
Brigham Young University
BYU ScholarsArchive

International Congress on Environmental
Modelling and Software

3rd International Congress on Environmental
Modelling and Software - Burlington, Vermont,

USA - July 2006

Jul 1st, 12:00 AM

Enriching software model interfaces using
ontology-based tools
Ioannis N. Athanasiadis

Andrea-Emilio Rizzoli

Marcello Donatelli

Laura Carlini

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for
inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more
information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

Athanasiadis, Ioannis N.; Rizzoli, Andrea-Emilio; Donatelli, Marcello; and Carlini, Laura, "Enriching software model interfaces using
ontology-based tools" (2006). International Congress on Environmental Modelling and Software. 46.
https://scholarsarchive.byu.edu/iemssconference/2006/all/46

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2006?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2006?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2006?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/iemssconference/2006/all/46?utm_source=scholarsarchive.byu.edu%2Fiemssconference%2F2006%2Fall%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Enriching software model interfaces

using ontology-based tools

I. N. Athanasiadis
a
, A. E. Rizzoli

a
, M. Donatelli

b
, and L. Carlini

b

a
Dalle Molle Institute for Artificial Intelligence, Lugano, Switzerland

b
CRA –Research Institute for Industrial Crops, Bologna, Italy

Abstract: Common practice has proven that software implementations of environmental models are seldom

reused by broader communities or in different modelling frameworks. One of the reasons for this situation is

the poor semantics of model interfaces. Model interfaces describe a critical amount of the modellers’ knowl-

edge, but their software implementations fail to represent the complexity of model assumptions in software

terms. In this paper, we present an ontology-driven approach that aims to enrich software model interfaces

with advanced semantics. A generic ontology for defining environmental model variables has been developed

along with two families of tools for supporting the modellers’ community to share their knowledge and soft-

ware codes in an easy, efficient and sound way. The first family of tools consists of a web-based ontology

editor for sharing knowledge related to environmental model components and their interface variables. The

second set of tools exploits the knowledge stored in the ontology by generating source code in an automated

fashion. Thus, it is shown how ontologies, accompanied by a set of supporting tools, can be used for promot-

ing the reuse of environmental models.

Keywords: Declarative and semantic modelling, Ontologies, Model linking and integration, Code generation

1. INTRODUCTION

Writing a model of an environmental system is a

complex process which aims at providing an ab-

straction of the real world processes, using a given

formalism, and exploiting a wide collection of

techniques originating from general systems the-

ory, to economics and social sciences.

A model, being an abstraction, in order to tame the

complexity of the real world, approaches its sub-

ject from a specific point of view; particular as-

sumptions and hypotheses about the phenomena

involved are made. We therefore neglect the full

extent of causal chains and driving forces of the

phenomena of interest and we strive for simplifica-

tion, focalization and modularisation of the model

construction process.

When we implement the model on a computer, we

introduce more assumptions, more limitations (for

instance, the model is forced to a discretization)

and therefore the software implementation of a

model should be considered as a poor realization

of the original formalisation. Such an approxima-

tion states only implicitly the assumptions made for

building it. For instance, the spatial discretization

of a model variable can only be inferred by a close

inspection of the data type used to implement it.

During the last decades, a number of models have

been designed and implemented, and it has become

natural to assemble them together in order to try to

address more and more complex problems. Inte-

grated assessments are becoming increasingly

common in environmental management and there-

fore we are faced with the problem of integrating

models across scales and disciplines. This is nei-

ther an easy, nor a straightforward process.

Software Engineering promotes the concepts of

reusing “components-off-the-shelf” (Szyperski et al

2002, Egyed et al. 2005), distributed computing

(Attiya and Welch, 2004), agent-based computing

(Luck et al. 2005), service-oriented architectures

and web services (Erl, 2004) to support the devel-

opment of modular applications. The very same

concepts are meant to be used to develop modular

and integrated environmental software applica-

tions.

However, software integration is not the sole nec-

essary condition for a proper assemblage of envi-

ronmental models. In other words, if a set of

(good) software model implementations are work-

ing together, this is not at all a sign that the com-

pound model makes any sense from a modelling

point of view and generates credible results. Dif-

ferent authors have tried to target the issue of qual-

ity assurance in the development of environmental

models (Refsgaard et. al. in press, Jakeman et al. in

press), but their main focus is on the quality of the

modelling process.

This paper argues that sound integration of envi-

ronmental models also requires automated cou-

pling of the knowledge hidden behind each soft-

ware implementation. In particular, in Section 2 we

investigate a model structure and identify its

knowledge components, typically implicit both in

the model interface and implementation. Section 3

focuses in the utilization of ontologies for specify-

ing model interfaces, while in Section 4 we present

a web-based tool for communal ontology author-

ing.

