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Abstract: In this paper, the complex-step derivative approximation technique will be used for calculating local
sensitivity functions. This technique is compared to the finite difference approximation, probably the most
used local sensitivity analysis technique. For this comparison, 4 biotechnological models with varying model
complexity were used. A well known problem of the finite difference approximation is the choice of a suitable
perturbation factor in order to avoid non-linear model effects or numerical errors due to the subtraction of
almost equal numbers. The main advantage of the complex-step derivative approximation technique is that it
is not susceptible to errors introduced by small perturbation factors, ruling out the entire search for optimal
perturbation factors. However, the main disadvantage is an important execution time increase for large models.
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1. INTRODUCTION

Sensitivity analysis studies the ”sensitivity” of the
outputs of a system to changes in the parameters,
inputs or initial conditions. Sensitivity analysis
can be divided into two large categories: local and
global sensitivity analysis. Local sensitivity anal-
ysis methods refer to small changes of parame-
ters, while global methods refer to the effect of si-
multaneous, possibly orders-of-magnitude parame-
ter changes. The main focus of this paper is on local
sensitivity analysis techniques.

The general equation of the systems described here
is given by (1)-(2):

dx/dt = f (x, θ, u, t) , x (t0) = x0 (1)
y = g (x, θ, u, t) (2)

where x is a vector of state variables, θ a vector of
parameters, y a vector of outputs, u a vector of in-
puts and t the independent variable.

The sensitivity of a state variable y to a parame-
ter θ can be expressed as a sensitivity function (3).
The state variable y is called sensitive to θ if small
changes in θ produce significant changes in y.

S(t) = ∂y(t)/∂θ (3)

This partial derivative can be analytically solved if
the analytical solution of (1)-(2) is known. Unfortu-
nately, this is rarely the case and numerical methods
have to be used in order to approximate the sensi-
tivity function (3). Local sensitivity analysis tech-
niques evaluate this partial derivative at one specific
set of parameter values, also called the nominal pa-
rameter set.

2. SIMULATION ENVIRONMENT AND
MODELS

Throughout this paper several models related to bi-
ological wastewater treatment will be used for illus-
trative purposes. These models have been imple-
mented in the modelling and simulation software
WEST (World wide Engine for Simulation, Train-



ing and automation) [Vanhooren et al., 2003] which
was also used to perform the sensitivity analysis.
First, a simple biotechnological model will be used
in which microbial biomass (X) is growing on a
limiting substrate (S). The rate at which the bacte-
ria grow, is modelled by the well known Michaelis-
Menten or Monod kinetics [Holmberg, 1982]. This
model consists of 2 differential equations, given by
(4)-(5) and 4 parameters: the maximum specific
growth rate (µmax), the yield coefficient (Y ), the
decay coefficient (Kd) and the half saturation con-
centration for the substrate at which the biomass
grows at half the growth rate (KS).

dS

dt
= − 1

Y

µmaxS

KS + S
X (4)

dX

dt
=

µmaxS

KS + S
X −KdX (5)

A more complex anaerobic digestion model was
also considered [Bernard et al., 2001]. This
model is a two-step (acidogenesis-methanisation)
mass-balance model describing the growth of two
biomass species: acidogenic bacteria (X1) and
methanogenic bacteria (X2). In a first step, the
acidogenic bacteria consume organic substrate (S1)
and produce CO2 and volatile fatty acids (S2). The
methanogenic bacteria use the volatile fatty acids in
a second step for growth and produce carbon diox-
ide (CO2) and methane (CH4). Alkalinity and pH
are also modelled because of their importance in
anaerobic digestion processes. Overall this model
consists of 6 differential equations and 19 parame-
ters.
The third model used, was a sequencing batch re-
actor (SBR) model describing nitrogen and phos-
phorous removal [Sin et al., 2004]. This activated
sludge model was built on the basis of Activated
Sludge Model No. 1 and 2d [Henze et al., 2000].
Nitrogen transformations were incorporated as an
integral module following an approach similar to
ASM1. The particulate nitrogen is first hydrolyzed
to soluble organic nitrogen and then ammonified
to ammonia by heterotrophic biomass. The model
consists of 89 parameters and 22 differential equa-
tions.
Finally, the relatively complex EU COST (European
Co-operation in the Field of Scientific and Techni-
cal Research) Simulation Benchmark model [Copp,
2001] was used. This is a wastewater treatment
model that was designed to provide an unbiased ba-
sis for comparison of control strategies. It was also
successfully used for comparing different simula-
tion packages in the wastewater community. The
Simulation Benchmark has five biological tanks in

series and a secondary settling tank. The biological
tanks are modelled by the Activated Sludge Model
No. 1 (ASM1) [Henze et al., 2000]. ASM1 has 13
components and 8 processes describing growth and
decay of biomass, hydrolysis of organic compounds
and ammonification. The secondary settler is mod-
elled using the 1D settling model of Takacs, Patry
and Nolasco [Takacs et al., 1991]. The model con-
sists of 145 (5x13+80) differential equations.

