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Rank-Equivalence Method for Sensitivity Analysis of an 
Integrated Model of a River Catchment

Ravalico, J. K., G. C. Dandy, H. R. Maier

Centre for Applied Modelling in Water Engineering (CAMWE), School of Civil & Environmental 
Engineering, University of Adelaide, SA 5005, Australia

Abstract: Integrated Assessment Modelling (IAM) incorporates knowledge from different disciplines to 
provide an overarching assessment of the impact of different management decisions. Integrated models 
generally require numerous parameters from varying sources, many not known with certainty. Rapid 
increases in model size and complexity, particularly in the case of integrated models for decision-making, 
pose new challenges for effective sensitivity analysis. Some of the identified shortcomings of existing 
sensitivity analysis methods in the context of IAM include: computational inefficiency, failure to assess 
parameter interactions, excessive data requirements (e.g. requiring parameter probability distributions), 
assumptions of model linearity and monotonicity and, in particular, difficulty of use in decision-making. To 
overcome these shortcomings, a new, rank-equivalence method of sensitivity analysis is proposed. The 
method operates on the assumption that model outputs will be used for ranking of management options. 
Where models are used for decision-making it is important to ensure that the solution is robust and that 
rankings will not alter with small changes in model parameters or inputs. The Rank-Equivalence method 
incorporates parameter bounding as well as numerical optimisation methods in order to find the minimum 
combined change in parameters or inputs that will result in the ranking of two management options becoming 
equal. This allows a translation of the set of acceptable model outcomes into a corresponding range of model 
inputs, thus allowing decision-makers to directly assess whether the current uncertainties of model 
parameters and inputs are adequate for differentiating between management options. The Rank-Equivalence 
method is tested using a case study of an integrated catchment model of the Namoi River. The SA results 
from the case study indicate that while there are several solutions of similar fitness, the solutions may be 
comprised of different changes in several parameters. 

Keywords: Sensitivity analysis, integrated assessment modelling, decision-making

1 INTRODUCTION

Integrated Assessment Modelling (IAM) 
incorporates knowledge from several disciplines 
into one model, in order to provide an 
assessment of policy impact prior to 
implementation. The large and varied amount of 
data required for IAM means that frequently 
data are incomplete and model inputs are not 
known with certainty. This is particularly the 
case when considering environmental models. 
For this reason, and because models do not 
always behave intuitively, sensitivity analysis 
(SA) is an important stage of model 
development. Sensitivity analyses can be carried 
out on the parameters of the model, as well as 
decision variables and model inputs. For 
simplicity, and as this research deals with all of 
these factors, they will all be referred to as 
model parameters.

SA methods have not kept pace with rapid 
increases in computational power and the 
resulting increases in model complexity. 

Analyses which would have been simple to 
comprehend for models of, for example, five or fewer 
parameters become increasingly complex as the 
number of parameters grows, causing interpretation 
of the SA results to become a task which is almost as 
large as the SA itself. Current SA techniques tend to 
either rank variables in order of those that a particular 
output is most sensitive to, or ascribe values of the 
sensitivity to each parameter [Cukier, et al. 1978; 
Sobol' 1993]. While these can be useful in assessing 
which parameters are most sensitive and hence which 
parameters should be selected with particular care, it 
does not give decision makers an indication of the 
parameter ranges over which the model results will 
not alter significantly. Furthermore, the difficulty of 
assessing the sensitivity of models for decision-
making is amplified when different management 
options require different parameters, thus causing the 
model to have different sensitivities for different 
management options. This is of particular importance
as often models used to assess new management 
options have been calibrated to data different from 
those which are relevant to the option in question. 



Ravalico et al. [2005] developed criteria for SA 
of integrated models based on the specific 
requirements of these models. The criteria were 
outlined as being: ease of use in decision-
making, taking into account parameter 
interactions, realistic data requirements, taking 
into account of model non-linearity and non-
monotonicity and computational efficiency. The 
same study showed that, based on these criteria,
current SA methods are deficient and hence 
there is a need for new methods of SA. In 
particular, there are no current SA methods that 
are applicable specifically to decision-making. 

