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Differential Flatness Based Control of a Rotorcraft For Aggressive

Maneuvers

Jeff Ferrin, Robert Leishman, Randy Beard, and Tim McLain

Abstract— We propose a new method to control a multi-

rotor aerial vehicle. We show that the system dynamics are

differentially flat. We utilize the differential flatness of the

system to provide a feed forward input. The system model

derived allows for arbitrary changes in yaw and is not limited

to small roll and pitch angles. We demonstrate in hardware the

ability to follow a highly maneuverable path while tracking a

time-varying heading command.

I. INTRODUCTION

Simple rotorcraft are becoming increasingly utilized for
aerial robotics research [15], [8], [16], [1], [7], [3]. These
aircraft are well adapted for research as they are relatively
inexpensive, easily repairable, carry a substantial payload for
their size, and provide hover capability.

Path planning and control for rotorcraft has been studied
extensively as well. For example, Hoffmann, et al. [4] imple-
mented a path planning and control method that specifically
avoided utilizing feed-forward control. They report indoor
and outdoor hardware flight results. Indoor flight errors were
at or below 0.1 m, in any one dimension, at a max speed of
0.5 m/s.

Recently, researchers have been able to complete complex
maneuvers using these aircraft and motion capture systems.
Researchers with the GRASP Lab have developed control
schemes for flips, landing on walls, and flying through nar-
row windows [11]. Researchers with the ETH in Zurich have
completed algorithms for moving to music using quadro-
tors [17]. Both of these approaches describe the need of
feed forward terms to perform such maneuvers, but do not
elaborate further.

Cowling, et al. [5] created a path planner and path follower
based on the principle of differential flatness. Essentially,
a feed-foward input is obtained from the desired path and
the dynamics of the system. The authors implemented an
optimization scheme for online path planning and show
simulation results. However, the approach is limited to a
zero-degree yaw angle and to small roll and pitch angles.

We propose a new method of control utilizing the differen-
tial flatness of a rotorcraft platform that allows for arbitrary
changes in yaw and is not limited to small roll and pitch
angles. This scheme is shown to be adequate for aggressive
maneuvers.

The paper is organized as follows. In Section II we outline
the dynamic model of the hexacopter system. We derive the
differentially flat outputs of the rotorcraft and present the
system architecture in Section III. Section IV discusses the

LQR controller that closes the loop. Implementation notes
and the results that were obtained are presented in Section V,
and finally, conclusions and future work are in Section VI.

II. DYNAMIC MODEL

We first set up the notation and coordinate systems that
will be used in the derivation of the equations of motion for
the hexacopter. A vector v in frame a will be denoted as v

a

and a rotation matrix that rotates a vector from frame a to
frame b is R

b

a

. We use the rotation matrices as derived i [2].
There are 12 state variables that will be used in deriving

the equations of motion. These states are
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angular rates.
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Fig. 1. Hexacopter layout and coordinate systems.

The dynamic equations of motion for the translation of the
hexacopter in the inertial frame are
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where m

h

is the mass of the hexacopter, T is the total thrust
acting on the hexacopter in the upward direction, and g is
gravity.



Applying the rotation in Equation (1) gives
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The relationship between the angular orientations of the
hexacopter and the angular rates as shown in [2] is
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where c

✓

4
= cos ✓, s

✓

4
= sin ✓, and t

✓

4
= tan ✓, etc.

The dynamic equations for rotational motion as also shown
in [2] are
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The �

i

terms are functions of the mass moments of inertia
and l, m, and n are the moments about the body frame axes.

The complete set of equations of motion for the hexacopter
are comprised of the simple kinematic relationship between
position and velocity and Equations (2), (3) and (4). It is
important to note that, up to this point, no assumptions have
been made regarding the number of rotors on the vehicle in
the derivation. In our case, we define the thrust T with six
inputs. This can simply be changed to the number of rotors
on the rotorcraft.

A. State-Space Model
The hexacopter we are using comes equipped with an on-

board attitude controller. The attitude controller accepts as
inputs the desired thrust T

d, roll angle �d, pitch angle ✓d
and body yaw rate r

d. We define the vector of inputs to the
hexacopter as

⌫ =
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The on-board attitude controller closes the loop on the
desired input commands which eliminates the need to control
the moments l, m, and n; accordingly we simplify the state
vector as
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We now demonstrate how we can describe this system
using linear equations through a change of variables. We
define a new input vector as a function of the hexacopter
inputs T

d, �d, ✓d and r

d and the state  , which eliminates
the need to linearize. For this derivation we assume that the
hexacopter attitude controller will achieve the commanded
inputs with zero error, i.e., T = T

d, � = �

d, ✓ = ✓

d and

r = r

d. Our new input vector, a non-linear map of the inputs
⌫ and state x, is defined as follows:
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The carets above the functions denote that these are models
that are estimating the physical system. The vector u

p

includes the three inputs that affect p̈
n

, p̈
e

and p̈

d

from the
thrust rotated into the inertial frame using Equation (1). The
mapping u

