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Detect and Avoid for Small Unmanned Aircraft Systems

using ADS-B

Laith R. Sahawneh, Matthew O. Du�eld, Randal W. Beard, Timothy W. McLain
Brigham Young University

With the increasing demand to integrate unmanned aircraft systems (UAS) into the National
Airspace System (NAS), new procedures and technologies are necessary to ensure safe airspace
operations and minimize the impact of UAS on current airspace users. Currently, small UAS face
limitations on their utilization in civil airspace because they do not have the ability to detect and
avoid other aircraft. In this article, we will present a framework that consists of an Automatic
Dependent Surveillance-Broadcast (ADS-B)-based sensor, track estimator, conflict/collision de-
tection, and resolution that mitigates collision risk. ADS-B o↵ers long range, omni-directional
intruder detection with comparatively few size, weight, power, and cost demands. The proposed
conflict/collision detection and planning algorithms for conflict/collision resolution are designed in
the local level frame, which is unrolled, unpitched body frame where the ownship is stationary at
the center of the map. The path planning method is designed to be multi-resolutional at increasing
distance from the ownship to account for both self-separation and collision avoidance thresholds.
We demonstrate and validate this approach using simulated ADS-B measurements.

INTRODUCTION

The number of applications of unmanned aircraft systems (UAS) is growing at a significant pace.
Consequently the need for UAS in the National Airspace System is compounding at a similar rate.
Governmental institutions are increasingly adopting UAS to perform tasks such as weather re-
search, search and rescue, wildlife surveillance, law enforcement, wildfire monitoring, and military
training. A report compiled by the US Department of Transportation on UAS service demands
estimates that by the year 2035 there will be approximately 70,000 UAS operated by federal,
state, and local departments and agencies (Unmanned Aircraft System (UAS) Service Demand
2015-2035 , 2013). In the private sector, the ever growing number of UAS applications includes
a wide variety of industries and tasks ranging from smoke stack inspection to cinematography to
crop dusting to oil exploration to news and tra�c reporting. The demand for UAS operations is
manifest by the approximately six hundred petitions as of March 2015 to allow UAS operations
under Section 333 of the FAA Modernization and Reform Act of 2012 (FAA Modernization and
Reform Act of 2012 , 2014).
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While UAS operations have increased as a result of the Section 333 exemptions approved since
September of 2014, the overall realized benefit of UAS operations is still a small fraction of the
demand. Additionally Section 333 exemptions are not a long-term solution to supporting UAS
in the National Airspace System. In laying the foundation for a long-term solution for UAS in
the NAS, the Federal Aviation Administration (FAA) has mandated that UAS be capable of an
equivalent level of safety (ELOS) to the see-and-avoid mandate for manned aircraft (Hottman,
Hansen, & Berry, 2009; Federal Aviation Administration, 2015). As a result, similar to a pilot’s
ability to visually scan the surrounding airspace for possible intruding aircraft and take action to
avoid a collision, a UAS must be capable of monitoring and avoiding other manned or unmanned
aircraft with which it may collide. This detect-and-avoid (DAA) manadate is the capability of a
UAS to remain well clear and avoid collisions with other air tra�c (George, 2009). It is desirable
that the DAA system should include both self-separation and collision avoidance functions. The
self-separation function is responsible to maintain the well clear distance by maneuvering the UAS
within a su�cient time to prevent activation of a collision avoidance maneuver. On the other hand,
the collision avoidance function should act within a relatively short time frame to maneuver the
UAS to prevent an intruder from penetrating the collision volume. The collision avoidance function
is engaged when all other modes of separation fail to prevent an imminent collision. It is the last
resort e↵ort to steer the UAS onto a safe course. Ultimately DAA capability will provide UAS an
equivalent level of safety to the current manned aircraft procedures.

In general, the DAA functionality can be broken into three sub-functions: detect and track,
conflict/collision detection, and avoidance. The main role of the first sub-function is to detect any
intruders and track the motion of the detected object. Not every aircraft that is observed by the
sensing system, however, presents a conflict or collision threat. Therefore the conflict/collision de-
tection system determines whether or not an approaching intruder aircraft is on a conflict/collision
course. The term conflict is associated with self-separation and it usually implies an event where
two aircraft come within 5 to 10 nautical miles over time horizons on the order of minutes (Paielli
& Erzberger, 1997; Hu, Lygeros, Prandini, & Sastry, 1999). On the other hand, the term collision
detection and avoidance is used for close proximity encounters over time horizons on the order of
tens of seconds (Angelov, 2012).

For small UAS weighing less than 55 pounds, the algorithms and hardware necessary for DAA
make up a notable portion of the available size, weight, and power (SWaP) resources. Scaling
traditional sensors down to small UAS sizes often requires compromises in range, accuracy, field of
view, or processing speed. Such compromises reduce the overall capability of the DAA system and,
consequently, decrease the assurance of self-separation/collision avoidance. Radar is one sensor
that is widely used for air-to-air detection in manned aircraft. One of the primary strengths of
radar is the ability to detect all objects regardless of cooperative sensor equipage or functionality.
In applying radar to small UAS, SWaP constraints impose restrictions on the hardware that
result in significant trade o↵s between radar range, bearing accuracy, and field of view. At a set
transmit power, improving the range requires a narrower beam, which also improves the bearing
accuracy. Narrowing the beam, however, reduces the field of view and consequently requires
additional antennas or a method to steer the beam. Demonstrated hardware that falls within the
SWaP limitations of small UAS is not currently suited to support a feasible set of range, bearing
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accuracy, and field of view requirements (Mackie, Spencer, & Warnick, 2014). Optical sensors
such as cameras are also candidate sensors for DAA on small UAS. Similar to radar, vision-based
intruder detection methods do not require cooperative communication from intruders. Flight
testing of visual methods has achieved intruder detection at 0.54 nmi from a small UAS (J. Lai,
Ford, Mejias, Shea, & Walker, 2012). Ground-based testing has resulted in detection up 4.3
nmi (Dey, Geyer, Singh, & Digioia, 2009). The flight tested range of 0.54 nmi is promising, but
not su�cient to provide enough avoidance time for high-speed intruders. Even with su�cient
range, visual methods inherently have low range accuracy. Adverse weather conditions such as
fog, clouds, precipitation, and sun glare can reduce overall visibility and significantly limit visual
intruder detection. While recent developments have improved visual intruder detection, such
methods are not yet suitable for DAA implementation on small UAS.

Automatic Dependent Surveillance-Broadcast (ADS-B) is a cooperative sensor that is a promis-
ing option for DAA on small UAS. It has been demonstrated in small UAS flight testing to have
an omni-directional range of 20 nmi (Moody & Strain, 2009), and due to the fact that the co-
operative information is shared over radio waves it is relatively una↵ected by adverse weather
conditions. An omni-directional antenna and low-power requirements for both transponder and
receiver hardware contribute to the promising characteristics of ADS-B. Two drawbacks of ADS-B
are its dependence on global positioning system (GPS) information and its fundamentally coop-
erative nature. While GPS coverage of the national airspace is very good, there are areas where
GPS information can become degraded such as narrow valleys or urban canyons. Furthermore,
the cooperative aspect of ADS-B requires widespread adoption of ADS-B technology to ensure
detect-and-avoid reliability. While the Federal Aviation Administration does not yet require all
aircraft to be equipped with ADS-B transponders, the 2020 mandate requiring all aircraft in A,
B, C, and some E class airspace to equip with ADS-B (Federal Aviation Administration, 2010b)
is a significant step.

