
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Faculty Publications 

2017-9 

Deep Visual Gravity Vector Detection for Unmanned Aircraft Deep Visual Gravity Vector Detection for Unmanned Aircraft 

Attitude Estimation Attitude Estimation 

Gary J. Ellingson 
Department of Mechanical Engineering, Brigham Young University, gellings13@gmail.com 

David Wingate 
Brigham Young University - Provo 

Tim McLain 
Brigham Young University - Provo, mclain@byu.edu 

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub 

 Part of the Mechanical Engineering Commons 

Original Publication Citation Original Publication Citation 
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, September 2017, 

Vancouver, British Columbia. 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Ellingson, Gary J.; Wingate, David; and McLain, Tim, "Deep Visual Gravity Vector Detection for Unmanned 
Aircraft Attitude Estimation" (2017). Faculty Publications. 1971. 
https://scholarsarchive.byu.edu/facpub/1971 

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been 
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more 
information, please contact ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1971&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1971&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/1971?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1971&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu


Deep Visual Gravity Vector Detection
for Unmanned Aircraft Attitude Estimation

Gary Ellingson1, David Wingate2, and Tim McLain3

Abstract— This paper demonstrates a feasible method for
using a deep neural network as a sensor to estimate the
attitude of a flying vehicle using only flight video. A dataset
of still images and associated gravity vectors was collected and
used to perform supervised learning. The network builds on
a previously trained network and was trained to be able to
approximate the attitude of the camera with an average error
of about 8 degrees. Flight test video was recorded and processed
with a relatively simple visual odometry method. The aircraft
attitude is then estimated with the visual odometry as the state
propagation and network providing the attitude measurement
in an extended Kalman filter. Results show that the proposed
method of having the neural network provide a gravity vector
attitude measurement from the flight imagery reduces the
standard deviation of the attitude error by approximately 12
times compared to a baseline approach.

I. INTRODUCTION

Flying vehicles of all types (rockets, fixed-wing aircraft,
and rotarcraft) must overcome the force of gravity to re-
main airborne. This fundamental task requires an accurate
knowledge of the vehicle’s attitude relative to gravity. While
three-axis acceleration and rotation sensors (accelerometers
and gyros) are often used for attitude estimation, they have a
number of limitations. These sensors have inaccuracies in the
form of noise and drift and are often sensitive to changes in
temperature. Also, accelerometers measure both the portion
of the specific force counteracting gravity and the inertial
acceleration of the vehicle. The use of these sensors requires
complex estimation frameworks to obtain the attitude of the
vehicle and are often combined with other sensors such as
cameras [1] to improve their accuracy.

People have an innate ability to sense their attitude from
visual clues. They can easily tell the orientation at which
a picture was taken simply by looking at the picture. This
ability is demonstrated by how people react to situations
where visual clues do not match their actual orientation
and what they see does not match their internal senses. A
common example of this is the disorientation and imbalance
a person can experience when wearing a virtual reality
headset.

First-person-view radio-controlled drone pilots are also
able to perceive the drone’s position, velocity, and pose given

*This work has been supported by the Center for Unmanned Aircraft
Systems (C-UAS), a National Science Foundation Industry/University Co-
operative Research Center (I/UCRC) under NSF award No. IIP-1161036.

1Gary Ellingson is a PhD candidate in the Department of Mechanical En-
gineering, Brigham Young University gary.ellingson@byu.edu

2David Wingate is an associate professor in the Department of Computer
Science, Brigham Young University, wingated@cs.byu.edu

3Tim McLain is a professor in the Department of Mechanical Engineer-
ing, Brigham Young University mclain@byu.edu

only a monocular video. Skilled pilots can perform quick,
accurate, and aggressive maneuvers. This implies that all
necessary state information for these maneuvers is contained
in the video, although accessing and quantifying the sensory
information for robotics applications remains difficult in
practice.

Deep learning is one of the most compelling advances in
machine learning in recent memory. It has swept over both
industry and academia, crushing benchmarks and generating
impressive progress across fields as diverse as speech recog-
nition [2]–[5], parsing of natural scenes [6], [7], machine
translation [8]–[10], robotics [11]–[14], machine vision [15]–
[18], and even the game of Go [19]. Convolutional neural
networks have been applied to image processing for tasks
such as detection and classification of objects in the im-
ages [20]. By making the network deeper (i.e. more layers)
performance of these networks can be improved. Image pro-
cessing is a good application for deep learning because it can
be hard to mathematically model many visual tasks and large
datasets exist for training the deep neural networks (DNNs).
DNNs are able to learn (through optimization) a function
approximation for performing the visual tasks. Integrating
DNNs into robotics applications, however, remains an area
of ongoing research.