2. MODEL KNOWLEDGE AND LINKING

2.1 The knowledge encapsulated in a model

The result of the modelling process is a formalisa-

tion that encapsulates knowledge related to both

the interactions of the modelled system with its

surrounding environment (model interface and data

exchange), and the internal behaviour of the system

(model equations, or endogenous variables). Con-

sequently, a software component implementing a

model will consist of two parts, the interface and

the implementation. The interface defines the in-

puts, outputs and parameters of a model, while the

implementation defines the model equations.

Declarative modelling aims to separate the algo-

rithms which execute the numerical solution of the

model equations from the ‘declarations’ of the

equations themselves and the variables and pa-

rameters occurring in the equations. Prior work has

focused on the equation part (Muetzelfeldt, 2004),

whereas in this paper we concentrate on a declara-

tive approach for describing model interface to

facilitate model linking and integration using on-

tologies. Ontologies provide a formal support to

express conceptualisations (Gruber, 1993), and a

number of tools support the creation of ontologies.

Furthermore, model knowledge stored in the ontol-

ogy can be used both for formal documentation

and provide functionalities which go beyond the

computation of model variables.

2.2 Sound model linking and integration

Easy model linking and integration is a key feature

that is advertised by most modelling frameworks.

However, we advocate that simple integration in

software terms is not enough for sound model inte-

gration. A software implementation of an environ-

mental model does not take into account the se-

mantics of the software interface. The information

associated with the inputs, states, outputs and pa-

rameters is limited to their data type. For instance,

a typical software implementation expounds as

model interface arrays of doubles, integers, and

strings, whose context is described in the software

documentation, or, even worse, only in the variable

names. However, this practice requires that some-

one has to read the documentation in order to un-

derstand how to reuse this model properly. This is

because the model’s knowledge related to its inter-

face is not encapsulated in the actual interface of

the model implementation in a self-explained fash-

ion.

Consider for example the case depicted in Fig-

ure 1, where Models A and B are linked to another

Model C. Model C exposes to inputs CI1 and CI2,

which are to be linked to model outputs AO1 and

BO1. Let assume, without loss of generality, that all

these variables are simple floats. In software terms,

integration can be achieved simply if both CI1 and

CI2 are linked to any software component output

that provides a float. However, from a modelling

point of view, each model input or output is not

simply a float, instead it measures a specific quan-

tity in a specific temporal and spatial context (i.e. it

could be a car’s velocity or an ambient air pollut-

ant’s concentration at ground level, and so on).

Moreover, even if two models correctly link a vari-

able expressing the same element, the model re-

ceiving the variable as an input may be able to

handle only a sub-range of the values provided as

outputs (due to model assumptions). It becomes

evident that standard software interface conven-

tions are not enough for encapsulating the full

knowledge of the model interface.

The vision of reusing model software implementa-

tions as off-the-shelf components requires the as-

sumptions on the model interface to be represented

implementation in a machine readable format. Fol-

lowing the previous example, suppose Models A,

B, and C are supplied by diverse vendors. In order

to achieve sound model integration, each linkage

should be verified not only at the low level of data

type matching (which is the unique requirement for

software integration), but also against the actual

semantics (context and assumptions) related to

model interface. To elaborate it a bit more, let

Model A (of the previous example) exposes a sin-

Model C

Model B

Model A

AO1

AO2

BO1

CO1CI1

CI2

AI2

AI1

BI1

BI2

Figure 1. A model linking example.

gle float AO1 that represents the calculated rainfall

output, while Model C has a water pressure input

CI1, to be also a float. Suppose that someone tries

to make a link from AO1 to CI1. In such case, as

both variables are represented as single floats, the

integration is feasible in software terms, though it

makes no sense form a modelling perspective. The

same holds for less semantically diverse cases,

where we could have model variables expressing

the same concept, but with mismatches in charac-

teristic times, units, pre- and post- conditions, tem-

poral or spatial dimensions and sampling rates.

We need to express all the knowledge related to

the model interface in a declarative way, using an

ontology, as we show in the following section.

3. TOWARDS AN ONTOLOGY FOR

SPECIFYING MODEL INTERFACES

3.1 Models and model types

In order to enrich model interfaces with advanced

semantics, we developed an ontology, called the

Model Interface Ontology that aims to encapsulate

our knowledge on the model interface in a declara-

tive fashion. In this paper, we consider biophysical

agricultural models. As agricultural biophysical

processes occur through time and space, they are

usually modelled using stocks and flows, following

the system dynamics approach. A model interface

exposes both stocks (states) and flows (rates of

inputs and outputs) and it can be used by a simula-

tion engine (numerical integrator) for calculating

the stocks as an accumulation of flows over the

simulation time horizon.