There is also a considerable body of work on conflict/collision detection and risk assessment
methods. A survey of 68 conflict detection and resolution methods is presented in (Kuchar &
Yang, 2000), and a recent survey is conducted by (Albaker & Rahim, 2010; Angelov, 2012).
These di↵erent methods can be classified under four fundamental approaches: deterministic or
straight line, worst case, probabilistic, and flight plan sharing. Many of these methods stress the
deterministic approach, where a single trajectory of an intruder is predicted using straight-line
extrapolation. This is a reasonable approach when there is a perfect knowledge of the states of
the detected intruder. In practice, however, the uncertainty free model could lead to erroneous
prediction of the collision threat. While, many of these techniques are applicable for either conflict
or collision detection, an appropriate scaling in design parameters, assumptions, and thresholds is
required.

Similarly, airborne conflict/collision avoidance has gained considerable attention, and various
methods and approaches have been suggested in the literature. Among the many collision avoid-
ance algorithms, the local or reactive motion planning approaches are considered to be the most
suitable approach for UAS collision avoidance. This is because a collision event occurs over a
relatively short time horizon, which requires a planning method that promptly reacts to plan an
avoidance maneuver using limited computation power. Moreover, reactive planning methods do
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not require a priori knowledge of the environment. Reactive path planning is also well suited for
dynamic environments where sensor information is uncertain and incomplete. The most common
reactive path planning approaches are geometric-based guidance methods (Hyunjin, 2013; Ra-
jnikant, Saunders, & Beard W., 2012) and potential field methods (Lam, Mulder, Van Paassen,
Mulder, & Van Der Helm, 2009; Sahawneh, Randal W. Beard, & Bai, 2013). The sampling-based
methods, like Probability Road Maps (PRM) (Kavraki, Svestka, Latombe, & Overmars, 1996)
and Rapidly-exploring Random Trees (RRTs) (LaValle, 1998) have shown considerable success for
obstacle avoidance and path planning, especially for ground robots. They often require significant
computation time for replanning paths making them unsuitable for reactive avoidance. Recent
extensions to the basic RRT algorithm, however show promising results for uncertain environ-
ments and nontrivial dynamics (Luders, Karaman, & How, 2013; Kothari & Postlethwaite, 2013;
Luders, Karaman, Frazzoli, & How, 2010). Cell decomposition is another widely used path plan-
ning approach that partitions the free area of the configuration space into cells, which then are
connected to generate a graph (Mirolo & Pagello, 1995). Generally, cell decomposition techniques
are considered to be global path planners that require some a priori knowledge of the environment.
A feasible path is found from the start to goal configuration by searching the connectivity graph
using search algorithms, like A

⇤ or Dijkstra’s algorithm (Dijkstra, 1959).
This article presents a complete detect-and-avoid solution for small unmanned aircraft includ-

ing reliable intruder sensing, multi-target tracking and estimation, conflict/collision detection, and
self-separation/collision avoidance. As shown in Figure 1, the ADS-B Out transmissions are re-
ceived by a dual-link ADS-B In receiver. This receiver decodes the raw signal and passes it to
the intruder tracker/estimator. In the estimator the intruder state measurements are processed to
have a coherent set of units and then passed through a Kalman filter. After Kalman filtering, the
intruder position and velocity estimates are projected forward in time to identify possible conflicts
or collisions. If either a conflict or collision threat is detected, the intruder position and velocity
estimates and an activation flag are passed into the self-separation/collision avoidance algorithm.
Once either the conflict or collision level of the avoidance logic has been activated a new, conflict
and collision-free path is generated. In the case of long-range intruders that pose a conflict risk the
ownship takes less aggressive behavior due to the longer allowable reaction time. For short-range
collision risks the ownship plans a much more aggressive action to quickly reduce the possibility
of a collision. The ultimate output of the DAA system is a revised set of ownship waypoints that
is free from conflict and collision risks. The system shown in Figure 1 and presented in this article
is a complete DAA system for small UAS. It is viable for both fixed wing and multirotor aircraft,
and could reasonably be extended for larger UAS outside of the small UAS definition.

The purpose of this article is to explore ADS-B as a sensor for detect-and-avoid on small
unmanned aircraft and to demonstrate conflict/collision detection and self-separation/collision
avoidance methods that take advantage of ADS-B characteristics. For the methods and simu-
lations presented, we assume that the intruder aircraft are equipped with ADS-B Out, in other
words the ability to transmit their cooperative information. The small UAS ownship is assumed
to have ADS-B Out and dual-link ADS-B In. Thus it is capable of both transmitting its cooper-
ative information and receiving the cooperative information from all other aircraft. Consequently
the responsibility of conflict detection, self-separation assurance, collision detection, and collision
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Figure 1: Proposed detect-and-avoid system structure diagram.

avoidance lies entirely on the small UAS ownship. Although these assumptions do not exactly
match the requirements of the FAA 2020 mandate, they do represent a condition where full inte-
gration of UAS into the NAS would be possible. Thus in addition to presenting a DAA system for
small UAS, we submit that complete ADS-B equipage requirements would meet the wide demand
for significantly increased UAS operations in the NAS.

ADS-B ON SMALL UAS

ADS-B is rapidly becoming a major tool in the air tra�c management system. In 2010 the
FAA issued a final rule for the implementation of ADS-B on manned aircraft (Federal Aviation
Administration, 2010b). This ruling mandated ADS-B Out in key parts of the NAS. The FAA
Modernization and Reform Act of 2012 further directed the FAA to make plans for the adoption
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of ADS-B In technology (FAA Modernization and Reform Act of 2012 , 2014). As a result of the
level of adoption and capability of ADS-B technology, ADS-B is an attractive sensor for detect
and avoid e↵orts on UAS.

This section provides a description of ADS-B and the associated regulations as they relate
to detect and avoid. A statistical characterization of ADS-B error and drop out is derived from
the current FAA regulations. Further, we explore the capability of ADS-B as a DAA sensor by
examining key characteristics and limitations of ADS-B.

