Monkey Pots: Inferring Meaning Through Time and Space from Function, Decoration, and Context

Benjamin Jacob Skousen
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd
Part of the Anthropology Commons

BYU ScholarsArchive Citation
https://scholarsarchive.byu.edu/etd/1980

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Monkey Pots: Inferring Meaning Through Time and Space from Function, Decoration, and Context

Benjamin Jacob Skousen

A thesis submitted to the faculty of
Brigham Young University
in partial fulfillment of the requirements for the degree of
Master of Arts

Donald W. Forsyth, Chair
John E. Clark
James R. Allison
Richard D. Hansen

Department of Anthropology
Brigham Young University
December 2009

Copyright © 2009 Benjamin Jacob Skousen
All Rights Reserved
ABSTRACT

Monkey Pots: Inferring Meaning Through Time and Space from Function, Decoration, and Context

Benjamin Jacob Skousen

Department of Anthropology

Master of Arts

In this thesis, I interpret the meaning of “monkey pots,” a pottery vessel found throughout the Maya world. This study looks at three kinds of monkey pots recovered from the Mirador Basin. Carmelita Incised and Zacatal Polychrome monkey pots date to the Late Classic period (AD 680-800) and were manufactured in the Basin; Telchac Composite monkey pots date to the Terminal Classic period (AD 780-830) and were made in the Usumacinta River region. These monkey pots are described, followed by an analysis and comparison of the function, the monkey genus on the vessels, and the contexts from which the vessels came. I found that each kind of monkey pot functioned as a domestic tool for serving food and later as part of death and burial rituals. The monkeys on the vessels appear to be spider monkeys, which were associated anciently with death and the underworld. Finally, most of the monkey pots were found in burials, implying that they were part of burial rituals. From this information, I suggest that monkey pots assumed meanings associated with death and the underworld when placed in burials. Comparing the function, decoration, and context of these monkey pots implies that their meaning did not change through time and space. I believe the monkey pots demonstrate that some meanings and ideas about death and the underworld endured from the Late to Terminal Classic period in the Mirador Basin and that these meanings may have been shared with people in the Usumacinta River area.

Keywords: Maya, pottery, monkeys
ACKNOWLEDGEMENTS

First, I thank Donald Forsyth for his training in ceramic analysis and overall support and patience during this project. I also thank the rest of my committee—John Clark, Jim Allison, and Richard Hansen—for their comments and suggestions. Special thanks to Richard Hansen, who gave me access to the data used in this thesis; moreover, he provided the Mirador Basin lab in Guatemala City for part of the analysis as well as funding to support me through my stay in Guatemala. Thanks to the folks at the Museo Nacional de Antropología y Etnología for allowing me to access the vessels stored at the museum and use their facilities for the analysis. Many thanks to Evie Forsyth, who coached me through the technicalities and paperwork associated with this thesis and degree. I am extremely grateful to Scott Ure for his help in formatting the final manuscript. Also, thanks to my associates and friends; in particular, discussions with Scott Ure and Rich Allen played a significant role in shaping the ideas behind this study. I also thank my family—my father, mother, siblings, and in-laws—for their advice and support, both financial and emotional. Last but not least, I thank my wife and son for their unfailing love, encouragement, and patience.
The thesis of Benjamin Jacob Skousen is acceptable in its final form including (1) its format, citations, and bibliographical style are consistent and acceptable and fulfill university and department style requirements; (2) its illustrative materials including figures, tables, and charts are in place; and (3) the final manuscript is satisfactory and ready for submission.

Date

Donald W. Forsyth, Committee Chair

Date

John E. Clark, Committee Member

Date

James R. Allison, Committee Member

Date

Cynthia S. Finlayson, Graduate Coordinator

Date

Susan S. Rugh, Associate Dean
TABLE OF CONTENTS

LIST OF FIGURES ... vii
LIST OF TABLES ... x

1 INTRODUCTION ... 1
 Purposes and Questions .. 3
 Thesis Organization ... 4

2 DATA SET DESCRIPTION .. 7
 Methods ... 7
 Carmelita Incised .. 10
 Carmelita Incised Monkey Pots from the Mirador Basin 13
 Telchac Composite ... 19
 Telchac Composite Monkey Pots from the Mirador Basin 21
 Zacatal Cream Polychrome .. 24
 Zacatal Cream Polychrome Monkey Pot from the Mirador Basin 25
 General Comparison .. 26

3 FUNCTION OF MONKEY POTS ... 28
 Pottery Function ... 28
 Carmelita Incised Monkey Pots 31
 Shape ... 31
 Volume ... 35
 Use Wear ... 36
 Telchac Composite Monkey Pots 42
 Shape ... 42
 Volume ... 43
 Use wear ... 43
 Zacatal Cream Polychrome Monkey Pot 47
 Context of monkey pots ... 48
 Site-level Context ... 48
 Late/Terminal Classic Functional Complex 49
 Monkey Pots Outside the Mirador Basin 57
 Comparison and Discussion ... 57

4 MONKEYS AND THE ANCIENT MAYA 61
 Monkey Morphology .. 62
 Carmelita Incised Monkey Pots 65
 Telchac Composite Monkey Pots 70
 Zacatal Polychrome Monkey Pot 72
 Monkey Pots Outside the Mirador Basin 73
 Monkeys and the Ancient Maya 75
 Comparison and Discussion ... 77
5 CONTEXT OF MONKEY POTS ... 79
 Cultural and Functional Context of All Monkey Pots 79
 Site-level Context of Carmelita Incised Monkey Pots 80
 Site-level Context of Telchac Composite Monkey Pots 90
 Site-level Context of Zacatal Polychrome Monkey Pot 90
 Site-level Context of Monkey Pots Throughout the Maya World 91
 Comparison and Discussion ... 92

6 CONCLUSIONS AND DISCUSSION .. 96
 Summary .. 96
 The Meaning of Monkey Pots ... 99
 Meaning Through Time and Space .. 101
 Limitations and Suggestions for Future Research 103

REFERENCES .. 106
LIST OF FIGURES

Figure 1. Selected monkey pots from the Mirador Basin: (a) Carmelita Incised; (b) Telchac Composite; (c) Zacatal Polychrome. .. 2

Figure 2. Uncalibrated timeline from the Mirador Basin and other select sites. 11

Figure 3. (a) CI-1; (b) CI-2; (c) CI-3; (d) CI-4; (e) CI-5; (f) CI-6; (g) CI-7; (h) CI-8; (i) CI-9. 15
Figure 3 continued. (j) CI-10; (k) CI-11; (l) CI-12; (m) CI-13; (n) CI-14; (o) CI-15;
(p) CI-16; (q) CI-17; (r) CI-18. .. 16

Figure 4. Postfire incision of monkey on CI-9. ... 18

Figure 5. (a) TC-1; (b) TC-2; (c) TC-3; (d) TC-4. .. 23

Figure 6. ZP-1. ... 26

Figure 7. Scatterplot of height to rim diameter (in cm) of serving vessels from looters’ trenches and burials throughout the Mirador Basin. Note the divisions between vases, bowls, and plates. .. 34

Figure 8. Scatterplot of volume to rim diameter (in cm) of all monkey pots with vase, bowl, and plate form categories. Note that the monkey pots fall within the bowl category. 35

Figure 9. Carmelita Incised monkey pots with interior base use wear: (a) CI-4; (b) CI-7;
(c) CI-8. .. 37

Figure 10. Carmelita Incised monkey pots exhibiting striations on the interior base: (a) CI-9;
(b) CI-11; (c) CI-13; (d) CI-15. .. 39

Figure 11. Carmelita Incised monkey pots exhibiting sheen on the interior base and lower wall: (a) CI-1; (b) CI-4; (c) CI-5; (d) CI-12; (e) CI-14. 40

Figure 12. Carmelita Incised monkey pots exhibiting use wear on the exterior base and supports: (a) CI-3; (b) CI-4; (c) CI-9; (d) CI-11; (e) CI-13; (f) CI-15; (g) CI-16; (h) CI-17;
(i) CI-18. .. 41

Figure 13. Lip wear on CI-18. ... 42

Figure 14. Support wear on TC-2. ... 44

Figure 15. Interior base wear on TC-2. ... 44

Figure 16. Interior base wear on TC-3. ... 45

Figure 17. Support wear on TC-3. ... 45
Figure 18. Interior base wear on TC-4. ... 46
Figure 19. Support wear on TC-4... 46
Figure 20. Interior wear on ZP-1 .. 48
Figure 21. Exterior base wear on ZP-1. ... 49
Figure 22. Scatterplot of height to rim diameter (in cm) of 374 Late Classic (including Carmelita Incised and Zacatal Polychrome monkey pots) whole vessels from the Mirador Basin. .. 52
Figure 23. Scatterplot of height to rim diameter (in cm) of 374 whole vessels from the Mirador Basin with decorated and undecorated categories. .. 55
Figure 24. Monkey images on the Carmelita Incised monkey pots: (a) CI-1; (b) CI-2; (c) CI-3; (d) CI-4; (e) CI-5; (f) CI-6; (g) CI-7; (h) CI-8; (i) CI-9. .. 67
Figure 24 continued. Monkey images on the Carmelita Incised monkey pots: (j) CI-10; (k) CI-11; (l) CI-12; (m) CI-13; (n) CI-14; (o) CI-15; (p) CI-16; (q) CI-17; (r) CI-18. .. 68
Figure 25. Monkey images on the Telchac Composite monkey pots: (a) TC-1; (b) TC-2; (c) TC-3; (d) TC-3; (e) TC-4. .. 71
Figure 26. Monkey image on ZP-1. .. 73
Figure 27. Map of El Mirador with circles marking the Lac Na, Tres Micos, and Guacamaya Group (FARES 2008, used by permission). .. 82
Figure 28. Closeup map of the Lac Na Group (courtesy of Deanne G. Matheny). .. 83
Figure 29. Map of Tintal (courtesy of Richard Hansen, Mirador Basin Project). .. 84
Figure 30. Map of Tsabkan with circles around Structure 3, Trench 26 and Structure 6, Trench 1 (courtesy of Donald Forsyth). .. 85
Figure 31. Map of Nakbe with blue circle around Structure 1, a green circle around the Codex Group, and red circle around Structure 104 (courtesy of Richard Hansen, Mirador Basin Project). .. 86
Figure 32. Map of Zacatal with circle around Structure 4, Trenches 30 and 27 (courtesy of Donald Forsyth). .. 88
Figure 33. Map of Witznal with circle around Structure 21, Trench 75 (courtesy of Donald Forsyth). .. 89
Figure 34. Map of El Porvenir with circle around Structure 2, Trench 263 (courtesy of Richard Hansen, Mirador Basin Project). .. 91
Figure 35. Overview map of sites in the Mirador Basin identifying sites where monkey pots have been found—El Mirador, Nakbe, Tintal, Tsabkan, Zacatal, Witznal, El Porvenir, and Guiro (courtesy of Scott Ure).
LIST OF TABLES

Table 1. Rim Diameters, Heights, Ratios of Rim Diameter (RD)/Height (HT), and Volumes of Carmelita Incised Monkey Pots from the Mirador Basin ... 14

Table 2. Rim Diameters, Heights, Ratios of Rim Diameter (RD)/Height (HT), and Volumes of Telchac Composite Monkey Pots and Zacatal Polychrome Monkey Pot from the Mirador Basin .. 21

Table 3. Morphological Characteristics of the Monkeys on the Mirador Basin Monkey Pots ... 66

Table 4. Site-level Contexts of Monkey Pots from the Mirador Basin ... 81
The presence of monkeys in pottery decoration is widespread throughout the Maya world, particularly during the Late Classic period (A.D. 600–900). For the most part, monkey images are painted (Kerr 1982:112), appliquéd (Reents-Budet 1994:Figure 6.4), or incised (Thompson 1931:Plate XLVIII) on pottery vessels. Occasionally censers are shaped like a monkey (Clancy et al. 1985:Figure 35), although this is rare. Some monkey decoration is more elaborate and took a significant amount of time and skill to produce (see Reents-Budet 1994:Figure 6.4). During the beginning of the Late Classic period, there were many ways monkeys were painted, appliquéd, or incised on pottery vessels, but this changed later on in the Late Classic and early in the Terminal Classic. Overall, depictions of monkeys became less elaborate and varied.

The subject of this thesis is a particular kind of pottery vessel found throughout the Maya lowlands, which exhibits monkey decoration on the exterior walls. Following Donald Forsyth (1989:99), I call them “monkey pots.” In this study, a monkey pot is demarked by two distinctive characteristics. The first is the decoration, which consists of a simple, two-dimensional incised or painted monkey motif on the exterior vessel wall. The second characteristic is the form, which is either a “composite silhouette” bowl or a flaring-sided dish or bowl. The combination of these two characteristics is unique and is most commonly found in the Late and Terminal Classic periods, though it may have been present earlier in other parts of the lowlands (see Adams 1971:Figure 34d).
The monkey pots in my data set are from the Mirador Basin in northern Guatemala and southern Campeche, Mexico. Monkey pots persist for at least 150 years in the Mirador Basin. This data set contains three types of monkey pots (Figure 1). The vessels in the first type belong to the Infierno Black ceramic group, most of which have been classified as Carmelita Incised. The Carmelita Incised monkey pot is characterized by a black to mottled brown slip and incised and/or groove-incised decoration on the exterior wall of the vessel (Figure 1a). These vessels date to the Tepeu 2 horizon in the Mirador Basin (A.D. 680–800; Donald Forsyth, personal communication, 2009). The second type of monkey pot belongs to the type Telchac Composite. These vessels are
made from a fine, temperless, gray-colored paste and exhibit a burnished surface with incised and/or groove-incised decoration and punctations on the exterior wall (Figure 1b). In the Mirador Basin, the Telchac Composite monkey pots date to the late Tepeu 2 and early Tepeu 3 horizon (A.D. 780–830; Donald Forsyth, personal communication, 2009). These two monkey pots include the majority of the vessels in the data set. The final type of monkey pot belongs to the type Zacatal Cream Polychrome, a painted type that is present during the Tepeu 2 period in the Mirador Basin (Figure 1c). Despite the typological differences described above, the similarity of the vessel shape and the monkey motif of these types, particularly with the first two types, are clear. The unique and consistent combination of the form and decorative subject suggests that these vessels had some significance or meaning to the ancient Maya. However, no one has provided an adequate description of these types of monkey pots because they are usually lost within the confines of a type in the Type: Variety system of classification. As a result, we know very little of the variation of attributes and features of each type of monkey pot, how they differ from each other, and what these vessels might have meant.

PURPOSES AND QUESTIONS

There are three purposes of this thesis. Due to the brevity of description of monkey pots (see Adams 1971:58–59; Forsyth 1989:99, 103 for exceptions), the first purpose is to provide an in-depth description of these vessels. I focus on describing the formal attributes and dimensions of monkey pots as well as their decorative styles. I briefly compare the three types of monkey pots discussed earlier, as well as make some general comments on the similarities and differences between the types.

The second purpose is to compare the three types of monkey pots from the Mirador Basin to determine how they change through time. More specifically, I examine the
formal and decorative features to look for subtle differences within and between the
types. In doing so, I ask five questions. First, what are the differences between the
function(s) of each type? Second, what kind of monkey is represented on each type, and
third, what was the significance of these monkeys to the ancient Maya? Fourth, in what
context is each type of monkey pot found, and finally, how do the contexts of each type
differ from the others?

The final purpose of this thesis is to answer two fundamental questions: first, what is
the meaning of the monkey pots and, second, does the meaning of monkey pots change
through time and space? This requires an interpretation of the meaning of each type
of monkey pot; meaning is inferred from a combination of the functional, stylistic, and
contextual information presented in this thesis, which are all important aspects of meaning
(Hodder and Hutson 2003). Changes in the function, style, and context of monkey pots
through time and space may suggest that the vessels’ meaning changed as well. I also
discuss the implications of this in the context of the Mirador Basin and Usumacinta River
region, particularly during the Late Classic to Terminal Classic transition.

THESIS ORGANIZATION

This thesis is organized into six chapters to best address these purposes and questions.
The first part of Chapter 2 discusses the methods used in the analysis of the formal and
stylistic features of Mirador Basin monkey pots. The second part of the chapter provides
a comprehensive description of the data set, which fulfills the first purpose of the thesis as
well as familiarizes the reader with the variation of monkey pots. I begin by describing
the surface finish, decoration, form, paste, and temper of the type Carmelita Incised; this
is followed by a description of the Carmelita Incised monkey pots in the same format.
Next, the same attributes of the types Telchac Composite and Zacatal Cream Polychrome
are described, followed by the monkey pots of these types. Chapter 2 concludes with a summary of the basic shape, decorative, and technological differences between the types, as well as a discussion of their manufacturing locations.

In the third chapter, I infer the domestic or utilitarian function of monkey pots. I begin the chapter by discussing function and how to determine it for pottery vessels using direct and indirect evidence. Next, I use the shape, volume, use wear, and context to deduce the possible function of each type of monkey pot from the Mirador Basin. The function of other monkey pots throughout the Maya region will also be briefly discussed, as well as the function of other vessels found in the Mirador Basin. Finally, to address the second question of the thesis, I compare the function of the three types of monkey pots from the Mirador Basin.