3. FINITE DIFFERENCE APPROXIMA-
TION

3.1 Theory and Implementation

The simplest way of calculating local sensitivities
is to use the finite difference approximation. This
technique is also called the brute force method or
indirect method. It is very easy to implement be-
cause it requires no extra code beyond the original
model solver. The partial derivative defined in (3)
can be mathematically formulated by the equation
given below (forward difference).

∂yi

∂θj
= lim

∆θj→0

yi(t, θj + ∆θj)− yi(t, θj)
∆θj

(6)

This equation is only valid if we consider an in-
finitesimal variation (perturbation) of the parame-
ters, inputs or initial conditions θ (∆θj → 0). Equa-
tion (6) shows that the application of the finite dif-
ference method requires the solution of the model
(1)-(2) using the nominal value of the parameters
yi(t, θj) and p solutions of the equations using per-
turbed parameters yi(t, θj + ∆θj), where p is the
number of parameters involved in the sensitivity
analysis. It should be noted that only one param-
eter is perturbed at a time while all others are kept
at their nominal value. The sensitivities obtained,
actually belong to the (θ + ∆θ/2) parameter set be-
cause (6) can also be seen as the average of the sen-
sitivities of the model output yi at θj and θj + ∆θj .
If the sensitivities are desired to belong to the nomi-
nal values θj , (6) should be modified into the central
difference formula (7) which requires 2p solutions.

∂yi

∂θj
≈ yi(t, θj + ∆θj)− yi(t, θj −∆θj)

2∆θj
(7)

3.2 Problems Choosing a Correct Perturbation
Factor

Practically, ∆θj of (6) and (7) was implemented as
the nominal parameter value θj multiplied by a user



defined perturbation factor ξ. As will be shown be-
low, the choice of this perturbation factor will de-
termine the quality of the sensitivity function. The
finite difference approximation of the partial deriva-
tive (3) is only valid if the perturbation factor ap-
proaches 0. From a theoretical point of view this is
correct, but numerically this can never be achieved
because of the limited precision of the calculations.
If the perturbation factor is taken too small it will
result in numerical inaccuracies. On the other hand,
ξθj should not become too large because then the
nonlinearity of the model will start to play an im-
portant role in the sensitivity calculations. This
dilemma is illustrated in Figures 1 and 2 using the
sensitivity of the Benchmark autotrophic biomass
(XB,A) to the maximum autotrophic growth rate
(µmA) for perturbation factors 1E−02 and 1E−06.
In each figure the sensitivity function calculated
with the optimal perturbation factor 1E−04 is also
shown. This perturbation factor was determined us-
ing the method developed by De Pauw and Vanrol-
leghem [2003] which tries to find a balance between
numerical inaccuracies and the nonlinearity of the
model.

The problem of selecting a suitable perturbation fac-
tor was thoroughly investigated by De Pauw and
Vanrolleghem [2003]. In their research, it was
found that the perturbation factor is parameter de-
pendent and to a lesser extent variable dependent. It
was also found that the search for the optimal pertur-
bation factors becomes more difficult with increas-
ing numbers of variables and parameters involved in
the sensitivity analysis. Hence, to perform an accu-
rate sensitivity analysis may require extensive tun-
ing of perturbation factors, one at a time.

4. COMPLEX-STEP DERIVATIVE
APPROXIMATION METHOD

4.1 Theoretical Background

A possible solution for the difficulties encountered
with the selection of perturbation factors in the fi-
nite difference method is the use of the complex-
step derivative approximation method. Computing
sensitivity derivatives using complex variables was
first suggested by Lyness and Moler [1967]. For
some reasons, such as the inability of compilers to
deal with complex arithmetic, this technique was
not exploited much until Squire and Trapp [1998]
reintroduced it. Since then, the technique has been
applied several times. Some fields of application
are: aeronautics and astronautics [Martins et al.,
2000, 2001, 2003], mechanical engineering [Perez-
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Figure 1. Nonlinear effect: sensitivity of the
Benchmark autotrophic biomass (XB,A) to the
maximum autotrophic growth rate (µmA) cal-
culated with perturbation factors ±1E−02 and
1E−04.
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Figure 2. Numerical error effect: sensitivity
of the Benchmark autotrophic biomass (XB,A)
to the maximum autotrophic growth rate (µmA)
calculated with perturbation factors ±1E−06 and
1E−04.