Characteristics and Regulations of ADS-B

ADS-B is a cooperative sensor that supports the exchange of a wide variety of information over
long ranges. Information that is typically exchanged includes aircraft state information, state
error estimates, aircraft identifiers, and aircraft operating indicators. This exchange occurs ap-
proximately once per second (Cirillo, 2005). To exchange this information, two sets of hardware
are necessary, ADS-B In and ADS-B Out. As the names suggest, ADS-B In allows for informa-
tion to be received, and ADS-B Out supports the broadcasting of information. The hardware
performing these two functions can be sold separately or as a single unit. In addition to the In or
Out capability of ADS-B hardware, ADS-B transmissions can occur over two di↵erent frequencies,
1090 MHz and 978 MHz (Federal Aviation Administration, 2010b). The 1090 MHz Extended
Squitter (ES) frequency is an internationally recognized ADS-B frequency. It is intended that this
frequency be used for most commercial and high-performance aircraft. The 1090 MHz frequency
is the same frequency used for current Mode S transmissions. The Extended Squitter designation
indicates a message packet that is much longer than the standard Mode S packet. This allows
for the transmission of much more information than what is exchanged via secondary surveillance
radar (SSR). The 978 MHz Universal Access Transceiver (UAT) frequency is unique to United
States airspace. It is primarily intended for private and low-altitude aircraft. ADS-B Out hard-
ware is specific to one of these two frequencies. The airspace class in which an aircraft will operate
dictates the required frequency. ADS-B In hardware also is specific to a particular frequency,
but dual-link hardware that is capable of receiving transmissions on both frequencies is becoming
increasingly available.

FAA regulations set forth in the 2010 Final Rule dictate most aspects of ADS-B operation. The
message elements, airspace class, transmit power, latency, and error characteristics are all among
the aspects of ADS-B that are regulated by the FAA. While these regulations do add complexity
to the implementation and operation of an ADS-B system, they also provide a consistent basis
upon which ADS-B can be evaluated for DAA on small UAS.

Message Element Requirements

The message elements exchanged by ADS-B transmissions provide a view of the transmitting
aircraft’s status. Table 1 shows a list of these elements that is arranged by functional category. The
state elements transmitted are the latitude and longitude, barometric altitude, geometric altitude,
and velocity. A certified position source must be used for latitude and longitude information.
Typically a Satellite Based Augmentation System (SBAS) source is used. The barometric altitude
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Table 1: Required set of message elements for ADS-B Out.

State Elements Identification Elements Error Elements Other Elements

Latitude Mode 3/A Transponder Code NACp Emitter Category
Longitude Call Sign NACv Emergency Code
Barometric Altitude IDENT NIC TCAS II equipped
Geometric Altitude ICAO 24-bit address SDA TCAS II Advisory
Velocity Length and Width SIL ADS-B In Equipped

is provided as the primary altitude as it is typically more accurate than the GPS-derived geometric
altitude. The velocity transmitted is a ground reference velocity in knots and can be given as a
combination of north and east velocity or speed and heading depending on whether the aircraft is
on the ground or airborne (Federal Aviation Administration, 2015)(Radio Technical Commision
for Aeronautics, 2009). If the aircraft is airborne, then the vertical velocity is given in feet per
minute. On the other hand if the aircraft is on the ground, then the length and width of the
aircraft is given instead of the vertical velocity.

The identification information provided by ADS-B permits simple identification of the trans-
mitting aircraft. While a detailed explanation of each of the identification elements listed in
Table 1 is beyond the scope of this paper, it is useful to note that each of these elements provides
a unique identifier for the aircraft.

The message elements detailing the error in the state information are also shown in Table 1.
Navigation Accuracy Category for Position (NACp) is a value that correlates to an Estimated
Position Uncertainty (EPU) bound. The EPU bound used is defined as the “radius of a circle,
centered on the reported position, such that the probability of the actual position being outside
the circle is 0.05.” (Radio Technical Commision for Aeronautics, 2009) The FAA requires that the
NACp must be greater than 8 which corresponds to an EPU < 303.8 ft (Radio Technical Com-
mision for Aeronautics, 2009)(Federal Aviation Administration, 2015). The Navigation Accuracy
Category for Velocity (NACv) is similar in that it is a value that corresponds to a error bound on
the transmitted velocity. This bound is a 95% bound in that there is less than 0.05 probability
that the error between the true velocity and the transmitted velocity exceeds the NACv bound.
The FAA requires the NACv value to be greater than or equal to 1 which corresponds to the trans-
mitted velocity error being less than 19.4 kn. Navigation Integrity Category (NIC) is a value that
corresponds to an integrity containment radius, Rc. It signifies the maximum position error such
that the probability that no integrity alert is indicated is less than the Source Integrity Level (SIL).
In other words this radius is the value where there is an SIL probability that the measurement has
been identified as a low integrity (possibly erroneous) measurement. This value must be greater
than 7 which corresponds to Rc < 1215.2 ft. The SIL probability assumes no avionics faults, and
the FAA mandates that SIL=3 which corresponds to probability  1 ⇥ 10�7 per sample or per
hour. The distinction between a per sample or per hour probability is made in an ADS-B message
field known as SILsupp. To account for errors due to avionics faults, the System Design Assurance
(SDA) is a value that corresponds to the “...probability of an ADS-B system fault causing false or
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misleading information to be transmitted.” (Radio Technical Commision for Aeronautics, 2009)
“The ADS-B system includes the ADS-B transmission equipment, ADS-B processing equipment,
position source, and any other equipment that processes the position data transmitted by the
ADS-B system.” (Radio Technical Commision for Aeronautics, 2009) This information includes
latitude, longitude, velocity, accuracy metrics, or integrity metrics. The FAA mandates that the
SDA value be 2 which corresponds to a probability  1 ⇥ 10�5 per flight hour (Radio Technical
Commision for Aeronautics, 2009)(Federal Aviation Administration, 2015). While both the SDA
and the SIL report a probability of exceeding the NIC, it is important to note that the SIL as-
sumes no avionics fault, but the SDA is the probability that an avionics fault is the cause of the
reported error. Elements in the fourth column, labeled as Other Elements, provide information
concerning the operational status of the aircraft. The first field specifies the emitter category
of the transmitting aircraft. The emitter category indicates the type of aircraft and gives some
indication of aircraft weight, size, and maneuverability. The emergency code is the second item in
the fourth column. This code indicates if there is an emergency on-board the transmitting aircraft
such as a medical emergency, minimum fuel, unlawful interference, or a downed aircraft. Such
information is useful both to identify aircraft that need special attention from air tra�c control
services and for search and rescue e↵orts in a downed aircraft situation. The last three fields listed
in column four of Table 1 indicate the equipage and activity of cooperative sensors. The third
field indicates whether Tra�c Collision Avoidance System (TCAS) is operable on the transmitting
aircraft. Field four extends this and reports whether a tra�c advisory or resolution advisory is in
e↵ect. The fifth field indicates whether the transmitting aircraft has ADS-B In capability.