The research described in this paper addresses 
this deficiency through the proposal of a new 
method of sensitivity analysis for integrated 
models. The Rank-Equivalence method allows 
the user to quantify sensitivity by assessment of 
whether a preferred policy decision, made based 
on management options rankings, would still be 
correct given changes to the model parameters. 
The ability of the Rank-Equivalence method to 
relate directly to the decision is an important 
step in facilitating use of sensitivity analysis by 
decision makers, as well as increasing the 
understanding, and hence use of, model outputs.

The method is intended for general use in 
sensitivity analysis of complex models where 
several parameters to the model may be 
changing at one time. The SA provided by this 
method is specifically suited to decision-making 
bodies that are attempting to select between 
different management options for natural 
resource management, for example water 
catchment management boards. This research is 
the first stage in the development of an SA 
method specifically for use by the Murray 
Darling Basin Commission, Australia. The 
method will be used for the flow and salinity 
model of the River Murray, BIGMOD, which 
itself is used to assess available management 
options for the river. It will enable assessment 
of the sensitivity of ranking of management 
options to the parameters that control the 
BIGMOD model. 

In order to asses the efficacy of the Rank-
Equivalence method, an integrated model of the 
Namoi River catchment (NSW) proposed by 
Letcher [2000] is used. This model combines a
non-linear flow model, policy model, economic 
model and extraction model in order to 
represent the operation of the entire system, 
including human activity. The non-linear 
component of the model and the interactions 
between different parts of the model make it an 
ideal case study for assessing SA methods used 
for IAM.

2 RANK-EQUIVALENCE METHOD

Sensitivity analysis most often concentrates on the 
change to the model output that is caused by 
alteration to model parameters. When considering 
sensitivity analysis for decision making, there is often 
a particular level of sensitivity that must be adhered 
to; in the case where a decision maker is trying to 
select a management option to put into practice, the 
required level of sensitivity is such that any 
reasonable changes to the parameter values should 
not affect the ranking of the management options. 
Thus, in order to ensure that there is going to be no 
change in the ranking of the management options, the 
minimum combined change in parameter values that 
will alter the ranking, or result in rank-equivalence of 
the different management alternatives, must be 
determined.

The normalized Euclidean distance can be used to 
assess the size of the combined change in parameter 
values between different parameter vectors. Hence 
searching for the minimum normalized Euclidean 
distance between the original parameter vector and 
any parameter vector that will result in rank 
equivalence of two management options will identify
the minimum change in parameters to cause a 
decision made based on management option rankings 
to be incorrect.

The method takes the following mathematical form:

Given a model

( )zx,fy = (1)

where x is a vector
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of k parameters and z is the vector of management 
options available, we can represent a realization of 
the parameters as xA with corresponding model 
output yA(z). Two management options z1 and z2,
yield model outputs yA,1 and yA,2 . 

The ranking of the management options is changed as 
we cross over the parameter set

{ }),(),(: 21 zfzf xxx =∈= PB (3)

where P denotes the feasible parameter set. The set B
is a (k-1)-dimensional manifold, the boundary of the 
k-dimensional set

{ }),(),(: 21 zfzf xxx ≥∈= PB* (4)

To find the minimum combined change in parameters 
that will alter the ranking of the management options 
z1 and z2, we search B for the point(s) xB closest to the 
original point xA.  This point can be found by 
minimizing the normalized Euclidean distance:
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between xB  and xA , where ximin is the minimum 
and ximax the maximum value that xi can take. 

As this method considers changes in all 
parameters at once, it implicitly takes into 
account interactions between parameters of the 
model. Investigation of the changes in the 
individual parameters should also give an idea 
of the model sensitivity to changes in individual 
parameters. Further, in searching the parameter 
space for the smallest possible change, any non-
linearities or non-monotonicity in the model 
structure are accounted for.

A graphical illustration of the parameter space 
for a two-dimensional example is shown in
Figure 1. The shaded area on the diagram 
represents parameter set B* , the region of 
parameter space where the management option 
ranks are unchanged. Also visible in the 
diagram is the boundary of the shaded region 
representative of the set B and the point xB, the 
realisation of parameters within B that is the 
minimum distance from the original model 
parameters xA.