Chapter 4 addresses the kind of monkeys represented on these pots and their significance to the ancient Maya, which is the second question of the thesis. The chapter begins with a review of morphological characteristics of three monkey genera from the Maya region (Baker 1992). I then attempt to determine the species of monkey on these types of monkey pots. Unique physical characteristics of the three species of monkeys in Central America will be described and then compared with the characteristics of the monkeys on the vessels. Although I concentrate on the Mirador Basin monkey pots, the kind of monkeys on monkey pots from other sites will be included as well. Next I discuss the significance of monkeys to the ancient Maya. For the most part, I cite portions of the Popol Vuh, accounts of present-day Maya communities, and additional artistic and iconographic studies to understand the importance of monkeys in ancient Maya society. The chapter concludes with a summary of the genus of monkey found on each type of monkey pot and how they did or did not change through time.
Comparing the context of each type of monkey pot is the topic of Chapter 5, which addresses the third question of this thesis. I begin with a brief discussion on context and its importance in constructing meaning. Next, I examine the context of Carmelita Incised monkey pots. First, the distribution of monkey pots throughout the Maya region will be explored. Next, I look at the distribution of monkey pots throughout the Mirador Basin, followed by an examination of the intra-site context of each Carmelita Incised monkey pot in the Mirador Basin. The context of the Telchac Composite and Zacatal Polychrome monkey pots will be discussed in the same way. The chapter ends by comparing the different contexts of each type of monkey pot.

Chapter 6 begins with a brief review of the purposes and questions in this thesis as well as how they were addressed. Following this, I answer the two final questions—first, what is the meaning of the monkey pots, and second, did this meaning change through time and space? I discuss meaning in archaeology and how a combination of functional, stylistic, and contextual information can help infer the meaning of each type of monkey pot. Changes in the function, style, and context of these monkey pot suggest that the meaning of the monkey pot changed through time and space. Finally, limitations of the study and suggestions for future research are provided.
2 | DATA SET DESCRIPTION

In this chapter, I attempt to familiarize the reader with what I have called monkey pots. I do this by describing the monkey pots from the Mirador Basin whole vessel collection. First, I tell how the vessels were described and analyzed; I also include definitions of the terms used to describe the formal and decorative features of the vessels. I also explain the methods used for measuring the form of the vessels. Since there are three types and varieties that were given to the monkey pots in this data set, I review these types and varieties. Afterwards, I describe some fundamental attributes of the monkey pots from the Mirador Basin. I conclude with a brief comparison of each type of monkey pot. For the purposes of this study, the most critical distinctions between the different types of monkey pots is their chronological spread from the Late Classic to Terminal Classic, a time of significant change throughout the Maya Lowlands, as well as their different locations of production.

METHODS

One of the primary goals of the Mirador Basin ceramic project is to provide descriptions of the ceramic material and to build basic chronologies at sites throughout the Basin (Donald Forsyth, personal communication, 2007). Therefore, in dealing with monkey pots, I tried to provide as much descriptive information as possible, particularly on their form and decoration.
First, the identification number/s of each vessel was recorded. Next, I assigned the vessels a type and variety based on the Type: Variety system of classification (Gifford 1976). Since this classification system was created in part for chronological purposes, this would best meet the Mirador Basin project’s focus on chronology. Types and varieties were already defined by Forsyth (1989, 1993), so his designations were used when applicable. If the variety or type could not be determined, the vessel was allocated the most specific category in the Type: Variety system.

The basic form of the vessel was described using Jeremy Sabloff’s (1975:23–24) well-known terms—plate, dish, bowl, vase, and jar—which are primarily based on the ratio of rim diameter to height. I used Ray Matheny’s (1970:35) definitions of rim, lip, and base; the shape of the rim and lip as well as the type of base and supports were described using Sabloff’s (1975:24–27) definitions. Finally, Sabloff’s (1975:28) definitions of basal angles and breaks were used.

In addition to these written descriptions of the vessel form, I measured a number of formal features on each vessel to better document and describe its shape and size. For consistency and accuracy, all measurements were taken in millimeters using small sliding calipers; if any dimension was too large for the small calipers, larger sliding calipers were used. Rim diameters were measured across the orifice of whole vessels on opposing sides of the rim; on warped vessels the widest diameter of the rim was measured. If the base was flat or concave, the base diameter was measured in the same way. Vessel height was measured from the bottom of the base to the top or the rim. If supports were present, the height of each support was measured using a folding measuring tape. Broken supports were not measured, and the supports were not included in the overall vessel height measurement. The thickness of the rim was measured in four different places on the vessel; usually one measurement was taken for each quarter of the rim. The mean of
these measurements was recorded. The vessel volume was calculated using Autocad, a computer program designed for creating 3D images. One of the program’s features was to determine the volume of any solid shape. Therefore, the profile of each vessel was traced from profile photographs and then formatted to the recorded rim diameter and height. The volume was recorded in milliliters.

Surface finish consists of “all surface characteristics that result from the manner in which the vessel was evened and smoothed during the shaping process and subsequently” (Shepard 1968:186). The surface finish was described by three major categories—slipping, smoothing, and burnishing. A slip is “a fluid suspension of clay in water” that is applied to a vessel before it is fired, which creates a thin coating on the vessel surface (Rice 1987:149). Smoothing is “usually done with a soft, yielding tool” that creates “a finer and more regular surface” on a vessel (Rice 1987:138). Smoothing is often performed to prepare the vessel for a slip. Burnishing a vessel requires “rubbing back and forth with a smooth, hard object” (Rice 1987:138). Burnishing compacts and realigns the clay particles on the surface of the vessel, producing a luster (Rice 1987:138). If several kinds of surface finish were present on the same vessel, both were recorded; for instance, if the surface of a vessel was smoothed before slip was applied, the vessel was said to have been smoothed and slipped. If slip was applied, its color was recorded using the Munsell soil color system. I attempted to identify the basic range of colors in variable-colored slips.

Decoration refers to the alterations or additions to the vessel surfaces after the initial shaping and smoothing were completed (Smith 1955:37). All but one of the monkey pots from the Mirador Basin contained alterations to the vessel surface. The basic decorative layout of the vessel was described, beginning with how the space on the vessel was
divided. Next the design, motif, or filling of each defined decorative space or area of the vessel was described.

Because I could not make fresh breaks in the vessels, the characteristics of the paste and temper were determined only by what was visible from previous breaks and surface wear. If visible, the general temper material and size was recorded; if a vessel had no previous breaks or chips, this category was left blank. The size of the temper was broken up into fine, medium, and coarse. The average size of fine temper particles was less than 0.5 mm in diameter. Medium temper was between 0.5 and 0.75 mm, and coarse temper was greater than 0.75 mm.

Other descriptive information was also recorded, including any use-related wear on the vessel rim, interior base, exterior base, or supports. I also recorded any weathering on the vessel, particularly slip weathering. If the vessel was fractured or repaired, I recorded the number of pieces present. Finally, I noted the presence of repair holes or kill holes and took the diameter of the holes.

Finally, at least three photographs of each vessel were taken – one for the side, top, and bottom of the vessel. The side shot documented the vessel’s profile and was crucial in determining the volume as explained above. Close-up photographs of significant formal and decorative features and possible usewear were taken as needed.

CARMELITA INCISED

Fifteen vessels analyzed during the summer of 2007 fit the description of Carmelita Incised: Maculis Variety. This type falls well within the Tepeu 2 sphere at El Mirador (A.D. 680–800; Figure 2) and is part of the Infierno Ceramic Group. The type Carmelita Incised was defined at Uaxactun by Smith and Gifford (1966:156; 172); similar types of incised vessels have been defined elsewhere (see Adams 1971; Connor 1983:141–143;
Sabloff 1975:120–121). Maculis Variety was defined specifically for El Mirador (see Forsyth 1989:97). The different varieties of Carmelita Incised and closely related types have been differentiated primarily by geography (see Adams 1971:Figure 58k; Sabloff 1975:120–121).

In general, the surface decoration of Carmelita Incised is characterized by a relatively smoothed surface on which a glossy black to brown slip was applied to the interior and

Figure 2. Uncalibrated timeline from the Mirador Basin and other select sites.
exterior. The color of the slip ranges from black to brown; some vessels are mostly one color but mottled with patches of the other color. For the most part, the slip adheres well to the vessel.

Decoration of Carmelita Incised consists of pre- or post-slip incisions on the exterior wall of the vessel. The decoration itself varies. Some vessels exhibit one to three circumferential incisions located a few centimeters below the lip; others have only a single incision a few centimeters above the basal break, and others both. At times, both lip incisions and basal break incisions create a horizontal panel of space in which other incised designs are often placed. This horizontal panel is usually further divided by one or two vertical incisions. Designs within these panels are usually geometric, such as a stair-step motif or chevrons. Some vessels do not have demarcated spaces for decoration. Often geometric designs run around the vessel near the basal break. One of the more complex designs of Carmelita Incised vessels is monkeys, which are described in greater detail below. However, these are rare compared to the vessels with geometric designs.

The most common form of Carmelita Incised is the composite silhouette bowl, particularly at El Mirador (Forsyth 1989:97) and other sites in the Mirador Basin. Composite silhouette bowls have a height that is between one-third of and equal to the rim diameter (Sabloff 1975:23). The walls of these bowls are flaring or slightly outcurved; they also have a basal break that tapers down to a flat base, which has a diameter that is much smaller than the rim diameter. The rim shape is almost always direct, and the lip shape is usually rounded. Sometimes Carmelita Incised vessels exhibit three solid nubbin supports, but this is generally rare (Forsyth 1989:99). No other appendages have been observed on Carmelita Incised vessels. Other forms of Carmelita Incised at El Mirador include a straight-sided composite silhouette form; round-sided, hemispherical bowls; flaring-sided dishes; and plates with interior offsets (Forsyth 1989:97-99).
The paste of Carmelita Incised and similar types is generally medium-textured, strong, well-bonded, relatively well fired, and gray to light brown in color. Some specimens exhibit a darker core. The temper of Carmelita Incised and similar types, however, varies according to geographical location. At El Mirador, the temper was some sort of crushed limestone (Forsyth 1989:93); at Altar de Sacrificios, on the other hand, the temper was “sand” (Adams 1971:58). Overall, the temper seems to be evenly distributed throughout the matrix.

CARMELITA INCISED MONKEY POTS FROM THE MIRADOR BASIN

Fifteen vessels in the Mirador Basin whole vessel collection qualified as a Carmelita Incised monkey pot as defined above. Three other monkey pots are similar to Carmelita Incised monkey pots in every respect aside from exhibiting both incised and groove-incised decoration (Figure 3e, g, and k). Because of the groove-incision, these vessels do not completely match the description of Carmelita Incised. Forsyth (1989:104) mentioned an Other Infierno Group: Groove-incised, but even this description does not fully match these vessels. In the analysis, therefore, these vessels were designated as Other Infierno Group: Incised/groove-incised. Since this type dates to the Tepeu 2 phase and belongs in the Infierno Ceramic Group, I included them in the Carmelita Incised monkey pot category. To better refer to individual vessels in this description, each monkey pot assigned to this type was given an identification number that begins with “CI” followed by a sequential number (Table 1).

The surface finish of these Carmelita Incised monkey pots is not much different from Forsyth’s (1989:97) description of Carmelita Incised. All 18 vessels were smoothed prior to the application of the slip. The slip on some of the vessels is glossy (CI-3, CI-5, and CI-12; Figure 3c, e, and l); however, the slip is duller on others (CI-10 and CI-11;
Figure 3j and k). The slip color varies from black to light brown. Often the slip color is mottled, grading between dark brown and light brown (CI-1 and CI-5; Figure 3a and e). This mottled color is the result of uneven or differential firing. The slip on some vessels adheres to the vessel well; on others, the slip is very worn (CI-10 and CI-11; Figure 3j and k).

All decoration on the Carmelita Incised monkey pots in this data set is on the exterior wall of the vessel and exhibits a consistent division of space. There is always at least one circumferential rim incision or groove-incision, and often an incision directly above
Figure 3. (a) CI-1; (b) CI-2; (c) CI-3; (d) CI-4; (e) CI-5; (f) CI-6; (g) CI-7; (h) CI-8; (i) CI-9.
Figure 3 continued. (j) CI-10; (k) CI-11; (l) CI-12; (m) CI-13; (n) CI-14; (o) CI-15; (p) CI-16; (q) CI-17; (r) CI-18.
the basal break. The space between the rim and basal incisions is then divided into
two panels by single vertical incisions. Of these four panels, two are much larger and
contain a single incised profile of a monkey. Aside from CI-16 (Figure 3p), each of the
monkey profiles is oriented to the viewer’s left. In every case, one of the monkey’s arms
is extended, bent at the elbow at an obtuse angle. It seems that the left arm is extended
except for CI-11 and CI-16 (Figure 3k and p), where the right arm appears extended.

However, this is difficult to determine because of the simplicity of the profile often
obscures the view of the arm. The monkeys in CI-2 and CI-7 have both arms extended
(Figure 3b and g). Though the incision is very simply done, it is clear that the extended
hand and fingers of each monkey is curled (Figure 3b, e-i, l, n, p, and r), extended
(Figure 3c, d, j, and m), or in cupping shape (Figure 3o). Similarly, the foot and toes of
the monkeys can be curved as well (Figure 3h). Each monkey has an erect tail (Figure
3a) that is often curled at the end (Figure 3c-r). Finally, each monkey assumes a certain
position. These positions include sitting with bent knees (Figure 3a, c, e, h, i, k-n, and
p-r), crouched (Figure 3k), standing with bent knees/hunched (Figure 3d and o), and
possibly sitting cross-legged (Figure 3b and g). Often the monkey appears to be hunched
or leaning forward (Figure 3e, f, i, l-n, and r). In addition to the monkey profile, CI-2,
CI-4, CI-10, and CI-11 (Figure 3b, d, j, and k) contain diagonal or horizontal lines of
punctations inside the panel surrounding the monkey. In many cases, the decorative
spaces and monkey motifs are performed hastily with no apparent concern for symmetry
(CI-9; Figure 3i) or detail (CI-14, CI-18; Figure 3n and r). CI-9 exhibits post-fire,
unfinished incision decoration of a monkey profile (Figure 4).

Based on Sabloff’s (1975:23) definitions, each Carmelita Incised monkey pot is a
bowl. Sixteen vessels fit the composite silhouette form description – they have flared or
slightly outcurved sides with a basal angle that tapers down into a smaller, flat base. The
forms of two vessels (CI-1, CI-10) are slightly different. The shape of one is reminiscent of a composite silhouette with flared sides and a basal angle, but the basal angle tapers down so quickly to the base that the base appears slightly rounded (CI-1; Figure 3a). Another vessel has flared sides but no basal angle at all (CI-10; Figure 3j). The rim shape of all 18 vessels is direct, and the lip shape on every vessel is rounded. All of the vessels have flat bottoms except for one (CI-1; Figure 3a) that has a slightly rounded bottom, one (CI-11; Figure 3k) that has a flat bottom but has a double bottom, and another (CI-6) that is missing the entire base and therefore impossible to determine. Only three vessels (CI-15, CI-17, and CI-18; Figure 3o, q, and r) have three solid nubbin feet, all of which are worn on the bottom. None of the vessels have other appendages.

The vessels that had large breaks or a surface worn enough to make the temper visible had paste and temper similar to Forsyth’s (1989:97) description of Carmelita Incised. The paste seems to be medium textured, well-bonded, and gray to light brown in color. The temper is evenly distributed throughout the matrix, medium textured, and appears to
be crushed limestone. Although no sourcing tests were performed on the paste or temper, these vessels were probably made locally, or within the Mirador Basin (Donald Forsyth, personal communication, 2008).

TELCHAC COMPOSITE

Four vessels in the Mirador Basin whole vessel collection fit the description of the type Telchac Composite. This fine-paste pottery type is generally associated with the Terminal Classic period (c. A.D. 800–1000); in the Mirador Basin, these vessels fall into the late Tepeu 2 and Tepeu 3 phase (A.D. 780–830; Figure 2). Stratigraphic excavations in the Mirador Basin show that Infierno Ceramic Group sherds appear earlier than Chablacal Ceramic Group sherds, though it continued to be manufactured once fine gray pottery is imported. Thus, the type Telchac Composite appears contemporaneous with or slightly later than the type Carmelita Incised, or during the Late Classic-Terminal Classic transition in the Mirador Basin. This trend is similar throughout the lowlands.

Fine gray pottery (including Telchac Composite) is assumed to have been produced somewhere along the Lower Usumacinta River. It was imported throughout the lowlands in small quantities when polychrome pottery began to decline in quality and abundance; it is unclear whether these fine gray vessels were made for export, local consumption, or both. Regardless, this was the first time pottery from this area was imported into the Mirador Basin. The reason for its introduction throughout the lowlands is unknown. However, other significant changes began at this time, the most notable being the apparent decline or demise of the elite class.

The type Telchac Composite: Telchac Variety was defined at Mayapan (Smith 1971:18); it was also found at a number of other sites, including the Mirador Basin (Donald Forsyth, personal communication, 2008). There are other types that are very
similar to Telchac Composite; for example, the type Chicxulub Incised resembles Telchac Composite aside from the lack of punctations (see Forsyth 1983:119).

Unlike Carmelita Incised vessels, the surface of Telchac Composite vessels is unslipped. However, the exterior is very well smoothed or in some cases burnished so that it exhibits a luster and is usually smooth to the touch. Sometimes the smoothing or burnishing brings shiny material (possibly mica) in the paste to the surface of the vessel, thereby causing a glittery look. The surface (and therefore the paste) of this type is light gray in color.

The decoration on Telchac Composite consists of both incisions and punctations on the exterior wall. The incisions and punctations appear to be made with a sharp instrument and are usually not very deep. Incisions often occur in rows near the rim and base and often create a horizontal line of connected but framed areas filled with shallow punctations. The framed areas are sometimes filled with hatching or other geometric designs. There is no mention of monkey motifs on this type, but other examples of fine gray pottery similar to this type do exhibit monkey motifs (Brainard 1958:Figure d; Piña Chan 1968:Figure 2n1).