Foguet et al., 2000; Vatsa, 2000] and chemical en-
gineering Butuk and Pemba [2003]. In this publica-
tion, the technique is applied for another purpose:
the calculation of dynamic local sensitivity func-
tions of models consisting of algebraic and differ-
ential equations.

The basic equation for the complex-step deriva-
tive approximation method can be derived using the
Taylor series expansion of a function in terms of
complex variables:

y (θ + i∆θ) = y (θ) + i∆θ
dy

dθ
− ∆θ2

2
d2y

dθ2

− i∆θ3

6
d3y

dθ3
+ hot (8)

where hot are the higher order terms of the expan-
sion. Isolating the imaginary part of this equation



leads to:

Im [y (θ + i∆θ)] = ∆θ
dy

dθ
− ∆θ3

6
d3y

dθ3
+ hot (9)

For very small imaginary steps i∆θ, the third and
higher order terms of the expansion become negli-
gible and the derivative can be written as:

dy

dθ
≈ Im [y (θ + i∆θ)]

∆θ
(10)

Notice that this equation avoids the subtraction of
nearly equal numbers, as is the case for the standard
finite differencing methods, and therefore does not
exhibit the accuracy problems associated with small
step sizes. In order for (10) to be valid, the complex
function y needs to be analytic which means that
the function must be complex differentiable. Some
complex functions may fail to be analytic due to the
presence of singularities or discontinuities. Martins
et al. [2001] studied this problem and found that the
complex-step derivative approximation method still
produced accurate derivatives in the neighborhood
of the singularities and discontinuities.

4.2 Implementation Issues

Implementation of the complex-step derivative ap-
proximation method involves the conversion of
floating point-value functions (model equations)
into their complex equivalent, i.e. the functions
need to be modified in such a way that they can ac-
cept complex arguments. To be practically usable,
this process should be as automatic as possible be-
cause manually changing the source code not only
is a tedious task, but may also introduce coding
errors. The most elegant way of automatic im-
plementation is the use of derived data types and
operator overloading. With this technique the data
type of the variables in the functions is replaced
by a new complex data type and all operators and
arithmetic functions are redefined for this new data
type. Fortunately, FORTRAN and C++ natively
support these functionalities making this technique
easily implementable. Martins et al. [2003] pro-
vides a single C++ file (complexify.h) that needs to
be included with the model source code and con-
tains the required complex data type and arithmetic
function redefinitions. Because no further changes
to the source code need to be made, this technique is
almost as straightforward to implement as the finite
difference method. Besides these minor changes,
the solvers (integrated in WEST) which integrate
the differential equations of the model were also
adapted to use the new complex data type.

Performing a sensitivity analysis using this tech-
nique in WEST can be summarized as follows:

1. Select variables (y) and parameters (θ) and
compose the sensitivity functions.

2. Apply a small perturbation ∆θ (e.g. 1E−20)
to the imaginary part of one parameter.

3. Run the simulation and retain the trajectories
of the imaginary part of all required variables.

4. The sensitivity functions are then calculated
by dividing each point of these trajectories by
the perturbation ∆θ.

5. Repeat steps 2-4 for all parameters.

Although this technique only requires p simulations
compared to p+1 simulations required for a forward
difference and 2p simulations for a central differ-
ence, its major drawback is an increased simulation
time due to the complex arithmetic. A comparison
of the computational cost between the finite differ-
ence and the complex-step derivative approximation
technique will be given below.
An additional drawback of the complex-step deriva-
tive approximation method is that the amount of
memory used is approximately doubled due to the
introduction of the new complex data type. For
the biotechnological models discussed in this pa-
per, this poses no problems since most large models
never grow beyond a few MB.

4.3 Numerical Example

In this section the influence of different perturbation
factors on the accuracy of the sensitivity calcula-
tions will be studied for the complex-step derivative
approximation method and compared to the forward
and central difference technique. The sensitivity
function that will be used for this purpose is the sen-
sitivity of the volatile fatty acids concentration (S2)
of the anaerobic digestion model to the half satura-
tion constant of the volatile fatty acids (KS2). This
sensitivity function was calculated for different per-
turbation factors, ranging from 1 to 1E−17, using
the complex-step derivative approximation method,
the forward difference and the central difference
technique. The model equations were solved using
the Runge Kutta 4 Adaptive Step size Control inte-
gration algorithm (RK4ASC) [Press et al., 1992] us-
ing an accuracy of 1E−06. In order to quantify the
calculation accuracy of each calculated sensitivity
function, the sum of relative errors with respect to
a reference sensitivity function was calculated. The



reference used for this purpose was the sensitivity
function obtained from the complex-step derivative
approximation method using a perturbation factor
of 1E−30.