These concepts are declared in our ontology as

follows: We identify two types of models: Static

and Dynamic models. The first kind of models

does not expose any states and rates, as they are

not required to be integrated over time. The oppo-

site holds for the dynamic models. All inputs, out-

puts, states and rates of models are types of an ab-

stract Measurement concept (ontology class),

which is used for defining their semantics in differ-

ent contexts (space, time units, and so on). The

Measurement class is detailed below. Figure 2,

illustrates the relations between the two model

types in the ontology.

3.2 Model interface elements as Measurements

The Measurement class is the key instrument for

conceptualising the model interface elements. The

Measurement class specifies the following proper-

ties of a model interface element:

� The observed quantity

� The spatial observation context

� The temporal observation context

� The sampling frequency

� Value conditions (minimum, maximum and

default value and default unit)

A Quantity can be considered as the result of ap-

plying a physical dimension on a subject of inter-

est. For example, AirTemperature can be consid-

ered as a physical quantity that represents the Tem-

perature dimension of air. Spatial and Temporal

contexts are used to define the dimensionality of a

measurement in space and time. Sampling fre-

quency associates the tempo-spatial dimension of a

measurement to a sampling rate and grid size. Fi-

nally, value conditions are used for defining

boundary conditions for a measurement’s allowed

values. An abstract view on the Measurement class

and its relationships with the rest concepts in the

ontology is presented in Fig. 3.

Utilizing such a conceptual schema, we can detail a

model interface element. For example, a measure-

ment called “HourlyAirTemperature” can be de-

fined by referring to AirTemperature quantity, be

measured at a point in space and time, on an hourly

basis, having as default unit degrees Celsius and be

consistent to some value conditions (min, max, and

Figure 3.The relations of the Measurement concept.

Figure 2. The relations between the model type

concepts of the model interface ontology.

default values). Consequently, such an instance of

Measurement class can be attached to a model

interface.

Note that the developed Model Interface Ontology

has been realized using the Web Ontology Lan-

guage (OWL, McGuinness, D.L and F. van Har-

melen 2004), through the Protégé ontology editor

(http://protege.stanford.edu/plugins/owl/). OWL–

DL expressivity was enough for conceptualizing

this domain. The specifications of units and dimen-

sions were based on the SWEET ontologies

(2006). Finally, the Model Interface Ontology is

available online (at: http://seamless.idsia.ch/on-

tologies/mio.owl).

In the previous sections, we advocated the poten-

tial of publishing model interfaces in a declarative

format and proposed an ontology for capturing the

semantics of model interface elements. This ap-

proach was undertaken by the Seamless-IP project

and the community of Agricultural Production Ex-

ternalities Simulator (APES) modellers. A set of

tools have been developed to enable modellers to:

(a) share their knowledge related to environmental

model components and their interface variables,

and (b) exploit the knowledge stored in the ontol-

ogy by generating source code in an automated

fashion.

4. AgrOntologies: A WEB-BASED TOOL

FOR COMMUNAL ONTOLOGY

AUTHORING

The process of setting up an ontology, and populat-

ing it with modellers’ knowledge was not straight-

forward. The major problems experienced, were

related to managing modeller’s conflicting views

and the complexity of the domain at hand. In order

to tackle such issues and to facilitate knowledge

elicitation within a community of more than ten

modelling teams involved in APES, we built a

web-based tool, called AgrOntologies, for commu-

nal ontology authoring. A key issue of this process

is that modellers are required to make their model

interfaces explicit and communicate them in a for-

mal, yet comprehendible way to others. Through

the AgrOntologies portal, a modeller can (a) spec-

ify model variables in detail, or even reuse existing

variables defined by others, (b) define model inter-

faces and ultimately, (c) put together models to-

gether in components.

Note that the AgrOntologies portal presents infor-

mation to the users in a “natural” way for them, not

as they are represented within the ontology using

description logics. In this sense, modellers are not

required to be exposed to all the complexity of the

internal ontology structure; rather they are allowed

to register their models through an easy to use por-

tal.

We are currently evaluating the ontology design

and populating the ontology with actual model

specifications. A screenshot of the developed por-

tal is shown in Figure 4.

5. DCC: A TOOL FOR GENERATING

MODEL SOURCE CODE

Figure 4.The relations of the Measurement class.

