cs 1     
Tmelt -0.54 1    
kd -0.09 0.81 1   
kf -0.03 0.19 0.17 1  
r 0.16 -0.60 -0.37 -0.44 1 
 

From Table 2 it is evident that several pairs of  
model parameters are strongly correlated. This is 
due to compensating mechanisms in the model 
structure that affect snow dynamics. For example, 
the high correlation (0.81) between Tmelt and kd is 
explained by the fact that an increase in the value 
of Tmelt increases the temperature threshold for the 
initiation of snowmelt, which is compensated by a 
higher rate of snowmelt (i.e. an increase in the 
degree-day factor kd). 



 

 

The spread in the parameter values yielding a 
nearly equal model performance (Figure 2) is 
partly explained by the compensating mechanisms 
discussed above in the context of parameter 
correlations, partly by existence of unmodelled 
dependencies of the model output, and partly by 
the insensitivity of the model result to a parameter 
value. With respect to the latter explanation, Figure 
2 suggests that a good model fit is obtained even 
when r is zero, in which case the value of kf  has no 
control over the model result and any value of kf  
gives an equal fit. It seems that a model without the 
liquid water storage (r = 0) can equally well 
reproduce measured SWE values, and hence the 

model structure could be simplified. Disregarding 
the liquid water storage would decrease the number 
of calibration parameters from five to three, as r 
and kf  would not be needed any longer. 
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Figure 2. Marginal frequency distributions of the parameter values for all parameter combinations that 
yielded an ENS greater than 0.96. 

 

9.2 Sensitivity analysis 

Sensitivity is assessed in terms of the average 
annual maximum SWE and five-day sums of 

snowmelt discharge. The maximum SWE reflects 
potential for a spring flood, and the snowmelt 
discharge is the model output necessary for 
streamflow predictions. The same period of data 



 

 

as in the previous section (from Dec 11, 1996, to 
Apr 28, 1999) is used here. 

The following set of parameter values is used for 
a reference model run: cs = 1.2, Tmelt  =  0.2 ºC, kd 
= 4.4 mm ºC-1 d-1, r = 0.4, and kf = 0.05 mm ºC-1 
d-1. These values were selected as none of the 
values is at its limit, leaving some space for 
perturbation. This mainly concerns the retention 
parameter r, whose value cannot be perturbed 
downwards if it is close or equal to zero. The set 
of parameter values yielded an ENS  of 0.95. 

When simulating snowmelt discharge, the 
computed SWE is updated periodically to match 
an observed value. The updating is conducted in 
such a manner that in the day following a 
measurement, the SWE value at the previous day 
is fixed to the measured value. In essence 
updating means that the model always simulates 
the period between two consequtive snow 
measurements with the initial state fixed to the 
first of these two measurements. 

In such a scheme we assume that SWE 
observations are completely accurate. If we knew 
the relative uncertainty in the observed and 
modelled values of SWE, we could correct to a 
value which compromises between the two. 
Updating of estimates normally does this. Here, 
however, for the sake of simplicity, the updating 
scheme assumes SWE observations to be perfectly 
accurate. 

In the following sensitivity analysis,  simulated 
SWE values at five daily intervals from the 
reference run serve as SWE observations. Five 
day sums – from the first day after the SWE 
observation until the next observation – of 
snowmelt discharge are computed. With regard to 
SWEmax, the model is run without the five-daily 
updating of SWE, which represents the situation 
where SWE measurements do not become 
available early enough for continuous updating. 

Table 3 shows results on how much parameters 
have to be perturbed from their reference values 
in order to increase or decrease the average annual 
maximum SWE (SWEmax), average annual mean 
five-daily sums of  snowmelt discharge (Dmean), 
and average annual maximum five-daily sums of 
snowmelt discharge (Dmax) by 20%. These 
variables are defined as follows 
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where A is the number of years, aD  is the mean 
five-daily snowmelt discharge in year a, and 
max(D)a is the maximum five-daily snowmelt 
discharge in year a. 