Due to the lack of Telchac Composite material recovered from Edzna, the forms of this type are unknown (see Forsyth 1983:120). However, if the forms of Telchac Composite are similar to the forms of the type Chablekal Gray (Forsyth 1983:117-119), it is likely that Telchac Composite forms are bowls or dishes. The examples of pottery that resemble this type generally appear to be composite silhouette bowls (Brainard 1958: Figure d; Smith and Gifford 1965:Figure 10e), though slightly different from Carmelita Incised composite silhouette bowls. More specific form attributes, such as the lip shape, rim shape, and base type are unknown.
Table 2. Rim Diameters, Heights, Ratios of Rim Diameter (RD)/Height (HT), and Volumes of Telchac Composite Monkey Pots and Zacatal Polychrome Monkey Pot from the Mirador Basin

<table>
<thead>
<tr>
<th></th>
<th>Rim Diameter (cm)</th>
<th>Height (cm)</th>
<th>Ratio RD/HT</th>
<th>Volume (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-1</td>
<td>17.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>TC-2</td>
<td>15.1</td>
<td>8.5</td>
<td>1.77</td>
<td>794</td>
</tr>
<tr>
<td>TC-3</td>
<td>15.0</td>
<td>8.5</td>
<td>1.76</td>
<td>741</td>
</tr>
<tr>
<td>TC-4</td>
<td>14.5</td>
<td>9.1</td>
<td>1.59</td>
<td>886</td>
</tr>
<tr>
<td>ZP-1</td>
<td>18.1</td>
<td>6.0</td>
<td>3.02</td>
<td>732</td>
</tr>
<tr>
<td>Average</td>
<td>15.9</td>
<td>8.0</td>
<td>2.04</td>
<td>788</td>
</tr>
<tr>
<td>Average w/o ZP-1</td>
<td>15.3</td>
<td>8.7</td>
<td>1.71</td>
<td>807</td>
</tr>
</tbody>
</table>

The paste of Telchac Composite is fine-grained, strong, compacted, gray in color, well-fired, and contains no temper. The paste color is consistent throughout the vessel; the cores were not darker or lighter than the exterior paste.

TELCHAC COMPOSITE MONKEY POTS FROM THE MIRADOR BASIN

Four vessels from the Mirador Basin whole vessel collection fit the description of Telchac Composite: Telchac Variety. As with the Carmelita Incised monkey pots, each Telchac Composite vessel was given an identification number beginning with “TC” and was followed by a sequential number (Table 2).

The surface finish of these four vessels match the description of Telchac Composite given above. The surface of each vessel is unslipped but very smooth or possibly burnished. The surface of TC-1 is very smooth and exhibited fine, shiny particles, which gave the vessel a glittery appearance. This shiny material is probably mica in the paste. This vessel also has fine, lighter gray lines all over the interior and exterior surface, probably due to post-depositional processes. TC-2 is not nearly as smooth as TC-1, and the gray color is not uniform, probably due to weathering. The surface is stained with an unknown material; colors of this material are green, brown, and dark brown. The surface
of TC-3 is more smooth than that of TC-2 but not as smooth as that of TC-1. There are several areas on the vessel that are a lighter gray, probably due to weathering. Fine, light gray lines on the surface allude to a similar postdepositional process. Some areas on the surface of TC-4 are fairly shiny. There are some fine, light gray lines on certain parts of the surface, again probably due the same post-depositional process.

For the most part, the decoration of Telchac Composite monkey pots from the Mirador Basin generally conforms to the description of Telchac Composite given above. All decoration is confined to the exterior wall, and the decorational space is divided into four areas or “panels.” The top border of each panel is made by two (TC-1, TC-2, and TC-4; Figure 5a, b, and d) or three (TC-3; Figure 5c) circumferential groove-incisions, and the bottom border is made by the basal break (TC-2, TC-3, and TC-4; Figure 5b-d). This wide, horizontal space on the exterior wall is further divided into four panels by single vertical incisions. On each vessel, two panels are larger and contain the profile of an incised monkey. Each monkey faces the viewer’s left (Figure 5a-c), except for TC-4, which faces right (Figure 5d). The monkeys all have one arm extended, bent at the elbow (Figure 5a-d). Aside from TC-4, it appears that the left arm is extended in TC-1, TC-2, and TC-3. Where the hands and fingers are visible, they appear to be curled in cupping shape (Figure 5d) or extended (Figure 5b). The foot and toes are either curled (Figure 5d) or extended (Figure 5b), although they are not visible on TC-1 and TC-3. In each case, the tail is erect (Figure 5a) and sometimes curled at the end (Figure 5b-d). The monkeys are either crouching (Figure 5c) or sitting with bent-knees (Figure 5b and d). Finally, the monkeys lean forward or are hunched forward (Figure 5b-d); the exception is the monkey in TC-1, which is leaning back (Figure 5a). In addition to the monkey, these two panels contain punctations arranged in horizontal (TC-3 and TC-4; Figure 5c and d) or diagonal (TC-1 and TC-2; Figure 5a and b) lines. Furthermore, the incisions that make up the
monkey are simple and seem to be performed hastily with little regard of symmetry or
detail (Figure 5b, particularly the fingers and toes of the monkey).

The form of each Telchac Composite vessel conforms to Sabloff’s definition of a
bowl, which is a vessel with “a height no more than equal to but not less than one-third
its diameter” (1975:23). Aside from TC-1 (which was incomplete), these bowls have
a composite silhouette shape—flared or slightly outcurved walls with a basal angle that tapers down to a smaller, flat base. However, the curvature of the walls is slightly different than the composite silhouette form of the Carmelita Incised monkey pots. The shape of the base is either flat (TC-2 and TC-4) or slightly rounded (TC-3). Additionally, the vessels with bases (TC-2, TC-3, and TC-4) have a double bottom; the double bottom of TC-4 still has clay balls inside. The double bottoms on TC-2 and TC-3 were broken, so it is unclear whether they originally contained clay balls. In addition, the base of each vessel exhibits a small, presumably intentional hole, probably used to ensure that the base did not explode during firing. Each vessel has a direct rim and a rounded lip shape. With the exception of TC-1 (where the bottom was missing), the vessels all have solid nubbin supports. Each support is worn. None of the vessels have other appendages.

Each of the Telchac Composite vessels has a gray-colored paste that appears to be strong, compact, uniform in color, and lacking temper. TC-1 has some sort of shiny material in the paste. The material is also visible on the surface of the vessel, probably due to the burnished surface. Because of the nonlocal fine gray paste, it is likely that these vessels were traded in from somewhere around the Usumacinta River area (Donald Forsyth, personal communication, 2008).

ZACATAL CREAM POLYCHROME

One final vessel in this collection fits the definition of a monkey pot, but it is clearly different from the others described above. This particular vessel, labeled ZP-1, fits the general description of the type Zacatal Cream Polychrome. This type was defined at Uaxactun (Smith and Gifford 1965:164, 172). It is widespread throughout the Maya world; different varieties have been defined for different geographical locations (see Forsyth 1989:112–114). These vessels are slipped with a cream-colored slip and
decorated with a combination of red, brown, and/or black paint. The location of the decoration depends on the vessel form. On bowls, for example, most of the painting is found on the exterior walls, though it can occur on the exterior base as well as the interior walls and base. Plates and dishes usually have decoration on the interior base and walls, although sometimes decoration is found on the exterior wall and base. The decoration itself varies widely. The most common design pattern consists of repetitive, geometric shapes. More elaborate decoration includes animals, human figures, mythological scenes, and hieroglyphics. A Codex-style polychrome vessel is an example of an elaborately decorated Zacatal Cream Polychrome, although limiting the description of such vessels to this type does not adequately describe them. There are a number of different vessel forms entailed in this type, as implied above, including bowls, dishes, and plates (see Forsyth 1989:112). However, there is much formal variation between these broad form designations. The paste and temper material seems to vary by region.

ZACATAL CREAM POLYCHROME MONKEY POT FROM THE MIRADOR BASIN

One Zacatal Cream Polychrome monkey pot was recovered from the Mirador Basin (Figure 6). Based on Sabloff’s (1975:23) definitions, this vessel is a dish. It has flared walls, a flat base, a rounded lip, and no supports or appendages. The vessel interior and exterior appears to be slipped a cream color, though much of the slip has weathered away. The paint on the interior and exterior walls and base adhered better than the slip. Interior decoration includes a thick, red rim and lip band; any other decoration, if present, has weathered away. On the exterior walls, there is a red lip band, followed immediately by a black rim band. This is followed by a thinner black line that serves as the top of a horizontal-running set of four black-outlined panels. Two of the opposing panels are larger and exhibit black and red painted monkeys holding an unknown object in their
hand. The other two panels contain three black-outlined horizontal bands with red-painted circles. The exterior base has a red-painted circle with radiating red bands, which resembles a sun. However, much of the paint on the edges of the exterior base has worn off. The temper appears to be limestone-based, although this is difficult to determine for certain. It is likely that this vessel was produced locally as well (Donald Forsyth, personal communication, 2008).

GENERAL COMPARISON

Overall, the similarities between the Carmelita Incised, Telchac Composite, and Zacatal Polychrome monkey pots are easy to see. Obviously, the most recurring theme is the incised (or painted in the case of the Zacatal Cream Polychrome vessel) monkey on the exterior wall. Furthermore, the similar composite silhouette bowl form of the...
Carmelita Incised and Telchac Composite monkey pots is also clear. The combination of the flared to outcurved walls, basal break, and small, flat base are attributes found almost exclusively within these two types. Very few types, particularly in the Mirador Basin, have this “composite silhouette” bowl form.

The most visible differences between these types are the surface finish, paste, and temper. The interior and exterior of Carmelita Incised monkey pots are first smoothed and then slipped light brown to black; the Zacatal Polychrome vessel was smoothed and slipped a cream color. On the other hand, the Telchac Composite monkey pots are not slipped at all, but are well-smoothed or burnished. The paste of Carmelita Incised fires light brown to gray, is more coarse, and has a medium-sized temper, at least in the Mirador Basin collection. In contrast, Telchac Composite paste is hard, strong, and fine; fires to a gray color; and contains no temper.

However, the most significant differences between these three kinds of monkey pots, at least in this thesis, is the apparent chronological difference and different locations of production. Carmelita Incised and Zacatal Polychrome monkey pots were made in the Mirador Basin during the Late Classic, and Telchac Composite monkey pots were made in the Usumacinta River region at the end of the Late Classic and into the Terminal Classic. If Carmelita Incised and Zacatal Polychrome monkey pots really do precede Telchac Composite monkey pots, we can assume that monkey pots were made for 150 years. This period is significant because it signifies the final residential occupation of the Mirador Basin; furthermore, the Terminal Classic is a period of drastic changes at many places throughout the lowlands. In addition, the appearance of Telchac Composite monkey pots in the Basin suggests some kind of interaction with the Usumacinta River region, something that had never occurred before. The significance of these monkey pots during this period and in these places will become clear in the final chapter.
3 FUNCTION OF MONKEY POTS

Chronology is often the goal of Maya ceramic analysis, which is one reason why the Type: Variety system of classification is employed. This focus on the relationship between pottery and chronology, however, suggests that functional aspects of pottery is forgotten or ignored. This seems to be true of monkey pots because they are lumped within a type and variety in the Type: Variety system to facilitate chronology and description. Despite their chronological significance, however, these vessels surely had a function. In other words, monkey pots were used for something; I imagine they held some sort of food. In this chapter, I infer the function of the three types of monkey pots from their shape, volume, use wear, and context. I also narrow down the possible functions of monkey pots by matching other Late Classic vessel forms found in the Basin to possible functions. Afterwards, I compare the functions between the types of monkey pots.

POTTERY FUNCTION

The function of a pottery vessel refers to how it was used. A ceramic pot could function in a number of ways. In many cases, pots were used as containers to hold food or other materials (see Braun 1983). Some were used as status symbols to display a person’s wealth or prestige (see LeCount 1999). Other vessels functioned only in rituals and ceremonies. Some vessels, however, could have served several functions at the same time, or they could have changed functions a number of times throughout their use lives (Skibo 1992).
The function of ceramic vessels can be inferred using direct and indirect evidence. Direct evidence includes 1) contents or residues found in vessels or on sherds, 2) use wear, and 3) the presence of darkened exteriors and soot (Rice 1987:232-236). Although the preservation of vessel contents or residues is rare, especially on Maya pottery, this has been a useful way to determine function (see Stuart 1988). Use wear patterns on pottery indicate how the vessel and its contents were manipulated; examples include scraping, grinding, pounding, or cleaning (Hally 1983). However, as implied earlier, it is often difficult to determine the difference between use wear and erosion on pottery (see also Lischka 1978). Also, unless experiments are performed on vessels to determine what kind of use wear is left by a certain action, use wear tells us little of the function. The existence of soot and a darkened exterior on a vessel suggests that it was used for cooking, although what was cooked is not always clear (Rice 1987:235). On the other hand, the contents could have been ritually burned instead of cooked for consumption. In short, residues found on vessel interiors are the most direct evidence of function, while evidence from use wear and a blackened exterior is usually less direct.

Indirect evidence is also used to infer vessel function. The most common kind of indirect evidence is vessel morphology, which can provide general functional classes of pottery (Lischka 1978; Braun 1983; Henrickson and McDonald 1983; Reina and Hill 1978; Rice 1987:211). The overall shape may reflect the kind of material kept in them; for example, necked vessels would probably contain liquids while flat, open-orificed vessels were better suited for holding solid food or objects (Henrickson and McDonald 1983). Size is closely related to form and can reveal a more specific function of a vessel. For instance, small, necked jars with small rim diameters would be more appropriate for transporting liquid because the vessel could be carried and the small rim diameter would minimize spilling. On the other hand, large, necked jars with wide rim diameters would
be better suited to store liquids because they would not have to be moved and the wide rim diameter would allow easier access to the liquid inside the vessel (Henrickson and McDonald 1983).

Technological and performance characteristics—the raw materials used in construction, surface treatment, vessel wall thickness, and the overall resistance to mechanical stress and heat—are particularly telling of vessel function (Lischka 1978:227; Braun 1983; Rice 1987:228-232). For instance, polishing or applying a slip to vessel surfaces can reduce vessel permeability, and the contents of a vessel may have been easier to clean (Lischka 1978:227). In addition, thinner walls and certain paste and temper recipes are more conducive for cooking because they transfer heat more evenly. Harder, thicker vessels made out of certain pastes and tempers are more resistant to breakage during transportation or stirring.

Finally, the context of the pottery is an indirect but useful way to determine function. For example, a plain jar found next to a hearth in a residential structure would suggest that the vessel was used for cooking in domestic settings. However, the “final resting place” for vessels may not always accurately reflect “how their life was spent” (Rice 1987:233). Vessels found in burials, for instance, may not have been originally manufactured for placement in a burial and may have been used in a variety of ways before they were placed in the burial. In cases like this, one could only infer the final use and risk overlooking earlier functions in a vessel’s lifetime.

The function of Maya pottery can be inferred from two other types of indirect evidence. The first is a set of functional terms (i.e., drinking vessel) painted in hieroglyphs on vessel walls that indicate the function of the vessel; these are known as native labels or classifications (see Housten et al. 1989; Stuart 2005). The second is visual depictions of
vessels in use in Maya art (Benson 1974; Reents-Budet 1994). However, this evidence is often misleading and can create incorrect views of domestic function (Reents-Budet 1994). In addition, there are two critical problems in inferring vessel function, even when relying on direct evidence. First, the intended function of the vessel is not always the actual function—expediency depends on the situation in which the vessel is used (Skibo 1992). Second, a vessel can have many different functions throughout its use life, as stated earlier. In other words, ascertaining a single vessel function is risky because most vessels may have had multiple functions. However, the more kinds of evidence gathered on possible functions, the more informed the inferences regarding function. Therefore, considering many aspects of a vessel and how they relate to function would provide the most accurate picture of possible vessel function(s). Therefore, I consider four attributes in inferring the domestic function of monkey pots: shape, volume, use wear, and context. The site-level context is only briefly discussed because it is discussed more fully in Chapter 5. Instead, I focus on the context of the monkey pots within the Late and Terminal Classic functional complex in the Mirador Basin.

CARMELITA INCISED MONKEY POTS

Shape

As mentioned earlier, the shape of a ceramic vessel is related to its function (Henrickson and McDonald 1983; Reina and Hill 1978). Using ethnographic accounts of the shapes of pottery vessels and their functions, Elizabeth Henrickson and Mary McDonald (1983) created broad descriptive and dimensional parameters for six functional classes: cooking vessels, cooking trays, serving and eating vessels, dry-storage vessels, liquid-storage vessels, and water-transport vessels or canteens. They argue that by using these general parameters, basic functions can be assigned to prehistoric pottery
vessels. While these descriptions and dimensions are helpful for general functional categories, they do not cover the range of variation in forms found in prehistoric contexts. Also, it is not certain if the functional classes derived from ethnographic accounts can be applied to prehistoric pottery. Despite these issues, I chose to use Henrickson and McDonald’s parameters because they derived their conclusions from a broad range of ethnographic data and because they provided vessel dimensional data; therefore, I could compare their measurements with the measurements I took on the monkey pots.

According to Henrickson and McDonald’s descriptions, cooking vessels are usually short, squat, and unpainted; they have large basal surfaces, restricted mouths, and thick walls. The dimensions vary, but these vessels are generally wider than they are tall (Henrickson and McDonald 1983:631). Cooking trays are flat, unpainted, and have a large basal surface and sometimes handles or lugs. These vessels are much wider than tall and have a wide rim diameter (Henrickson and McDonald 1983:632). The category for serving and eating vessels is diverse; however, such vessels are often open-orificed, flat bottomed, and decorated. The size of these vessels also varies widely depending on whether they were made for “individual” or “family” use (Henrickson and McDonald 1983:632). Obviously, family vessels are larger than individual vessels, and usually about three times larger in volume (Henrickson and McDonald 1983:632). For the most part, dry-storage vessels have a wide opening, neck, and an everted rim. Long-term dry-storage vessels are taller and thinner, and temporary storage jars have a wider, less tall shape (Henrickson and McDonald 1983:632). Likewise, liquid-storage vessels are divided into long-term and short-term classes. Long-term liquid storage jars are generally taller and thinner, and short-term liquid storage jars are shorter and wider than long-term liquid storage jars (Henrickson and McDonald 1983:633), although there is overlap
between these two classes. Finally, water-transport vessels are usually globular, portable, and have small orifices (Henrickson and McDonald 1983:633-634).