The use of the definition of concepts and their in-

stances goes beyond documentation and model

component linking. The attributes values associ-

ated with each variable can in fact be used to pro-

vide to components information needed to test the

adequacy of values at run time. This can be done

via the implementation of the design-by-contract

approach to test pre-conditions (e.g. Donatelli et al,

2006a and 2006b). Making available variables

attributes in an implementation of model compo-

nents has multiple uses, because it allows: 1) vali-

dating inputs to the component, 2) using bounds

for model parameters in automatic calibration, 3)

defining sub-ranges of allowed variables to account

for specific model limitation, and 4) provide attrib-

ute values as simulation output for auto-

documentation of results.

A software design which allows implementing the

information available in components makes use of

an abstract data type called the domain class, fol-

lowing the approach by Rizzoli et al. (1998). The

domain class is characterised a set of data attrib-

utes, which are the inputs, states, outputs of the

model and a set of access methods to set and get

the attribute values. The data attributes contain the

numerical value, the variable’s range, the default

value, and the measurement units. Defining a do-

main class also allows setting the boundaries of the

domain to be modelled, providing the information

to model according to the approach chose. Multi-

ple models implemented in a component can make

use of the same domain class.

The application Domain Class Coder (DCC) is a

windows application which, from an input files

extracted from the ontology application described

in Section 4, generates the C# code of twin classes.

Such classes are a type to hold values, and a com-

panion class to hold variables attributes. The for-

mer is an abstract class to be used as type in the

component interface, which then allows extensions

via subclassing of its default implementation. The

other class, conventionally called with the postfix

VarInfo to the value class name, contains attribute

values which are declared as static properties and

have only the get access method. VarInfo values

are used by a component to test pre and post condi-

tions which uses the VarInfo type,

(CRA.core.preconditions.dll, available as the DCC,

at http://www.isci.it/tools; DCC is available the

page XP Utils). The XML schema of the latter type

is shown in Fig. 5. From the XML schema it be-

comes evident that the information realized in the

domain class is less compared to that stored in the

ontology, but it is functional to the purpose de-

scribe above.

Once the input file is loaded (either as an XML or

as a tab separated ASCII file), the user can change

minimum and maximum values to account for spe-

cific model limitations (if any) with respect to the

values stored in the ontology. The user must also

specify the domain class name, and the namespace

of the class. The output is given by the C# code of

the two classes described above, which implement

interfaces which allows discovering types and at-

tributes via reflection. The package which can be

downloaded also contains a sample input file

which allows generating the relevant classes.

When these classes are included in a component

assembly, its content can be browsed via reflection

using the application Model Component Explorer.

This component allows discovering the domain

classes, their attributes and types, and the VarInfo

values for each attribute. The component is avail-

able in the same page of the DCC.

6. DISCUSSION AND FUTURE WORK

Various Environmental Management Information

Systems have exploited ontologies mainly for in-

formation processing. Most of them focus on seam-

less integration of environmental data repositories,

e.g. related to coastal zone management (Cristo-

phides et al. 1999), weather (Dance and Gorman

2002), or water management (Felluga et al. 2003).

More generic approaches for environmental data

fusion as Infosleuth (Nodine 2000), Buster (Neu-

mann et al. 2001) and AMEIM (Athanasiadis et al

2005) utilized ontologies too. However, none of

those systems use ontologies for environmental

model linking and model component integration.

This is the major contribution of this paper, where

we introduce ontologies as a medium for efficient

model integration. The Model Interface Ontology

was proposed for enriching model interfaces in a

declarative fashion. Also, clear path for building

Figure 5. The XML Schema of the VarInfo Do-

main Class.

reusable components was defined, and the use of

ontologies, accompanied by a set of supporting

tools, was exemplified.

Parallel efforts (Villa et al. 2006) are focusing on

extending the current framework by specifying

model equations using semantic modelling primi-

tives. Ontology representations of both model in-

terfaces and equations may lead us to a fully de-

clarative modelling and simulation environment.

7. ACKNOWLEDGEMENTS

This publication has been partially funded under

the SEAMLESS integrated project, EU 6th

Framework Programme for Research, Technologi-

cal Development and Demonstration, Priority

1.1.6.3. Global Change and Ecosystems (European

Commission, DG Research, contract no. 010036-

2). Seamless project website: http://www.seamless-

ip.org. The AgrOntologies portal tool was imple-

mented by David Huber, AntOptima SA.

8. REFERENCES

Athanasiadis, I., Solsbach, A., Marx Gómez, J.,

Mitkas, P., 2005. An agent-based middleware

for environmental information management,

In 2nd Conf. on Information Technologies in

Environmental Engineering (ITEE'2005), pp.

