Habitat affinities of bats from northeastern Nevada

Mark A. Ports
Great Basin College, Elko, Nevada

Peter V. Bradley
Nevada Division of Wildlife, Elko, Nevada

Follow this and additional works at: https://scholarsarchive.byu.edu/gbn

Recommended Citation
Available at: https://scholarsarchive.byu.edu/gbn/vol56/iss1/6

This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
HABITAT AFFINITIES OF BATS FROM NORTHEASTERN NEVADA

Mark A. Ports¹ and Peter V. Bradley²

Abstract.—Bat surveys were completed in 6 habitat types in eastern Nevada between 1980 and 1994. Twelve species of bats and 578 individuals were identified from 33 trap localities in 144 trap nights. There were weak correlations between bat species richness and January maximum temperatures (0.728, P < 0.05) and mean annual days with 0°C or lower (−0.704, P < 0.05). Bat species richness exhibited no correlation with annual normal precipitation, January minimum temperatures, July minimum temperatures, and July maximum temperatures. It appears that bat species richness is highest in portions of northeastern Nevada typified by sedimentary deposits (limestone, dolomite). Igneous mountain ranges (basalt, volcanic ash) generally had moderate bat species richness, and metamorphic mountain ranges (quartzite) typically had low bat species richness. Notable range extensions include Antrozous pallidus (from central Nye County north to the Nevada-Idaho border, approximately 450 km), Tadarida brasiliensis (approximately 350 km north), and Pipistrellus hesperus (approximately 350 km north). Also, the presence of Lasionycteris noctivagans, Lasius cinereus, and Corynorhinus townsendii was confirmed.

Key words: bats, Chiroptera, Nevada, habitat.

Although the distribution of mammals of the Great Basin has been studied in some detail (Hall 1946, Durrant 1952, Brown 1971, Thompson and Mead 1982, Wells 1983, Grayson 1987), bats remain poorly known. There are very few recent records of bats from the northern Great Basin of Oregon, Idaho, and Nevada (Hall 1946, Durrant 1952, Larrison and Johnson 1981). Here we present new information on habitat affinities and distribution of 12 species of bats from eastern and northeastern Nevada. Such information may prove valuable to land managers and wildlife biologists who make decisions on how to deal with the impact of human activities on bats.

Methods

Study Area

Northeastern Nevada is part of the Great Basin Division of the Intermountain Floristic Region (Holmgren 1972), an area of continental climate with fairly hot summers and cold, snowy winters. Some 30 north/south-trending fault-block mountain ranges (3000–4000 m) are separated by high-elevation (1500–2000 m) xeric basins.

Mountain ranges in northern Elko, Eureka, Humboldt, and Lander counties are mostly igneous and metamorphic fault blocks, covered with various mountain brush communities and fragmented coniferous and deciduous forests. Perennial streams produce riparian habitats in most canyons. Vertical cliffs and stands of deciduous and coniferous trees provide sites for day roosting and shelter for maternity activities. Valley floors are mostly xeric, covered with salt-tolerant shrubs (Atriplex spp., Sarcobatus spp.) and sagebrush (Artemisia spp.). Occasional perennial streams extend onto valley floors and are lined with narrow corridors of deciduous woodlands and mesic shrubs.

Mountain ranges in eastern Nevada (White Pine and southern Eureka and Lander counties) are predominantly limestone and dolomite fault blocks and tend to have more xeric plant communities. A large number of natural caves and vertical cliff sites provide excellent habitats for bat maternity and hibernation roosts. Natural perennial springs found near the valley/mountain fault lines often provide the only dependable water for miles around. Contiguous coniferous forests on some of the higher mountain slopes provide suitable tree roosts. Abandoned mine shafts and adits are abundant in northeastern Nevada and are critically important to some bat species, both summer and winter.

