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Abstract: Determining the location of the contaminant source is important for improving remediation and 
site management decisions at many contaminated groundwater sites. At large sites, numerical flow and 
transport models have been developed that use historical measurement data for calibration. A well-calibrated 
model is useful for predicting plume migration and other management purposes; however, it is difficult to 
back out the source with these forward flow and transport models. We present a novel technique utilizing 
Artificial Neural Networks (ANNs) to backtrack source location and earlier plume concentrations from 
recent plume information. For proof-of-concept, two tracer tests (a non-point-source and a point-source) 
were performed in a large-scale (10’×14’×6’) groundwater physical model. The physics-based flow and 
transport model (MODFLOW 2000 and MT3DMS) was calibrated using the data from the non-point-source 
tracer test and validated using the point source tracer test data. ANNs (e.g. counterpropagation) were trained 
using the calibrated model predictions and compared to actual data. Results show this to be a promising 
method for determining earlier plume and source locations. 
 
Keywords: Artificial Neural Networks; Source identification; Groundwater modeling; Counterpropagation 
 
 
1. INTRODUCTION 
 
Identifying and delineating the source of a 
contaminant plume is important for improving 
subsurface remediation and site management 
decisions at many contaminated groundwater sites. 
Numerical flow and transport models are being 
extensively used to simulate and predict plume 
concentrations at sites that have sufficiently large 
amounts of data such that accurately calibrated 
simulation models can be utilized in the design 
process. These process-based simulation models 
provide valuable information for selecting and/or 
optimizing remediation strategies and long-term 
monitoring designs. Although a well-calibrated 
model is useful for predicting plume migration and 
other management purposes; it is difficult to solve 
the inverse problem and back out the source with 
these forward flow and transport models. The 
inverse problem is often ill-posed [Skaggs and 
Kabala, 1994] because it is extremely sensitive to 
errors in the measurement data, and might result in 
unstable numerical schemes when an existing 
transport model is run in reversed time [Skaggs 
and Kabala, 1994]. As a result, a number of 
methods have been developed for these inverse 
problems, such as nonlinear optimization modeling 
[e.g. Aral, et al., 2001], geostatistical inverse 

modeling [e.g. Michalak and Kitanidis, 2004], and 
chemical profiling [e.g. Morrison, 2000, 2000, 
2000]. Bagtzoglou [2003] presented a Reversible-
Time Particle Tracking Method (RTPTM), but it is 
only applicable for one-dimensional problems.  
 
We present a technique that combines Artificial 
Neural Networks (ANNs) with a flow and 
transport model to backtrack the source location 
and earlier plume concentrations from recent 
plume information. For proof-of-concept, two 
tracer tests (a non-point-source and a point-source) 
were performed in a large-scale (10’×14’×6’) 
groundwater physical tank. This method takes full 
advantage of the available physics-based flow and 
transport model that has been calibrated for these 
tank experiments. Once trained, the ANN is 
capable of mapping the model results in a more 
computationally efficient manner, saving time for 
optimizing remediation strategies or long-term 
monitoring designs that require repeated modeling 
effort. The trained ANN can also simulate the 
plumes in reverse to find a reasonable estimate of 
the contaminant source, endowing the flow and 
transport model with backtracking capability. 
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2. BACKGROUND 
Increased efforts have been made to clean and 
protect groundwater resources. Groundwater 
numerical flow and transport models that are based 
on the physics of groundwater migration are well 
accepted as valuable tools for predicting 
contaminant plumes. These models are used in two 
different ways. (1) Models are run forward to 
delineate and forecast the future of contaminant 
plumes. This method plays a critical role in 
designing remediation strategies and long-term 
monitoring optimization. Although the costs 
associated with long-term monitoring may be large, 
it is required for contaminated sites or sites prone 
to be contaminated (e.g. lined or unlined landfills) 
by the US EPA. Models are used to identify areas 
at risk of being contaminated, direct monitoring 
schemes and improve remediation strategies. (2) 
Models may be run backward to delineate earlier 
contaminant plumes and identify the location of 
contaminant sources. This forensic approach is 
often important for distributing costs among 
responsible parties for remediation.  
 
 
3. METHODS 
 
Two tracer tests were performed in a large-scale 
(10’x14’x6’) physical model of a sand and silt 
layered aquifer. The physical model has a 
precisely defined stratigraphy. It comprises five 
layers (from bottom to top): a coarse sand layer, a 
silt layer, a medium sand layer, a medium sand 
layer with a fine sand rectangular block in the 
middle, and a medium sand layer (see Figure 1a). 
Constant head inlet and outlet reservoirs were 
constructed to feed into/from the in-tank reservoirs, 
thus creating a fixed water gradient across the tank. 
The tank has a dense sampling system, and a 
sophisticated data acquisition and control system 
to collect sufficient data in real time for various 
experimental applications (Figure 1b). There are 
21 PVC pipes within the tank; each contains 
probes and sensors at five depths (for a total of 
105 locations), and each is screened for pumping 
groundwater at four depths (84 locations). Probes 
and sensors include pressure transducers, Time 
Domain Reflectometry (TDR) probes, 
thermocouples and point sampling probes.  
 