Airspace and Power Requirements

The 2010 Final Rule on ADS-B mandated that by the year 2020 all aircraft in A, B, C, and
some E class airspace be equipped with ADS-B Out. There is no mandate for ADS-B In. The
FAA further mandated airspace where each of the two frequencies of ADS-B Out, 1090 MHz and
978 MHz, can be used. Class A airspace requires 1090 MHz. Where ADS-B is required below
18,000 ft, either 1090 MHz or 978 MHz is acceptable. Both B and C class airspace require ADS-B.
ADS-B is also required within 30 nmi of a Class B airport reaching from the surface up to 10,000 ft
mean sea level (MSL). Above B and C class airspace extending up to 10,000 ft MSL, ADS-B is
required. E class airspace requires ADS-B from 10,000 ft MSL and above with the exception of the
surface to 2,500 ft above ground level (AGL). In other words, if 0 ft AGL is above 10,000 ft MSL
then there is a 2,500 ft region above ground level where ADS-B is not required. Finally ADS-B
is required above 3,000 ft MSL over the Gulf of Mexico within 12 nmi of the coast of the United
States (Federal Aviation Administration, 2015). Figure 2 summarizes the airspace requirements
for ADS-B Out (Federal Aviation Administration, 2012).

The range of ADS-B transmissions is largely dependent on the transmit power of the ADS-
B transponder. FAA regulations mandate di↵erent levels of transmit power for 1090 MHz and
978 MHz. For the 978 MHz frequency, there are three transmit power levels. Each level corresponds
to a minimum transmit power and consequently a transmission range. The 1090 MHz frequency
also has three levels which correspond to a minimum transmit power and range.
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Figure 2: Diagram of airspace where ADS-B Out is required
(Federal Aviation Administration, 2012).

While transmit ranges vary as
a result of frequency congestion,
antenna di↵erences, and other
external factors, estimated, air-
to-air ranges for the 978 MHz
frequency extend from 10 nmi to
90 nmi and for the 1090 MHz
estimated ranges extend from
10 nmi to 140 nmi (Radio
Technical Commision for Aero-
nautics, 2009)(Radio Techni-
cal Commision for Aeronautics,
2011). Air-to-ground or ground-
to-air transmissions have a much
longer anticipated range as a re-
sult of more sensitive receivers
and more powerful transponders
that are available for ground-
based equipment.

Error Characterization

In addition to the error metrics outlined in Table 1, ADS-B is subject to several additional sources
of error namely latency error, resolution error, and message success rate (MSR) error. These
additional sources of error, along with those previously defined in Table 1, play a role in defining
an error characterization of ADS-B.

Due to processing needs, data latency is inherent in the ADS-B system. This latency falls into
two categories. Total latency is the time from measurement to transmission and must be less than
2.0 s. Of those 2.0 s, all but 0.6 s must be compensated for by the ownship. In compensating
for latency the transmitting aircraft must “[extrapolate] the geometric position to the time of
message transmission.” (Federal Aviation Administration, 2015) The uncompensated 0.6 s of the
total latency is referred to as uncompensated latency (UL) (Federal Aviation Administration,
2015). It is the uncompensated latency that is the primary source of latency error.

Resolution error results from encoding state information into an ADS-B message where the
information is represented by discrete bits. Table 2 shows the resolution limits for an ADS-B
message (Radio Technical Commision for Aeronautics, 2009).

ADS-B regulations require that receivers are capable of supporting a given message success
rate. For messages on the 978 MHz frequency this is 10%, and for messages on 1090 MHz, this
is approximately 15%. These success rates imply that one out of every 10 or 3 out of every 20
messages is not received, thus resulting in message success rate error.

The NACp, NACv, NIC, SIL, SDA, latency error, resolution error, and MSR error provide a
basis from which to derive an error characterization to model ADS-B. The error characterization
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presented here will focus on state information and will use statistical methods to model the error of
the actual measurements rather than the accuracy of individual bits. Given the NACp and NACv,
the horizontal position and velocity can be modeled as a Rayleigh random process. From the
Rayleigh process, the 95% bound on both the position and velocity error can be used to derive the
variance for a Gauss-Markov process with zero-mean Gaussian noise for the north and east position
and velocity (Mohleji & Wang, 2010)(Papoulis & Pillai, 2002). For derivation of the variation
of a Gauss-Markov process in accordance with FAA requirements we use, NACp=303.8 ft and
NACv=19.4 kn. Let X and Y each represent a Gauss-Markov process with zero-mean Gaussian
noise such that X ⇠ N(0, �2) and Y ⇠ N(0, �2). R is a Rayleigh distributed variable such that
R ⇠ Rayleigh(�) where � is derived from the 95% NAC bound. Thus it can be shown that the
variance is given by �

2 = �NAC

2

2 ln(0.05) . The NAC variance is considered generally for both NACp and
NACv. Substituting values for NACp and NACv respectively results in �

x

= �

y

= 124 ft and
�

vx

= �

vy

= 8 kn. From this analysis, it is determined that the horizontal north and east position
error can be modeled as a zero-mean Gaussian distribution with a standard deviation of 124 ft and
the north and east velocity can be modeled as a zero-mean Gaussian distribution with a standard
deviation of 8 kn.

Table 2: Resolution limits for ADS-B mes-
sage information.

Message Element Resolution

Latitude 0.5 deg
Longitude 0.5 deg
Altitude 25 ft
Horizontal Velocity 1 knot
Vertical Velocity 64 feet/min

Correlation of errors in the position are accounted
for by a Gauss-Markov model. Since the error corre-
lation is a result of the correlation of GPS errors, the
time constant used to simulate GPS errors is used to
simulate ADS-B error correlation also. In the follow-
ing equation, T

s

=1 s and k

GPS

=1/1100 s (Beard &
McLain, 2012). Using position north, X, as an exam-
ple, X[n+ 1] = e

�k

GPS

T

s

X[n] +N(0, �2
u

). It is neces-
sary to calculate �

2
u

from the variance of X. Mohleji
and Wang put forth a method to do this (Mohleji &
Wang, 2010). Given that T

c

is the time of correlation,
�

2
u

= (1� e

�2/T
c)�2

x

. In the particular case of ADS-B
where �

x

= �

y

= 124 ft and T

c

= 1100 s, �
u

=
p
(1� e

�2/1100)�2
x

= 5.28 ft. This is the variance
of the Gaussian noise necessary for the zero-mean Gaussian random variable in the Gauss-Markov
process with standard deviation � = 124 ft.

FAA regulations require that ADS-B pressure altitude reporting equipment must report an
altitude that is within 125 ft of the true altitude with 95% confidence (Federal Aviation Admin-
istration, 2015)(Federal Aviation Administration, 2010a). Let the pressure altitude error, A

pres

,
be a zero-mean Gaussian random variable such that A

pres

⇠ N(0, �2
Apres

). It can then be shown
that �

Apres

= 75.9 ft. For geometric altitude reports the error is typically less than 147.6 ft with
95% certainty (Radio Technical Commision for Aeronautics, 2009)(Radio Technical Commision
for Aeronautics, 2011). Assuming that the geometric altitude error, A

geo

, is a zero-mean Gaussian
random variable such that A

geo

⇠ N(0, �2
Ageo

), it can be shown that �
Ageo

= 89.8 ft. In addition
to the noise of the pressure reporting sensors, the encoding of barometric altitude information has
a resolution of 25 ft and geometric altitude information has a resolution of 45 ft. This resolution
introduces some additional error.
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The error in the ADS-B reported vertical velocity varies with increasing vertical rate. For
vertical rates between ±500 ft/min the vertical rate tolerance is ±46 ft/min. For rates outside
that range, the tolerance is 5% of the vertical rate (SAE International, 1996)(Radio Technical
Commision for Aeronautics, 2003). Given the assumption that these tolerances are 95% bounds,
it can be shown that the standard deviation of the climb rate is 27.96 ft/min for vertical rates
of ±500 ft/min. Additionally the vertical rate error is e↵ected by the resolution of the ADS-B
message encoding which is 64 ft/min.