There is an extensive history of unmanned aircraft using
vision [21], including the limited use of DNNs for visual
perception. To our knowledge there has been no use of
DNNs for state estimation purposes. Visual odometry (VO)
is commonly used on autonomous vehicles for measuring the
movement of the vehicle using visual information. VO has a
long history [22] that includes a large variety of methods and
techniques [23]. Often methods include tracking features in
the images and using the movement of these features across
frames to construct a transformation from one frame to the
next.

This paper demonstrates the use of deep learning to
perform visual gravity vector detection. To do this, we create
a DNN where the input to the network is a monocular image
and the output is the orientation of the camera relative to
gravity. This allows the camera to be a direct attitude sensor,
which simplifies the attitude estimation for a flying vehicle.
The paper demonstrates the possibility of real-time use of
DNNs for attitude estimation using flight video from a small
multirotor aircraft.

II. RELATED WORKS

Several visual attitude estimation approaches have already
been proposed. Nearly all approaches use an edge detection



algorithm and use the edges to calculate attitude information.
Sensing the horizon using an FPGA was used to measure
the pitch and roll angles of the aircraft [24]. Regularities
in urban environments provide edges that point to vanishing
points. These edges were used directly in a Kalman filter
update in [25] to limit the drift of inertial sensors. A
similar approach was used on a ground robot in indoor
environments [26]. By assuming all edges are orthogonal in
three directions (the so-called Manhatan World assumption) a
vanishing-point filter was developed that estimates the Euler
angles of the camera attitude [27]. All of these approaches
use strict assumptions and, in some cases, the papers reported
failures when assumptions were not true.

Deep learning has also been used on robots and au-
tonomous aircraft. Using a DNN classifier, localization rel-
ative to a satellite image and landing zone detection for
a parafoil aircraft has been demonstrated [28]. This work
also showed that the output of a DNN can be used as a
sensor for an update in a Bayesian filter. Obstacle avoidance
by a ground robot was performed in [29] by training on
human inputs. Deep learning has further been used for
aircraft perception and mapping from image and hyper-
spectral data [30]. DNNs were used in [31] to predict the
success of a robotic gripper using camera images.

III. BUILDING THE DNN

For a DNN to accurately detect the attitude at which an
image was taken, the DNN must be constructed and trained
with care. The following sections describe the collection of
training data, the architecture of the network, and the results
of training.

A. Training Data

Prior to this work, there did not exist a large dataset
of images collected at various attitudes that also included
precise measurement of the attitude of the camera. For this
reason a dataset was constructed for training the DNN.

First an Android application (app) was written for col-
lecting the data. The app simultaneously takes a cropped
picture from the phone’s camera and records data from the
phone’s internal accelerometers. To reduce accelerometer
noise 50 measurements were quickly taken and averaged
to produce the attitude measurement of the camera. The
app used OpenCV vision processing libraries [32] for image
capture and processing. A screenshot of the app can be seen
in Fig. 2.

No camera calibration was performed for the training
dataset. The principle point of the image was assumed to be
the image center and the camera frame was a standard east-
down-north frame. The transformation from accelerometer
frame to the image frame was assumed to be axis aligned
according the Android API. This means the image x, y, z
axes were assumed to be aligned with the accelerometer x,
−y, −z axes respectively.

1) Data Collection: The data was collected on a LG
Nexus 5 smartphone around the Brigham Young University

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

X

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Y

Gravity Vectors on Unit Sphere (Top View)
Data
Mean

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

Angle (deg)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Fr
eq

ua
nc

y
of

A
ng

le

Distrobution in the xy Plane

Fig. 1. Top: Normalized gravity vectors plotted on the unit sphere in the
camera frame. Showing the orientations of the collected images. Bottom:
Distribution of the gravity vector angles about the optical axis. Used to
resample angles for dataset augmentation.

(BYU) campus. Attempts were made to minimize accelera-
tion while the pictures were captured so that the accelerome-
ters would measure mainly components of the gravity vector.
The dataset includes images of the inside and outside of
campus buildings taken at various attitudes that were similar
to what a multirotor might experience in a non-aggressive
flight (within about 40 degrees of vertical). However, one
limitation to the data is that it was collected by a standing
person and not a flying vehicle, meaning that virtually all
the images are 4 to 6 feet from the ground rather then at all
possible altitudes. In total 1500 images were taken. Example
images are shown in Fig. 2.