 
3.1 Non-Point Source Tracer Test 
 
Ammonia chloride was chosen as the tracer for 
both the non-point and point source tracer tests. 
The advantages compared to other tracer salts are 
three-fold: (1) the change in density as compared 
to pure water is low; (2) it is generally nonreactive 
with the media; and (3) it has high electrical 
conductivity that makes it easy to detect with the 

TDR probes. For the non-point test, a concentrated 
salt solution was mixed thoroughly in the in-take 
inlet reservoir to ensure a constant concentration 
(1000 mg/L) and a plug flow tracer test. A 
constant head difference of 4.6 cm between the 
inlet and outlet reservoir was maintained, and 
influent solutions (also 1000 mg/L ammonia 
chloride) were continued for five days. After five 
days, the feed solution was changed to tap water. 
The 105 TDR probes were used to determine 
electrical conductivity which was then converted 
to concentrations. Measurements were collected at 
approximately 20-minute intervals at various TDR 
probe locations for 9 days.  
 

Point Source Injection

Non-Point Source Mixed Thoroughly

Layer 5

4

3

2

1

Flow DirectionFlow Direction

 
(a) 

 

 
(b) 

Figure 1. (a) Tank representation showing 
well/probe locations and fine sand lens; (b) Tank 

plan view and cross-sectional view. 
 
 
3.2 Point Source Tracer Test 
 
Sixty-three TDR probes positioned in the top three 
layers were used to determine the electrical 
conductivity which was converted into 
concentration data using the method of Wraith, et 
al. [1993]. The ammonia chloride solution (1000 
mg/L) was injected at 1.5 L/hr constant flow rate 
into one of the screened intervals within the 
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medium sand layer with fine sand lens (fourth 
layer from bottom, see Figure 1a). Measurements 
were collected at approximately 15 minute 
intervals for 19 days.  
 
 
3.3 Flow/Transport Modeling 
 
A number of models have been developed for 
flow/transport modeling, for example MODFLOW 
[Harbaugh, et al., 2000], MT3D [Zheng and Wang, 
1999], RT3D [Clement, et al., 1998] and 
MINTRAN. Gorelick [1983] and Mangold and 
Tsang [1991] present an excellent review of 
groundwater modeling. Oreskes, et al. [1994] 
report the methods for model verification, 
validation and confirmation.  
 
A combination of MODFLOW 2000 and 
MT3DMS was used in this paper. MODFLOW is 
a three-dimensional finite-difference 
computational model that numerically solves the 
ground-water flow equation for a porous medium 
[Harbaugh, et al., 2000]. The modular 3-
Dimensional Transport model MT3DMS has a 
comprehensive set of  capabilities for simulating 
the advection, dispersion/diffusion, and chemical 
reactions of contaminants in groundwater flow 
systems under general hydrogeologic conditions 
[Zheng and Wang, 1999]. 
 
The numerical flow and transport model was 
calibrated using the data from the non-point-
source tracer test. There were nine layers in the 
numerical model, with an approximately square 
grid spacing (70 by 100 elements) for each layer. 
Model calibration was conducted using hydraulic 
conductivity, porosity and dispersion values 
calculated from extensive analysis of the 
breakthrough curves generated from the  non-point 
source tracer test, and then making slight 
modifications (consistent with experimental error) 
to visually achieve the best fit. Concentration data 
at thirty-six observation points collected from nine 
PVC wells (four in each) were used for 
comparison with model simulations. The model 
approximated the data very well. The calibrated 
flow and transport model was then validated using 
the point-source tracer test data. Model predictions 
showed similar plumes to the experimental data.  
 
 
3.4 Counterpropagation ANNs Training and 

Interpolation 
 
An Artificial Neural Network (ANN) is an 
information-processing paradigm inspired by the 
way biological nervous systems process 
information. In general, a supervised ANN 
consists of two phases, a training phase and an 

operational phase. During training, a set of inputs 
and associated known outputs are fed into the 
ANN. The internal weights are iteratively adjusted 
until the mapping between inputs and outputs meet 
some specified convergence criterion. The weights 
are then fixed and used to interpolate data points 
not used in previous ANN training. Maier and 
Dandy [1996] presented a method using ANN to 
forecast salinity, and Zhang and Stanley [1997] 
used a ANN modeling scheme to predict raw-
water color. An excellent review about forecasting 
water resources variables using ANN was 
presented by Maier and Dandy [2000]. 
Govindaraju [2000] provided a good review of the 
application of ANNs in environmental engineering. 
Rogers and Dowla 1994 used a feed-forward 
backpropagation ANN as a surrogate for the flow 
and transport simulator used to perform 
groundwater remediation optimization at the 
Lawrence Livermore National Laboratory in 
Livermore, California.  
 
A feed-forward counterpropagation ANN was 
used in this paper and is depicted in Figure 2. 
Hecht-Nielsen [1987, 1988] proposed 
counterpropagation as a method to combine an 
unsupervised Kohonen ANN with a supervised 
Grossberg ANN. This combination synthesizes 
complex classification problems and attempts to 
minimize the number of processing elements and 
training time.  
 