The loss of valid ADS-B signal can be modeled using SIL, SDA, and MSR error. FAA regula-
tions stipulate that position measurements outside the reported NIC can only be transmitted once
per 107 transmissions. The SDA requirements permit values outside the NIC with a probability
of 10�5. MSR error requirements allow for a 10% or 15% message loss rate. These probabilities
of erroneous or lost messages provide a method with which to model ADS-B signal dropout.

The error characteristics detailed above make it possible to model the error in ADS-B reported
horizontal position, altitude, horizontal velocity, and vertical velocity. This results in a method
capable of simulating ADS-B messages. It also provides a basis for estimating ADS-B messages
and developing conflict detection, collision detection, separation assurance and collision avoidance
methods.

ADS-B as a DAA Sensor

The characteristics and requirements of ADS-B make it a capable sensor for DAA on small UAS
in the National Airspace System. One key aspect of ADS-B that makes it feasible for use on small
UAS is the availability of ADS-B receivers the meet the (SWaP) constraints of a small UAS. The
Clarity ADS-B receiver provides a dual-link ADS-B receiver that is 2.5 in by 2.5 in by 1.5 in, weighs
0.344 lbs, and consumes 2.4 Watts of power. Freeflight Systems has also recently introduced the
RANGR RXD which is a dual-link ADS-B receiver. While slightly larger at 5 in by 5.75 in by
1.7 in, it still weighs less than one pound and consumes approximately 2.4 Watts of power. These
hardware options both provide a suitable ADS-B In solution for small UAS.

Another key advantage of ADS-B is the long range at which information is available. While
there is a significant amount of variation in the range of ADS-B signals, the shortest expected range
is 10 nmi. Flight tests of ADS-B units suitable for small UAS have demonstrated reliable ranges
of up to 80 nmi (Moody & Strain, 2009). Additionally the long range of ADS-B is advantageous
in that the quality of information transmitted over ADS-B does not degrade with range. Thus the
accuracy of ADS-B is not dependent on the size, power, or range of the transmitter and receiver
units. This is a significant advantage over radar and optical sensors, and makes conflict detection
and separation assurance path planning possible at long ranges.

A compelling result of the long range availability of ADS-B messages is the time to loss of
separation (TLOS) and time to collision (TC). Figure 3 shows the TLOS and TC for head-on
and over-taking scenarios given di↵erent intruder aircraft and various small UAS ownships. The
detection range is set to the FAA required minimum of 10 nmi, and the separation distance is
0.66 nmi (Cook, Brooks, Cole, Hackenberg, & Raska, 2015). For this table a collision is defined as
a violation of a 500 ft collision radius. The speeds listed are the maximum speeds for each aircraft.
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Ownship
RQ-11B Raven

(43 kn)
ScanEagle

(80 kn)
DJI Phantom 1

(19 kn)

In
tru

de
rs

Model
Max. 
Speed

(kn) Head-on 
Scenario 

Over-Taking
Scenario

Head-on 
Scenario 

Over-Taking
Scenario

Head-on 
Scenario 

Over-Taking
Scenario

F-35 1042 31.0/32.3 33.2/34.6 30.0/32.2 34.3/35.7 31.7/33.0 32.8/34.2

Boeing 747 533 58.4/60.9 66.8/69.6 54.9/57.2 71.2/74.2 60.9/63.5 65.3/68.0

Cessna 
TTX 240 119.3/124.3 160.2/166.9 105.5/109.9 188.0/195.9 130.1/135.5 151.8/158.1

Cessna
SkyHawk 126 198.9/207.1 346.0/360.4 163.2/170.0 508.8/530.0 230.7/240.3 308.9/321.8

Scan
-Eagle 80 274.6/286.0 665.4/693.1 211.0/219.8 1730.1/1802.0 339.2/353.3 540.7/563.1

RQ-11B
Raven 43 393.2/409.5 2471.5/2574.3 274.6/286.0 - 540.7/563.1 1330.8/1386.2

Time to Loss of Separation (s) / Time to Collision (s)

Figure 3: Table outlining the time to loss of separation and time to collision for ADS-B given
10 nmi detection range.

To identify a true worst-case scenario in the over-taking intruder configuration, the speed used for
the ownship is a cruising speed rather than a maximum speed. The figure demonstrates the value
of the long range detection available through ADS-B. Even for a worst-case scenario where an
F-35 type aircraft is flying directly at a small UAS, the minimum TLOS is 30.0 s. This provides
a su�cient amount of time for the UAS to perform an avoidance maneuver.

ADS-B is a very capable sensor for DAA on small UAS, but it is not without limitations.
One notable limitation of ADS-B is that it is a cooperative technology. This means that to have
visibility of other aircraft they also must be equipped with ADS-B. Given the FAA mandate that
only some aircraft need to be ADS-B compliant, there certainly will be aircraft in lower altitudes
that are not ADS-B equipped. While these lower altitudes are prime locations for small UAS
operations, the capability of ADS-B presented in this paper provides motivation to implement
an ADS-B equipage requirement for all aircraft. An additional technology that could be used
to account for uncooperative aircraft, birds, and ground based obstacles is ADS-B radar. This
technology is essentially a phase modulated ADS-B signal that is used as a radar and traditional
ADS-B transmission simultaneously (C. Lai, Ren, & Lin, 2009). This would allow for visibility of
uncooperative intruders. The method does require additional processing of the ADS-B signal and
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some additional hardware, but it could be practical for UAS. While an in-depth discussion of this
technology is outside the scope of this paper, it is promising.

Another limitation of ADS-B is that it is heavily dependent on line-of-sight availability of GPS
and ADS-B transmissions. Without GPS information, ADS-B transponders are unable to transmit
usable position information. Air-to-air ADS-B transmissions also require line-of-sight visibility for
reliable exchange of information. One demonstrated solution to the line-of-sight limitation is the
use of satellite-based ADS-B repeaters. This system uses ADS-B transceivers on satellites to
gather and re-transmit ADS-B signals. This system allows for over the horizon visibility of other
aircraft and could be particularly valuable in mountainous or heavily contoured terrain. Again
the validation of this technology is beyond the scope the research presented in this paper.

The cost of ADS-B equipage may pose a limitation. Certified ADS-B Out hardware costs
typically range from $1,500 to $25,000 USD. ADS-B In hardware costs range from $400 to $3,000.
While these costs are not necessarily prohibitive, they are significant especially for many of the
small-to-medium-sized companies that plan to use UAS for commercial purposes. For ADS-B
to be a fully viable, accessible technology, hardware costs need to decrease. As the FAA 2020
mandate approaches an increasing number of companies are producing ADS-B hardware, and the
cost of hardware is trending downward.