2) Data Analysis and Augmentation: The data was ana-
lyzed to prior to training to show the distribution of the data
collected. Fig. 1 shows all the gravity vectors normalized and
plotted on the unit sphere as well as the distribution of the
data around the optical (accelerometer −z) axis.

Simple statistics were also calculated for the dataset to
construct a baseline comparison for the DNN. Two randomly
selected gravity vectors sampled from the dataset have on
average 31.5 degrees of angular separation. Further, the
average angular deviation from the mean gravity vector is
22.0 degrees. This means that if the neural network is able to
achieve less than 22.0 degrees of error between the measured
and estimated gravity vectors then it is doing better than just
learning the distribution of dataset. Therefore 22.0 degrees
will be the baseline comparison for the DNN results and the



Fig. 2. Data collection Android application and examples of the collected images (associated gravity vectors were also collected). The reader can note
that the orientations of the images, while unusual, are easily perceived.

Fig. 3. Image rotated around the image center. Used to augment the
training dataset.

mean gravity vector a baseline measurement comparison on
the flight test results.

It is important to note that a dataset of only 1500 images is
small for training a deep conventional neural network and is
critical to the DNN design. To augment the data, each image
was rotated around the image center to a new orientation
within the original distribution. Images were padded with
zeros and pixels were resampled with bilinear interpolation,
as shown in Fig. 3. Gravity vectors were also rotated around
the −z axis by the same angle to match the orientation of
the resampled image. Initial experiments showed that data
augmentation greatly reduced the DNNs overfitting on the
dataset and generalized well to unrotated images.

The dataset was also split into training and testing data.
Because of the relatively small size of the original dataset
and because the dataset augmentation made every training
batch unique, only 100 images were randomly selected and
removed for testing, leaving 1400 for training. Both test and
training sets were rotated as described above before being
input into the DNN.

B. Technical Approach

The ideal approach for this problem would be to train a full
custom DNN for approximating the attitude from an image.
However, state of the art DNNs require datasets with millions

of training instances [33] and are trained with hundreds of
thousands of training steps each with large mini-batches [34].
Without the ability to use extremely large training datasets
and with relatively limited computational resources we will
require a simpler approach. Thus, the results presented here
represent a proof of concept only and not a state-of-the-art
implementation.

1) DNN Architecture: The first design choice was to reuse
a previously trained DNN for the base of the new DNN
architecture, a common approach [35]. Even though the
DNN was trained on a different task, because it was trained
on similar data it has already learned both the lower-level
texture information and the high-level semantic information
useful to the new task. In practice, it also provides the depth
required for the new task without the computation burden
of training the entire network. Our DNN architecture reuses
a 16-layer DNN created by the Visual Geometry Group at
the University of Oxford [36] that was previously trained
with data from the ImageNet database [33] to perform image
classification. We will refer to the network itself as VGG.

The next choice was to decide at what level to pull
activations from VGG. While the top of the network must be
replaced and trained on the new task, it was initially unclear
where on the network to take the activations for input into the
replacement. It is generally accepted that the lowest levels of
a DNN learn about texture information and the highest levels
learn about semantic information. Both texture and semantic
information, however, could be useful in determining the
attitude of the camera. For example, texture could be used to
detect the edges of objects that point toward vanishing points
on the horizon, and semantic information could be used to
detect whether the image contains sky or grass, which are
both clues for determining orientation.

A small topology search was performed to determine
which level of the VGG network to use. This was done
by training on several different levels and comparing per-
formance. One convolutional layer and two fully connected
layers were added to activations from VGG layers conv1.1,
conv2.1, conv3.1, conv4.1, and conv5.1 and then individually
trained. Fig. 4 shows the final design with activations used



VGG network

512

14x14

...
conv5.1

64

12x12

...

1

18
1

3
Gravity Vector

3
224x224

Image Pixels

...

Visual
Odometry

Kalman
Filter

φ, θ

3x3 convelution, relu
fully connected, relu
direct input

Fig. 4. Computation graph showing the DNN architecture. The original
VGG DNN goes up the left side of the image. The addition of added network
uses activations from level conv5.1 of VGG. Gray sections indicate the flight
testing attitude estimation scheme (see Section IV).

from the conv5.1 layer of VGG that achieved the best
accuracy.