Figure 1: Rank-Equivalence boundary in 2-
dimensional parameter space

Given the likely roughness and irregularity of 
the boundary surface representing equality in 
management option rankings, traditional search 
methods are likely to converge to local minima 
and have difficulty finding a global optimum. 
Evolutionary algorithms (EAs) are search 
algorithms that mimic natural biological 
processes, such as evolution, in order to 
optimize an objective function. EAs have been 
found to outperform traditional mathematical 
optimisation techniques [Elbeltagi, et al. 2005], 
and for this reason a genetic algorithm 
[Goldberg 1989] has been selected to perform 
the search in this research.

The benefits of this method of SA arise because
the analysis is conducted in the context of 
ranking potential management scenarios. Rather 

than simply analyzing the effects of parameter
variation on a specific, or several of the, model 
outputs, the rank-equivalence method allows 
decision-makers to assess the sensitivity of the model 
parameters in relation to the decision the model is 
being used to assist with making. Where the output 
from traditional methods of SA is often complex and 
difficult to relate to model requirements, the rank-
equivalence method gives a range of variation for 
each parameter, over which the results of the model 
relating to the decision selection will not change. 

3 IMPLEMENTATION OF THE RANK-
EQUIVALENCE METHOD

To investigate the efficacy of the Rank-Equivalence 
method, it has been applied to the case study of the 
Namoi River catchment. 

The model used is a simplified version of the 
integrated water-use policy model presented by 
Letcher [2002]. The integrated model incorporates 
numerous interactions, including streamflow, rainfall, 
land use, crop profits and water extraction policy. 
The original model incorporates considerable 
complexity, but in order to simplify the initial trial of 
the Rank-Equivalence method, the model has been 
simplified, while maintaining its integrated nature. 
This enables evaluation of the rank-equivalence 
method for the particular case of complex integrated 
models. 

3.1 Namoi River Model Outline

The model used consists of IHACRES, a flow model 
with a non-linear component [Croke and Jakeman 
2004], a policy model that determines allowable
extractions based on flow, an economic model which 
incorporates land use, and an extraction model which 
calculates the actual extraction based on a 
combination of land use, allowed extractions and 
river flow. The model is run to simulate one year, 
with flow calculated daily.

In the context of its use for decision-making and 
determining appropriate management options, two 
versions of the policy model, representing different 
management options, have been employed. The first 
option bases the allowed irrigation extractions on the 
level of flow in the river, giving three different 
allowed extractions for each of three minimum flow 
levels. The extractions occur on a daily basis. The 
areas planted with irrigated and dry crops are then 
determined based on the amount of water available 
for extraction in that year. The second policy option 
does not limit the extraction, but requires that a 
minimum percentage of the area be planted with the 
dry crop so as to limit the level of irrigation. The crop 
areas are based on the amount of water available in 



the river, assuming there is no limit on 
extraction, beyond being able to remove what is 
currently there. Consideration of two different 
policy models allows assessment of changing 
sensitivities as the management options are 
altered. The importance of this rests in the 
necessity to use models to assess management 
options whilst ensuring that each assessment has 
the same level of accuracy.

The full Namoi flow network consists of several 
sub-catchments, each identified as a particular 
node. A single node of the model will be used in 
this assessment. 

3.2 Optimisation

For this implementation of the Rank-
Equivalence method a genetic algorithm is used 
to find the minimum combined change in 
parameters. The genetic algorithm is an 
evolutionary algorithm, based on Darwinian 
principles of survival of the fittest. Each set of 
parameters is considered a chromosome, with 
each individual parameter considered to be a 
gene on the chromosome. The fitness of the 
chromosome is the sum of the normalised 
Euclidean distance between the parameter set 
contained within the chromosome, and the 
calibrated parameter set for the model, and a 
penalty function to ensure that the search is 
occurring on the set boundary where there is 
rank-equivalence.

An initial population of chromosomes is 
generated, randomly assigning uniformly 
distributed parameter values within the 
established parameter ranges. The fitness of 
each chromosome is determined and the 
population undergoes tournament selection. 
During tournament selection the population is 
replicated and each chromosome from the copy 
of the population is paired with a randomly 
selected member of the original population. 
Each pair then competes for selection, with the 
fitter chromosome being selected for crossover. 
During crossover the winning population is 
replicated to create sets of parent chromosomes. 
Part of the genetic information from each of the 
parent chromosomes is selected, and the 
information from both parents combined, to 
produce two child chromosomes, each 
containing complementary fractions of the 
parent chromosomes’ genetic information. The 
fitness of each child chromosome is evaluated, 
and the fitter half selected as the population for 
the next generation.