Clearly, the model result is extremely sensitive to 
the value of Tmelt, only a change of 0.2 - 0.3°C is 
required to perturb SWEmax and Dmean by 20%.  It 
is noteworthy that as the melting rate is 
proportional to the difference between air 
temperature and Tmelt, the model result is equally 
sensitive to a systematic error in the air 
temperature measurement. Also, a systematic 
error in the areal precipitation estimate has an 
effect similar to that resulting from the 
perturbation of cs. The sensitivity of the model 
result to perturbations in cs and kd is fairly simple, 
as a 20% change in SWEmax and Dmean is induced 
by parameter perturbations of the same order of 
magnitude (12-43% ). The Dmax variable seems to 
be somewhat less sensitive to perturbations in kd. 
Note that sensitivity of snowmelt discharge to 
perturbations in cs is not assessed here. When 
SWE observations are used to update the 
modelled SWE, cs would only affect snowmelt 
discharge values if snow melted completely 
between two subsequent observations. 

Regarding the liquid water storage parameters, r 
and kf, the model result seems to be less sensitive 
to their values than to other parameters. Often it is 
impossible to obtain the required 20% change 
before the parameter value goes beyond its limits. 
For example, even a value of 30 mm d-1 °C-1 for kf 
induces only a -16.6% change in Dmax, although it 
clearly is an unrealistically high value. From the 
results presented earlier it is evident that having 
the liquid water storage in the model structure is 
not warranted solely on the basis of reproducing 
SWE measurements, and hence the values of r and 
kf cannot be determined by calibration against 
SWE data. However, ignoring the liquid water 
storage entirely (i.e. setting r equal to zero) will 
affect the snowmelt discharge series. This is 
visible from the –13.6% decrease in Dmax when r 
changes from 0.4 to 0. The greater value of Dmax 
for the model with a non-zero liquid water storage 
is due to the water discharge out of the liquid 
water storage when SWE decreases. Decrease of 
SWE causes the liquid water retention capacity to 
decrease correspondingly (see equation 6). On the 
other hand, in case of a rain-on-snow event, and in 
the absence of a liquid water storage, all rain 
immediately becomes snowmelt discharge. This is 



 

 

unrealistic, as it is known that at the beginning of 
snowmelt a snow pack has liquid water retention 
storage, and this storage can lead to a significant 
delay in snowmelt-induced runoff [Vehviläinen, 
1992; Kuzmin, 1961]. Immediate transformation 
of rainfall into snowmelt discharge causes Dmean to 
increase (as opposed to Dmax) by 6.9% when the 
liquid water storage is removed by setting r equal 
to zero.  

Table 3. Parameter values yielding a ±20% 
change from the reference value of the average 
annual maximum SWE (SWEmax), the average 
annual mean five-daily sums of snowmelt 
discharge (Dmean), and the average annual 
maximum five-daily sums of snowmelt discharge 
(Dmax). Parameter values used in the reference run 
are shown in parentheses after the parameter 
symbol. If the required 20% change would have 
caused a parameter to obtain a value beyond its 
limit (e.g. r < 0 or r  > 1), or if the model output 
became insensitive to further perturbation of the 
parameter value, the change at the limit is 
presented in parentheses after the parameter value. 

  
cs (1.2) 

- 
Kd (4.4) 

mmºC-1d-1
Tmelt (0.2) 

ºC 
r (0.4) 

- 
Kf (0.05) 

mmºC-1d-1 
 SWEmax  
+20% 1.34 3.27 0.40 1 (18.3%) 1.05 
 SWEmax  
-20% 1.04 6.28 -0.10 0.04 0 (-7.8%) 
 Dmean  
+20% - 5.99 -0.13 0 (6.9%) 0 (3.6%) 
 Dmean  
-20% - 3.11 0.52 1 (-4.6%) 11.95 
 Dmax  
+20% - 6.80 -0.88 0.99 0 (0.8%) 
 Dmax  
-20%  - 2.57 1.01 0(-13.6%) 30(-16.6%)
 

The liquid water retention capacity has been 
suggested [Vehviläinen, 1992 ref. Kuzmin, 1961] 
to have a value between 0.2 and 0.3 of the SWE 
value at the beginning of snowmelt. In the present 
model the retention capacity is related to the water 
equivalent of ice. Now, if we assumed that at the 
beginning of snowmelt the snowpack was 
completely dry (i.e. all water would appear in the 
form of ice), the values suggested above would 
translate directly into r values. Here the r value is 
fixed to the middle of the given range, i.e. 0.25. 
The value of the refreezing parameter kf seems to 
have little impact on the snowmelt discharge 
variables Dmean and Dmax, which is in line with the 
result of Kuusisto [1984] who stated that having 
the refreezing parameter in the model gave only a 
small improvement in model performance. 