Survey Methods

Surveys began in the summer of 1980 and extended through the fall of 1994. Capture
methods included mist nets, hand capture, and harp trap (Kunz and Kurta 1990). Mist nets and the harp trap were used over perennial streams, small springs, beaver ponds, livestock tanks, in forest canopies, and adjacent to mine shafts, adits, and natural caves. Captured bats were identified, sexed, reproductive status recorded, aged, weighed, and then released. Some individuals were taken as voucher specimens and are temporarily held in the vertebrate collection of Great Basin College. S. Altenbach (personal communication) and M. O’Farrell (personal communication) assisted in identifications. Localities were identified on 1:100,000 scale metric topographic maps.

To describe habitat affinities, we delineated 6 general habitat types for the region: C—river canyons in igneous or metamorphic rock, above low-gradient, perennial streams lined with cottonwood (Populus spp.), willow (Salix spp.), and mesic shrubs (Rosa spp. and Ribes spp.), elevation approximately 2200 m; S—foothill and valley springs, with or without deciduous trees and a surrounding area of salt-tolerant shrubs (Atriplex spp., Sarcobatus spp.) or mountain brush (Artemisia spp., Amelanchier spp., Sambucus spp., Symphoricarpos occidentalis, Purshia tridentata) communities, elevation approximately 2000 m; F—mid- to high-elevation coniferous forests of juniper (Juniperus osteosperma), fir (Abies concolor and A. lasiocarpa), spruce (Picea engelmannii), and pine (Pinus monophylla, P. flexilis, and P. longaeva) often with cliff sites and natural caves in the proximity, elevation approximately 2300–3000 m; D—mid- to high-elevation deciduous forests of aspen (Populus tremuloides), cottonwood (Populus spp.), and mesic shrubs (Amelanchier spp., Prunus spp., Betula occidentalis, Alnus tenuifolia) often along high-gradient, perennial streams, elevation approximately 2300–2500 m; U—natural caves and underground mine shafts/adits with surrounding plant communities described in habitats C, E, S, and D; and B—buildings in towns and on ranches. There may also be additional important bat habitats not yet identified in this region.

RESULTS AND DISCUSSION

A total of 578 individuals of 12 species of bats were identified from 33 trap localities in 144 trap nights from eastern and northeastern Nevada (Tables 1, 2 and Appendix 1). Three species of Myotis, (M. evotis, M. volans, and M. ciliolabrum) were the most widespread (Appendix 1) and had the highest occurrence (Tables 1, 2) of bats from eastern Nevada. M. evotis was one of the most abundant species of Myotis in eastern Nevada and occurred in all habitats except towns and around buildings. This species is most often associated with mid-elevation pinyon pine and Utah juniper woodlands (Manning and Jones 1989). We, too, found this species to be most abundant in this habitat type (localities 8, 9, and 18, Table 1). M. evotis depended heavily on the presence of natural springs within these woodlands as their sole source of water. M. volans was also found to utilize a variety of habitats in eastern Nevada, including pinyon-juniper woodlands such as those found near Old Man’s Cave. Eight lactating females were examined at this site, suggesting a nearby nursery colony. Upon release, 4 individuals flew into the cave while the others flew to nearby rock outcrops. The literature suggests that this species uses cracks in cliff sites and areas beneath bark as roost sites and caves only as hibernacula (Warner and Czaplewski 1984). It is possible that M. volans is using caves in eastern Nevada as maternity roosts, although more data are needed to confirm this. M. ciliolabrum also occurred in a variety of habitats in eastern Nevada (Table 1), including river canyons with surrounding sagebrush deserts (locality 14, Appendix 1). Larrison and Johnson (1981) found this species in similar canyon and desert habitat in central Idaho.

Only 6 individuals of M. lucifugus were caught. This species was uncommon and more restricted in its habitat affinities. Unidentified specimens of Myotis were sent to Dr. Scott Altenbach and Dr. Mike O’Farrell to determine whether or not M. californicus is present in this region (Table 2, Myotis spp.). Tentative identifications suggest that M. californicus may be found in southern White Pine County, while M. ciliolabrum is more common in the remainder of the region.

The 3 high-elevation, tree-roosting species (L. noctivagans, E. fuscus, and L. cinereus) were found in order of decreasing occurrence (Table 1). These species were found repeatedly in several mountain ranges of eastern Nevada that have a combination of coniferous and/or deciduous trees (aspen, cottonwood, white fir, subalpine fir, and Engelmann spruce) for
Table 1. Occurrence of bat species by locality (see Appendix 1). Habitat affinities (C-river canyons, S-springs,
F-high-elevation coniferous forests, D-mid-elevation deciduous forests, U-underground caves and mines, B-buildings)
for each species and relative frequencies for each species examined.