In Figure 3 the calculated sum of relative errors
as a function of the different perturbation factors
is shown for the complex-step derivative approxi-
mation method, forward difference and central dif-
ference sensitivity calculations. As expected, the
error of the finite difference methods initially de-
creases (for perturbation factors 1 to 1E−03) to
reach a minimum value for a perturbation factor of
1E−03. For smaller perturbation factors, the er-
ror increases again due to the subtractive cancella-
tion errors. Also notice that the central difference
reaches a lower error than the forward difference.
For the complex-step derivative approximation
method it is clear that the errors decrease with de-
creasing perturbation factor. At a perturbation fac-
tor of 1E−07 the error stabilizes at a value of
±1E−15 which corresponds to the accuracy of a
double precision floating point number on a Intel32
architecture. This value is maintained for perturba-
tion factors as low as 1E−307 (1E−308 being the
smallest possible non-zero value available on an In-
tel32 architecture).
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Figure 3. Sum of relative errors of the sensitiv-
ity function ∂S2/∂KS2 of the anaerobic digestion
model for the complex-step derivative approxima-
tion method, forward difference and central differ-
ence.

4.4 Computational Comparison

As already mentioned, the major drawback of the
complex-step derivative approximation method is
an increase in the computational cost due to the
complex arithmetic of the model. To gain more in-
sight into this problem, the four models used in this
paper were compared for the time needed to run a
single simulation. All simulations were performed

on an Intel PIII 1GHz system running Linux (kernel
2.4.22). Again, the integration algorithm used, was
RK4ASC with an accuracy of 1E−06.

Table 1 lists the ratios between the execution times
of a single simulation for the complex model (with
complex arithmetic) and the normal model (with-
out complex arithmetic). For simple models, like
the Monod and the anaerobic model, no noticeable
differences in execution speed were detected. How-
ever, for more complex models (SBR and Bench-
mark) large differences in simulation time exist. On
average, the execution of the complex model is 30
times slower than the model without complex arith-
metic which is much more than the ratios between
1 and 3 reported in literature [Martins et al., 2000;
Vatsa, 2000; Burg and Newman III, 2003]. These
reported ratios, however, were all related to imple-
mentations of the complex-step derivative approxi-
mation method on FORTRAN codes as opposed to
C++ in this case study. Therefore, inefficient C++
complex arithmetics might explain part of the speed
difference, but more research to pinpoint the exact
cause is certainly needed.

Table 1. Ratios between the execution times of
a single simulation for the complex model (with
complex arithmetic) and the normal model (without
complex arithmetic).

Model Ratio

Monod 1

Anaerobic 1

SBR 36

Benchmark 29

The conclusions derived from the simulation speed
analysis have obvious implications for the execution
speed of a complete sensitivity analysis, which re-
quires the execution of several simulations. How-
ever, the increased computational time can be com-
pensated by the fact that only p simulations are re-
quired for the complex-step derivative approxima-
tion method compared to p + 1 simulations for a
forward difference and 2p for a central difference.
Besides this, it has to be mentioned that in a real fi-
nite difference application much more simulations
are required because of the search for the optimal
perturbation factors. This can be very cumbersome
and time consuming (especially if many parameters
are involved), and requires the execution of many
finite difference sensitivity analyses. Even then, it
is not guaranteed that an adequate perturbation fac-
tor can always be found. This requirement of addi-
tional simulations for the finite difference technique
makes the complex-step derivative approximation



method certainly attractive even with the associated
simulation speed increase for large models.

5. CONCLUSIONS

In this paper, two techniques for local sensitivity
analysis, the finite difference approximation and the
complex-step derivative approximation technique
were described and compared. A well-known prob-
lem of the finite difference approximation is the
choice of a suitable perturbation factor in order to
avoid non-linear model effects or numerical errors
due to the subtraction of almost equal numbers. The
main advantage of the complex-step derivative ap-
proximation technique is that it is not susceptible
to errors introduced by small perturbation factors,
ruling out the entire search for optimal perturbation
factors. However, the main disadvantage is an im-
portant execution time increase for large models.
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