From the descriptions of Carmelita Incised monkey pots in Chapter 2, these vessels fit the description of serving and eating vessels. They are bowls (according to Sabloff’s [1975:23] definition), open-orificed, and have a flat bottom. Although monkey pots have a greater height, the rim diameters and the ratios of height to rim diameter match the general dimensional measurements given by Henrickson and McDonald (1983:632) for individual serving or eating vessels. They report that the height of individual vessels ranges from six to eight cm and maximum diameters from 10 to 23 cm; the ratio of rim diameter to height ranges from 1.3 to 3.1. The heights of Carmelita Incised monkey pots range from 8.1 to 11.1 cm, with an average of 9.7 cm; rim diameters range from 14.4 to 17 cm, and averages at 15.6 cm. The ratio of rim diameter to height varies from 1.43 to 1.93 and averages at 1.61 (see Table 1). When compared with Henrickson and McDonald’s measurements, the Carmelita Incised monkey pots exhibit much more regular dimensions than the parameters given for eating and serving vessels.

If these vessels were used for eating and serving, what was served or eaten? During the Late Classic, there were several foods that were staples. Maize tamales were regularly consumed, as was atole, a maize gruel (Housten et al. 1989; LeCount 2001; Reents-Budet 1994; Stuart 1988, 2005). Other foods were probably common, such as various maize foods and deer meat (Housten et al. 1989; Taube 1989). Some foods, on the other hand, were consumed primarily by elites or in rituals. Cacao beverages were the most common example, but pulque (fermented juice of an agave plant) was also used (LeCount 2001; Stuart 1988, 2005).

Three basic vessel forms could have fulfilled the need of serving and eating the foods mentioned above: plates, bowls, and vases. These same forms are found in the art of the
Late Classic (Benson 1974; Reents-Budet 1994), and each form is present in the Late Classic ceramic assemblage from the Mirador Basin. A scatterplot of the height to rim diameter shows that vessels from similar contexts as the monkey pots (looters’ trenches and burials, see Chapter 5) can be grouped into these general form categories (Figure 7). Monkey pots fall into the bowl category (Figure 8). Since plates are shallow and flat, they probably held solid foods because of minimal risk of spilling; tall vessels were probably used for beverages or liquid or semi-liquid foods to minimize spills. Bowls could have held solid or liquid foods, but Maya art shows that bowls held solid foods such as tamales (Reents-Budet 1994). The exact food served or eaten from Carmelita

Figure 7. Scatterplot of height to rim diameter (in cm) of serving vessels from looters’ trenches and burials throughout the Mirador Basin. Note the divisions between vases, bowls, and plates.
Incised monkey pots is unknown, but if we trust the examples from Maya artwork, they probably held some sort of solid food.

Finally, some of these bowls exhibit a “composite silhouette” shape, which is a relatively rare bowl form, particularly in the Mirador Basin. Whether this composite silhouette form had a functional purpose is unknown. However, it could facilitate carrying or holding the vessel during use.

Volume

Although there are no other larger, bowl-like vessels to compare to the vessels in this data set, the rim diameter and height suggest that these vessels were individual serving or eating vessels instead of family-sized eating vessels. In addition to the rim...
diameter and height dimensions, volume can be helpful in determining how much these vessels could actually hold and thereby infer whether they were “group” or “individual” serving vessels. The volume of Carmelita Incised monkey pots ranges from 754 to 1284 milliliters, with an average of 1045 milliliters or just over one liter. In general, a liter will fill a modern regular-sized cereal or soup bowl twice. A scatterplot of the volume to rim diameter does not reveal any obvious size categories (Figure 8), but this could be due to the relatively small sample size.

Use Wear

It can be difficult to tell the difference between wear from use and wear from weathering. However, it is likely that the wear on these vessels is not from weathering because the wear on most of the vessels is restricted to one or two areas of the vessel and nowhere else. Furthermore, the places in which this possible wear appear (interior and exterior base) are those where use wear is most likely to occur on a serving vessel. James Skibo (1992) described the processes that created similar use wear on Kalinga cooking pots. Exterior base wear resulted from the vessel being in contact with or dragged across the ground, rotating the vessel on the ground, and rubbing the vessel during cleaning (Skibo 1992:114-115). Interior base wear resulted from implements scraping the bottom of the vessel when the contents were stirred and by scrubbing the vessel during cleaning (Skibo 1992:141). Rim wear came from contact with the ground when the vessel was being cleaned, contact with utensils during stirring and serving, placing a cover on the rim, and stacking the vessels (Skibo 1992:128).

For most of the Carmelita Incised monkey pots, there appears to be use wear on the interior bottom and walls and the exterior base or supports (CI-4, CI-7, CI-8; Figure 9). Specifically, the slip has been worn away on the interior base and walls. This could be due to regular stirring, scraping, or cleaning, which would be common on a frequently
Figure 9. Carmelita Incised monkey pots with interior base use wear: (a) CI-4; (b) CI-7; (c) CI-8.
used serving or eating vessel. On a few examples, the wear is more extreme; the slip has been completely worn away and the paste appears to have been worn as well. There appear to be linear abrasions in the paste, which are again suggestive of repetitive scraping or rubbing of a hard object on the interior of the vessel (CI-9, CI-10, CI-11, CI-13, CI-15, CI-16; Figure 10) and not simply the weathering of the slip. Some examples (CI-1, CI-3, CI-4, CI-5, CI-12, and CI-14) have slip on the interior base that exhibits a sheen not seen on the inner walls of the same vessels; in addition, this slip has light abrasions on it, particularly on the lower wall (Figure 11). These abrasions are difficult to see, but this sheen and the light abrasions may have been from use.

Some Carmelita Incised monkey pots appear to have wear on the base or solid tripod supports. In most examples, the slip appears to be worn away down to the paste (CI-3, CI-4, CI-9, CI-11, CI-13, CI-15, CI-16, CI-17, and CI-18; Figure 12). This wear could be the result of frequent moving, sliding, or scraping of the bottom of the vessel on a hard surface, which suggests it was moved often.

Several vessels (Figures 10a-d, and 13) have wear on the lip. The slip is worn away, which could be the result of frequent bumps from pouring, stirring, scraping, or some other action. In addition, the rim is chipped in several places. These chips may be due to bumps and gouges from excavation or from post-excavation accidents, but it is likely that they were acquired during the use life of the vessel.

In short, all of the Carmelita Incised monkey pots exhibit wear that seems to be more than just weathered surfaces. The most prominent places of wear are on the interior base and walls and the exterior bottom; a few vessels seem to have wear on the lip. However, it is unclear how much use the vessels endured to exhibit the kind of wear observed. Regardless, one might expect this kind of wear on an everyday serving or eating vessel. The vessels were probably moved frequently to facilitate serving and eating, which would
account for the wear on the exterior base and supports. The contents of the vessel would have been manipulated, which could account for the interior wear; similarly, frequent stirring, scraping, or cleaning could create a worn interior surface. Finally, the lip may have gotten chipped or worn from utensils or storing the vessel upside down.

Figure 10. Carmelita Incised monkey pots exhibiting striations on the interior base: (a) CI-9; (b) CI-11; (c) CI-13; (d) CI-15.
Figure 11. Carmelita Incised monkey pots exhibiting sheen on the interior base and lower wall: (a) CI-1; (b) CI-4; (c) CI-5; (d) CI-12; (e) CI-14.
Figure 12. Carmelita Incised monkey pots exhibiting use wear on the exterior base and supports: (a) CI-3; (b) CI-4; (c) CI-9; (d) CI-11; (e) CI-13; (f) CI-15; (g) CI-16; (h) CI-17; (i) CI-18.
TELCHAC COMPOSITE MONKEY POTS

Shape

Using the same parameters for form and function (Henrickson and McDonald 1983), all of the Telchac Composite monkey pots fall into the serving and eating category. They are bowls, have open orifices, and have flat bases. In addition, they fit the dimensions outlined by Henrickson and McDonald (1983); the maximum diameter (which happens to be the rim diameter) ranges from 14.5 to 17.0 cm and averages at 15.4 cm. The height ranges from 8.5 to 9.1 cm, with an average of 8.7 cm (see Table 2). Like the Carmelita Incised monkey pots, the Telchac Composite monkey pots have more regular dimensions.
than the serving and eating vessels reported by Henrickson and McDonald (1983). Although there were only a few Telchac Composite monkey pots, they still fit the bowl category (see Figure 8). The double bottoms on these vessels suggest that they were not as deep as Carmelita Incised vessels. Like Carmelita Incised monkey pots, Telchac Composite monkey pots were probably used as a serving or eating vessel. Again, the food these pots held is unknown; based on Maya art, however, the food was probably solid.

Volume

The volumes of Telchac Composite monkey pots range from 741 to 886 milliliters, and have an average of 807 milliliters. This is under a liter, or slightly smaller than the Carmelita Incised monkey pots. The sample size is very small, so it is impossible to determine if this average is representative of all Telchac Composite monkey pots.

Use wear

Determining use wear on Telchac Composite monkey pots is difficult because they are not slipped, which makes use related abrasions and other marks difficult to see, and the harder paste makes these vessels resist wear and tear. In addition, the surfaces of these vessels were burnished or polished.

Still, there is some evidence of use wear on the vessels in this data set. TC-1 is not complete enough to say much about use wear. However, TC-2 clearly has worn tripod supports (Figure 14); it might also have slight interior base wear (Figure 15). TC-3 has some surface wear on the interior base (Figure 16); there is definitely wear on the tripod supports (Figure 17). TC-4 appears to have slight wear on the interior base, but the extent of wear is difficult to determine because the vessel was reconstructed from several pieces, each with slightly different preservation (Figure 18). The tripod supports clearly exhibit wear (Figure 19). Each of the vessels (aside from TC-1) clearly exhibits obvious wear on the external base, specifically on the supports. It is likely that they have some wear on
Figure 14. Support wear on TC-2.

Figure 15. Interior base wear on TC-2.
Figure 16. Interior base wear on TC-3.

Figure 17. Support wear on TC-3.
Figure 18. Interior base wear on TC-4.

Figure 19. Support wear on TC-4.
the interior bottom and possibly the walls, but the extent of the wear is not clear. There was no clear indication of lip wear. In short, the use wear on these vessels suggests that they were moved around regularly, as one would expect from serving and eating vessels. The interior surface may also have been scraped for cleaning or the contents manipulated by stirring.

ZACATAL CREAM POLYCHROME MONKEY POT

According to Sabloff’s (1975:23) criteria, this monkey pot would fall in the dish category; I have placed it in the bowl category when compared with other serving vessels (see Figure 8). The rim diameter is 18.1 cm, a few centimeters larger than the other two kinds of monkey pots. The height is six centimeters, also a few centimeters smaller than the other vessels. Its volume is 732 ml, or about the same volume as the other monkey pots. In other words, the walls are lower, making the vessel squatter. This vessel was even squatter than the other monkey pots, suggesting that it held a solid food. However, it may have held a semi-liquid substance because its shape closely resembles dishes that are known to have held atole (see Stuart 2005:142).

The slip and decoration is worn overall, but it appears that there is more wear on the interior base and lower walls than on other areas of the vessel (Figure 20). This is probably evidence of use wear. Similarly, the exterior base slip and paint are slightly worn, which could also be a sign of use wear (Figure 21). As stated above, a few small chips were visible on the lip, but it is unclear if they are related to use. Again, the use pattern suggests that the contents were stirred or somehow the interior was scraped repeatedly. It may also have been moved regularly. As with the other monkey pots, this would be expected on individual serving vessels.
The context of each monkey pot is telling of its function. All but one of the vessels in this data set came from looters’ trenches or a burial. The only Carmelita Incised monkey pot in this data set (CI-6) that did not come from a looters’ trench or burial came from construction fill (see Chapter 5). Vessels found in looters’ trenches are assumed to have come from burials. This suggests that most monkey pots were eventually interred with the
dead, which implies a ritual function associated with death and burial. Due to the large amount of use wear on all the monkey pots, and since CI-6 came from construction fill, monkey pots probably functioned as domestic containers and were used later in burial rituals.

Late/Terminal Classic Functional Complex

The function of monkey pots can also be inferred by matching other Late-Terminal Classic vessel forms present in the Mirador Basin to functional classes. This would determine which ceramic forms served certain functions and therefore narrow down the function monkey pots may have fulfilled. In this section, I describe the functional classes given by Reina and Hill (1978), who developed their classes with vessels from Highland Maya villages. Next I list the forms reported by Forsyth (1989, 1993) from El Mirador and Nakbe as well as the forms of the whole vessels collected from the Basin. I then match the vessel forms found in the Mirador Basin to Reina and
Hill’s (1978) functional classes to infer the possible functions of the vessels. Finally, I determine which class monkey pots fit in.

Reina and Hill (1978:25–27) report five functional classes: carrying vessels, storage vessels, cooking vessels, serving vessels, and ceremonial vessels. These are similar, though less specific, to Henrickson and McDonald’s (1983) categories; however, I believe Reina and Hill’s categories contain the basic level of description needed for this comparison. Carrying vessels are jars with necks and often a small rim diameter. Storage vessels are also jars with necks, but are usually larger than carrying vessels. Large open bowls or basins also functioned as storage vessels. Cooking vessels include bowls, flat plates with almost no walls, plates with walls, and jars with a wide rim diameter. Serving vessels include bowls, small cups with handles, and pitchers, which are similar to cups but much larger. Ceremonial vessels include figurines and small bowls.

Forsyth (1989, 1993) reports a number of Late Classic ceramic forms from his sherd analysis. Slipped and unslipped jars were reported, most with necks, globular bodies, and flat bases; the height and neck curvature varied. Vases were also reported; some had straight or slightly flared walls and some were barrel-shaped. Bowls were very common, perhaps because of the wide variety of bowl forms. The height and rim diameter of the bowls varied, and some had flared walls, basal breaks, thickened rims, incurved rims, flat bottoms, tripod supports of various shapes and sizes, or a combination of these characteristics. Some bowls were hemispherical, and some had a restricted orifice. A few bowls other than the monkey pots had a composite silhouette form. Plates also varied, though not as much as the bowls. Some plates exhibited a lateral ridge, interior offset, flared walls, or round sides. Solid and hollow tripod supports were common on plates. As with the bowls, the height and rim diameter of plates varied. A few more vessel forms were present but not common, including tecomates of various sizes and pottery drums.
Since Terminal Classic ceramics are rare in the Mirador Basin, Forsyth (1989) only reports a few forms. Overall, they are similar to the forms found during the Late Classic. He reported incurved rim bowls and dishes, flaring-sided plates, cylindrical vases, and barrel shaped vessels. Four hollow supports are common on plates and dishes, which is different than the three supports during the Late Classic. Also, double bottoms become more popular in the Terminal Classic, and they are found on bowls and vases.

The vast majority of the Late Classic whole vessels recovered from sites throughout the Mirador Basin generally fit both Reina and Hill’s (1978) and Henrickson and McDonald’s (1983) definition of a serving or eating vessel. There were a few reconstructed jar rims with various rim diameters; however, none of these jars had an intact body, so the full size of the jars was unknown. The serving vessels exhibit many of the forms reported by Forsyth (1989). Plates were common; attributes included flaring sides, flat bottoms, rounded bottoms, solid and hollow tripod supports, or a combination of these traits. Terminal Classic plates had four supports. Bowls were very common. Characteristics of bowls include flaring sides, outcurved sides, solid and hollow tripod supports, flat bottoms, round bottoms, or a combination of these attributes. Again, Telchac Composite bowls often had four hollow supports or double bottoms. The height and rim diameter varied. There were a few hemispherical and composite silhouette bowls. Vases of various heights and rim diameters were present, but vases were not nearly as common as bowls and plates. The most common shapes included straight sides or slightly flared sides with flat bottoms. One Terminal Classic vase had a double bottom. Figure 22 shows the general shape of 374 Late Classic (Tepeu 2) serving vessels from the Mirador Basin and their relationship to monkey pots.
Figure 22. Scatterplot of height to rim diameter (in cm) of 374 Late Classic (including Carmelita Incised and Zacatal Polychrome monkey pots) whole vessels from the Mirador Basin.

Carrying Vessels

Jars would most likely fit this function. Forsyth reported several types with jar forms; in fact, jar forms were the most prevalent forms of the two unslipped types. These unslipped types comprised a large portion of the Late Classic ceramic material from El Mirador (Forsyth 1989). Jars with a small rim diameter are likely candidates for carrying vessels. Rim diameters of unslipped vessels from the Mirador Basin range from 35 to 24 cm with a mean diameter of 28.5 cm; Forsyth (1989:114) reports rim diameters between 24 to 30 cm. The unslipped jars show a wide range of rim diameters, and it is possible
that at least some of them served a carrying function. Although not reported by Reina and Hill (1978), bowls or vases with an incurved or restricted rim could serve a carrying function. These vessels might be smaller than jars, which would make them easier to carry, and the incurved or restricted rim would minimize spilling.

Storage Vessels

Jars would have served this function as well. As implied above, jar forms are one of the most common form present in the Mirador Basin ceramic material. The size of the jar would be more helpful in determining between carrying and storage jars because storage jars would probably have been larger. Unfortunately, there are no fully reconstructed jars from the whole vessel collection, so the size of jars unknown.