Ultimately the message elements, airspace and range requirements, hardware availability, and
error characteristics of ADS-B make it a viable sensor for detect and avoid on small UAS in the
NAS. While there are limitations to ADS-B sensors, development of promising solutions is reducing
the impact of those limitations. As a DAA sensor, ADS-B o↵ers all the information necessary to
detect conflicts, maintain separation, and detect and prevent collisions.

CONFLICT/COLLISION DETECTION

The goal of conflict/collision detection is to identify intruder aircraft and determine the collision
risk that they pose to the ownship. To do this, it is necessary to track and estimate the intruder
states and extrapolate those states forward in time to identify possible future conflicts/collisions.
In this section, we address the key components of a conflict/collision detection algorithm.

ADS-B Signal Processing

Estimation of the ADS-B messages is capable of mitigating some of the error in the transmitted
measurements. The primary goal of estimation is to account for missed measurements that result
from signal drop out or frequency congestion. Additionally, by filtering and estimating ADS-B
measurements, it is possible to account for grossly erroneous measurements such as would be
occasionally permitted through the SIL and SDA probabilities, smooth measurement noise that
is typical of any real sensor, and estimate the transmitting aircraft state at a rate greater than
the 1 Hz measurement rate (Krozel, Andrisani, Ayoubi, Hoshizaki, & Schwalm, 2004). Due to
the fact that ADS-B messages contain an aircraft identifier such as the call sign or International
Civil Aviation Organization (ICAO) address, there is no need for data association methods. This
greatly simplifies the tracking task.
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We use a Kalman filter to process ADS-B In tracks. The Kalman filter o↵ers a linear estimator
that is computationally e�cient. The prediction model in our implementation is a constant-jerk
model capable of accounting for high maneuverability of the intruders (Mehrotra & Mahapatra,
1997). While it is not expected that fixed-wing aircraft will maneuver aggressively, more aggressive
maneuvers such as would be characteristic of a rotor-craft or small UAS must also be accounted
for in the model. The states of the filter are position north, position east, altitude, velocity north,
velocity east, climb rate, acceleration north, acceleration east, vertical acceleration, jerk north, jerk
east, and vertical jerk. The measurements used to update the estimator states are the position
north, position east, altitude, and climb rate. In updating the states, the transmitted horizontal
velocities are ignored as a result of transmission errors. Recorded ADS-B data sets from the NAS
have revealed that on rare occasions the north and east velocities are transmitted in reverse order
resulting in an apparent velocity that is perpendicular to the actual direction of travel of the
transmitting aircraft. Updating the Kalman filter with only a subset of measurements mitigates
this problem and results in equally accurate estimation after a brief transient estimation period
of several measurements.

Each transmitting aircraft broadcasts an ADS-B message approximately once per second; how-
ever, the broadcasts can occur at any point with in a given second. Thus the Kalman filter must
run at a higher rate than 1 Hz to account for the di↵erent times at which a transmission may be
received. Our Kalman filter implementation runs at 10 Hz, and each received ADS-B message is
assigned to the nearest discrete time-step.

A set of measurement gates is necessary to account for message dropout and grossly erroneous
measurements. If at a given time step there is no measurement, only the Kalman filter prediction
occurs. The update step occurs only when there is a valid measurement. The validity of the
horizontal position and altitude measurements is determined separately due to the fact that in
ADS-B messages the horizontal position and altitude can be updated at slightly di↵erent times.
A horizontal position is determined to be valid if it is confirmed to be a new position and if the
innovation falls with in a 5 Mahalinobis distance bound. An altitude/climb rate measurement is
valid only if it falls with in a 5 Mahalinobis distance bound.

Each track is initialized using the first measurement from a given transmitting aircraft. The
initial track covariance is initialized using the error levels given by the reported NACp and NACv
and the error characterization described earlier. At each time step, the track covariance is mon-
itored to ensure that the track is still valid. If the covariance of the track grows such that the
position uncertainty in the track is greater than the NIC bound, then the track is determined
to be invalid. Should another measurement from that aircraft be received, the track would be
re-initialized.

The Kalman filter is capable of overcoming ADS-B message drop out and rejecting grossly
erroneous measurements. Additionally it smooths the ADS-B signal and provides estimates of
transmitting aircraft at a much faster rate than the 1 Hz measurement update rate. This ultimately
allows for more accurate and more timely conflict and collision detection and resolution.
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Conflict/Collision Risk Assessment

The main concern of the air tra�c management system for manned aviation is safety, which is
typically measured by number of incidents that happen when distance between aircraft becomes
closer than a predefined safe distance to one another. This safety distance is quantified by means
of a minimum allowed horizontal and vertical spacing (Prandini, Hu, Lygeros, & Sastry, 2000).
As depicted in Figure 4, the collision volume or the protection zone is a virtual fixed-volume-
based boundary. The general choice of this volume is a truncated cylinder of radius d

c

and height
h

c

centered at the UAS current location. Current FAA regulations (14 CFR §91.113) have no
explicit values for the collision volume (Federal Aviation Administration, 2015). Yet generally,
500 ft in radius and ±100 ft in height is cited in the literature (Boskovic, Jackson, & Mehra, 2013;
George, 2009). A near-midair collision (NMAC) is defined as an incident that occurs when two
aircraft pass less than 500 ft horizontally and 100 ft vertically from each other. On the other
hand, the collision volume threshold is a variable boundary that is dependent on the encounter
geometry, time, distance to intruder and maneuverability (Consiglio, Chamberlain, Munoz, &
Ho✏er, 2012; George, 2009). As shown in Figure 4, a self-separation volume is added to the
airspace volumes to provide a minimum practical separation distance between the UAS and any
intruder, and to compensate for unexpected maneuvers by the intruders (Consiglio, Carreno, &
Williams, 2005). In the context of DAA, the self-separation boundary is often called well clear
to coincide with the FAA regulations (Cole et al., 2013). The self-separation volume is typically
much larger than the collision volume but it may vary in size with operational area and airspace
class. The self-separation threshold is then defined as the threshold boundary at which the UAS
performs a maneuver to prevent the intruder from penetrating the self-separation volume. Hence,
the addition of the self-separation volume provides a performance goal that is analogous to the
collision volume.

Collision volume

𝑑𝑑𝑐𝑐

ℎ𝑐𝑐

𝑑𝑑𝑠𝑠

Collision Avoidance 
Threshold

Self-Separation Volume

Self Separation Threshold

Self-separation 
(Conflict 

Avoidance)

Collision 
Avoidance

“Well Clear boundary”

ℎ𝑠𝑠

Figure 4: Definition of the DAA airspace volumes and thresholds.
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Figure 5: Proposed detect and avoid time line.