The VGG activations are input into a bank of 64 3×3×512
convolutions. The result of the convolution is input into two
fully connected layers of sizes 9216×18 and 18×3. The final
output is the estimated gravity vector.

2) Loss Function: The loss function comes from treating
the output of the network as a log probability. The loss L is
expressed by the function

L(yi, µi) = (yix − µix)
2 + (yiy − µiy)

2 + (yiz − µiz)
2

where µi is the output vector from the DNN for image i
and y is the associated true gravity vector recorded by the
accelerometers.

C. Training Results

The network was trained using TensorFlow [37] with a
batch size of 100 images for approximately 250 epochs.

After training, the DNN produced gravity vectors that are
on average within 8 degrees of the measured attitude. Fig. 5
shows the accuracy as the network was trained. Note that
the training data does not dip below the test data, which
means that the network was not over fitting the training data.
Because the error is far below the baseline, it is clear that
the DNN did not learn the distribution of the dataset, but
has actually learned to perceive the gravity vector from the
image.

One limitation to the data is that the results can only be as
accurate as the accelerometer readings during data collection.
While averaging several measurement may have helped to
reduce the noise of the sensor, there was no way to account

0 50 100 150 200 250

Epoch

0

10

20

30

40

50

M
ea

n
E

rr
or

(d
eg

)

Accuracy
Test
Train
Baseline

Fig. 5. Mean error (deg) for both training and testing data as the DNN
is trained. Training accuracy does not dip below the testing accuracy,
indicating the DNN did not overfit on the training data.

for the bias drift on the sensors. Further analysis showed that
accelerometer drift can cause at least 2.5 degrees of error and
normal hand movement of a camera phone may have caused
up to 4.3 degrees of error. This means that better accuracy
of the DNN may be achievable if the attitude of the images
in the dataset were known with more accuracy.

IV. EXPERIMENTAL FLIGHT TESTS

The purpose of the flight tests is to show the feasibility
of using the DNN as a sensor in an attitude estimation filter.
A successful test would result in a significant reduction in
the error of the aircraft attitude estimates. The experimental
setup, including video processing and measurement filtering,
as well as flight test results are described below.

A. Approach

Obtaining the true attitude is important for evaluating the
accuracy of the attitude estimates. Motion capture (Vicon)
is commonly used as ground truth and provides an accurate
basis for comparison. It was considered for this experiment,
but using motion capture limits the flight environments to
the location of the motion capture system. Since a motion
capture room did not provide a diverse, visually-rich envi-
ronment necessary to evaluate the effectiveness of the DNN
measurements, we require a different approach.

Alternatively, the aircraft’s attitude with respect to the
gravity vector is also known at the beginning and end of the
flight when the aircraft is sitting on a level surface. At these
times, the true attitude of the aircraft is given by pitch and
roll angles of zero. Therefore, the attitude estimates can be
initialized with zeros and the estimated attitude at the end
of the flight used to evaluate the accumulated error in the
attitude estimates, and thus, effectiveness of the approach.

Our experiment used 33 flights of an Inductrix FPV mul-
tirotor aircraft by Horizon Hobby (see Fig. 6). Analog video
was transmitted from the aircraft and recorded for analysis
in post processing. For each flight the aircraft began on a
level surface, flew manually for approximately 60 seconds



Fig. 6. Inductrix FPV aircraft used in test flights.

1

2

3

Fig. 7. Test flight processes where the vehicle 1 began on a level surface,
2 flew for approximately 60 seconds, and 3 landed on a level surface.

and landed on a level surface (see Fig. 7). Each flight was
flown without aggressive maneuvers in indoor environments
and at similar altitude to the training data.

1) Visual Odometry: Visual odometry was implemented
using OpenCV and used to process the recorded video to
obtain the attitude of the aircraft (pitch and roll angles)
throughout the flight. For all flights the initial angles were
assumed to be zero.

The VO method used implemented a pyramidal KLT
tracker [38]–[40] for finding feature correspondences.
OpenCV’s built-in functions were used to find the fun-
damental matrix between two frames using an eight-point
algorithm [41] and RANSAC [42] to reject outliers. The
fundamental matrix was then decomposed into a transfor-
mation between camera poses. The transformations were
compounded from frame to frame for video at 15 Hz to pro-
duce the position and orientation of the vehicle throughout
the flight. The visual odometry implemented here does not
represent a state-of-the-art solution but similar approaches
are commonly used to obtain the motion of a camera. The
visual odometry required that the multirotor’s camera be
calibrated to obtain the camera’s intrinsic parameters. The
camera was assumed to be body-centered and axis-aligned
with the vehicle.