According to Reina and Hill (1978), large open basins and bowls also served storage functions. As these storage basins or bowls are supposedly large, the only basin or bowl forms that are markedly bigger are the large, incurved rim basins reported by Forsyth (1989:86, 103). The average rim diameter of these vessels from the whole vessel collection is 32 cm (Forsyth reports 34 and 25 cm for the two types that have this form), while the average rim diameter of the other bowls from the Mirador Basin whole collection is about 21 cm.

Cooking Vessels

Reina and Hill (1978) report that jar, plate, and bowl forms were used for cooking. These forms are reported by Forsyth (1989, 1993); although no jars are present in the whole vessel collection, plates and bowls are. However, it is difficult to know which plate and bowl forms were used for cooking and not other functions. Only a few of the other whole vessels exhibited evidence of cooking (see Skibo 1992)—one plate with tripods had a burned exterior base and one flaring-sided bowl had a blackened bottom.
A vertical-sided vase also exhibited a blackened exterior, although vase forms are not associated with cooking in Reina and Hill’s (1978) data.

There were no flat vessels without walls reported by Forsyth (1989) or present in the whole vessel collection. This is surprising, as vessels like these probably functioned to cook tamales. Perhaps another flat pottery form was used to make tamales, or perhaps other non-ceramic implements were used. The reason for the lack of cooking vessels in the whole vessel collection is unknown; however, it may have to do with the fact that many of the vessels came from burials, and perhaps cooking vessels of any kind were not placed in burials.

Serving Vessels

Overall, this functional category includes many kinds of vessel forms (see Henrickson and McDonald 1983). For this class, Reina and Hill (1978) report plates, bowls, and vases of various sizes and shapes. As stated earlier, most of the vessels in the whole vessel collection are bowls, plates, and vases and probably functioned as serving vessels (see Figure 8). Bowls that probably functioned to serve foods exhibit flaring or outcurved sides, tripod supports, flat or rounded bottoms, basal breaks, or a combination of these traits. Other bowls were hemispherical; some (including monkey pots) exhibited a composite silhouette form. The height and rim diameter of bowls varied greatly. Some bowls with flaring sides possess the same shape as the bowl that may have been used for cooking (see above), but none had evidence of cooking. Plates used for serving and eating solid foods had flaring or outcurved sides, rounded or flat bottoms, or interior offsets. Many plates had either solid nubbin or hollow ovoid supports, some with clay balls inside. As with the bowls, the height and rim diameter of the plates varied. Many of the plates had the same form as the plate that may have been used for cooking (see above), but they did not have blackened exteriors. Vases probably functioned as serving
vessels as well (probably for liquids), though they were not nearly as common as bowls and plates in the whole vessel collection. Vases had vertical sides, slightly flared sides, or slightly incurved sides. Some vases were more barrel-shaped. All the vases had flat bottoms. Again, the height and rim diameter of vases varied.

Many of the bowls, plates, and vases in the whole vessel collection are decorated (Figure 23), which is a characteristic of serving and eating vessels (see Henrickson and McDonald 1983). Also, many of the bowls, plates, and vases have use wear that mimics stirring and scraping (see Skibo 1992), which is typical of serving and eating vessels. This use wear is found on both decorated and undecorated vessels, suggesting that they had similar functions.

Figure 23. Scatterplot of height to rim diameter (in cm) of 374 whole vessels from the Mirador Basin with decorated and undecorated categories.
Ceremonial Vessels

No figurines from the Late Classic were reported by Forsyth (1989, 1993), but the pottery drums he reported probably functioned as ceremonial vessels. Reina and Hill (1978) also report bowls serving a ceremonial function. Any of the bowl forms in the whole vessel collection could have had a ceremonial function. In fact, some vessels may have served a storing, cooking, or serving function and later adopted a ceremonial function. For instance, incurved rim bowls or basins are the best candidate for a storage function. However, a large number of these basins or bowls were found at the base of a Preclassic stelae at Nakbe, all smashed as part of a ceremony or ritual (see Hansen et al. 2008). In addition, a vertical-sided vase had a blackened interior. The burning on the interior may be from burning offerings inside the vessel during ceremonies or rituals.

Monkey Pots

From this information, it is most likely that monkey pots functioned as serving or eating vessels. They do not match the criteria for carrying and storage vessels, and jars and large incurved rim bowls or basins probably fulfilled these functions. Jars also functioned as cooking implements. Although bowls were sometimes used for cooking, and a few of the bowls in the whole vessel collection show evidence of cooking, the monkey pots in this data set exhibit no evidence of this function.

The form, dimensions, decoration, and use wear of monkey pots best match the criteria of serving vessels though many other vessels from the whole vessel collection probably functioned in this capacity as well. In addition, the majority of the monkey pots were found in burials or looters’ trenches, so it seems that they also served a ceremonial function—their shape could easily fit the criteria for this functional class. However, other vessels with the same composite silhouette or flaring-sided bowl form and similar use wear patterns were found in burials and looters’ trenches alongside the monkey pots. It
appears that monkey pots served the same final function as vessels with the same shape but no monkey decoration. Therefore, it is likely that the incised monkeys themselves did not establish the function of monkey pots.

MONKEY POTS OUTSIDE THE MIRADOR BASIN

As mentioned in Chapter 1, scholars have identified other vessels that match the definition of monkey pots (see Aragon and Alvarez 2005:Figures 3 and 9; Berlin 1956:Figure 4z; Brainerd 1958:Figure 16b and d; Chase and Chase 1987:59; Kerr 1982:112; LaFarge 1926:Figure 189; Piña Chan 1968:Figures 2v and n; Reents-Budet 1994:Figure 6.4 and 6.5; Sabloff 1975:Figures 282f, 285, 231a and c, 232; Smith 1954:Figure 4a, 1955:Figure 43-6; and Smith and Gifford 1965:Figure 10e). Many of these vessels are very similar to those found in the Mirador Basin, and they all fit the criteria for serving and eating vessels. A few are vases (see Reents-Budet 1994:Figure 6.7; Thompson 1931:Plate XLVIII), which implies that some monkey pots were used for drinking some sort of beverage. Aside from these vases, the function of these vessels appears to be similar, at least based on form alone. Unfortunately, there was no information on the volume, use wear, and context of these vessels, so this assumption is preliminary.

COMPARISON AND DISCUSSION

There were several similarities among the three kinds of monkey pots. The average rim diameters of Carmelita Incised and Telchac Composite monkey pots are 15.5 cm and 15.4 cm respectively; the average heights are 9.7 cm and 8.3 cm respectively. Obviously, the rim diameters are very close; the slight difference in heights may be due to a small sample size of Telchac Composite monkey pots, though Forsyth (personal communication, 2009) believes that there is a small height difference between types. Still, the height is close. In short, the similar rim diameters and heights, along with
the open-orificed form, suggest that these pots were used as serving or eating vessels, as Henrickson and McDonald’s (1983) and Reina and Hill’s (1978) studies suggest. Although the Zacatal Cream Polychrome vessel is flatter and shallower overall, it is likely that it was also used as a serving or eating vessel as well. As bowls, by definition, are slightly taller than they are wide, it is likely that they held some sort of solid food, although they could have easily contained a liquid as well.

Despite the dimensional similarities, the volumes are slightly different (compare Tables 1 and 2). The volume of Carmelita Incised monkey pots average a little over a liter, while the Telchac Composite vessels average a little under a liter. Likewise, the Zacatal Cream Polychrome vessel is just slightly smaller than the average Telchac Composite vessel. Still, the volumes suggest that each vessel could hold a comparable amount of some sort of food or beverage. The contents of any one of these vessels would easily feed a single person in one serving. Therefore, I believe that all of these monkey pots were individual serving or eating vessels.

Each kind of monkey pot seemed to have use wear on the interior base (and sometimes interior walls), the exterior base or supports, and sometimes the rim or lip. The apparent use wear suggests that something was dragged or scraped repeatedly across the surface. A number of actions could have produced this, such as scraping the contents of the vessel with a utensil during serving, eating, stirring, or cleaning. This would be expected from a serving or eating vessel, particularly one that contained liquid contents—the contents would be manipulated inside the bowl with a utensil and the vessel may have been cleaned often. In addition, these vessels had a fair amount of use wear on the exterior bottom or supports, which suggests that they were moved frequently. While the wear patterns appear similar, there is no direct indication that these vessels shared the
exact same function; I only suggest that they could have been used for a similar function. Eighteen of the 23 vessels came from a burial. This suggests they had a ritual function, one associated with death and burial. However, the one monkey pot that came from construction fill and the abundant use wear on all the vessels suggests that monkey pots originally had a domestic function. It is unlikely that monkey pots only had a ritual function; vessels made solely for burial rituals would not have the use wear that is present on the vessels in this sample. It is possible that monkey pots had different functions at different times or had multiple functions at the same time. Indeed, some may have served domestic functions and later a ritual one; perhaps monkey pots were used to hold food during burial rituals. Again, the salient point is that based on the context of each type of monkey pot, their final function appears the same.

Finally, monkey pots seem to fit in the serving and ceremonial functional classes when compared with the other Late Classic ceramic forms from the Mirador Basin. Although bowls sometimes served storage and cooking functions, monkey pots were too small for storage and did not have blackened exteriors typical of cooking vessels. In addition, other vessels could have fulfilled these functions. Due to the small number of vases in the whole vessel collection and the type of use wear on monkey pots, monkey pots could have functioned as liquid serving vessels. Overall, the shape, size, decoration, and context of monkey pots, especially when compared with other vessel forms, suggests that they had both a serving and a ceremonial or ritual function.

The first question of this thesis was whether the monkey pots from the Mirador Basin were used for different functions. Based on this comparison, the answer is no. The monkey pots were probably individual serving vessels that held some sort of solid or possibly liquid food. They were probably moved around frequently, presumably to facilitate serving and eating. While there is some variation in the dimensions and
size, there does not seem to be enough to suggest a drastic difference in function. The contexts are also similar, which also points to a common function. My guess is that they functioned as serving and eating containers in domestic settings and were later included in death and burial rituals.
In Chapter 1, I mentioned that there was a wide variety of monkey pots present in the Maya world during the Late Classic period. Indeed, there were many ways monkeys were represented in Maya art, particularly on pottery. Some of the monkey images found on pottery are clearly unique. Some are stylized, while others (like most of the monkey pots in this data set) appear to be fairly standardized and are probably meant to represent or depict real monkeys. What kind of monkey was represented on these pottery vessels, specifically on the ones in this data set? What was the significance and meaning of monkeys to the ancient Maya? In this chapter, I attempt to answer these questions.

Michael Coe (1978) believes that representations of monkeys in Maya art were howler monkeys. Mary Baker (1992) suggests that capuchin monkeys better fit these images. Katherine South (2005) claims that both howler and spider monkeys are represented on pottery. To determine the particular genera of monkeys on the vessels, I first review Baker’s study on the morphological characteristics of the three genera of primates in Central America. I compare the monkey images in my data set to these characteristics to identify the specific genus of monkeys they represent. To answer the second question, I turn to Maya mythology in the *Popol Vuh* (see Christenson 2003), accounts of present-day highland Maya groups that mention monkeys, and Maya art and iconography. Although the analogy between these more recent groups and the Late Classic Maya may not be completely appropriate, I believe this evidence provides
some insights into the meaning of monkeys in ancient Maya society as well as their significance.

MONKEY MORPHOLOGY

There are three genera of primates in present-day Central America: the howler monkey (includes two species, *Alouatta palliata* and *Alouatta pigra*), the spider monkey (*Ateles geoffroyi*), and the capuchin monkey (*Cebus capucinus*; Baker 1992). Each genus has different morphological characteristics. Two species of howler monkey are found in the Maya region, and both have a low forehead and slanted face. They also have a thumb and finger that oppose three other fingers and a prehensile tail; both the finger and tail morphology help the howler monkey move securely through the jungle canopy. Because of the morphology of the fingers, however, the howler’s manual dexterity is very limited. Though both species of howler monkey have black hair, one of the species (*Alouatta palliata*) has lighter colored hair on its face (Baker 1992:220).

Spider monkeys, the second genus of monkeys, have a higher forehead and less slanted face than howler monkeys. In addition, spider monkeys have long, skinny limbs (particularly the arms) and a slight pot-belly. Their fingers are long and curved, and they have a vestigial thumb and a fully prehensile tail. These arm, finger, and tail characteristics help spider monkeys maneuver through the trees but limit their manual dexterity. Spider monkeys are covered with dark hair but lack pigmentation around their faces (specifically around their eyes and mouths), which give their faces a much lighter color. In fact, the lack of pigmentation makes them appear to be wearing a mask or goggles (see Baker 1992:220).

Despite the capuchin monkeys only being found south of the prehistoric Maya world (eastern Honduras and further south and east), Baker (1992:Figure 4) argues for the
presence and use of capuchin monkeys during the Classic period (see Baker 1992:Figure 4). Overall, capuchin monkeys are smaller and have the highest forehead and flattest face of the three genera. They have “thumb to index finer opposability” (Baker 1992:220), which is nearly identical to human hands. As a result, their manual dexterity is similar to humans. Although capuchin monkeys spend some of their time in trees, they also spend a fair amount of time on the ground. Their arms, legs, and tails are not as long as those of spider monkeys; in addition, their tails are only partially prehensile. Their faces are pink, and the hair on their upper arms, shoulders, and heads is much lighter than the rest of the hair on their lower body. The dark hair on the top of the head appears to come to a point, which resembles a “cap” (see Baker 1992:220).

Using Baker’s (1992) descriptions as a guide, six morphological features were used to determine the genera of the monkeys on the monkey pots from the Mirador Basin: 1) the height of the forehead, 2) the flatness of the face, 3) the length and curvature of the fingers, 4) the belly shape, 5) the length of the tail, and 6) the coloring of the face. Each characteristic was classified using the following criteria. The forehead of each monkey was determined to be high, low, or unknown. With high foreheads, the crown of the head and the top of the forehead were at the same level. In contrast, a low forehead was markedly more slanted; in other words, the crown of the head was much higher than the forehead, and it gradually sloped downward from the top of the forehead. The face was categorized as flat, projecting, or unknown. Flat faces had the mouth and nose (muzzle) aligned directly under the eyes. Projected faces, on the other hand, have muzzles that jut outward, or extend forward, from under the eyes. Categorizing the length of the fingers was determined by comparing the length of the fingers to the length of the arm and what appear to be the hands. If the fingers were longer than the palm of the hand and at least a fourth of the length of the arms, they are long; anything shorter was deemed short. If I
could not tell, I labeled them as unknown. If the fingers appeared to be curved or flexed in any way, they were called curved, whereas straight fingers were only extended and had no apparent curve. If there was no way to tell, I labeled it as unknown. The length of the arms and legs were determined by comparing them to the torso. If the arm or leg was as long as or longer than the torso, they were labeled as long; anything shorter was called short. If it was unclear, I put unknown. The belly shape categories were pot, slight, flat, or unknown. If the belly was very large or protruding, it was called pot (short for pot-belly). Bellies that were extended slightly near the waistline were categorized as slight. If there was no such protrusion, the belly shape was classified as flat. If the belly was hidden or obscured, I classified it as unknown. The length of the tail was labeled long, short, or unknown; this was determined by comparing the tail length to the torso length. If the tail was as long as or longer than the torso, they were called long, and anything shorter was deemed short. If I could not tell the length, I put unknown. In addition, if the tail was as thick as or thicker than the arm of the monkey, the tail was further described as “thick.” The color of the face was determined by the presence of an incision in what would be the area of the face/hair junction. Based on the appearance and location of the line, the face was labeled as a “mask” or “goggles.” Goggles surrounded the eyes only, while a mask outlined the entire face. If no incision was present, it was labeled as none.

These six characteristics were most likely to help me determine the genus of monkey on the vessels because of the unique set of characteristics found on each genus. A howler monkey would probably have a low forehead, a slanted face, no facial pigment differentiation, a thumb and one finger opposing three fingers, and a long tail. A spider monkey would probably have a less slanted forehead; a flatter face; a lighter colored face, specifically around the eyes and mouth; long, curved fingers with a vestigial thumb, a long tail, long arms, and a slight pot-belly. Capuchin monkeys should exhibit a high
forehead; a flat face; a lighter colored head, neck, shoulders, and upper arms; a lighter colored face; a black “cap” on the top of the head; and a shorter tail and limbs.

I found that some morphological characteristics were more helpful than others in determining the genus of the monkeys on the monkey pots. For example, there was a lot of gradation between the categories I defined when determining the height of the forehead and slant of the face. Furthermore, the features I needed to see were not always visible; the bellies, for instance, were not always visible because the monkey was too hunched over (for examples see Figure 24e and k). Weathering and missing portions of the vessels also hampered my ability to see certain morphological characteristics. Finally, some of the monkey features were stylized; because of this, some features did not seem realistic. Overall, the morphological characteristics that were most useful in determining the genus were the length and curvature of the fingers, the length of the arms, and the color differentiation in the face. The height of the forehead and the slant of the face were also useful, but to a lesser degree.