<table>
<thead>
<tr>
<th>Bat species</th>
<th>Localities (Appendix 1)</th>
<th>Habitat affinities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myotis ciliolabrum</td>
<td>2, 6, 8, 9, 10, 11, 12, 14, 17, 20, 25, 26, 29, 32, 33</td>
<td>C, S, F, D, U, B</td>
</tr>
<tr>
<td>Myotis evotis</td>
<td>1, 3, 4, 6, 8, 9, 11, 12, 15-19, 21, 22, 25, 28, 32, 33</td>
<td>C, S, F, D, U</td>
</tr>
<tr>
<td>Myotis lucifugus</td>
<td>5, 12, 15-17</td>
<td>C, F, D, U</td>
</tr>
<tr>
<td>Myotis volans</td>
<td>1, 2, 6, 7, 9-12, 15-19, 24, 25, 27, 32</td>
<td>C, S, F, D, U</td>
</tr>
<tr>
<td>Lasiusus cinereus</td>
<td>10, 17, 20</td>
<td>S, F, D</td>
</tr>
<tr>
<td>Lasionycteris noctivagans</td>
<td>10-12, 17, 23, 28, 29, 32</td>
<td>C, S, F, D, B</td>
</tr>
<tr>
<td>Eptesicus fuscus</td>
<td>10, 12, 17, 23, 26, 29, 32</td>
<td>C, S, F, D, U, B</td>
</tr>
<tr>
<td>Pipistrellus hesperus</td>
<td>10, 29</td>
<td>S, B</td>
</tr>
<tr>
<td>Corynorhinus townsendii</td>
<td>5, 9, 10, 13-15, 24-37, 30, 32</td>
<td>C, S, U</td>
</tr>
<tr>
<td>Antrozous pallidus</td>
<td>10, 14, 15, 25</td>
<td>C, S, U</td>
</tr>
<tr>
<td>Tadarida brasiliensis</td>
<td>10, 29, 31, 32</td>
<td>S, U, B</td>
</tr>
</tbody>
</table>

roosting and open water in the form of beaver ponds, stock tanks, and perennial streams for foraging and drinking sites. In the mountains
of the West, these 3 species are known to commonly forage together in similar habitats along
with 2-4 species of *Myotis* (Kunz 1982). In
eastern Nevada high-elevation deciduous and
coniferous forests are limited to watered
drainages and north-facing slopes in the larger
mountain ranges. This suggests that these
species are uncommon when compared to
populations in the northern Rocky Mountains
and may be negatively impacted by deterioration,
fragmentation, and/or total removal of forest
habitats by hard-rock mining, livestock grazing,
and logging.

Foothills covered with pinyon pine and Utah
juniper, caves, and river canyons with high
cliffs provided habitats for 2 lower-elevation
breeding species, *Corynorhinus townsendii* and
A. pallidus. *C. townsendii* had 4 times the
frequency of occurrence as *A. pallidus* and
appeared to be more evenly distributed across
the region (Table 1). *C. townsendii* and *A. pal­
didus* depend heavily on cliff sites, natural caves,
and mine shafts/adits for maternity, hibernation,
and day roosts in eastern Nevada. They
are found to utilize similar situations in other
arid regions of the West, such as California,
Montana, Washington, and Utah (Kunz and
rarely found *A. pallidus* using caves, but rather
found them depending heavily on crevices
and cliff sites for maternity roosts, day roosts,
and hibernacula. We found this species using
caves (localities 15, 25), cliff sites (14), and valley
springs (10) in eastern Nevada.

A large, historic colony of *T. brasiliensis*
was found occupied in July 1994. Vandalism
amay have caused this population to roost else­
where in 1992 and 1993. Outside of Las Vegas
and Reno, this colony is the largest known
centration of mammals in Nevada. Based
on visual techniques suggested by Kunz and
Kurta (1990), we estimate the population at
between 54,000 and 82,000 animals.