A time sequence of events for a DAA system, similar to the proposed sequence in Geyer, Singh,
& Chamberlain, 2008, is shown in Figure 5. The minimum time required to perform an evasive
maneuver and avoid the intruder by a safe distance determines the distance at which the UAS
must detect the intruder. In other words, the detection of a collision threat must be done at a
minimum range allowing the ownship to execute the maneuver with su�cient time that results in
the minimum required safe distance from the intruder. Accordingly, the required sensing distance
can be given as

dr = v

c

t

daa

, (1)

where v

c

is the closing speed, and t

daa

is the detection time required by the DAA system to be
able to track the intruder, detect a collision, plan an avoidance maneuver and actually fly it.
According to the time sequence shown in Figure 5, the t

daa

is the sum of the computation time t

c

and the reaction time t

r

. The estimate of the time required for a manned aircraft to consistently
avoid midair collisions range from 5 s to 12.5 s (Collision Avoidance Functional Requirements
for Step 1 , 2006) . This time duration does not include the time required to perform an actual
maneuver initiated by the collision avoidance system, and the estimate was for two jet aircraft
with a closing speed of about 956 kn (Collision Avoidance Functional Requirements for Step 1 ,
2006). The minimum detection range can be derived based on collision geometry (Geyer, Singh,
& Chamberlain, 2008; Hyunjin, 2013) or combining worst-case scenario analysis with extensive
Monte Carlo simulations (Boskovic et al., 2013).

14 CFR does not provide any quantitative visual detection requirements for manned aviation
other than pilots responsibility to be vigilant so as to see and avoid other aircraft according to the
right-of-way rules (14 CFR §91.113). The FAA Aeronautical Information Manual (AIM) suggests
that proper scanning of the sky is a key factor in collision avoidance. It should be used continuously
by the pilot to cover all areas of the sky visible from the cockpit. On-board collision detection
and avoidance instruments like the TCAS-II and the Air Tra�c Control (ATC) support e�ciently
improve the pilots virtual visibility and awareness of surrounding air tra�c and e↵ectively resolve
conflicts to a large extent.

The purpose of computing the collision risk is to have an alert threshold value above which
the collision avoidance system is triggered to initiate an evasive maneuver to avoid an imminent
collision with the detected intruding aircraft. There are a number of approaches to evaluate the
future collision risk of an encounter situation. Most of these approaches can either be classified as
geometric or probabilistic, where each approach has di↵erent techniques to deal with errors. In
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the geometric approach, the collision risk is described based on the geometric relationship between
aircraft. Aircraft trajectory predictions are based on linear projections of current aircraft states
such that the uncertainty of the predicted trajectory is translated into areas around the predicted
trajectory referred as to safe zones. Linear projections can be computationally e�cient. Predic-
tion errors are negligible over short time horizons (Geser & Muoz, 2002) or assumed known when
flight plans are communicated (Munoz, Narkawicz, & Chamberlain, 2013). On the other hand,
the probabilistic methods estimate the probability of collision based on a probabilistic model of
future intruder dynamics. This event probability is then compared to a certain threshold above
which the aircraft is deemed to be on a collision path. These probabilities can be estimated us-
ing an approximate analytical solution (Paielli & Erzberger, 1997), numerical approximation (van
Daalen & Jones, 2009), or Monte Carlo methods (Jackson & Boskovic, 2012). In general, the prob-
abilistic approaches are computationally intensive but su↵er less from false alarms than geometric
approaches.

Algorithm 1 Conflict/collision detection algo-
rithm
1: if 9t 2 (0, T ] such that

• p
r

< d

th

or (Intruder is converging hor-
izontally and t

cpa

 ⌧

th

) and

• |h

r

| < h

th

/2 or (Intruder is converging
vertically and t

h

c

 ⌧

th

)

then
2: if d

cpa

< d

c

and
��
h

r

cpa

��
< h

c

/2 then
3: conflict/collision detected at time t

4: else
5: no conflict/collision detected at time t

6: end if
7: end if

Our approach is based on evaluating both
near-term threats that need immediate action
and long-term conflicts that can be smoothly
resolved so that they will not become a close
proximity threat. Similar to the resolution ad-
visory concept and collision detection logic im-
plemented by the current operationally man-
dated version of TCAS (TCAS II, Version
7.0) (Munoz et al., 2013), the proposed con-
flict/collision detection approach constructs a
virtual volume surrounding the ownship UAS,
that, when penetrated by the intruder, trig-
gers the conflict/collision detection algorithm.
These virtual boundaries are the collision vol-
ume threshold and the self-separation threshold
shown in Figure 4. In the TCAS framework,
this virtual volume is called the threat bound-
ary, and its size is based on the ⌧ criterion,
which is a metric that is used to estimate the
time to closest point of approach. The thresh-
old value of ⌧ used to construct the alert boundary varies from 15 s to 35 s, depending on the
altitude layer at which the collision may occur (Munoz et al., 2013). The encounter geometry is
evaluated in the relative coordinate frame where the relative motion of the aircraft is analyzed by
investigating the dynamics of the intruder aircraft with respect to the ownship. In this relative
frame of reference, the ownship is stationary and the intruder location and motion is determined
by the relative position and velocity states. The relative position and velocity vectors are then
used to derive the the time remaining to the horizontal closest point of approach (CPA) denoted
as t

cpa

, and the distance at the closest point of approach is denoted as d
cpa

. In the vertical plane,
the ownship is at the center of the relative coordinate system with a vertical protected zone from
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�h

c

/2 to h

c

/2. The time remaining to enter the vertical zone is denoted as t
h

c

, and the relative
altitude at the closest point of approach is denoted as h

r

cpa

. Given the relative altitude between
the ownship and aircraft h

r

, and position and velocity states in the horizontal and vertical plane
p
r

, v
r

, p
r

z

, and v

r

z

, respectively, then the pseudo code shown in Algorithm 1 predicts whether a
conflict/collision will occur within a lookahead time window T .

Algorithm 2 Modified conflict/collision detec-
tion algorithm
1: if 9t 2 (0, T ] such that

• p
r

< d

th

or (Intruder is converging hor-
izontally and t

cpa

 ⌧

th

) and

• |h

r

| < h

th

/2 or (Intruder is converging
vertically and t

h

c

 ⌧

th

)

then
2: if d

cpa

�m1�
dcpa

< d

c

and
��
h

r

cpa

��
�m2�

hcpa

<

h

c

/2 then
3: conflict/collision detected at time t

4: else
5: no conflict/collision detected at time t

6: end if
7: end if

Given a look ahead time window T , a col-
lision occurs if there exists a future time t 2