Consequently, accounting for refreezing is 
removed from the model structure. 

 

9.3 Identification of parameters 

After having fixed the value of r equal to 0.25 and 
removed kf from the model, values for the 
remaining parameters (cs, Tmelt, and kd) are 
identified. From now on, the model is always 
updated using observed SWE data. This 
calibration procedure is insensitive to errors that 
have occurred earlier and would otherwise affect 
the calibration throughout the calibration period. 

In Section 9.1 it was demonstrated that cs, Tmelt, 
and kd are correlated. Hence, it will be difficult to 
identify unique parameter values, and many 
combinations will give a similar fit against SWE 
data. To improve identifiability of the parameter 
values, calibration data are screened to isolate a 
subset where accumulation of snow is the 
dominant snow process. Such a subset is used to 
assign a value for cs. Those intervals between two 
subsequent SWE observations where there had 
been more than twice as much accumulation as 
melt, and where more than 75% of precipitation 
fell at an air temperature below -1ºC, were 
identified. The latter condition was introduced to 
increase the probability that precipitation had 
fallen in form of snow. As snowmelt has not been 
measured, it had to be estimated with the model. 
In estimating the amount of snowmelt, parameter 
values were set to those yielding the best fit in the 
sampling exercise presented in Section 9.1, on the 
condition that r equals 0.24 and kf equals 0. The 
screening of data yielded 21 SWE measurements, 
and the value of cs was estimated to be 1.04. 

After having identified cs, all calibration data are 
used to identify values for the remaining 
parameters kd and Tmelt. Figure 3 shows a contour 
plot of ENS as a function of kd and Tmelt. A higher 
value of Tmelt is clearly compensated by a higher kd 
value, which is seen as a ridge running diagonally 
across the parameter space. The global maximum 
of ENS is located at a point where degree-day 
factor kd equals 2.7 ºC-1 d-1 and Tmelt equals 0.1 ºC. 
Kuusisto [1984] reports that average degree-day 
factors in the open range from 2.8 to 4.9 mm 
ºC-1d-1. Finally, recalibration of cs with kd equal to 
2.7 mm ºC-1 d-1 and Tmelt equal to 0.1 ºC gives 
again the value 1.04. 

 

 
 

 



 

 

 
Figure 3. A contour plot of ENS as a function of kd and Tmelt. 

 

Limited information about the shape of the 
objective function would be available with little 
extra computation when parameter estimation 
techniques providing the Hessian matrix are 
applied. The Hessian matrix yields the curvature 
of the objective function at the optimum. 

 

9. UNCERTAINTY ANALYSIS AND 
MODEL EVALUATION (STEPS 9 AND 
10) 

In addition to the Nash-Sutcliffe efficiency ENS, 
bias B, mean absolute error Ema, and maximum 
absolute error Emaxa are used for further evaluation 
of the model performance. Definitions for the 
above criteria are 
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Bias gives an indication whether the model has a 
tendency to systematically under- or overestimate 
SWE, and mean absolute error characterises the 
model performance in a similar fashion to ENS, but 
does not give as much weight to large errors. 

We have daily precipitation and temperature data 
from four winters covering the period from Dec 1, 
1996 to April 30, 2000. For the same period there 
are SWE data that have been measured at an 
approximately weekly interval (Figure 5).  

The model is calibrated over three winters, while 
the data from the remaining winter are reserved 
for model validation. All four possible 
combinations of  three calibration winters and one 
validation winter are tested, and the results are 
shown in Table 4. 

Table 4. Evaluation results for the snow model. 
Results for the validation winter are in bold face. 