P. hesperus was found in low numbers in
this region. Two individuals were caught 320
km apart, and no meaningful habitat patterns
were identified for this species.

Species found in and around abandoned
mine shafts and adits included *C. townsendii*,
M. ciliolabrum, and *M. volans*. *C. townsendii*
was found using mines during both winter and
summer. *Myotis* species were found only in
summer. Pat Brown (personal communication)
recently documented a maternity colony of
Antrozous pallidus in an abandoned mine shaft
in northern Lander County as well.

Climatological data from Elko in the
northeastern part of the state, Ely in the east central,
and Las Vegas in the south were compared to
Bat species richness from each of these regions (Hall 1946, Durrant 1952). Pearson's \(r \) and Spearman's Rho tests were used to test for correlations. Bat species richness exhibited no correlation with the following climatological data: annual normal precipitation, January minimum temperatures, July minimum temperatures, and July maximum temperatures. There were weak correlations between bat species richness and January maximum temperatures (Pearson's \(r \), 0.728, \(P < 0.05 \)) and mean annual days with \(0^\circ \) C or lower (Pearson's \(r \), -0.704, \(P < 0.05 \)).

Bat records were pooled by mountain ranges with similar rock types—sedimentary, igneous, or metamorphic. Bat species richness was highest in portions of northeastern Nevada typified by sedimentary rock (limestone, dolomite). Igneous mountain ranges (basalt, volcanic ash) generally had moderate bat species richness, and metamorphic mountain ranges (quartzite) typically had low bat species richness.

Several bat localities from eastern Nevada represent notable range extensions. Four localities (10, 14, 15 and 25, Appendix 1) for A. palpidus extend its range from central Nye County (Hall 1946) north to the Nevada and Idaho border, approximately 450 km. Two specimens of T. brasiliensis at Swallow Canyon (locality 10, Appendix 1), the recent confirmation of a large roost colony, and the two specimens from Elko (locality 29, Appendix 1) represent the first records of this species for Elko and White Pine counties (Hall 1946) and extend its range approximately 350 km north. The capture of single specimens of P. hesperus at Swallow Canyon (locality 10, Appendix 1) and in Elko (locality 29, Appendix 1) also suggest a northern range extension and, based on spring and late-summer capture dates, may represent migrating individuals.

Although certain bat species have long been suspected of occurring in this region (Hall 1946, Durrant 1952, Kunz 1982, Kunz and Martin 1982), the localities listed in Appendix 1 represent the first range confirmations for L. noctivagans, L. cinereus, and C. townsendii in eastern and northeastern Nevada.

On examination of contributing abiotic factors such as geological features, precipitation, and average temperatures, one can see patterns in eastern Nevada's bat fauna beginning to emerge. The greatest diversity of bat species from eastern Nevada was recorded in east central Nevada. The lower maximum January temperatures and more annual days below \(0^\circ \) C in east central Nevada contradicted the correlations in our data and suggested that factors other than climate were contributing to zoogeographical patterns. East central Nevada's mountain ranges are primarily sedimentary in nature and provide abundant caves, cliff sites, and high-elevation forests for roosting and hibernation. In northeastern Nevada most of the mountain ranges are igneous or metamorphic in structure, thus reducing the number of potential roost sites for bats. Climatic factors undoubtedly play a large role in defining bat

Table 2. Number of bats examined, percent frequency by species, and number of specimens collected and preserved from eastern Nevada (1980–1994).