The genetic algorithm used in this instance is 
real coded, each gene on the chromosome 

contains a parameter value, rather than the 
chromosome being composed of binary genes which 
represent the real parameter values. In order to 
prevent repetition of results through parameter 
inheritance, the child parameter value which would 
be inherited from the parent is randomly selected 
from a normal distribution with a mean 
corresponding to the parent value, and a standard 
deviation of one sixth the distance between the two 
parent values [Gibbs, et al. 2005]. The value of 
standard deviation is selected such that there will be 
only minor overlap (less than 0.5%) between the 
distributions generated from each parent 
chromosome.

Elitism is incorporated within the GA, such that the 
fittest chromosome from one generation is preserved 
and included in the tournament of the next 
generation, replacing the least fit of the tournament 
winners. A mutation operator is also included to 
increase diversity of the solutions. Once a 
chromosome is selected for mutation, one of the 
parameters of the chromosome is randomly selected 
to be replaced by a parameter randomly generated 
from the parameter distribution.

The genetic algorithm used in this instance has been 
coded using the object oriented C++ programming 
language, as has the Namoi model.

4 ANALYSES CONDUCTED

Two versions of the model using differing 
management options to maximize the environmental 
flows in the river, while also maintaining profit levels 
among farmers, were investigated. The two models 
utilize the same parameter values for the flow and 
economic models; however, the policy and extraction 
models have different parameter values. This analysis 
allows testing as to whether the alteration in 
parameter values increases the model’s sensitivity to 
the common parameters.

Management option 1 uses flow levels to determine 
maximum allowable irrigation extraction from the 
river, with three specific levels set (L1, L1 + L2 and 
L1 + L2 + L3) and corresponding allowed extractions 
(M1, M1 + M2, M1 + M2 + M3). The sum of the 
daily allowed extractions, further limited by a 
maximum annual extraction (maxE), is then used to 
determine the maximum area of irrigated (and more 
profitable) crop that can be grown with the available 
water. Management option 2 sets a minimum 
requirement for the percentage of the area which 
must be planted with the dry crop. In this case, given 
the flow in the river, as much water as possible may 
be removed. The area of each crop is determined in a 
similar way to management option 1, but with a 
minimum area requirement of dry crop to be planted. 



The total annual flow after extractions is the 
only model output used to rank the two 
management options considered in this analysis. 
This output is regarded as giving an indication 
of the ability of the management option to both
minimise water-use and maximise 
environmental flow in the catchment. These are 
both key outcomes that would be potentially 
desirable to alter through manipulation of the 
system. In this situation the management option 
which results in a higher annual post-extraction 
flow is considered to be the preferred option and 
thus ranked first. 

Ranges for the non-linear loss module 
parameters (f, e, d, τq) were selected based on 
model calibration studies, while the ranges of 
the decision variables of the model (L1, L2, L3, 
M1, M2, M3, DCR, WR, MaxE) were based on 
values used by Hicks [2003]. 

The initial run of the Namoi model using the 
calibrated parameter values found management 
option 1 to outrank management option 2. The 
search of the parameter space then attempted to 
locate solutions where the outputs from both 
options were equal within a tolerance 0.1% of 
the original output values being used to assess 
the rank.

Using the same random number seed, the 
genetic algorithm was tested with population 
sizes of 25, 50, 75, 100 and 200, with varying 
rates of mutation. Population sizes of 200 with a 
mutation rate of 0.5 per chromosome (equating 
to 0.04 per parameter) were found to give better 
solutions. Lower population sizes and lower 
mutation rates were found to converge rapidly 
to sub-optimal solutions.

The genetic algorithm was run with a population 
size of 200 and run for 200 generations, 
although convergence generally occurred after 
around 60 generations. The GA run was 
repeated 10 times with different random number 
seeds to account for the stochasticity of the 
method.