The result of the visual odometry is a homogenous trans-
formation matrix from the camera’s initial position to the
current position. The pitch and roll angles of the aircraft were
obtained by decomposing rotation portion of the matrix into
Euler angles. The rotation sequence included a yaw about
the camera y axis, a pitch (θ) about the camera x axis, and
then a roll (φ) about the camera z axis.

While the performance of visual odometry methods varies,
all VO methods, without other sensing, are subject to drift

as errors accumulate. The top left plot of Fig. 8 shows the
pitch-angle performance of our method. Without any attitude
measurement, the attitude quickly drifts from the truth and
the attitude at landing varies widely from the true value of
zero pitch.

2) Extended Kalman Filter: An extended Kalman filter
(EKF) was then implement to incorporate the visual gravity
vector detection as a measurement update. The EKF matrix
equations are similar the attitude estimator in [43] but are
simplified because the measurement only includes the gravity
vector and not the body accelerations. The filter states are
roll and pitch angles of the aircraft or

x =

[
φ
θ

]
. The nonlinear propagation step (ẋ = f(x, u)) incorporated
the rotation obtained from the visual odometry and the state
transition matrix for propagating the state covariance in the
filter is

∂f

∂x
=

[
q cos(φ) tan(θ)− r sin(φ) tan(θ) q sin(φ)+r cos(φ)

cos(θ)2

−q sin(φ)− r cos(φ) 0

]
where p, q, and r are the instantaneous rotation rates about
the camera z, x, and y axis respectively. In the EKF update
step, there is only limited theoretical development for obtain-
ing the process noise Q term, because the process is non-
linear, and in practice is often hand tuned for performance.

The update step used the DNN gravity vector to improve
the estimate. Accounting for the orientation of the accelerom-
eters according to the Android API the measurement model
is

h(x, u) =

− cos(θ) sin(φ)
cos(θ) cos(φ)

− sin(θ)


and the measurement matrix used for calculating the Kalman
gain is

∂h

∂x
=

− cos(θ) cos(φ) sin(θ) sin(φ)
− cos(θ) sin(φ) − sin(θ) cos(φ)

0 − cos(θ)


.

The measurement noise term R was obtained by cal-
culating the variance of DNN errors after training. After
the measurement update, the transformation from the initial
camera frame to the current camera frame was reconstructed
from the Euler angles for further propagation. The DNN
measurements were calculated on every second image used
for visual odometry (7.5 Hz) throughout the flights.

B. Results

For comparison, a test was performed using the DNN
baseline as the measurement update. In this test the mean
gravity vector from the training dataset was used for every
Kalman filter measurement with an appropriately large mea-
surement noise covariance. This test demonstrates the result
of allowing the filter to know which direction was most likely
upward. The top center plot of Fig. 8 shows the filtered result



Frame
0 200 400 600 800 1000 1200

P
it

ch
 A

n
g
le

 (
d
e
g
)

-100

-50

0

50

100
No Update

Frame
0 200 400 600 800 1000 1200

P
it

ch
 A

n
g
le

 (
d
e
g
)

-100

-50

0

50

100
Baseline Update

Frame
0 200 400 600 800 1000 1200

P
it

ch
 A

n
g
le

 (
d
e
g
)

-100

-50

0

50

100
DNN Update

Angle (deg)
-60 -40 -20 0 20 40 60
0

0.05

0.1

0.15

0.2

0.25

0.3
Distribution of Final Pitch Estimates

Angle (deg)
-60 -40 -20 0 20 40 60
0

0.05

0.1

0.15

0.2

0.25

0.3
Distribution of Final Roll Estimates

Fig. 8. Top: Aircraft estimated pitch angles for all 33 flights from visual odometry with no gravity vector update, a baseline update, and a DNN gravity
vector update. Bottom: Comparison of the normal distributions approximated from the angles at landing where the true angle is zero. Note the DNN update
provided much lower variance comparison to the others. Similar results were observed for the roll angle performance.

for the pitch and roll angles for all flights. While the pitch and
roll angles appear to be bounded they have a large variance
both throughout the flight and at landing.

