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Nonlinear Optimal Control of a
Hydraulically Actuated Positioning System

Timothy W. McLain
Department of Mechanical Engineering
Brigham Young University
Provo, UT 84602

Abstract

In this paper, the nonlinear optimal control problem is
formulated for the position control of an electrohydraulic
servo system. The optimal control is given by the solution
to the Hamilton-Jacobi-Bellman equation, which in this
case cannot be solved explicitly. An alternative method,
based upon successive Galerkin approximation, is used
to obtain an approximate optimal solution. Preliminary
simulation results, demonstrating the application of this
approach to the position control of a hydraulically actu-
ated device, are presented.

1 Introduction

In the synthesis of controllers for fluid-power actuation
systems, a common approach is to linearize the nonlin-
ear dynamics of the system and then to design the con-
troller using a linear control design methodology [1, 2].
In this paper, a new approach is taken wherein a nonlin-
ear feedback controller is synthesized based upon the full
nonlinear dynamics of the system. This approach involves
the formulation of the nonlinear optimal control problem,
which is expressed as a nonlinear partial differential equa-
tion, and its approximate computational solution by suc-
cessive applications of a Galerkin-type method.

Though the off-line computations are quite intense, this
strategy eliminates the need for linearization, whether ex-
plicit or through feedback, while providing a control law
that compensates for the nonlinear dynamics of the sys-
tem in an optimal way. While this successive Galerkin
approximation (SGA) technique has been applied to a va-
riety of problems [3], this paper represents initial efforts
to apply the SGA methodology to a system representative
of an industrial “real-world” application.
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2 Control Approach

Given a system modeled by the nonlinear state equa-
tions
& = f(z) + g(z)u(z) (1)

and the performance index

v = [0+ @) o

the “optimal” control which minimizes the performance
index is given by
1 ov*
* — __R—l T 3
wa) = —5 R ()% 3)
where V*(x) is a positive definite function that satisfies
the Hamilton-Jacobi-Bellman (HIB) equation:
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Obtaining a closed-form solution of Equation 4 for sys-
tems of the complexity of the hydraulic actuation system
under consideration is impossible. The approach for solv-
ing the HJB equation presented here is to begin with a
known control, u(®) (e.g. PD control), that is stabilizing
over a bounded domain of the state space 2 and to numer-
ically compute successive approximations to the optimal
control given by Equation 3.

Consider the performance index of Equation 2 with the
initial feedback control law u(%) (z):

VO (z) = /too (l(a:) n Hu(o)(x)H;) dt. (5)

Taking the derivative of both sides of Equation 5 with
respect to time gives:

o= (1)

IThough I(z) can be any positive definite function of =, it is
commonly chosen to be HxHé) =zTQx.

o0
t=0




Since u(®) is asymptotically stabilizing, (z,u(®)) — 0 as
t — 00, which results in the partial differential equation
v
ox

2
[f + gu(o)] +1+ Hu(O)HR =0. (6)

Equations 5 and 6 show that V() is a Lyapunov func-
tion for the control u(®). Given V() the stability and
robustness of u(®) can be improved by choosing a new
control u(!) such that
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Note that along state trajectories of the system under the
control of u),
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and thus «(") as found from Equation 7 represents an
improvement over u(%).

Equations 6 and 7 can be generalized to form the basis
for an iterative solution process where

ovr
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Equation 8 is known as the Generalized Hamilton-Jacobi-
Bellman (GHJB) equation [3]. By starting with a known
1) and iteratively solving Equations 8 and 9, successive
values for V) and u(?) are found which have been shown
to converge monotonically to the optimal values V* and
u* given by Equations 4 and 3 respectively [4, 5].

The problem of formulating the near-optimal control is
simplified to solving the GHJB equation, which is a lin-
ear, first-order partial differential equation. While Equa-
tion 8 cannot, in general, be solved analytically, it is more
amenable to numerical solution than the HJB equation.

2.1 Numerical Solution of the GHJB

To solve the GHJB Equation, a computational Galerkin
method is employed [6]. It is first assumed that V() can
be written as an infinite series of known basis functions
¢;j(z) that are continuous and defined everywhere on (2,

i.€.,
0 o
- S
j=1

An approximation to the assumed solution V() having the
desired degree of accuracy can be formed by considering
the first IV terms of the infinite series:

N
V) =S¢l (@)
j=1

By substituting Equation 10 into Equation 8, an expres-
sion for the resulting error e(” is obtained:

N
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e (g) = [+ gu®] + 14 [u® ; (11)

Defining the inner product of two functions f and g in the
following manner,

<ﬂmmmmé4f@mmw

the error can be projected onto the N basis functions
d1,P2,...,0x on a closed and bounded set € and set
to zero to obtain N linear equations in N unknowns

( (&) (@) (i)).
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This system of equations can be solved to find i) =
[l ) o 1T, With these coefficients identified, the
functional expression for the control associated with the

(i + 1)*" iteration can be calculated.
2.2 SGA Feedback Synthesis Algorithm

Although fairly simple conceptually, the computation
of Equation 12 is quite complex to carry out. The com-
putation of the coefficients which form the basis of the
near-optimal control law are performed according to the
algorithm below.