CARAMELITA INCISED MONKEY POTS

Table 3 lists the results of the analysis for all the vessels in this data set. Five (Figure 24e-g, l, and q) had low foreheads, while the rest had high foreheads. Four (Figure 24a-c, and n) had slanted faces, one (Figure 24q) was unknown because of weathering, and the rest had flat faces. Only two monkeys appeared to have shorter fingers (Figure 24n and p). Nine (Figure 24d-i, l, o, and r) had long fingers and seven monkeys exhibited no fingers or were too weathered (Figure 24a-c, j, k, m, and q). All but three of the monkeys most likely had curved fingers; CI-3 had straight fingers and CI-1 and CI-10 had fingers that were not very visible. All of the monkeys appeared to have long arms and all but four had long legs – only CI-4 had shorter legs and the legs of CI-6, CI-10, and CI-11
Table 3. Morphological Characteristics of the Monkeys on the Mirador Basin Monkey Pots

<table>
<thead>
<tr>
<th>CI-1</th>
<th>High</th>
<th>Flat</th>
<th>Unknown</th>
<th>Curved</th>
<th>Long</th>
<th>Long</th>
<th>Unknown</th>
<th>Long</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI-2</td>
<td>High</td>
<td>Flat</td>
<td>Unknown</td>
<td>Curved</td>
<td>Long</td>
<td>Long</td>
<td>Slight</td>
<td>Unknown</td>
<td>Mask</td>
</tr>
<tr>
<td>CI-3</td>
<td>High</td>
<td>Flat</td>
<td>Unknown</td>
<td>Straight</td>
<td>Long</td>
<td>Long</td>
<td>Slight</td>
<td>Long</td>
<td>None</td>
</tr>
<tr>
<td>CI-4</td>
<td>High</td>
<td>Slanted</td>
<td>Long</td>
<td>Curved</td>
<td>Long</td>
<td>Short</td>
<td>Slight</td>
<td>Long and thick</td>
<td>Mask</td>
</tr>
<tr>
<td>CI-5</td>
<td>Low</td>
<td>Slanted</td>
<td>Long</td>
<td>Curved</td>
<td>Long</td>
<td>Long</td>
<td>Unknown</td>
<td>Long</td>
<td>Mask</td>
</tr>
<tr>
<td>CI-6</td>
<td>Low</td>
<td>Slanted</td>
<td>Long</td>
<td>Curved</td>
<td>Long</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Long</td>
<td>Mask</td>
</tr>
<tr>
<td>CI-7</td>
<td>Low</td>
<td>Slanted</td>
<td>Long</td>
<td>Curved</td>
<td>Long</td>
<td>Long</td>
<td>Unknown</td>
<td>Long and thick</td>
<td>Mask</td>
</tr>
<tr>
<td>CI-8</td>
<td>High</td>
<td>Slanted</td>
<td>Long</td>
<td>Curved</td>
<td>Long</td>
<td>Long</td>
<td>Slight</td>
<td>Long and thick</td>
<td>Mask</td>
</tr>
<tr>
<td>CI-9</td>
<td>High</td>
<td>Slanted</td>
<td>Long</td>
<td>Curved</td>
<td>Long</td>
<td>Long</td>
<td>Unknown</td>
<td>Long and thick</td>
<td>Mask</td>
</tr>
<tr>
<td>CI-10</td>
<td>High</td>
<td>Slanted</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Long</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Extreme</td>
<td>Long and thick</td>
</tr>
<tr>
<td>CI-11</td>
<td>High</td>
<td>Slanted?</td>
<td>Unknown</td>
<td>Curved?</td>
<td>Long</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Long and thick</td>
</tr>
<tr>
<td>CI-12</td>
<td>Low</td>
<td>Slanted</td>
<td>Long</td>
<td>Curved</td>
<td>Long</td>
<td>Long</td>
<td>Unknown</td>
<td>Flat</td>
<td>Long</td>
</tr>
<tr>
<td>CI-13</td>
<td>High</td>
<td>Slanted</td>
<td>Unknown</td>
<td>Curved?</td>
<td>Long?</td>
<td>Long</td>
<td>Unknown</td>
<td>Long and thick</td>
<td>Mask?</td>
</tr>
<tr>
<td>CI-14</td>
<td>High?</td>
<td>Flat</td>
<td>Short</td>
<td>Curved</td>
<td>Long</td>
<td>Long</td>
<td>Unknown</td>
<td>Long</td>
<td>Mask</td>
</tr>
<tr>
<td>CI-15</td>
<td>High</td>
<td>Slanted</td>
<td>Long</td>
<td>Curved</td>
<td>Long</td>
<td>Long</td>
<td>Flat</td>
<td>Long and thick</td>
<td>Mask</td>
</tr>
<tr>
<td>CI-16</td>
<td>High</td>
<td>Slanted</td>
<td>Long</td>
<td>Curved</td>
<td>Long</td>
<td>Long</td>
<td>Flat</td>
<td>Long and thick</td>
<td>Mask</td>
</tr>
<tr>
<td>CI-17</td>
<td>Low</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Curved?</td>
<td>Long</td>
<td>Long</td>
<td>Slight</td>
<td>Long and thick</td>
<td>Mask</td>
</tr>
<tr>
<td>CI-18</td>
<td>High</td>
<td>Slanted</td>
<td>Long</td>
<td>Curved</td>
<td>Long</td>
<td>Long</td>
<td>Unknown</td>
<td>Long and thick</td>
<td>Mask</td>
</tr>
<tr>
<td>TC-1</td>
<td>High</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Long</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>None</td>
</tr>
<tr>
<td>TC-2</td>
<td>High</td>
<td>Flat</td>
<td>Long</td>
<td>Straight</td>
<td>Long</td>
<td>Long</td>
<td>Slight?</td>
<td>Long and thick</td>
<td>Unknown</td>
</tr>
<tr>
<td>TC-3</td>
<td>Unknown</td>
<td>Slanted?</td>
<td>Short</td>
<td>Curved</td>
<td>Long</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Long and thick</td>
<td>None</td>
</tr>
<tr>
<td>TC-4</td>
<td>High</td>
<td>Flat</td>
<td>Long</td>
<td>Curved</td>
<td>Long</td>
<td>Long</td>
<td>Slight?</td>
<td>Long and thick</td>
<td>Unknown</td>
</tr>
<tr>
<td>ZP-1</td>
<td>High</td>
<td>Flat</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Long</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Long</td>
<td>Mask</td>
</tr>
</tbody>
</table>
Figure 24. Monkey images on the Carmelita Incised monkey pots: (a) CI-1; (b) CI-2; (c) CI-3; (d) CI-4; (e) CI-5; (f) CI-6; (g) CI-7; (h) CI-8; (i) CI-9.
Figure 24 continued. Monkey images on the Carmelita Incised monkey pots: (j) CI-10; (k) CI-11; (l) CI-12; (m) CI-13; (n) CI-14; (o) CI-15; (p) CI-16; (q) CI-17; (r) CI-18.
were not visible. One monkey (Figure 24j) had an obvious pot-belly, and several had slight bellies (Figure 24b-d, h, and q). A few had flat bellies (Figure 24l, o, and p), and the rest had bellies that were not visible (Figure 24a, e-g, i, k, m, n, and r). Aside from CI-2 where the tail portion of the vessel had broken off, the tails of all the monkeys were long. In addition, six of the 18 (Figure 24a, c, e, f, l, and n) of these monkeys had thick tails. All but two (Figure 24a and c) monkeys had faces that were differentiated by an incision. This line appears to differentiate between a lighter colored face and the surrounding darker coloring. However, this differentiation was less clear on CI-11 and CI-13.

The monkeys on these vessels are probably spider monkeys. Nine vessels had a combination of long, curved fingers, long arms, and a possible color distinction between the face and the rest of the head. The long, curved fingers match spider monkey’s fingers; the other two genera do not have this trait. Similarly, longer arms are a characteristic of spider monkeys. Although howler monkeys also have longer arms, they have a face that is the same color as the surrounding hair, so there would probably be no differentiation on a howler monkey. In short, there does not appear to be a color differentiation between the face and surrounding head hair on howlers, but the monkeys in this data set do show some sort of differentiation. Therefore, the combination of at least two of the traits suggests that they are not howler monkeys. Furthermore, while each monkey appeared to have a slanted face, not all appeared to have a high forehead. This may be due to the roughness of the decoration and simplicity of my classification, but it may also reflect a monkey with a slightly higher forehead. The forehead of the spider monkey is not as high as that of the capuchin monkey and not as low as the howler. Only two of the monkeys have no facial color differentiation (Figure 24a and c), which is probably the most blatant characteristic of the howler; however, these two monkeys have high
foreheads and flat faces, something that the howler monkey does not have. In addition, CI-3 has curved fingers, which is typical of a spider monkey. The decoration of CI-1 was so simple that it may have lacked the detail I was looking for, making genus identification difficult. Overall, the monkeys on the monkey pots are most likely not howler monkeys and probably not capuchin monkey; the combination of attributes suggests that these were spider monkeys.

TELCHAC COMPOSITE MONKEY POTS

The same criteria were used in analyzing the morphological characteristics of the monkeys on the Telchac Composite monkey pots, and Table 3 contains the results. Since only a small portion of TC-1 was present, I was only able to observe that the forehead was high, the tail was long and thick, and there was no clear facial color distinction (Figure 25a). The foreheads of TC-2 and TC-4 were high, and the forehead of TC-3 was not visible. The faces of TC-2 and TC-4 were flat, and it appeared that TC-3 had a more slanted forehead. Both TC-2 and TC-4 had long fingers, but TC-3 clearly had short fingers. TC-2 had straight fingers, but TC-3 and TC-4 had curved fingers. The arms of TC-2, TC-3, and TC-4 were long, and the legs on TC-2 and TC-4 were long as well. The legs on TC-3 were not visible. The bellies on TC-2 and TC-4 were difficult to see, but appeared to be slight; the belly shape on TC-3 was unclear. The tails on TC-2, TC-3, and TC-4 were all long and thick. There was no facial color differentiation on TC-2, TC-3, and TC-4; however, there was very little detail on TC-2 and TC-4’s face, so the facial color difference may have not been included (Figure 25b-d).

The type of monkey on these vessels is not as clear as on the Carmelita Incised vessels. In fact, Blom and LaFarge (1926:229–230) question whether the creatures on their fine gray incised vessels are really monkeys. They claim that their tails are too
Figure 25. Monkey images on the Telchac Composite monkey pots: (a) TC-1; (b) TC-2; (c) TC-3; (d) TC-3; (e) TC-4.
thick and their eyes too large. Instead, they suggest that the animal may be nocturnal lemurs. While lemurs have very large eyes and thick tails, lemurs are not native to the New World, so the ancient Maya would have no knowledge of them. Therefore, these creatures are probably some kind of monkey.

While it is likely that these creatures are monkeys, determining the genus of the monkeys on the Telchac Composite monkey pots from the Mirador Basin is more difficult. The monkeys on these vessels are not as detailed as the monkeys on the Carmelita Incised vessels, and there are fewer Telchac Composite vessels. However, it is possible that these monkeys represent spider monkeys. Each monkey has long arms. Aside from TC-3, the fingers on each example are long, and the fingers on both TC-3 and TC-4 are curved. The tail of each monkey is long. Again, long arms and tails and especially long, curved fingers are characteristic of spider monkeys. There is a lack of facial color distinction on all the monkeys, which is more characteristic of howlers. This may be due to the simplicity of the decoration and not necessarily because it represents a howler monkey.

ZACATIAL POLYCHROME MONKEY POT

This vessel was analyzed using the same criteria as the others, and the results are included in Table 3. The monkey on this monkey pot is more detailed than the others because the decoration is paint and not incisions; therefore, the genus should be easier to determine. Overall, the forehead is high and the face is flat. The fingers have weathered away, so the length and the curvature are unknown. The arms appear to be long, but the legs and belly are not visible because of the position. The tail appears to be long, although the length could not be compared to the torso because the torso length was not
clear. Finally, it was obvious that the color of the face of the monkey was lighter than the rest of the head (Figure 26).

The monkey on this monkey pot most likely represents a spider monkey. The lighter colored face suggests that it is either a spider or capuchin monkey. The arms and tail appear to be longer than they would be if it was a capuchin monkey. Furthermore, the arms and shoulders of this monkey are completely black, which is characteristic of a spider monkey.

MONKEY POTS OUTSIDE THE MIRADOR BASIN

As stated before, a number of monkey pots have been described in reports and monographs throughout the Maya world. Although I did not perform a formal analysis, I took a brief look at some of the key morphological characteristics mentioned in the previous sections to get an idea on the most common genus represented on these vessels.

Brainerd (1958:Figures 36b and d) illustrates two monkey pots that appear to have long limbs and tails. There is no facial color distinction, and the fingers are not visible in
Figure 36b. However, they were curved in Figure 36d. Piña Chan (1968:Figures 2v and n) illustrates two monkey pots. The monkey in Figure 2v has long limbs and a long tail; it may also have curved fingers, but they appear to be short. Finally, it may also have a pot-belly. Figure 2n clearly has long limbs, a long tail, facial color differentiation, and a pot-belly. Of the several monkey pots reported by Sabloff (1975), the monkey in Figure 231 has two facial color designations and long arms. The fingers are curved, and it seems it has a thumb. In addition, it has a high forehead and unslanted face. The monkey in Figure 232 has a facial color distinction, the forehead is high, and the face is slanted. The monkey in Figure 282f clearly has long limbs, a long tail, and curved fingers. There is no color distinction in the face, but it has a pot-belly. Figure 285 has long limbs, a long tail, a possible pot-belly, a high forehead, and a distinct muzzle. Smith (1954:Figure 4a) shows a monkey pot with a monkey that has long arms and legs, a long tail, and long fingers. Although it is painted, there is no facial color distinction, and there is a distinct muzzle, or slanted face. Smith (1955:Figure 43.6) illustrates a vessel with only part of the monkey visible, but the monkey clearly has a long, prehensile tail. Smith and Gifford (1965:Figure 10e) report on a fine gray monkey pot with a monkey with long limbs, a long tail, long fingers, and a possible pot-belly. The monkey on the vessel reported by Thompson (1931:Plate XLVIII) has long arms and legs, a long tail, and long, curved fingers. In addition, the forehead is high and the face is not slanted, although it appears to have a muzzle. The monkey shown by Reents-Budet (1994:Figure 6.4) has long limbs, a long tail, and possibly curved fingers; it also has a color differentiation in the face. The monkeys in Figure 6.5 have long limbs, a long tail, and a pot-belly. Another (Figure 6.6) appears to have long limbs, a long tail, long, curved fingers, and a facial color distinction. Figure 6.7 is a human impersonating a monkey, so the features are all human; still there is clearly a facial color distinction on the mask. The vessels reported by Aragon and Álvarez
(2005:Figure 3) have monkeys with apparent long limbs, long tails, and curved fingers. It is difficult to tell, but it appears that they have facial color distinction. The monkey in Figure 9 has these same attributes, and it may also have a pot-belly. Kerr (1982:File 1789) shows a vessel with a monkey with long limbs, long, curved fingers, a long tail, a pot-belly, and obvious facial color distinction. This monkey also has a white belly.

Again, the brief observations gleaned from the photos and illustrations of these vessels are preliminary because many of these illustrations and photos are poor. However, it seems that the majority of these monkeys exhibit characteristics or a combination of attributes characteristic of spider monkeys (the most obvious examples being Reents-Budet [1994:Figures 6.4 and 6.5] and Kerr [1982:File 1789]). Although some of the fine gray vessels display a creature with a thicker tail and larger eyes, they are still probably monkeys, and possibly spider monkeys.

MONKEYS AND THE ANCIENT MAYA

What was the significance of monkeys to the ancient Maya? Creation myths and art from the Classic period suggest that monkeys were significant and had several different meanings in prehistoric times. There is also evidence that suggests different primate species had different meanings to the ancient Maya (South 2005). Ethnographic sources documenting modern folk tales, rituals, and festivals suggest that monkeys still have significance and meaning to contemporary Maya groups.

Howler monkeys in Classic Maya art are commonly associated with scribal activities; monkeys on pottery vessels are sometimes shown holding or writing on codices (Robicsek and Hales 1981:62, Vessel 63; South 2005). Spider monkeys are often depicted dancing and playing music (South 2005). The relationship between monkeys and writing, dancing, and music in prehistoric times was first noted by Coe (1978), who
claimed that this relationship is also seen in the *Popol Vuh*, the Quiche Maya epic. The story focuses on the famous Hero Twins, Hunahpu and Xbalanque. As the story goes, the twins had two stepbrothers, One Batz and One Chouen, who were successful flautists, singers, writers, and carvers. Still, they were jealous of the twins. The stepbrothers’ rejection and mistreatment of Hunahpu and Xbalanque compelled the twins to get revenge on their stepbrothers. After convincing their stepbrothers to climb a tree, the twins turned them into monkeys (Christenson 2003:143). Although the stepbrothers returned to their home several times, their mother couldn’t help laughing at their ugly faces and frivolous antics (Christenson 2003:145). Ashamed, the stepbrothers fled to the mountains and never returned (Christenson 2003:146). Maya art showing monkey scribes may be referencing this story, which suggests that the brothers retained their association with scribes despite their unfortunate transformation.

Earlier in the *Popol Vuh*, monkeys are mentioned when the gods created the human race. The purpose of humans, according to the authors of the *Popol Vuh*, was to sustain and honor the gods that created them. When a race of humans made from mud failed to do this, the gods tried to create another race of humans, this time from wooden effigies. When the wooden effigies lacked the ability to understand, reverence, and learn from the gods, they were all turned into spider monkeys (Christenson 2003:84, 90). This change suggests that monkeys better represented these wooden effigies because they were unable to learn and grow, which are uniquely human characteristics.

Monkeys seemed to have had other meanings to the ancient Maya. For example, some monkeys painted on pottery vessels wear death collars, a symbol of sacrifice and death (Reents-Budet 1994:241–242). Similarly, monkeys sometimes accompany or are associated with the Death God and his journeys to the underworld (Robicsek and Hales 1981:62; Schele and Miller 1986; South 2005). In addition, monkeys are associated with
the moon, the Moon Goddess, and promiscuity (Thompson 1971:11). The sun god was often associated with the monkey (Robicsek and Hales 1981:62), as was poetry, music, flowers, and procreation (Thompson 1971:143).

Additionally, monkeys play an important role in the folk stories, rituals, and festivals of present-day highland Maya communities. One modern-day Maya story describes how Jesus Christ changed the “unrepentant survivors of the Flood” into monkeys for their disrespect (Morris 1987:112). Many communities perform the Palo Volador dance, in which dancers dressed as monkeys perform tricks on ropes hanging from a tree-sized pole (Cook 2000:107-118). This may be a reenactment of the stepbrothers’ fateful climb and transformation in the tree (Akkeren 2000:303–304). During Carnaval, a modern Maya festival, men dressed as monkeys mimic the monkeys of the first creation by making rude jokes and dancing through crowds of people (Reents-Budet 1994:242; Morris 1987:174). Overall, these accounts suggest that monkeys are closely associated with licentiousness, disrespect, and chaos (see also Morris 1987:112).