<table>
<thead>
<tr>
<th>Bat species</th>
<th>Number of bats examined</th>
<th>% frequency</th>
<th>Specimens collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myotis ciliolabrum</td>
<td>73</td>
<td>13.0</td>
<td>2</td>
</tr>
<tr>
<td>Myotis evotis</td>
<td>112</td>
<td>19.0</td>
<td>3</td>
</tr>
<tr>
<td>Myotis lucifugus</td>
<td>6</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>Myotis volans</td>
<td>186</td>
<td>32.0</td>
<td>3</td>
</tr>
<tr>
<td>Myotis spp.</td>
<td>16</td>
<td>3.0</td>
<td>2</td>
</tr>
<tr>
<td>Lasius cinereus</td>
<td>3</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>Lasionycteris noctivagans</td>
<td>39</td>
<td>7.0</td>
<td>4</td>
</tr>
<tr>
<td>Eptesicus fuscus</td>
<td>52</td>
<td>10.0</td>
<td>2</td>
</tr>
<tr>
<td>Pipistrellus hesperus</td>
<td>2</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>Corynorhinus townsendii</td>
<td>69</td>
<td>12.0</td>
<td>1</td>
</tr>
<tr>
<td>Antrozous pallidus</td>
<td>15</td>
<td>3.0</td>
<td>1</td>
</tr>
<tr>
<td>Tadarida brasiliensis(^a)</td>
<td>5</td>
<td>0.4</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>578</td>
<td>100.0</td>
<td>22</td>
</tr>
</tbody>
</table>

\(^a\)Roost cavern not included in calculations
distribution. However, the density of suitable roost sites may prove to be an even greater influence on bat distribution where roost site availability becomes a limiting factor. Inasmuch as most bat species probably do not migrate more than 1500 km from maternity roosts to hibernacula (Hill and Smith 1992), an abundance of suitable hibernation roosts would probably provide any given bat fauna the best chance of survival in an area where severe winters are commonplace.

ACKNOWLEDGMENTS

We wish to thank the numerous people who accompanied us in the field, especially our families, Lois and Susan and the boys, Roger, Mark, Boden, and Jedediah. Thanks also to Dr. Scott Altenbach (University of New Mexico); Dr. Mike O’Farrell (O’Farrell Wildlife Consulting); Larry Hyslop and Len Seymour (Great Basin College); Linda White-Trifaro and Mitchell White (USFS); Cristi Baldino Turnipseed (Nevada Division of Wildlife); and Dr. Mike O’Farrell (O’Farrell Wildlife Consulting); Larry Hyslop and Len Seymour (Great Basin College); Linda White-Trifaro and Mitchell White (USFS); Cristi Baldino Turnipseed (Nevada Division of Wildlife); and Tyler Turnipseed (Nevada Division of Wildlife); and the Northeastern Nevada Naturalists.

LITERATURE CITED

APPENDIX 1

BAT SURVEY LOCALITIES AND ANIMALS EXAMINED

1. Stump Creek, 8.2 mi S and 7.6 mi W of Northfork, Independence Mountains, Elko Co., Nevada. T40N, R53E, SW1/4 sec 12, 2325 m. 17 July 1980, Myotis evotis (1), M. volans (2).

2. Sheep Creek, 8.5 mi S and 7.8 mi W of Northfork, Independence Mountains, Elko Co., Nevada. T40N, R53E, NW1/4 sec 13. 2320 m. 6–7 August 1980, Myotis volans (1 lactating female), M. ciliolabrum (1 male).

10. Swallow Canyon, spring site at the mouth of the canyon, Snake Range, White Pine Co., Nevada. T11N, R68E, sec 5. 2100 m. 21 August 1991, Myotis ciliolabrum (1), Lasionycteris noctivagans (1 male, 2 females), Lasius cinereus (1 male), Tadarida brasiliensis (2 males), Antrozous pallidus (1 lactating female); 30 August 1991, Myotis volans (1 male), Lasionycteris noctivagans (19 males), Pipistrellus hesperus (1 male), Eptesicus fuscus (2 males), Corynorhinus townsendii (1 male); 22 August 1994, Myotis
1996] BATS FROM NORTHEASTERN NEVADA 53

volans (8), M. evotis (1), M. ciliolabrum (11), Corynorhinus townsendii (1), Lasionycteris noctivagans (2), Eptesicus fuscus (1).