5 RESULTS & DISCUSSION

5.1 Sensitivity Results of the Namoi model

From ten runs of the genetic algorithm, ten 
different parameter combinations were found, 
which were of similar fitness. The changes in 
parameter for each run are shown in Figure 2. 
From the figure it is apparent that while some of 
the parameter changes were quite consistent, 
some varied considerably over the different 
combinations, in particular changes in the crop 

water requirement parameter. There was also some 
fluctuation in the changes to the f parameter, as well 
as the τq parameter. Small changes in the parameters 
e and d identified them as being influential on the 
output of the model, however, there were also very 
small changes in the L2, L3, M2 and M3 parameters.
These parameters are known to have little effect on 
the model for the given rainfall data, due to the river 
being unable to reach the levels prescribed by L2 and 
L3 for the given rainfall, thus not activating the 
extraction levels prescribed by M2 and M3. Due to 
their lack of impact on the model these parameters
are able to be maintained at their initial value, 
without preventing the management options from 
reaching rank-equivalence. 

Parameter changes for fittest chromosome
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Figure 2: Individual parameter changes for fittest 
chromosome from each GA run

This property of the output poses potential problems 
in the interpretation of the results, in particular when 
parameters with no effect are present in the model. 
This can be overcome by searching for the maximum 
Euclidean distance that will still achieve rank 
equality. In this instance, parameters having no effect 
would be maximised, with the corresponding 
variation in changes between the two different stages 
indicating that the parameters may have no effect on 
the model.

Despite using different measures, the parameter 
sensitivities were similar to those determined by 
Ravalico et al. [2005], using established methods of 
sensitivity analysis. With the exception of the M2, 
M3, L2 and L3 parameters for the reasons noted 
above, the same parameters were highlighted as being 
of high or low sensitivity.

It should be noted that the minimal parameter 
changes found for each run of the genetic algorithm, 
represent a change in parameters that causes rank-
equivalence. However, the individual parameter 
changes are specific to movement in one direction 
through parameter space. In the situation presented 
here, the results show that there are several solutions 
in different directions in parameter space that have a 
similar fitness. This indicates that there are parameter 
combinations located on the rank-equivalence 
boundary at similar Euclidean distances from the 



original model parameters, despite having 
different individual parameter changes. 

5.2 Use of the Rank-Equivalence method

One of the main advantages of the Rank-
Equivalence method lies in the ability of users 
to interpret the output of the SA without 
considerable difficulty. In its most simple form 
the method outputs a single parameter 
combination that corresponds to the minimum 
combined parameter change which will result in 
an incorrect selection of management option. 
These results provide the user with a range over 
which the parameters should not change. In this 
sense, interpretation of results is simple, 
however, there are currently still some 
complicating factors in the interpretation of the 
outputs from the SA. For example, the method 
is currently unable to determine whether a 
parameter is highly sensitive, or simply has no 
effect on the model output at all.

Another advantage is the simplicity of use, 
parameter combinations are chosen at random, 
and the search for the minimum change in 
parameter values is directed by the genetic 
algorithm, removing the task of parameter 
selection from the user. 

The Rank-Equivalence method has been 
developed for use by the Murray Darling Basin 
Commission to assess the sensitivity of the 
BIGMOD modelling suite, an integrated model 
of the Murray Darling river system in Australia. 
It is planned to be used by modellers within the 
commission to assist with both model 
improvement and decision-making for natural 
resource management. 

6 CONCLUSIONS

The Rank-Equivalence method addresses the 
deficiencies of current SA methods used for 
IAM. In particular the Rank-Equivalence 
method is appropriate for use in decision-
making. Advantageously the method does not 
require parameter probability distributions, 
however does require knowledge of the 
parameter ranges in order to compute the 
normalised change in each parameter, which 
may be problematic if unknown. While the 
Rank-Equivalence method is reasonably 
computationally efficient, its efficiency may be 
improved by an alternative search method. 

Based on the results obtained in this study, it is 
evident that there may be problems identifying 
whether the model is particularly sensitive to a 

parameter or if in fact that parameter has no effect on 
the model. In order to counter this problem, a second 
stage of research is proposed. This next stage 
explores the parameter space to find the parameter 
combination which lies on the rank-equivalence 
boundary, and is the maximum Euclidean distance 
from the original parameter set. In this exploration,
those parameters that have no effect on the model 
should be set at their maximum value. The large 
variation between the two situations then gives an 
indication that the parameters are not having a 
considerable effect on the model. 

Overall, the Rank-Equivalence method shows 
promise as a new method of SA for IAM, and goes 
some way towards bridging the gaps between model 
design and use. 
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