,u(®,

Input: f,g,l,R,Q,{¢;}V

Compute the matrices: A;, Ay, by, by, {M;} where
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Initial step:

A=A+ A
b=by + by
0 =A-1p
1=1
Iteration step:

A = _% j'V:1 Cg'i_l)Mj
c(i—l)TMlc(i—l)
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by = —1
2 1 :
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A=A+ A
b=by + by
D = A-1p
t=1+1
Output:
N
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3 Hydraulic Actuation System Model

The hydraulic actuation system modeled is shown in
Figure 1 below. It consists of a four-way servovalve driv-
ing a linear piston connected to an inertial load. The

model developed here is similar in many respects to pre-
viously developed models [1, 7]. For simplicity, the elec-
tromechanical portion of the servovalve (not depicted in
Figure 1) is modeled as a first-order system with the cur-
rent to the valve, i,, as the input. The orifice charac-
teristics are patterned after those of a Moog Model 31
servovalve.

Figure 1: System Schematic Diagram

The state variables for the model are P, — pressure on
the “a” side of the piston, P, — pressure on the “b” side of
the piston, v, — piston velocity, z,, — piston position, and

» — the servovalve spool position.

To correctly model the behavior of the valve, two sep-
arate operating conditions must be considered: the up-
stroke where z, > 0 and the downstroke where z, < 0.
On the upstroke, the orifice between supply pressure and
the a side of the piston and the orifice between the b side
of the piston and return pressure are opened. Similarly,
on the downstroke, orifices between supply pressure and
side b and between side a and return are opened.

As might be expected, the equations of motion describ-
ing the behavior of the piston pressure states are depen-
dent on whether the valve is in the upstroke or downstroke
configuration:

Upstroke: (z, >0)
P, = E Cihyx, P Fa) — A, (14)
Va V
. B
P, = — |—Cyhyzy —I—Ab’l}p 15)
Vb v




Downstroke: (z, < 0)
: B 2(P,—P,)
P, = v lthvmv - A.vp|  (16)
. B 2P, — P,
ho= [—thva:v M =B) | (a7
b

where B is the bulk modulus of the fluid, Cy is the dis-
charge coefficient associated with the valve orifices, h, is
the effective height of the valve orifice, P, and P, are
cylinder pressures, p is fluid density, and A4, and A are
piston areas. V, and V, are the fluid volumes contained
by the a and b sides of the cylinder and are dependent on

the piston position:
L
a(5+)

L
Ab (5 —1'p> .

Equations of motion for piston velocity, piston position,
and valve position are given by

Vo =

Ve

1
v, = —[AqP,— AyPy—bv, — F.sign(v,)] (18)
mr,
Tp = vp (19)
1
B, = —cwy+ =i, (20)
T T

where friction in the piston is modeled by viscous and
coulomb terms, b and F., K is the valve torque-motor
gain, and 7 is the torque-motor time constant.

Equations 14 through 20 represent the nonlinear dy-
namics of the system shown schematically in Figure 1.
These equations are of the general form of Equation 1,
and from them the functions f(z) and g(x) required for
the synthesis of the control can be determined.

4 Control Synthesis and Implementation

With the model described above, the optimal feedback
control can be synthesized based on the SGA algorithm.
With f(x) and g(z) coming directly from the equations of
motion, the cost function on the states [(x), the weighting
matrix on the control cost R, the domain of the states 2,
the basis functions {¢;(x)}%', and the initial control law
4® remain to be determined. For the results presented
here, the cost function was chosen to be

I(z) = o, + 2, + q3(AaPo — AyPy —mpg)?,

where ¢1, g2, and g3 are positive weighting constants. As
the goal of the control is to drive (z) to zero, including the

function A, P,— Ay P,—my g in the cost function provides a
way to regulate the pressure states in a manner consistent
with the dynamics of the system without driving them to
Zero.

Since the system has only a single input (i), the weight-
ing matrix on the control (R) is simply a scalar variable.
The domain of possible values for the states is governed
by the physical limitations of the system:

P, <P, <P,
Pr S Pb S Ps
_Qmaz/Aa S Up S Qmaz/Aa

Tpmin < Tp < Tpmaz

LTymin S Ty S Tymaz

where 4, 1S the maximum rated no-load flow through
the valve, z, . and x,  are the minimum and max-
imum displacement of the piston, and %,,,;, and Zymee
are the minimum and maximum displacement of the valve
spool.