COMPARISON AND DISCUSSION

The monkeys from the Carmelita Incised monkey pots from the Mirador Basin probably represent spider monkeys because of their long, curved fingers, long limbs and tails, higher foreheads, and color differentiation on the face. Although the creatures on the Telchac Composite monkey pots are most likely monkeys, their genus is not as clear. However, it is possible that they are spider monkeys as well due to their longer arms and tails and curved fingers. The Zacatal Polychrome monkey pot is almost certainly a spider monkey because of the long arms and tails, facial color differentiation, and lack of lighter colored shoulder and arm hair. Therefore, it is likely that the monkey pots in this sample portray the same genus of monkey—the spider monkey. The type of monkey portrayed
on these unique vessels did not change for nearly 200 years. Again, this period was
during the Late Classic to Terminal Classic transition in the Mirador Basin, a period of
significant change in many parts of the Maya world. Also, spider monkeys were depicted
on vessels from two different regions in the Maya world.

The exact significance and meaning of monkeys in the ancient Maya world and
particularly the Mirador Basin will never be fully understood; however, there are enough
clues to suggest monkeys had several possible meanings. In prehistoric times, monkeys
were associated with scribal activities (writing and painting), music, and dancing; this
is suggested in Maya art and the *Popol Vuh*. The *Popol Vuh* also implies that monkeys
are considered to be a human-like creature that lacks important “human” characteristics,
such as organization, reverence, wisdom, and self-control. Classic Maya art also shows
that monkeys are associated with sacrifice, death, and journeys to the underworld.
Additionally, iconographic studies show that monkeys are associated with promiscuity,
poetry, music, flowers, and procreation. Finally, many modern Maya groups see monkeys
as symbols of chaos, disrespect, and rudeness, reminiscent of the monkeys portrayed in
the *Popol Vuh*.

In short, I suggest that the monkeys on the monkey pots from the Mirador Basin
(as well as many other monkey pots at sites throughout the Maya world) were spider
monkeys. Based on the numerous and significant roles of monkeys in the ancient and
modern Maya world, they clearly had meaning to the ancient Maya. However, there are
a number of possible meanings for monkeys in prehistoric times. How can one better
understand the meaning of the monkey pots in this data set? Only when coupled with
contextual data does the meaning of monkey pots become clearer. This is the goal of the
final chapter.
Knowing the context of an artifact is a crucial component in inferring its meaning. There are several different kinds of contexts. This chapter is devoted to describing the cultural, functional, and site contexts of the monkey pots from this data set. First I describe the cultural and functional contexts of the three types of monkey pots from the Mirador Basin, followed by their site-level contexts. I then briefly discuss the site contexts of other monkey pots mentioned in this thesis but not from the Mirador Basin. Last, I compare the contexts of the different kinds of monkey pots, focusing on those from the Mirador Basin.

CULTURAL AND FUNCTIONAL CONTEXT OF ALL MONKEY POTS

Like other prehistoric cultures, pottery was an integral part of everyday life for the ancient Maya. As stated in Chapter 3, Maya pottery was used for cooking, eating, storing, showing off, or rituals, and all of these activities were going on in the Late and Terminal Classic Mirador Basin. Small residential structures were built throughout the Basin during these periods (Forsyth 1993; Hansen et al. 2008), so some pottery vessels were used in domestic settings for eating, serving, storing, and cooking (see Chapter 3). However, sites throughout the Basin were probably frequented by visitors and pilgrims, some of whom paid homage to the people or events that occurred there during the Preclassic; some people may have even buried their dead at various sites in the Basin (Hansen et al. 2008). In short, rituals undoubtedly took place in the Late and Terminal
Classic Mirador Basin, and some pottery vessels were probably used in these rituals or perhaps given as offerings. Some vessels used in domestic settings were used for ritual functions as well. Burials throughout the Maya region show that pottery vessels from regular, everyday settings were often buried with individuals, presumably as part of a burial ritual. Many types of vessels—including plates, bowls, and vases—were part of these burial rituals, and these vessels are found alongside the monkey pots from the Basin (see Chapter 3).

SITE-LEVEL CONTEXT OF CARMELITA INCISED MONKEY POTS

Table 4 is a breakdown of the site-level context for each kind of monkey pot from the Mirador Basin. Each vessel had at least one aspect of the following contextual information: site, structural group designation, structure number, looters’ trench number, burial number, and whether the vessel was found on the surface.

Seven Carmelita Incised monkey pots were found at the site of El Mirador (CI-3, CI-5, CI-9, and CI-13; Table 4). El Mirador was one of the largest sites in the Maya world, particularly during the Late Preclassic. It had two concentrations of large pyramidal structures with triadic architecture and causeways that connected El Mirador to other sites in the basin. During the Late Preclassic, El Mirador was probably the central site in the Basin (Hansen et al. 2008). Aside from the site designation, CI-7 and CI-8 contained no other provenience information; therefore, we know no information about the context of these vessels. Two monkey pots (CI-3 and CI-5) from El Mirador were found on the surface, and this surface provenience places them in a generalized location related to other structural complexes. CI-3 was found on the surface near the LacNa Group, and CI-5 was found on the surface somewhere between the Guacamaya and Tres Micos groups (Figure 27). Three other vessels (CI-6, CI-9, and CI-13) were found at
Table 4. Site-level Contexts of Monkey Pots from the Mirador Basin

<table>
<thead>
<tr>
<th>Site</th>
<th>Group</th>
<th>Structure</th>
<th>Looters Trench</th>
<th>Burial</th>
<th>Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI-1</td>
<td>Wakna</td>
<td>–</td>
<td>Yes</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CI-2</td>
<td>Tintal</td>
<td>–</td>
<td>Yes</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CI-3</td>
<td>El Mirador</td>
<td>Near LacNa</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>CI-4</td>
<td>Tintal</td>
<td>–</td>
<td>Yes</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CI-5</td>
<td>El Mirador</td>
<td>Between Guacamaya and Tres Micos</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
</tr>
<tr>
<td>CI-6</td>
<td>El Mirador</td>
<td>–</td>
<td>2A7-3</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CI-7</td>
<td>El Mirador</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>CI-8</td>
<td>El Mirador</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>CI-9</td>
<td>El Mirador</td>
<td>LacNa</td>
<td>4</td>
<td>Yes</td>
<td>–</td>
</tr>
<tr>
<td>CI-10</td>
<td>Tintal</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>CI-11</td>
<td>Tintal</td>
<td>N/A</td>
<td>N/A</td>
<td>Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>CI-12</td>
<td>Nakbe</td>
<td>–</td>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>CI-13</td>
<td>El Mirador</td>
<td>LacNa</td>
<td>4</td>
<td>Yes</td>
<td>–</td>
</tr>
<tr>
<td>CI-14</td>
<td>Zacatal</td>
<td>–</td>
<td>4</td>
<td>30</td>
<td>Yes</td>
</tr>
<tr>
<td>CI-15</td>
<td>Guiro</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td>–</td>
</tr>
<tr>
<td>CI-16</td>
<td>Tsabkan</td>
<td>–</td>
<td>3</td>
<td>26</td>
<td>Yes</td>
</tr>
<tr>
<td>CI-17</td>
<td>Tsabkan</td>
<td>–</td>
<td>6</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>CI-18</td>
<td>Witznal</td>
<td>–</td>
<td>21</td>
<td>75</td>
<td>Yes</td>
</tr>
<tr>
<td>TC-1</td>
<td>Tintal</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td>–</td>
</tr>
<tr>
<td>TC-2</td>
<td>El Porvenir</td>
<td>H</td>
<td>2</td>
<td>263</td>
<td>–</td>
</tr>
<tr>
<td>TC-3</td>
<td>Nakbe</td>
<td>Codex</td>
<td>104</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td>TC-4</td>
<td>Zacatal</td>
<td>–</td>
<td>4</td>
<td>27</td>
<td>Yes</td>
</tr>
<tr>
<td>ZP-1</td>
<td>Nakbe</td>
<td>Codex</td>
<td>–</td>
<td>Yes</td>
<td>N/A</td>
</tr>
</tbody>
</table>

El Mirador. CI-6 was found in Structure 2A7-3, a small pyramidal structure located on the southwest corner of Platform 2, just southwest of the Danta Acropolis. The ceramic material recovered from excavations in this structure suggests that it “was built, occupied, and abandoned during Late Classic Tepeu 2 times” (Howell and Copeland 1989:71). It was a residential structure, possibly an elite residence, and it underwent modification several times. This vessel came from the construction fill of this structure. Both CI-9 and
Figure 27. Map of El Mirador with circles marking the Lae Na, Tres Micos, and Guacamaya Group (FARES 2008, used by permission).
CI-13 came from looters’ trenches dug into Structure 5 of the LacNa Group. Structure 5 was one of several small, Late Classic residential structures in this group (Deanne G. Matheny, personal communication, 2009; Figure 28).

Four of the Carmelita Incised monkey pots (CI-2, CI-4, CI-10, and CI-11) were found at the site of Tintal (Figure 29). Tintal is one of the largest sites in the Mirador Basin, second only to El Mirador, Nakbe, and possibly Naachtun; it has clusters of large structures along its east to west axis dating to the Preclassic period (Hansen et al. 2008). Aside from the site, the only other contextual information for CI-10 and CI-11 was that they were found in looters’ trenches; the structures the trenches disturbed is unknown. However, if these looters’ trenches are anything like most others in the Basin, it is likely that they were dug into Late Classic structures. Both CI-2 and CI-4 were found in two separate looters’ trenches. These trenches were dug into Late Classic buildings.
Two Carmelita Incised monkey pots were found at the site of Tsabkan. Tsabkan is a small Late Classic site that consists of six structures, five of which are located around a small plaza (Figure 30). CI-16 was found on the surface of Looters’ Trench 26, which was dug into Structure 3, which was built in the Late Classic. CI-17 was found on the surface of Looters’ Trench 1, located in Structure 6.

One vessel (CI-12) was found at the site of Nakbe (Figure 31). Nakbe is one of the largest sites in the Mirador Basin. Its primary occupation was during the Middle and Late Preclassic (Forsyth 1993), and there are two groups of large Middle Preclassic
Figure 30. Map of Tsabkan with circles around Structure 3, Trench 26 and Structure 6, Trench 1 (courtesy of Donald Forsyth).
Figure 31. Map of Nakbe with blue circle around Structure 1, a green circle around the Codex Group, and red circle around Structure 104 (courtesy of Richard Hansen, Mirador Basin Project).
structures on the east and west sides of the site. Nakbe is believed to be the “direct predecessor” to El Mirador (Hansen et al. 2008:31). There is also a modest-sized Late Classic occupation at Nakbe (Forsyth 1993). Most of the Late Classic population lived in residential structures built on top of or among the large Preclassic structures and around the perimeter of the site. The only provenience information with CI-12 was simply “1.” From this, I assume that the vessel was found on top of or was somehow associated with Structure 1, a large Preclassic structure in the site core.

CI-14 was found at a site called Zacatal. Zacatal is also a small Late Classic site containing what appear to be five structures situated around two plazas (Figure 32). This vessel was found on the surface of Looters’ Trench 30, in Structure 4, which was constructed during the Late Classic.

CI-15 was found at the site of Guiro. Guiro is a small site near an aquada between Tintal and Nakbe. Most of the structures at this site date to the Late Preclassic period, but it also contains structures from the Late Classic period. This vessel was found in looters’ trenches by site guards (Donald Forsyth, personal communication, 2008). However, it is unknown which structure this looters’ trench was in, let alone the size, date and other more detailed provenience information.

CI-1 was found at the site of Wakna, yet another Late Classic site. The only available provenience information was that this vessel came from a looters’ trench from somewhere in this site. Most likely this looters’ trench was dug into a Late Classic structure.

Finally, CI-18 was found at the site of Witznal. Witznal is a Late Classic site and larger than Tsabkan and Zacatal. It has approximately 25 structures clustered into several groups, and there are plazas associated with some of these groups (Figure 33). This vessel was found on the surface of Looters’ Trench 75 in Structure 21, which is one of the structures in the north group.
Figure 32. Map of Zacatal with circle around Structure 4, Trenches 30 and 27 (courtesy of Donald Forsyth).
Figure 33. Map of Witznal with circle around Structure 21, Trench 75 (courtesy of Donald Forsyth).
SITE-LEVEL CONTEXT OF TELCHAC COMPOSITE MONKEY POTS

The same provenience information for the Telchac Composite monkey pots was gathered—site, structure number, looters’ trench number, burial number, and surface (see Table 4). TC-1 was found at the site of Tintal. Specifically, it was found in a looters’ trench that was dug into a Late Classic structure. TC-2 was found at a site called El Porvenir, which is a small, Late Preclassic residential site. Although it was inhabited mainly during the Late Preclassic, there is evidence of later visitation. TC-2 was found in Structural Group H, which has five structures. The vessel was found in Looters’ Trench 263 in Structure 2, which is a smaller structure behind the largest Preclassic structure in the entire site (Figure 34). Structure 2 is a Late Classic structure, possibly a funerary building (Suyuc and Hansen 2006). TC-3 is the only vessel in this collection which was found in a primary context. It was found in Burial 3, in Structure 104 of the Codex Group (see Figure 31). This was a Terminal Classic burial excavated from one of the structures of the Codex Group. Although this structure was built in the Late Classic, the Terminal Classic burial furniture suggests a later interment in this structure. TC-4 was found at the site of Zacatal. It was found on the surface of Looters’ Trench 27, which was dug into the Late Classic Structure 4 (see Figure 32).

SITE-LEVEL CONTEXT OF ZACATAL POLYCHROME MONKEY POT

The only Zacatal Polychrome monkey pot was found at the site of Nakbe. It was found in one of the many looters’ trenches in Structure 104, a structure in the Codex Group (see Figure 31). It is clear that all the structures associated with the Codex Group date to the Late Classic period.
As stated earlier, a number of scholars describe, illustrate, or provide photographs of vessels from sites throughout the Maya world that fit my definition of a monkey pot.
Unfortunately, the reports do not discuss the context of these vessels in detail, so there is little to no information on the context of monkey pots. Still, I believe it is worth noting the areas and sites where monkey pots have been found. If nothing else, this will provide a broad spatial pattern of these vessels.

Blom and LaFarge (1926:Figure 189) provide illustrations of two monkey pots from Yoxiha. Brainerd (1958:Figure 36b and d) has similar vessels from El Carmen, Campeche. Piña Chan (1968:Figure1i and 1j, 2v and n) notes several monkey pot sherds from Jaina. Sabloff (1975:120–121; Figures 231a and c, 232, and 282f) describes, illustrates, and provides photographs of monkey pots at Seibal. He also implies that a certain kind of incised monkey pot similar to the Carmelita Incised monkey pots from the Mirador Basin was found in midden contexts (Sabloff 1975:120). Smith (1954:Figure 4a) illustrates a monkey pot from the site of Flores. In a different report, Smith (1955: Figure 43-6) notes a monkey pot at Uaxactun. Thompson (1931:Plate XLVIII) reports a monkey pot from Tzimin Kax, and mentions that similar vessels were found at Pusilha, Copan, and the Uloa Valley. Adams (1975:Figure 34d) claims that monkey pots were found at Altar de Sacrificios, and Connor (1983:Figure A16) found a monkey pot at Cozumel. Berlin (1956:Figure 4i and z) reports monkey pots from Tabasco; in addition, he (Berlin 1956:118–119) mentions that monkey pots have been found at Palenque, Jonuta, and Merida. Bishop et al. (2005:Figure 3c) report a monkey pot from Jonuta as well. Aragon and Alvarez (2005:Figures 2, 9) illustrate monkey pots from Jonuta, Tecolpan, the Palenque region, Jaina, Atasta, and all throughout Campeche.

COMPARISON AND DISCUSSION

Overall, monkey pots were distributed all throughout the Mirador Basin. The vessels in this data set were recovered from a total of nine sites: El Mirador, Nakbe, Wakna, Tintal, Tsabkan, Zacatal, Witznal, El Porvenir, and Guiro (Figure 35). Carmelita Incised
monkey pots came from the sites of El Mirador, Tintal, Tsabkan, Nakbe, Wakna, Zacatal, Guiro, and Witznal; Telchac Composite monkey pots came from the sites of Nakbe, Tintal, Zacatal, and El Porvenir. The single Zacatal Polychrome monkey pot came from Nakbe. Nakbe is the only site that yielded each type of monkey pot, and both Carmelita...
Incised and Telchac Composite monkey pots were found at Tintal and Zacatal. In fact, CI-14 and TC-4 came from the same building but from different looters’ trenches. This suggests that either the burial TC-4 came from was a later interment, or it may represent the chronological overlap between these types of monkey pots. Due to the widespread distribution of these vessels, it is also possible that monkey pots are present at other sites throughout the Basin.

In addition, it seems that at least one of each kind of monkey pot in this collection came from a burial. TC-3 is the only certain example of a monkey pot coming out of a burial; it was found in Nakbe’s Codex Group in a Terminal Classic burial. Modern looters target Late Classic burials in the Mirador Basin (particularly the site of Nakbe) for their valuable polychrome vessels (Hansen et al. 1991), and abundant trenches in Mirador Basin Late Classic structures attests to this (Donald Forsyth, personal communication, 2007). Furthermore, bone fragments have been noted in the backdirt from the looters’ trenches (Deanne G. Matheny, personal communication, 2009). This evidence suggests the monkey pots found in looters’ trenches probably came from burials and were left because they had little commercial value. In short, one can assume that the vessels in this collection, and possibly others, come from burials. If this is true, all the Telchac Composite vessels, half of the Carmelita Incised vessels, and the only Zacatal Polychrome vessel came from burials. Although none of the vessels mentioned in other reports say they came from burials, it is possible that the vessels found at Jaina did. Jaina Island is well known for its rich burials; in fact, most of the archaeological investigations focused on the burial material, suggesting that these monkey pots came from a burial context.

