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Abstract

In this paper we describe a novel approximation method
for the Hamilton-Jacobi-Isaacs (HJI) equation that re-
sults in feedback control. The approximation is accom-
plished via a two-step successive Galerkin approximation
scheme. An application of the technique to the control
of the forward motion of an underwater vehicle is de-
scribed.

1 Introduction

While linear H, control theory has been successfully
applied to numerous applications, nonlinear H,, the-
ory has not. The reason is that there do not exist ef-
ficient methods for solving, or even approximating, the
Hamilton-Jacobi-Isaacs equation. The objective of this
paper is to describe preliminary results on using a suc-
cessive Galerkin approximation [1, 2] to approximate the
Hamilton-Jacobi-Isaacs equation. The approximation al-
gorithm results in control laws that approximate the H
control law on a subset (2 of the stability region of an ini-
tial stabilizing control.

2 The Main Result

Consider the nonlinear system given by the following
equations:

& = f(z) + g1(z)u + g2(z)w, f0)y=0 (1)
Y= h(l’), h(O) =0, (2)

where z € IR™ is the state of the system, u € IR™ is the
control variable, w € IR? is the disturbance signal and
y € IRP is the system output. Given v > 0, the system is
said to have L gain from w to (y©,u”)? less than v if
forall T >0

T T
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for all w € L2(0,T) and z(0) = 0, where || is the Eu-
clidean norm. The nonlinear ., optimal control prob-
lem is to find the smallest v* > 0 and an associated
control u* such that the Lo gain of system (1) from w
to (y7,u*T)Tis equal to v*. It is shown in [3], that the

control u, = —g?(m)%(m), where V,, satisfies
T T
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ox 272 Ox Oz

1oVl Lov,
“270: Y Tor

renders the Ly gain from w to (y”, ) less than or equal
to 7. Assume that v is such that the solution of equa-
tion (4) exists. Now consider the following algorithm.

1
+ 5hTh =0,V(0) =0, (4)

Initialization: Let u(®) (z) be a state-feedback control
that stabilizes the system & = f + g1u on ().

For i =0: 00, Set wgi’o) =0

For j =0: o0, Solve

M(f+ () (i,4) 2
ox giuy’ + gaw, )+ |l

+ ‘“(vz) = v? ‘wgw') ‘2 —0 ()
Set ") = — LT M5

This algorithm constitutes two nested iterations in pol-
icy space corresponding to the min —max problem as-
sociated with the nonlinear Ho, control paradigm [4].
The inner loop updates the disturbance variable for a

given control law, so that wg"""’) is the worst possible

disturbance for the control ug’). The outer loop updates
the control law to improve the performance for a given
worst case disturbance. The key is that the nonlinear HJI
equation has been reduced to a sequence of linear par-
tial differential equations (5) which we call Generalized-

Hamilton-Jacobi-Isaacs (GHJI) equations.



In order to obtain an implementable algorithm we must
approximate the solution of the GHJI equations such that
the control ugf) can be practically implemented in feed-
back form. The GHJI equation can be approximated
via a global Galerkin approximation scheme. Assum-
ing that V"9 (z) = S22, ¢tV ¢y (x), where {¢; 2, is
a complete set of basis functions on IR", let Vv(lI\J,) (z) =
leil cgi’j)qﬁl (z). The Galerkin approximation to equa-
tion (5) is given by Vy(lj\],) where the coefficients cgi’j ) are
the solution to the linear algebraic equations

(&.)T

/ 6V%N
Q 3:13

(f + g1ul?) + gow(P)) + |B?

12 ]2
] = 92wl ) $rdz =0, (6)
wherel = 1,..., N and ) is a compact subset of the sta-
bility region of the initial stabilizing control u(®). The

resulting feedback control can be written as uﬂf’jj\? =

LN (i) T 06,
—522=1 6 " 91 B

3 Illustrative Example

In this section the algorithm is used to synthesize a ro-
bust controller to control the forward motion of a under-
water vehicle in the presence of significant disturbances
and model uncertainty. The equations of motion which
describe the forward motion of the vehicle are given by:

(m+ma)i+bz|z| = F+d.

where z is the position of the vehicle, m is the mass (in
air) of the vehicle, m4 is added mass of the water sur-
rounding the vehicle, b is the square-law drag coefficient,
F is the applied thrust, and d is an external disturbance
due to currents or forces from an attached tether. Typi-
cally, values for m 4 and b are not known accurately due
to the difficulty in measuring them and due to the fact
that they are dependent on the operating conditions of
the vehicle. In this study, the values for m 4 is varied up
to £100% of its nominal value, while b is varied up to
+50%. Letting m4 and b represent the nominal values
of m4 and b and letting dm 4 = my4 —m4 and 0b = E—b,
the equations of motion can be written

(m + 14 + bi: |&| = F + d + 6bi | .

Putting the system into the standard form of equation (1)

we get
)

()= (o )+ (2
v B - m+bmA v |v| m+1ﬁu
() ()

m + ma

y=u.

Values for the model parameters used to design the con-
trol and simulate the performance of the closed-loop sys-
tem are based on those of the NEROV vehicle [5].
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Figure 1: State trajectories at the limits of parameter
uncertainty with the disturbance input.

In the ocean environment, disturbances are common-
place. The disturbance that a tether might apply under
actual operating conditions is d(t) = clip(100sin(2t))
where clip(z(t)) clips z(¢) at zero. Figure 1 shows the
response of the underwater vehicle system to distur-
bances (with initial condition 0.5 m/sec on the velocity
state and 0.25 m on the position state) for four different
parameter perturbations: (a) [—0mAmaz, —0Dmaz], (D)
[+6mAmaz; _6bma:t]; (C) [+6mAmaz> +6bmaz]; and (d)
[—0mM Amaz, +0Dmaz]. Though the parameter values are
varied significantly, the similarity of results demonstrate
the robustness and the ability of the controller to reject
significant disturbances.
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