An understanding of the dynamic behavior of the sys-
tem plays an important role in the proper selection of the
basis functions {¢;(z)}Y. For the control to compensate
adequately for the nonlinear dynamics of the system, the
basis functions must be able to capture the dominant dy-
namics of the system. For this problem, the following
basis functions were used:

¢ = Uf;

¢ =

¢3 = 33%,

¢s = (AuPo— ApP, —mpg)®

o5 = UpTp

b6 = vpTy

¢r = vp(AuPy — AyPy —mpg)

Ps = Tpwy

po = xp(AuPy— AyPy —mryg)
b0 = xy(AgPy— AyPy —mpg).

An interesting aspect of these basis functions is that
absence of z,P, and z,P, as basis functions. If these
basis functions are included, the control (as calculated
from Equation 13) will contain independent P, and P,
terms which attempt to drive P, and P, to zero to the
detriment of the control of the other states. In this par-
ticular problem, the objective is to regulate the states
Up, Tp, and z, leaving P, and P, to vary as necessary
to control the piston as desired. Notice that in steady
state, the pressures are related by the pressure function
A.P, — Ay P, — mpg = 0. By allowing this pressure func-
tion to be a part of the basis functions selected, pressure



Table 1: Weighting Functions and Control Laws

Initial Design

= Up2 + $p2 + (AaPa — APy — ng)2

R=1

u = —0.302v, + 1.48z, — 1098z,
—0.0797(Aapa - Abe — ng)

High-Performance Design

= 0.21}p2 + po + Q(AaPa — Abe — ng)2

R=1

u = 0.253v, — 3.13z, — 1033z,
—0.0792(AaPa - Abe - ng)

Moderate-Control Design

[ =0.2v,2 4+ z,° + 2(4. P, — Ay P, — mpg)?

R =40

u = 0.030v, — 0.556x, — 91.0x,
—0.00266(Aapa - Abe - ng)

terms enter into the control in a manner consistent with
the control objectives of the system.
Finally, the initial stabilizing control was chosen to be
PD control:
u® = —K,z, — Kqv,.

With the input parameters defined, optimal control
laws can be synthesized using the SGA algorithm. Simu-
lation results for three different controllers are presented.

5 Results

Using the SGA synthesis algorithm with the inputs
as described, three different optimal controllers were de-
signed and implemented. Table 1 shows the weighting
functions and the corresponding control laws obtained for
each of the three controllers. For the test cases presented
here, the operating conditions were such that z, was al-
ways less than zero. Though controllers were synthesized
for both upstroke and downstroke conditions, only those
developed from the downstroke equations of motion are
presented.

For an initial design, the state weighting function and
control weight were set to

l= Up2 + $p2 + (AaPa — Abe — ng)2

and
R=1.

Figure 2 shows the response of the states to a non-zero ini-
tial condition on piston position using this initial control
design. It should be noted that valve position tracked the
valve current signal very closely (differing by gain K) and

is an accurate indication of the control effort expended in
each case. While the valve position, piston position, and
piston velocity are eventually regulated to zero, the sys-
tem’s response is more sluggish than desired.
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Figure 2: Initial Design
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Figure 3: High-Performance Design

As with the design of a linear quadratic regulator,
changes in the behavior of this nonlinear actuation sys-
tem are brought about by changing the state weighting
function [ and the weight on the control R. As an exam-
ple of how a designer might decrease the response time
of this system, the weighting function was altered by de-
creasing the weight on the v term (from 1 to 0.2) and
increasing the weight on the pressure function term (from
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Figure 4: Moderate-Control-Effort Design

1 to 2). These two changes caused the pressure states to
be driven to their steady-state values more quickly and
allowed the piston velocity to reach higher values initially
with the net result being that the piston position was
driven to zero in much less time than the case when the
initial control was used. In order to bring this improved
response about, greater control effort was required.

In the event that the control effort expended for a par-
ticular design is too high, more conservative designs can
generated by increasing the weight on the control effort.
As an example of this, the high-performance design of
Figure 3 was moderated by increasing the weight on the
control from 1 to 40. The response of this moderate-
control-effort design is presented in Figure 4. From this
plot, it can be seen that by increasing R, the peak control
effort drops significantly. Correspondingly, the time re-
quired for the states to settle to their steady-state values
increases.

These simulation results demonstrate potential utility
of the SGA synthesis approach for developing optimal con-
trollers for nonlinear systems. By tuning the state weight-
ing function and the weight on the control effort appro-
priately, the behavior of the closed-loop system can be al-
tered to suit the needs of a specific application. Further-
more, by adding more complex basis functions, higher-
order nonlinear effects can be compensated for.

6 Conclusions

In this paper, an optimal control strategy based upon
successive Galerkin approximation has been applied to
the control of a hydraulically actuated positioning system.

Using this approach, several optimal controllers were de-
signed taking into account the full nonlinear dynamics of
the hydraulic actuation system. Based upon these prelim-
inary results, SGA appears to be a promising approach for
control synthesis for systems having nonlinear dynamics.
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