  Calibration winters Validation winter 
Case1 1997-1999 2000 
Case2 1997-1998, 2000 1999 
Case3 1997, 1999-2000 1998 
Case4 1998-2000 1997 
     
  Case 1 Case2 Case3 Case4 
cs [-] 1.04 1.08 1.16 0.97 
Tmelt [°C] 0.1 -0.3 -0.3 -0.1 
kd [mm°C-1d-1] 2.7 2.1 2.2 2.3 
1997     
ENS [-] 0.96 0.96 0.96 0.96 
B [mm] -0.22 0.19 0.05 0.07 
Ema [mm] 3.76 3.24 3.19 3.74 
Emaxa [mm] 12.36 10.73 10.52 11.03 
1998     
ENS [-] 0.91 0.92 0.90 0.93 
B [mm] 0.51 0.55 0.42 0.84 
Ema [mm] 3.06 2.88 3.04 2.88 
Emaxa [mm] 5.57 6.44 8.17 4.51 
1999     
ENS [-] 0.99 0.98 0.98 0.99 
B [mm] 0.13 0.86 0.71 1.05 
Ema [mm] 4.53 5.15 5.12 4.84 
Emaxa [mm] 18.58 17.71 17.18 18.37 
2000     
ENS [-] 0.87 0.93 0.93 0.91 
B [mm] -1.22 0.25 -0.07 -0.03 
Ema [mm] 5.11 4.20 4.24 4.24 
Emaxa [mm] 11.91 10.48 8.30 14.44 
 

The results shown in Table 4 indicate that the pair 
of Tmelt and kd is well identified. Parameter values 
for different calibration periods are not far from 
each other, and a higher value of Tmelt is 
accompanied by a higher value of kd, as expected 
due to their positive correlation (see Figure 3). 
The snowfall correction factor cs attains a fairly 
large range of values, depending on which of the 
four years is left out from the calibration data. The 
highest value (1.16) is 20% higher than the lowest 
value (0.97). According to the sensitivity analysis, 
such a change in cs would induce a significant 
change in maximum SWE values when the model 



 

 

is run throughout the winter without periodical 
updating using SWE observations. When updating 
of SWE according to observations is applied, the 
effect of cs on the computed SWE series is 
naturally much smaller. As a result of updating, 
the computed snowmelt discharge series is only 
affected by the value of cs when the snow pack 
melts completely between two SWE observations, 
and there is precipitation in the form of snow. 

The fact that cs is more difficult to identify than 
the parameters controlling snow melt indicates 
that precipitation is more difficult to measure 
consistently than air temperature and SWE. The 
difficulty of gauging snowfall is acknowledged in 
the literature [e.g. Kuusisto, 1984]. Also, having 
just daily precipitation data available it is not 
possible to know whether precipitation falling in 
the day of an SWE observation has fallen before 
or after the time of the observation. This affects 
estimation of cs, in particular as the number of 
observations used for estimation of the value of cs 
is relatively small (around 20). 

With respect to ENS, the model performance in the 
validation year (in bold in Table 4) is always 
inferior (or equal) when compared to the case 
where that same year has been included in the 
calibration period. This is explained by the fact 
that both the optimisation criterion (sum of 
squared errors) and ENS describe model 
performance based on squared differences 
between measured and simulated values. For other 
criteria, the model performance in the validation 
year can be even better than the performance for 
the case where the same year has been included in 
the calibration period. 

The bias B is small, mostly well below 1 mm, 
which suggests that the model does not have a 
systematic tendency to under or over predict the 
change in SWE between two subsequent 
observations. The mean absolute error Ema ranges 
from 2.9 to 5.1 mm, which is below the 
measurement accuracy given in Section 3 (up to 8 
mm). The maximum absolute error is between 4.5 
and 18.6 mm, where the upper limit is clearly 
above the accuracy of an SWE measurement. The 
largest error (18.6 mm) occurs for case 1 for the 
time period from Apr 2 to Apr 6, 1999, when the 
measured SWE decrease is 29 mm while the 
model predicts a 10 mm decrease. This error can 
be partly explained by snowmelt occurring on the 
day of the SWE observation (Apr 2) when the air 

temperature was well above zero (2.9 ºC). If this 
melt occurs after the time of SWE measurement, it 
results in an error in the model. This is the same 
problem of daily data as discussed already in the 
context of precipitation measurements. 