X
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Figure 2. Schematic of the feed-forward 

conterpropagation ANN comprised of an input 
vector corresponding to the time and spatial 

location of known classified concentration values. 
 
Simulated model concentration data, which is 
normalized by dividing by C0, from time periods t 
= 1, 3, 5, 7, 9, 11, 13, 15, 17 and 20 days were 
used to train the counterpropagation ANN. For the 
purpose of determining the location of the 
contaminant source, no concentration was assumed 
at day t = -1, which is reasonable because it is 
known that no ammonia chloride was introduced 
into the tank until day t = 0. Before training, the 
output normalized concentration values (v), 
originally ranging from 0 to 1, were classified into 
21 classes as indicated in Table 1. The input data 
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comprise the time and x, y, z coordinate location 
of measured concentration values for all training 
time periods. The corresponding classified 
concentration value at that specified location and 
time is used as the output data. During the training 
process, the weights are adjusted so that the output 
maps the classified target concentration to a 
predefined root-mean-square error value (10-6 in 
this study).  
 
After convergence, the weights are fixed. The 
interpolation phase, modified with an inverse 
distance method, uses the fixed weights for 
prediction. The three closest patterns stored in the 
hidden layer (two points backward in time and one 
point forward in time) are selected and a weighted 
average is calculated as the predictor. For example, 
to estimate the plume at t = 6, the data at t = 3, 5, 
and 7 will be used.  
 
Table 1. Classification of the concentration value 
into 21 classes with intervals=0.05 units 

Class Concentration (v) 
1 0 
2 0<v≤0.05 
3 0.05<v≤0.1 

. . 

. . 

. . 

n* 0.05×(n-2)<v≤0.05×(n-1) 
. . 
. . 
. . 

21 0.95<v≤1 
*n=2, 3, 4…, 21 
 
 
4. RESULTS AND DISCUSSION 
 
The concentration plumes (isocontours ≥ 0.5) 
estimated using the modified counterpropagation 
network were compared to the model simulation 
results. Select comparisons for time = 3, 8 and 17 
days are shown in Figure 3. Results indicate that 
the counterpropagation ANN performs well for 
predicting the plume patterns (Figure 3). Forecasts 
of the ANN 0.5 isocontour on the 19th day (the end 
of the tracer test) were compared to the flow and 
transport model prediction. In addition, the 0.5 
isocontour was backed out using the ANN at t = 0 
days (the beginning of the contaminant release). 
The prediction of the source (see Figure 4a) was 
close to the injection spot, indicating that this is a 
promising method for backtracking the earlier 
plume and identifying the location of the 
contaminant source.  
 
This method takes advantage of the available 
physics-based models that may already have been 
developed for contaminated sites, while avoiding 
many of the complications associated with solving 
the inverse problem. Once trained, the ANN is 
capable of simulating the model results in a more 

computationally efficient manner. This may save 
large amounts of computational effort especially 
when applied to optimization remediation 
problems and/or long-term monitoring design 
efforts that require repeated (often hundreds or 
thousands) process-based simulations. Our ANN 
method enables the system to be updated in real-
time by combining physics-based model 
predictions and sparsely collected site data. It 
should be noted; however, that the traditional 
forward-feedback counterpropagation ANN used 
in this research acts as an interpolation method 
and/or pattern-lookup system; and perhaps is not 
the best ANN for forecasting or extrapolating 
estimates of concentration at times outside of the 
training data set or for simulating the physics-
based model. The counterpropagation ANNs are 
good at classification analysis, which can be 
viewed as a nearest neighbor (or nearest-means) 
classification method; while its forecasting 
capability is limited. The algorithm was modified 
to incorporate an interpolation procedure that 
averages the closest three training patterns using 
an inverse distance method to overcome such 
disadvantages. 
 
 
5. CONCLUSIONS AND FUTURE 

RESEARCH 
 
Artificial neural networks are useful computational 
tools for water quality modeling and this paper 
shows its usefulness for application to 
groundwater flow and transport problems. Once 
trained, ANNs are capable of approximating 
results quickly, which is important for real-time 
modeling and long-time monitoring optimization 
design. The ANNs can also back out the earlier 
plumes to better identify the contaminant source. 
Further research using other ANNs to improve 
performance and extend their application is still 
needed. A recurrent ANN [Connor, et al., 1994] or 
a time series ANN [Clouse, et al., 1997] will be 
used in the future to improve the prediction 
capability. 
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(a)     (b)     (c) 

 
(d)     (e)     (f) 

Figure 3. 3-D flow/transport model estimates of NH4Cl (a) time=3 days, (b) time=8 days and (c) time=17 
days; and 3-D ANN estimates of NH4Cl at (d) time=3 days, (e) time=8 days and (f) time=17 days. The iso-

contour indicates where normalized concentrations exceed 0.5. 
 

Injection Spot

 
(a)     (b)     (c) 

Figure 4. 3-D ANN estimates of NH4Cl at (a) time=0 days and (b) time=19 days; and (c) flow/transport 
model prediction at time=19 days. The iso-contour indicates where normalized concentrations exceed 0.5. 
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