253-267.

Attiya, H. and Welch, J., 2004. Distributed Com-

puting: Fundamentals, Simulations, and Ad-

vanced Topics, Second Edition, Willey.

Christophides, V., Houstis, C., Lalis, S., and Tsala-

pata, H. 1999. Ontology-driven Integration of

Scientific Repositories. In: Proc. of the

Fourth Workshop on Next Generation Infor-

mation Technologies.

Dance, S, and Gorman, M., 2002. Intelligent

Agents in the Australian Bureau of Meteorol-

ogy. In: Proc. of the 1st International Work-

shop on Challenges in Open Agent Systems

to be held at AAMAS'02.

Donatelli M., G. Bellocchi, L. Carlini. 2006a

Sharing knowledge via software components:

models on reference evapotranspiration

European Journal of Agronomy. Vol 24,

No.2, pp.186-192

Donatelli, M., G. Bellocchi, L. Carlini, 2006b. A

software component for estimating solar ra-

diation. Environmental Modelling and Soft-

ware. Vol. 21, No. 3, pp. 411-416.

Egyed, A., Müller, H.A., and Perry D. E., 2005.

Integrating COTS into the development proc-

ess, IEEE Software, 22 (4): 16-18.

Erl, T., 2004. Service-Oriented Architecture: A

Field Guide to Integrating XML and Web

Services, Prentice-Hall.

Felluga, B. et al. 2003. Environmental Data Ex-

change for Inland Waters Using Independed

Software Agents. Report 20549 EN. Institute

for Environment and Sustainability, European

Joint Research Centre, Ispra, Italy.

Gruber, T. R., 1993. A translation approach to

portable ontologies. Knowledge Acquisition,

5 (2) : 199-220.

Jakeman, A.J., Letcher, R.A., Norton, J.P. 2006.

Ten Iterative Steps In Development and

Evaluation of Environmental Models. Envi-

ronmental Modelling & Software. In press.

Luck, M., McBurney, P. Shehory, O., Willmot, S.

(eds.), 2005. Agent Technology: Computing

as interaction, AgentLink.

McGuinness, D.L and F. van Harmelen (eds),

2004. OWL Web Ontology Language Over-

view, W3C Recommendation,

www.w3.org/TR/owl-features/

Muetzelfeldt, R.I. 2004. Declarative Modelling in

Ecological and Environmental Research.

European Commission Directorate-General

for Research, Position Paper no. EUR 20918.

European Commission, Brussels, Belgium.

Neumann, H., Schuster, G., Stuckenschmidt, H.,

Visser, U., and Vögele, T. 2001. Intelligent

brokering of environmental information with

the buster system. In Hilty, L.M., and Gilgen,

P. W. (eds), Intl. Symposium Informatics for

Environmental Protection., pp. 505-512.

Nodine, M, Fowler, J., Ksiezyk, T., Perry, B., Tay-

lor, M., Unruh, A.. 2000. Active Information

Gathering in InfoSleuth. International Jour-

nalof Cooperative Information Systems, 9 (1-

2):3-28.

Rizzoli, A.E., Davis, J.R., Abel, D.J. 1998. A

model management system for model integra-

tion and re-use. Decision Support Sys-

tems,Vol. 4, No. 2, pp. 127-144.

Refsgaard, J.C., J.P. van der Sluijs, J. Brown, P.

van der Keur. 2006. A framework for dealing

with uncertainty due to model structure error.

Advances in Water Resources. In press.

SWEET Ontologies, 2006. Semantic Web for

Earth and Environmental Terminology

(SWEET), url: http://sweet.jpl.nasa.gov, Last

updated on: Jan 26, 2006.

Szyperski, C., Gruntz, D., Murer, S. 2002. Com-

ponent Software – Beyond Object-Oriented

Programming, Second Edition. ACM Press,

New York, NY.

Villa, F., M. Donatelli, A. Rizzoli, P. Krause, F.K.

van Ewert, 2006. Declarative modelling for

architecture independence and data/model in-

tegration: A case study, In 3rd Biennial meet-

ing of the International Environmental Mod-

elling and Software Society, July 9-12, 2006.

	Brigham Young University
	BYU ScholarsArchive
	Jul 1st, 12:00 AM

	Enriching software model interfaces using ontology-based tools
	Ioannis N. Athanasiadis
	Andrea-Emilio Rizzoli
	Marcello Donatelli
	Laura Carlini

	Microsoft Word - iEMSS2006_AthanasiadisRDCl_revised.doc