Monkey pots were not limited to burials. CI-6 came from construction fill, and Forsyth (personal communication, 2008) has noted that monkey pot sherds have been found in middens and the construction fill of other Late Classic structures. This suggests
that there is a wider set of contexts for monkey pots. It is impossible to know all the contexts a vessel was used in during its life span. A vessel may have spent most of its life span in a certain context but placed in a completely different context at the end of its use life. Regardless, the wider range of contexts for these vessels suggests that they were not found solely in burials. In addition, while these vessels do not seem to be common in ceramic collections, they are still widely distributed in the Mirador Basin and throughout the Maya world. In short, they do not appear to be restricted to a particular region or cultural context. Monkey pots were probably available to people of various social and socio-economic groups, and in some cases, they were probably not highly valuable. As for production, it is not known whether these vessels were made in only a few production zones within the Mirador Basin and the Usumacinta River region, but it seems likely that they were produced in many different places in these regions because of their widespread distribution.
CONCLUSIONS AND DISCUSSION

In this thesis, I have described and compared the function, decoration, and context of monkey pots from the Mirador Basin. In this final chapter I summarize the comparisons made in the previous chapters. I also address the last two purposes of this thesis: the meaning of these monkey pots and whether their meaning changed through time and space. I also discuss some broader issues concerning the Late Classic to Terminal Classic transition in the Mirador Basin and throughout the Maya world.

SUMMARY

This thesis focused on “monkey pots,” a particular kind of composite silhouette or flaring-sided bowl or dish that has incised or painted monkey profiles on the exterior wall. Due to the general similarities between the many variations of this vessel, as well as the more obvious similarities between particular types of monkey pots, I believe that these unique vessels had a specific significance to the ancient Maya. The first purpose of this thesis was to describe these monkey pots. The second was to compare three kinds of monkey pots that were recovered from the Mirador Basin. Specifically, was there a difference in the function, the kind of monkey depicted, and the contexts of the different types of monkey pots? Finally, I wanted to infer the meaning of the different kinds of monkey pots by their function, decoration, and context and then determine if the meaning of these vessels changed through time and space. Aside from the last two purposes, I have addressed each of the others in previous chapters.
In Chapter 2, I provided an in-depth description of “monkey pots.” This description focused on the three kinds of pots found in the Mirador Basin—Carmelita Incised, Telchac Composite, and Zacatal Polychrome monkey pots—which were made between A.D. 680 and 830. I focused on describing the form and decoration because these are the most significant identifying attributes of these vessels. From the descriptions, a few obvious distinctions were clear. First, the Zacatal Polychrome monkey pot was different from the two other types of monkey pots because it exhibited detailed, carefully executed painted decoration, and its shape was more like a dish. Second, there is a striking similarity in the form and decoration of the Carmelita Incised and Telchac Composite monkey pots; however, they contained one important difference—the Carmelita Incised monkey pots were made of a coarser paste which contained temper, while the Telchac Composite monkey pots were made from a fine, temperless paste. Finally, the Carmelita Incised and Zacatal Polychrome monkey pots appear to have been manufactured earlier than the Telchac Composite monkey pots.

Chapters 3 through 5 dealt with the second purpose of this thesis – to compare the three kinds of monkey pots found in the Mirador Basin. I tried to make a more critical comparison than the cursory one given through the description, so I asked three questions. First, what is the function of each type of monkey pot? Second, what is the kind of monkey represented in each type, and what was the significance of these monkeys to the ancient Maya? Finally, in what context is each type of monkey pot found?

Overall, I found that these monkey pots were very similar in all these respects. In Chapter 3, I found that the exact function of each type of monkey pot from the Mirador Basin was not completely clear; however, they probably had several functions throughout their use life. It is likely that they functioned domestically as serving or eating vessels that were used to hold some sort of solid or possibly liquid food. None of the vessels
were very big, so they were probably individual serving vessels. Later, these vessels functioned in rituals associated with death and burial.

Chapter 4 dealt with the kind of monkey on each type of monkey pot and how they differed from each other. The kind of monkey found on these vessels was difficult to determine, particularly on the Telchac Composite monkey pots. However, it is probable that the monkeys on each type of pot represented spider monkeys. In addition to the genus of monkeys found on the pots, I tried to better understand the significance and meaning of monkeys to the ancient Maya. Maya art and creation myths show that monkeys were definitely meaningful to ancient Maya groups. Maya artwork shows that monkeys were associated with scribal activities, music, and dancing; they were also associated with death, sacrifice, and journeys to the underworld. They were also associated, albeit less often, with sub-human characteristics, chief among them being a lack of self control. In addition, monkeys are significant to modern Maya groups where they are usually associated with irreverence, disrespect, rudeness, and chaos.

In Chapter 5, the contexts of the different kinds of monkey pots were compared. While the site-level contexts of a few of the vessels in the Mirador Basin collection were unclear, most of the vessels were recovered from looters’ trenches, which suggest that they were discarded from vandalized burials. In addition, one vessel definitely came from a burial. In general, monkey pots in the Mirador Basin seem to be associated with burials. However, one monkey pot in this collection was recovered from building fill (CI-6) and Forsyth (personal communication, 2008) has seen sherds of monkey pots in construction fill in a few other sites in the basin. This suggests that burials were not the only contexts monkey pots were found in, but the association of most of the vessels to burials is noteworthy.
The final purposes of this thesis are to infer the meaning of these monkey pots and determine whether the meaning changed through time and space. To do this, I use a combination of the function, decoration, and context of the monkey pots, which seemed to be uniform. Again, the exact meaning of any object to ancient peoples can never be fully understood. However, by taking into account an object’s functional, symbolic, and contextual meanings, and by applying hermeneutics and historical imagination, it is possible to make sense of these pots, or at least comprehend what they may have meant to the ancient Maya (Hodder and Hutson 2003).

THE MEANING OF MONKEY POTS

Although monkey pots are geographically widespread throughout the lowlands, they appear to be a relatively rare kind of vessel. They do not seem to be concentrated in contexts of a particular socio-economic level, so they may have been available to people of different socio-economic levels. In addition, the presence of monkey pots in structural fill and middens, as well as the relative simplicity of the decoration of some vessels suggest that they were not highly valuable. This, along with the abundant use wear, suggests that monkey pots were originally used in everyday, functional situations as a personal serving or eating tool.

However, most of the vessels from the Mirador Basin were recovered from burials. This general pattern is significant, and it certainly had some sort of meaning for the Maya. The Maya often buried their dead with jars and a variety of serving vessels, some of which held food or drink. The placement of these vessels is usually assumed to be part of a death or burial ritual or offering—the food presumably nourished the soul of the deceased during the journey into the underworld. As serving vessels that came from burials, monkey pots probably served this purpose. Although other kinds of personal
serving or eating vessels (in other words, vessels that were not monkey pots) were also used for this purpose, vessels adorned with monkeys probably assumed special meaning when they were placed in burials because of the association of monkeys with death and their place as accompanying the deceased to the underworld (see Schele and Miller 1986). Perhaps interring these monkey pots with the deceased ensured that matrons of the underworld would assist the deceased in their journey; in addition, the symbol of a monkey may have made a more charged atmosphere during the burial ceremony or the offering given during the ritual more poignant.

The meaning of these monkey pots may have been slightly different in the case of Nakbe, particularly those from the Codex Group. Specifically, monkey pots (in this case, TC-3 and ZP-1) may have been a reference to the brothers of the hero twins, who were great scribes even after their transformation into monkeys. Perhaps the monkey pots in these burials were meant to symbolize the occupation of the scribes who produced Codex-style pottery vessels after their death (see Hansen et al. 1991). Though this could also have been the case for other monkey pots throughout Nakbe and the rest of the basin, it is less likely because the Codex Group is the only residence believed to house such scribes.

One other possibility is worth mentioning. The Mirador Basin itself had special meaning for its residents and visitors. After 500 years of near desolation during the Early Classic, the Mirador Basin was repopulated during the Late Classic. The population was substantial, though it never reached the numbers experienced during the Preclassic period (Forsyth 1989), and it seemed to last into the Terminal Classic as well. The reason for the repopulation of sites throughout the Basin is not completely understood. Evidence from Nakbe implies that some residents were elite artisans (Hansen et al. 1991), and other evidence suggests that the basin’s past prominence as a political or ritual center drew its population there (Hansen et al. 2008). Perhaps elite artisans settled in the Mirador Basin
only because of its powerful links to the past. Indeed, the people interred in most of these burials may not have been elite artisans at all, but they may have been linked (or tried to link themselves) to the past events that occurred in the Mirador Basin. It is also possible that sites throughout the Basin served as destinations and/or prominent burial places for pilgrims, not residents, who were venerating the past grandeur of the basin. In short, it is very likely that the people that came back to the Mirador Basin were celebrating the memory of this once-powerful center. It is unclear how, or even if, monkey pots were related to the memory of the Basin’s history; however, the combination of these possibilities—the existence of the vessels in burials, the relationship of monkeys to the underworld, and the reason for people residing in or visiting the Basin—should be considered as meaningful and a possible interpretation.

MEANING THROUGH TIME AND SPACE

Based on current interpretations of the Mirador Basin ceramics, Carmelita Incised monkey pots occur throughout Tepeu 2 times, while Telchac Composite monkey pots appear late in Tepeu 2 and early Tepeu 3 times (Forsyth, personal communication, 2009). Unfortunately, compelling chronometric data to confirm this interpretation is not yet available. However, if the chronology of these monkey pots is correct, there is a 150-year period in which the three types of Mirador Basin monkey pots were made (from A.D. 680–830). Was the meaning of these types of monkey pots the same throughout this time and across space? Since the function, symbolism, and context of these different types of monkey pots were similar, I suggest that their meaning may have been as well. Furthermore, monkey pots made in the Usumacinta River region seemed to have adopted the same meanings as those made in the Mirador Basin.
This brings up other questions about the meaning of monkey pots through time and space. For instance, did all monkey pots throughout the Maya world share this same meaning? Did the Telchac Composite monkey pots from the Usumacinta River region only assume this meaning because they were brought to the people who lived in or visited the Mirador Basin? Furthermore, were the Telchac Composite monkey pots made and brought to the Basin to do the same thing as the earlier Carmelita Incised and Zacatal Polychrome monkey pots? Did the production of Telchac Composite monkey pots replace the earlier types, and why did the earlier types stop being made in the first place? Was the production of these Telchac Composite monkey pots in a far-off place more desirable, and was their meaning more poignant? These questions are intriguing but beyond the scope of this thesis.

At the very least, this study suggests that the meaning of the monkey pots in the Mirador Basin, whatever it was, continued from the Late Classic into the Terminal Classic period. Furthermore, the monkey pots had a similar function, exhibited the same type of monkeys, and were found in similar contexts even though they were made in different locations. Although we do not know the intended meaning of these vessels when they were made, they did seem to attain a special meaning at the end of their use-lives. Even if the Telchac Composite monkey pots were made for a different purpose or had a different meaning, they seemed to adopt the same meaning for the people that lived in or traveled to the Mirador Basin at a later period.

The production and distribution of monkey pots during this time is particularly significant because the transition of the Late Classic to Terminal Classic period is a time of major change at many places throughout the Maya world. The most significant change was the lack or breakdown of centralized political organization, which is evident in the disappearance of carved stone monuments, monumental constructions, royal
tombs, prestige and ritual goods, and population at major centers (Sharer and Traxler 2006). Perhaps these monkey pots and their meanings suggests that some things—at least in some of the more remote, out-of-the-way places in the Maya world—remained unchanged. More specifically, it seems that the ideas and myths regarding death and the underworld (at least in the Mirador Basin) endured through time, and monkey pots seemed to embody these ideas and meanings. This is even more logical because no site in the Mirador Basin seemed to be a major political center during the Late or Terminal Classic, and would thus not experience the same changes that rocked other places throughout the Lowlands. It is also possible that similar ideas were present in other places in the Maya world, such as the Usumacinta River region.

LIMITATIONS AND SUGGESTIONS FOR FUTURE RESEARCH

Although the data presented here suggests that there are similarities in the meaning of monkey pots, these conclusions are still tentative for several reasons. First, the data set is small. Only 23 monkey pots from the Mirador Basin were used in this study, mostly because complete or partial vessels were needed for a worthwhile comparison of the form and function of the vessels as well as the physical attributes of the monkeys. Although the many other monkey pots found in other reports and monographs complement my data set, the vessel dimensions, details of their decoration, and contexts of these other vessels were either unclear or not reported at all. In other words, there is little published comparative material that pertained to this study.

The second reason is the poor site-level context in which the Mirador Basin monkey pots were found. Only one was found in a burial (TC-3); most (20 of 23) of the vessels were picked up from the surface or found in looters’ trenches. If we assume that monkey pots found in looters’ trenches came from burials, there does seem to be a basic
association of monkey pots with burials; however, the full meaning of this pattern is
certainly limited. It would obviously be helpful if more monkey pots could be found in
more concrete contextual settings. Also, it is possible that more monkey pots were found
in looters’ trenches because many of the whole vessels from the Mirador Basin were
found in looters’ trenches. An examination of monkey pot sherds from the Mirador Basin
may show that monkey pots were more common in domestic contexts than in burial
contexts, which would alter this interpretation.

There are several other possibilities for research on this topic, which could strengthen
the interpretations of this study. A tighter chronology of the monkey pots could lead to
a better understanding of their variation through time. For example, residue analyses on
the surfaces of the vessels would be helpful for a more accurate interpretation of their
function. Although the surfaces seem to be scraped clean, some residues may still be
present. Another avenue of research would be to perform chemical analyses of the paste
and temper of all the monkey pots; this would confirm whether Carmelita Incised and
Zacatal Polychrome monkey pots were made locally and whether Telchac Composite
monkey pots were made in the Lower Usumacinta Region.

If nothing else, this study shows that looking at several different aspects of pottery
vessels allows researchers to better understand what they may have meant to their
makers and users. This study also shows the inadequacy of the Type: Variety method
of classification in addressing certain questions about the meaning of ceramic material;
clearly, many meaningful bits of information are lost when using only the typological
part of this system. One way to locate more subtle, meaningful attributes in ceramic
material in sherd collections would be to provide a modal analysis. For instance, the
monkey incisions or paintings could be treated as a specific kind of design. Furthermore,
form is often downplayed when using the Type: Variety system of analysis, and it would
be of use in finding similarities between types. Modal analyses do take more time and effort, but it would provide a better overall description and more data for future scholars interested in decoration, function, or meaning. It would also be easier to search for the presence of a particular decorative technique or formal attribute in electronic databases, which could better provide information regarding the frequency or distribution of an attribute across a site or region.
REFERENCES

Adams, Richard E. W.

Akkeren, Ruun W. van

Aragon and Alvarez

Baker, Mary
1992 Capuchin Monkeys (Cebus Capucinus) and the Ancient Maya. *Ancient Mesoamerica* 3:219-228.

Benson, E.

Berlin, Heinrich
1956 *Late Pottery Horizons of Tabasco, Mexico*. Contributions to American Anthropology and History No. 59, Carnegie Institution of Washington, Washington, D.C.

Bishop, Ronald L., Erin L. Sears, and M. James Blackman

Blom, Frans, and Oliver LaFarge
1926-7 *Tribes and Temples: A Record of the Expedition to Middle America Conducted by the Tulane University of Louisiana in 1925*. Middle American Research Institute, Publication 1. Tulane University of Louisiana, New Orleans.

Braun, David P.
Brainerd, George W.

Chase, Arlen F., and Diane Z. Chase

Christenson, Allen J.

Clancy, Flora S.

Coe, Michael D.

Conner, Judith G.

Cook, Garrett W.
2000 *Renewing the Maya World: Expressive Culture in a Highland Town.* University of Texas Press, Austin.

Forsyth, Donald W.

Gifford, James C.

Hally, David J.
Hansen, Richard D., Ronald L. Bishop, and Federico Fahsen

Hansen, Richard D., Wayne K. Howell, and Stanley P. Guenter

Henrickson, Elizabeth F., and Mary M. A. McDonald

Hodder, Ian, and Scott Hutson

Houston, Stephen D., David Stuart, and Karl A. Taube

Howell, Wayne K., and Denise Ranae Evans Copeland

Kerr, Justin

LeCount, Lisa J.

Lischka, Joseph J.

Matheny, Ray T.
Morris, Walter F., and Jeffery J. Foxx

Piña Chan, Roman

Reents-Budet, Dorie

Reina, Ruben, and Robert E. Hill

Rice, Prudence

Robicsek, Francis, and Donald M. Hales

Sabloff, Jeremy

Schele, Linda, and Mary Ellen Miller

Sharer, Robert J., and Loa P. Traxler

Shepard, Anna O.

Skibo, James M.

Smith, Robert E.

1955 *Ceramic Sequence at Uaxactun, Guatemala*. Middle America Research Institute, New Orleans.

Smith, Robert E., and James C. Gifford
1966 Maya Ceramic Varieties, Types, and Wares at Uaxactun: Supplement to “Ceramic Sequence at Uaxactun, Guatemala.” Middle American Research Institute, Tulane University, New Orleans.

South, Katherine

Stuart, David
2005 Part II. Selected Topics. In *Sourcebook for the 29th Maya Hieroglyph Forum, March 11-16, 2005*. Department of Art and Art History, University of Texas, Austin.

Suyuc, Edgar, and Richard D. Hansen

Taube, Karl A.

Thompson, J. Eric