 

affects the heading of the vehicle.
Using the change of variables defined by Equations (8)

and (9) we can now write the dynamics in state-space form
as

˙

x = Ax+Bu+ bg, (10)

where
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B. Inverse Function for Control Inputs
Equation (10) shows how the system states evolve as func-

tions of the input u. The input u is in units of acceleration
while the hexacopter inputs ⌫, Equation (5), are in units of
force, angles and angular velocity respectively. Therefore,
the hexacopter inputs ⌫ must be converted from the input
u. By using the inverse functions ˆ

f

�1
p

and ˆ

f

�1
 

we are
able to compute the inputs ⌫ that will give us the desired
accelerations based on the desired trajectory.

Using Equation (8), we can solve for the first three input
commands T , � and ✓. We write Equation (8) as
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Taking the norm of both sides gives
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Now solving for the input commands � and ✓, we further
manipulate Equation (8) as
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For clarity we define

z = R( )
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Using Equations (12) and (13) we get that
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where the value z

i

is the i

th element of z. Equations (11),
(14) and (15) make up the inverse function ˆ
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p

. The last
input r, is equal to ˆ
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and is solved from Equation (9) as
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where ˙

✓ is calculated from the time derivative of Equa-
tion (15).

III. DIFFERENTIAL FLATNESS

A differentially flat system is one in which the state and
control inputs can be expressed as functions of the output
and its time derivatives [6], [14], [10]. In other words,

y = h(x, u, u̇, ü, ..., u
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) (17)

is a flat output if there exists smooth functions g
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This implies that by specifying the output and the output
derivatives, both the input and the state equations can be
uniquely expressed as functions of the specified output
equations.

For the system we define the flat output vector correspond-
ing to Equation (17) as a function of only the reference states
x

r as
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We define the state and control inputs calculated from the
differential flatness as the reference states
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The reference states x

r are defined in Equation (6). The
reference inputs u

r are defined as follows:
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The input u

r gives us the required inputs in terms of the
system in Equation (10), these are then converted to the
hexacopter units using the inverse functions ˆ

f

�1
p

and ˆ

f

�1
 

.
From Equations (11), (15), (14) and (16) we now can

express desired states and inputs as functions of any twice-
differentiable desired trajectory. The limits for this approach
are when the quadrotor is in free-fall and when � = ±⇡

2 .
Both of these scenarios can be avoided by judicious path
selection.

A. System Architecture
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Fig. 2. System block diagram.

Figure 2 shows the block diagram of the system. The
trajectory block generates a vector y

traj that consists of a
desired position. The Differentially Flat block takes these tra-
jectory parameters and calculates a reference input ur from
Equations (22) and (24) and also calculates the reference
states x

r from Equation (6). A Linear Quadratic Controller
(LQR) is used for the feedback control. The input vector
u is fed into the inverse function ˆ

f

�1 which calculates the
actual commands ⌫ which are sent to the hexacopter on-
board attitude controller. The hexacopter system is broken
up into two blocks. The function f is the actual behavior
of the physical system to the input vector ⌫ which produces
actual accelerations w. The second block is the evolution of
the states from the input w.

IV. CLOSED-LOOP CONTROL

The state-space model for the system is given in Equa-
tion (10). The state equations are dependent on the input vec-
tor u. The hexacopter system as shown in Figure 2 contains
the function f which produces the actual accelerations w.
We assume here that our function ˆ

f that models the physical
behavior of the hexacopter is a perfect model, i.e., ˆ

f = f

which then implies that u = w.
With ˆ

f = f the model in Equation (10) is used to design
an LQR controller. We define x̃ as the deviation of the state
vector from the reference state x

r as

x̃ = x� x

r

,



resulting in the error equations

˙

x̃ = A
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We desire to control the system using full state feedback
where ˜

u = �K

˜

x. Our goal is to design a LQR controller
for the hexacopter. The LQR controller solves for the optimal
state feedback matrix K that minimizes [9]

J =

Z 1

0
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T
Qx+ u

T
Ru dt, (26)

where the Q and R are symmetric positive-definite weighting
matrices. The gains used on the hardware implementation
were calculated using Bryson’s rule [9]. This creates a
controller that will produce the maximum input into the
system when the error is at the maximum desired value.