12. Mary’s River, 6.5 mi S and 2 mi W of Mary’s River Peak, Jarbridge Mountains, Elko Co., Nevada. T44N, R55E, SW1/4 sec 35, 2220 m. 30 July 1990, Myotis evotis (2 males), M. ciliolabrum (1 lactating female), Eptesicus fuscus (1 lactating female); 31 July 1990, Myotis lucifugus (2 males), M. evotis (1 lactating female), M. volans (1 male, 2 lactating females, 5 nonlactating females), M. ciliolabrum (2 females), Eptesicus fuscus (1 male, 1 female), Lasionycteris noctivagans (2 males); 1 August 1990, Myotis volans (2 males, 3 lactating females), M. evotis (1 lactating female), Eptesicus fuscus (1 lactating female), Lasionycteris noctivagans (2 males).

14. Salmon Falls Creek, 1.6 mi W of Jackpot, Elko Co., Nevada. T47N, R64E, center sec 10. 1500 m. 23 May 1992, Myotis ciliolabrum (1); 24 June 1992, Myotis ciliolabrum (1), Antrozous pallidus (3 males, 1 lactating female), Corynorhinus townsendii (1 lactating female).

15. Goshute Cave3, Cherry Creek Range, White Pine Co., Nevada. T35N, R54E, 20 June 1992, Myotis evotis (2), M. lucifugus (1), Corynorhinus townsendii (3), Antrozous pallidus (3); 16 August 1992, Myotis evotis (2 males, 4 lactating females), M. volans (2 scrotal males), Myotis spp. (either ciliolabrum or californicus) (1 scrotal male), Antrozous pallidus (3 scrotal males, 1 nonscrotal male), Corynorhinus townsendii (5 scrotal males).

17. Mill Creek, 1.6 mi N and 2.4 mi W of Jack Creek Campground, Independence Range, Elko Co., Nevada. T42N, R53E, SW1/4 sec 16. 2620 m. 15 July 1992, Myotis evotis (1), M. ciliolabrum (5 males, 6 lactating females), M. volans (1), M. lucifugus (1), Eptesicus fuscus (3 males, 4 lactating females), Lasionycteris noctivagans (3), Lasionycteris cinereus (1).

19. Middlefork of Doby George Creek, 1.2 mi S of Maggie Creek Summit, Bull Run Mountains, Elko Co., Nevada. 2050 m. 27 July 1992, Myotis evotis (4), M. volans (1).

20. Horse Creek, 5.2 mi W and 0.4 mi N of Secret Pass, East Humboldt Range, Elko Co., Nevada. T34N, R61E, NE1/4 sec 16. 2520 m. 4 August 1993, Myotis ciliolabrum (7), Lasionycteris cinereus (1).

23. Currant Creek, USFS campgrounds, 1.8 mi E and 0.8 mi S of Currant Mountain, White Pine Co., Nevada. 2650 m. 11 July 1993, Eptesicus fuscus (1), Lasionycteris noctivagans (1).

24. Old Man’s Cave, North Snake Range, White Pine Co., Nevada. T15N, R70E. 16 August 1993, Corynorhinus townsendii (4 scrotal males, 1 nonscrotal male, 4 lactating females, 4 nonlactating females), Myotis volans (1 scrotal male, 5 nonscrotal males, 9 females), Myotis spp. (2 males, 1 lactating female, 1 nonlactating female); 7 September 1994, Corynorhinus townsendii (7 males, 17 females), Myotis volans (2 females).

25. Snake Creek Cave, Snake Creek, South Snake Range, White Pine Co., Nevada. T12N, R70E. 17 August 1993, Myotis ciliolabrum (1 scrotal male, 3 females), M. californicus (1 lactating female), M. evotis (1 male, 1 female), M. volans (1 female), Corynorhinus townsendii (1 scrotal male), Antrozous pallidus (3 scrotal males).

26. Pascia Cave, Schell Creek Range, White Pine Co., Nevada. T19N, R64E. 18 August 1993, Myotis ciliolabrum (2 scrotal males), M. californicus (1 scrotal male, 2 females), Eptesicus fuscus (1 scrotal male), Corynorhinus townsendii (1 scrotal male, 1 lactating female).

33. Rock Creek, Sheep Creek Range, Eureka Co., Nevada. T34N, R46E, sec 8. 1450 m. 21 May 1994, Myotis ciliolabrum (10), M. evotis (1).

Because of the scarcity of natural caves, location descriptions are limited to township and range information.