Figure 4 plots daily snowmelt discharge series 
using the parameter set identified for case 2 
against the series from case 1. Scatter plots for 
case 3 vs. case 1, and case 4 vs. case 1 are similar 
to the plot shown in Figure 4. Clearly the largest 
discrepancies occur when according to case 1 
snowmelt discharge is zero, but results from case 
2 show discharge values up to 17 mm/d. The 
maximum difference occurs on Dec 4, 1999, when 
the observed precipitation value was 15.8 mm and 
the air temperature was –0.1 ºC.  Based on the 
parameter values from case 1, precipitation on 
that day fell in the form of snow, whereas due to 
the lower Tmelt value in case 2 precipitation fell as 
rain. Discharge series would not show this large 
deviations, if the form of precipitation was not 
determined based on a single threshold 
temperature, but using a temperature range inside 
which precipitation is split between snow and 
rain. A temperature range for determining the 
form of precipitation is commonly used in degree-
day snow models, and should be considered here, 
too. 
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Figure 4. Daily snowmelt discharge series using 
the parameter values identified for case 2 against 
the series from case 1. 
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Figure 5. Observed and simulated SWE series from Dec 1996 to Apr 2000. SWE observations are used to 
update model result whenever an observation becomes available. 

 

Finally, to utilise all available information in the 
data the model is calibrated to all four winters 
from Dec 1996 to Apr 2000. The following 
parameter values are obtained: cs =  1.05, kd = 2.1 
mm ºC-1d-1, and Tmelt = -0.3  ºC. Figure 5 shows 
model fit using the above parameter values. 

 

9. SUMMARY 

The purpose of this modelling exercise was to 
develop a simple snow model that would predict 
daily snowmelt discharge to be used for 
streamflow forecasting. The client is anyone with 
an interest in producing flow forecasts. 

The selected model type is a simple, lumped 
conceptual model. As the only objective was to 
deliver an estimate of snowmelt discharge, it was 
not necessary to impose detailed physics in the 
model. A more physics-based model describing 
the energy balance of a snowpack in more detail 
would lead to a more complex numerical scheme 

for its solution, and increase requirements for 
input data, especially if parameters were allowed 
to vary in space. 

Model testing revealed that while the liquid water 
storage had an effect on the predicted snowmelt 
discharge series, its parameters could not be 
identified from SWE observations. It was decided 
to fix the retention parameter to a literature value 
(0.25), and to remove the refreezing process by 
setting the refreezing parameter to zero.  

When the model is used for predicting snowmelt 
discharge, the SWE value is updated every time a 
new observation becomes available. When 
running the model for the present data using 
periodical updating of SWE, the mean absolute 
error for SWE was found to range between 2.9 
and 5.1 mm, and the maximum absolute error was 
up to 18.6 mm. While the mean error is below the 
measurement accuracy of SWE reported in the 
literature (see Section 3), the maximum error was 
considerably larger. Daily resolution of the 



 

 

meteorological data was found to cause errors as 
it was not possible to determine whether a 
precipitation or melt event had occurred before or 
after the SWE observation in the same day. 
Snowmelt discharge can be very sensitive to the 
value of Tmelt, as it determines the form of 
precipitation as an abrupt threshold. Instead of a 
single threshold temperature, a range with two 
temperature limits should be considered for 
determining the form of precipitation. 

The model reproduces the measured change in 
SWE between two subsequent observations with 
satisfactory accuracy. It is noteworthy that in this 
exercise the snow predictions were based on 
measured, instead of forecast, meteorological 
variables. When snow predictions are based on a 
weather forecast, the largest uncertainties will 
stem from inaccuracies inherent in the forecast. 
Also, it is recommended that the quality of the 
snow model should be further assessed against 
streamflow data from the same region. In such an 
analysis the computed snowmelt discharge can be 
compared against measured streamflow, which 
can reveal problems in the snow model that are 
not visible when the model performance is 
compared only against SWE observations. 

The ten step procedure was found to provide an 
incentive to a more systematic model analysis – 
including diagnostic checks and uncertainty 
analyses – that often receives less attention in 
environmental modelling studies. The iterative 
nature of the modelling steps contributes to good 
modelling practice but poses challenges to 
reporting as several model versions may appear in 
the same report when model structure is revised in 
iterating through the steps. 
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