V. IMPLEMENTATION AND RESULTS

The control algorithm was tested on the Mikrokopter
Hexacopter [12]. The state information, Equation (6), is ob-
tained using a motion capture system from Motion Analysis
Corporation [13], which tracks the position of the reflective
spheres on the hexacopter to give inertial position and
orientation. The flyable volume seen by the motion capture
system is 4 m by 3 m by 1.6 m, which is fairly small for the
speeds achieved. The control commands are calculated on a
ground station computer that receives state information from
the motion capture system and sends the commands via a
wireless connection using an XBee modem.

A. Path Example
Any twice differentiable function can be used as a trajec-

tory for the hexacopter. Four time-dependent equations are
required, one each for p

n
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e
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d

(t) and  (t). These
equations are differentiated to find ṗ
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(t) and
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 (t), then differentiated again to find p̈
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e
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(t) and
¨

 (t). These trajectory equations make up the y

traj signal in
Figure 2.

We now show an example figure eight path. The position
trajectory of the hexacopter is given as
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where ↵ and � are amplitude gains in the north and east
directions respectively and ⌘ is the height of the flight. The
values for this example path are ↵ = 1.5, � = 0.75 and
⌘ = �0.75.

The first and second derivatives of Equation (27) are used
to compute u

r, which are then added to the feedback control
commands, ũ, as shown in Figure 2. The value of �t is
the time for one complete lap, and is chosen to be 5 s for
this example. In Figure 3 we show the desired roll and pitch
angles and the predicted speed of the aircraft for this example
trajectory. For this path the max roll angle is 28

�, the max
pitch angle is 63

� and the max velocity is 4.25 m/s.
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Fig. 3. Roll, pitch and velocity commands for the figure eight path.

B. Successive Loop Closure

During the experimentation of this control scheme, some
difficulty was experienced with the interface into the inner
loop on the Mikrokopter autopilot, resulting in poor initial
performance. Ultimately, we were able to use successive
loop closure [2] with � and ✓ to solve the problem. The
values for � and ✓ in ⌫ become desired angles and are used
with the actual angles from the motion capture system in a
proportional and derivative (PD) control feedback loop. With
this change, we were able to generate the results below.

C. Results
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Figure 4 shows the results of a figure eight flight of
the hexacopter platform. The path trajectory is given in
Equation (27) with ↵ = 1.5, � = 0.75 and ⌘ = �0.75.
The full loop was completed in 5 s with a maximum
speed of 4 m/s. The path errors for this path are shown
in Figure 5. Figure 6 shows the velocities achieved by the
hexacopter while flying this path. The actual hexacopter roll
and pitch angles are shown in Figure 7. Note the differences
between these actual angles and the predicted angles shown
in Figure 3. This discrepancy is due to the fact that the
attitude controller does not arrive at the commanded angles.
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This figure eight path was also used to fly the hexacopter
without the feed forward term so that a comparison could
be made between the differentially flat method proposed in
this paper and a standard LQR controller without the feed

forward term. The hexacopter was unable to successfully fly
the figure eight at a lap time of 5 s without the feed forward
terms. Figure 8 shows the path of the hexacopter flying a
figure eight path with a lap time of 6 s, without feed forward
terms. The performance of the vehicle degraded without the
use of the feed forward terms in a path with such aggressive
angle commands. Figure 9 shows the path error for the 6-
second figure eight path. The mean error for the 5-second
figure eight path flown with the feed forward control is 0.305
m while the mean error for the 6-second figure eight path
flown without the feed forward term is 0.573 m.
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Fig. 8. Figure eight path with a 6-second lap time and no feed forward
control.
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Figure 10 shows an inclined circular path. The radius of
the path is 0.75 m, with a 0.5 m change in height, and a
constant desired yaw velocity of 0.23 rad/s. The hexacopter
follows this path at 1.4 m/s. The errors in the North, East,
and Down directions are shown in Figure 11. The desired
yaw compared to the actual is shown in Figure 12. These
results demonstrate that the control scheme can handle large
changes in heading while performing aggressive maneuvers.
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path at 1.4 m/s.
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VI. CONCLUSION AND FUTURE WORK

We have presented a method of control for rotorcraft that
utilizes the differentially flat dynamics to generate feed for-
ward commands. This method improves the path following

control scheme. The principle and accompanying equations
are simple and easy to implement. The trajectories are also
easy to generate. It allows for aggressive maneuvers along
any smooth path with heading change. We have demonstrated
the performance of this control scheme with hardware using
a Mikrokopter hexacopter. Future work will include devel-
opment of a robustness analysis given that the function ˆ

f is
not a perfect model. We will investigate how this affects the
performance of the system.
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