The top right plot in Fig. 8 shows the results of incor-
porating the DNN’s gravity vector detection with the visual
odometry for the same test flights. The results show that,
as expected, the pitch and roll angles are non-zero during
all of the flights (due to flight maneuvering) and return to
close to zero when the aircraft landed. This means the DNN
is performing as a sensor and has effectively bounded the
drift and greatly improved the accuracy of the estimates in
the extended Kalman filter. Table I shows the means and
standard deviations for the flight attitude angles at landing
with no measurement update, the baseline update, and the
DNN gravity vector update. The DNN reduces the standard
deviation of the langing angles by approximately 12 times
from the results using the baseline update.

TABLE I
MEAN AND STANDARD DIVINATION OF ATTITUDE ANGLES AT LANDING.

No Update Baseline Update DNN Update
mean std div mean std div mean std div

Pitch (deg) 4.0 31.3 -1.8 16.0 -1.0 1.4
Roll (deg) -28.1 70.7 -3.5 18.4 0.2 1.5

V. CONCLUSION

After collecting a dataset using an Android app, we have
designed and trained a DNN to estimate the attitude of
the camera from an image. The architecture uses VGG
activations from layer conv5.1 and three additional custom
layers. Although limitations exist due to the size and quality
of the collected dataset, the DNN was able to be trained
using TensorFlow and was able to estimate the direction of
a gravity vector from visual clues in an image.

Further, we have shown that like people, a DNN can be
trained to perceive the orientation of a picture. This can be
done to produce an orientation estimate with about 8 degrees
of error on average. Given more training data, more accurate
attitude measurements, and a completely custom built DNN,
we believe that this could be a feasible approach to attitude
estimation of a flying vehicle, where the camera provides an
inertial attitude measurement for the aircraft state estimation.
This work has also shown that a DNN can be used as a
sensor in a extended Kalman filter where error in the DNN
output is accounted for as measurement noise. This may be a
feasible method for applying deep learning to other robotics
applications.

REFERENCES

[1] M. Li and A. I. Mourikis, “High-precision, consistent EKF-based
visual–inertial odometry,” The International Journal of Robotics Re-



search, vol. 32, no. 6, pp. 690–711, 2013.
[2] G. Hinton, L. Deng, D. Yu, G. Dahl, A. rahman Mohamed, N. Jaitly,

A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury,
“Deep neural networks for acoustic modeling in speech recognition,”
IEEE Signal Processing Magazine, vol. 29, no. 6, 2012.

[3] L. Deng, G. E. Hinton, and B. Kingsbury, “New types of deep neural
network learning for speech recognition and related applications: an
overview,” in Proceedings of International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pp. 8599–8603, 2013.

[4] O. Abdel-Hamid, A.-R. Mohamed, H. Jiang, L. Deng, G. Penn,
and D. Yu, “Convolutional neural networks for speech recognition,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 22, pp. 1533–1545, Oct. 2014.

[5] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 20, no. 1, pp. 30–42, 2012.

[6] R. Socher, C. Lin, A. Y. Ng, and C. D. Manning, “Parsing natural
scenes and natural language with recursive neural networks,” in
International Conference on Machine Learning (ICML), 2011.

[7] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep
belief networks for scalable unsupervised learning of hierarchical rep-
resentations,” International Conference on Machine Learning (ICML),
pp. 609–616, 2009.

[8] J. Zhang and C. Zong, “Deep neural networks in machine translation:
An overview,” IEEE Intelligent Systems, vol. 30, no. 5, pp. 16–25,
2015.

[9] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in Neural Information Processing
Systems (NIPS), pp. 3104–3112, 2014.

[10] K. Cho, B. Van Merriënboer, Ç. Gülçehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder–decoder for statistical machine translation,” in Conference
on Empirical Methods in Natural Language Processing (EMNLP),
pp. 1724–1734, Oct. 2014.

[11] A. Eitel, J. T. Springenberg, L. Spinello, M. Riedmiller, and W. Bur-
gard, “Multimodal deep learning for robust RGB-D object recogni-
tion,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2015.

[12] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” Journal of Machine Learning Research
(JMLR), 2016.

[13] M. Wulfmeier, P. Ondruska, and I. Posner, “Deep inverse reinforce-
ment learning,” arXiv, vol. 1507.04888, 2015.

[14] F. Zhang, J. Leitner, M. Milford, B. Upcroft, and P. I. Corke, “Towards
vision-based deep reinforcement learning for robotic motion control,”
arXiv, vol. 1511.03791, 2015.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems (NIPS), pp. 1097–1105, 2012.

[16] J. Schmidhuber, “Multi-column deep neural networks for image clas-
sification,” Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3642–3649, 2012.

[17] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[18] T. Zeng, R. Li, R. Mukkamala, J. Ye, and S. Ji, “Deep convolutional
neural networks for annotating gene expression patterns in the mouse
brain,” BMC Bioinformatics, vol. 16, p. 147, 2015.

[19] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. V. D.
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, “Mastering the game of Go with deep neural networks
and tree search,” Nature, 2016.

[20] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3,
pp. 211–252, 2015.

[21] C. Kanellakis and G. Nikolakopoulos, “Survey on computer vision
for UAVs: Current developments and trends,” Journal of Intelligent &
Robotic Systems, pp. 1–28, 2017.

[22] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],” IEEE
Robotics & Automation Magazine, vol. 18, no. 4, pp. 80–92, 2011.

[23] F. Fraundorfer and D. Scaramuzza, “Visual odometry: Part II: Match-
ing, robustness, optimization, and applications,” IEEE Robotics &
Automation Magazine, vol. 19, no. 2, pp. 78–90, 2012.

[24] T. Cornall, G. Egan, and A. Price, “Aircraft attitude estimation from
horizon video,” Electronics Letters, vol. 42, no. 13, pp. 744–745, 2006.

[25] M. Hwangbo and T. Kanade, “Visual-inertial uav attitude estimation
using urban scene regularities,” in Robotics and Automation (ICRA),
2011 IEEE International Conference on, pp. 2451–2458, IEEE, 2011.

[26] D. G. Kottas and S. I. Roumeliotis, “Exploiting urban scenes for
vision-aided inertial navigation.,” in Robotics: Science and Systems,
2013.

[27] W. Elloumi, S. Treuillet, and R. Leconge, “Real-time camera orien-
tation estimation based on vanishing point tracking under manhattan
world assumption,” Journal of Real-Time Image Processing, pp. 1–16,
2014.

[28] B. S. Chiel, GPS-denied multi-agent localization and terrain classifi-
cation for autonomous paraffin systems. PhD thesis, Boston University,
2016.

[29] L. Tai, S. Li, and M. Liu, “A deep-network solution towards model-
less obstacle avoidance,” in Intelligent Robots and Systems (IROS),
2016 IEEE/RSJ International Conference on, pp. 2759–2764, IEEE,
2016.

[30] C. Hung, Z. Xu, and S. Sukkarieh, “Feature learning based approach
for weed classification using high resolution aerial images from a
digital camera mounted on a UAV,” Remote Sensing, vol. 6, no. 12,
pp. 12037–12054, 2014.

[31] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-
eye coordination for robotic grasping with deep learning and large-
scale data collection,” arXiv preprint arXiv:1603.02199, 2016.

[32] G. Bradski Dr. Dobb’s Journal of Software Tools, 2000.
[33] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,

“Imagenet: A large-scale hierarchical image database,” in Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on, pp. 248–255, IEEE, 2009.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 770–778, 2016.

[35] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell, “Decaf: A deep convolutional activation feature for generic
visual recognition.,” in Icml, vol. 32, pp. 647–655, 2014.

[36] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[37] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kud-
lur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-
scale machine learning on heterogeneous systems,” 2015. Software
available from tensorflow.org.

[38] B. D. Lucas, T. Kanade, et al., “An iterative image registration
technique with an application to stereo vision,” 1981.

[39] C. Tomasi and T. Kanade, “Detection and tracking of point features,”
1991.

[40] J. Shi et al., “Good features to track,” in Computer Vision and Pattern
Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer
Society Conference on, pp. 593–600, IEEE, 1994.

[41] Z. Zhang, “Determining the epipolar geometry and its uncertainty:
A review,” International journal of computer vision, vol. 27, no. 2,
pp. 161–195, 1998.

[42] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[43] R. W. Beard and T. W. McLain, Small unmanned aircraft: Theory and
practice. Princeton University Press, 2012.


	Deep Visual Gravity Vector Detection for Unmanned Aircraft Attitude Estimation
	Original Publication Citation
	BYU ScholarsArchive Citation

	tmp.1503704142.pdf.yV4co