[t0, T ] such that the relative position of the in-
truder is inside the collision volume. At any
given time t, Algorithm 1 checks whether time
to closest point of approach and time to enter
the vertical protected zone fall below a thresh-
old value ⌧

th

anytime within the next T sec-
onds. Algorithm 1 declares a collision if the
relative horizontal distance, and the relative al-
titude at the closest point of approach is less
than a minimum safe distance (i.e., d

cpa

< d

c

and
��
h

r

cpa

��
< h

c

/2). The parameters ⌧
th

and T

are positive real numbers and design parame-
ters for the collision detection algorithm. Al-
gorithm 1 can be easily modified to detect con-
flicts by changing the horizontal and vertical
safe distances to be the radius and the height
of the self-separation volume and choosing ⌧

th

to satisfy the well clear boundary. In this work,
we adopt the well clear candidate selected by
the Sense and Avoid Research Panel (SARP) for recommendation to the sense and avoid stake-
holders upon extensive analysis (Cook et al., 2015). The candidate well clear boundary is defined
by a truncated cylinder that consists of a modified ⌧ value of 35 s with distance of 4000 ft in the
horizontal plane, and a vertical distance from the ownship of 700 ft. Hence, to detect conflicts over
a long-range, in Algorithm 1 we modify the horizontal and vertical safe distances to be d

s

= 4000
ft, and h

s

/2 = 700 ft, respectively and ⌧

th

= 35 s.
Since there will always be uncertainty associated with these estimates, an additional provision

should be made to account for it. Sampling-based methods such as Monte Carlo simulations and
importance sampling are existing uncertainty propagation approaches. Instead of using extensive
simulations, however, an analytic expression can also be used to propagate the error variance using
a Taylor series approximation. This approach of variance estimation mostly used in statistical
applications has several names in the literature, including the linearization method, the delta
method, and propagation of variance (Lee & Forthofer, 2006). If we assume, for convenience,
that aircraft in conflict use the same type of ADS-B sensor and that they are observing mostly
the same GPS satellites, then both aircraft will experience the same position and velocity error
accuracy. In addition, if the x-y components of the horizontal position and velocity are assumed to
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be independent random variables, then the error variances of the horizontal position and velocity
measurements denoted as �

p

and �

v

, respectively are the same for both aircraft. It can then be
shown that the variance of the distance at CPA is �2

dcpa

= 2�2
p

+ 2t
cpa

�

2
v

(Krozel, 1997). Similarly,
if the error variances of the vertical velocity and altitude measurements denoted as �

h

and �

v

z

are
independent and the same for both aircraft, then the variance of relative vertical altitude at CPA
is �2

hcpa

= 2�2
hr

+ 2t
cpa

�

2
v

rz

. Therefore, Algorithm 1 is modified to become Algorithm 2 to account
for uncertainties in the ownship and intruder states. In Algorithm 2, m1,m2 are design parameters
for the conflict/collision detection algorithm and are constrained to be positive integers.

SELF-SEPARATION AND COLLISION AVOIDANCE

Since the collision-detection metrics are derived from the relative position and velocity vectors
between conflicting aircraft, it is convenient to develop a collision avoidance logic using a translated
coordinate system. In this relative coordinate system, the ownship is fixed at the center of the
coordinate system, and the intruder is located at a relative position p

r

and moves with a relative
velocity v

r

with respect to the ownship. An advantage of this approach is that collision avoidance
is inherently a local phenomenon and can be more naturally represented in the local frame than
the global frame.

0 200 400 600 800 1000 1200
-150

-100

-50

0

50

100

150

Heading direction (m)

H
ei

gh
t (

m
)

-1000
-500

0
500

1000

-1000
-500

0
500

1000
-1000

-500

0

500

1000

Right wing direction (m)
Heading direction (m)

H
ei

gh
t (

m
)

-1000 -500 0 500 1000
-1000

-800

-600

-400

-200

0

200

400

600

800

1000

H
ea

di
ng

 d
ire

ct
io

n 
(m

)

Right wing direction (m)

Collision volume 
centered at intruder 

2D view 3D view

Goal point

Ownship 

Intruder

Avoidance 
path

Figure 6: Local-level frame map.

We call this translated coordinate system the local-level frame because the environment is
mapped to the unrolled, unpitched local frame where the ownship is stationary at the center. The
local-level frame map is depicted in Figure 6, where the origin of the local-level frame is the center
of mass of the ownship. In this configuration the x-axis points out the nose of the airframe, the y-
axis points points out the right wing direction, and the z-axis points down forming a right handed
coordinate system. The intruder is encircled with the collision volume cylinder. The local-level
frame also provides a convenient method for defining a collision between two aircraft. If the origin
of the local-level frame penetrates the collision volume around the intruder, a collision is said to
have occurred.
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Figure 7: Discretized local-level map. The three concentric circles represent three maneuvers
points.

As shown in Figure 7, the detection region is divided into concentric circles that represent
three maneuvers points at increasing range from the ownship. The radius of the outmost circle
represents the sensor detection range. We discretize the map and construct a weighted graph
where the edges represent potential maneuvers, and the weights represent the collision risk and
maneuver cost. The map is discretized by using a cylindrical grid, and the ownship is commanded
to move along the edges of the grid. The result is a directed weighted graph that can be described
by the tuple G(N , E , C), where N is a finite nonempty set of nodes, and E is a collection of ordered
pairs of distinct nodes from N such that each pair of nodes in E is called a directed edge or link,
and C is the cost associated with traversing each edge.

In assigning a cost to each edge in the resulting graph, it is important to note that the main
priority of an ownship under distress is to maneuver to avoid predicted conflicts/collisions. The
cost associated with traveling along an edge is a function of the edge length and the collision risk.
We set the cost associated with the length of the i

th edge to be equal for all edges except for the
edges that connect the graph’s outer nodes to the goal point. The cost of the conflict/collision
risk for each edge can be defined using a binary cost function given as

C

col

,i

=

(
1, if e

i

2 B,

0, otherwise.
(2)

where B is the collision volume cylinder centered at the detected intruder. The cost assigned to
any edge that leads to a collision is 1, thus basically eliminating that edge and the path passing
through it.
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To provide an increased level of safety, an additional cost is used to penalize edges close to the
collision volume even if they are not within the collision volume. Assuming a constant-velocity
model, a linear extrapolation of the current position and velocity of the detected intruders is
computed at evenly spaced time instants over the look-ahead time window. The look-ahead time
interval is then discretized into several discrete time instants. At each discrete time instant the
distances from the propagated locations of the intruders to all candidate locations of the ownship
at that time instant. The cost of each edge is then the sum of the reciprocal of the associated
distances to each intruder. Dijkstra’s algorithm is then employed to find the path with minimal
cost from the start point to the goal point. Dijkstra’s algorithm solves the problem of finding
the shortest path in a directed graph in polynomial time given that there are no negative weights
assigned to the edges. The output of the local-level collision avoidance algorithm generates a
waypoint avoidance path that consists of an ordered sequence of waypoints W = w1, w2, · · · .wi

.
These waypoints are basically nodes in the discretized local-level graph selected by the Dijkstra’s
search.

A key feature of the proposed approach is that the future motion of the ownship is constrained
to follow nodes on the map that are spaced by a constant time. Since the path is represented using
waypoints that are at fixed time instants, it is easy to determine roughly where the ownship will
be at any given time. This timing information can be used when assigning cost to edges to better
plan paths and prevent collisions. To handle conflicts at long-range, the resolution algorithm
should plan smooth maneuvers. This can be achieved by increasing the resolution of discretized
map or by using smooth path parameterizations like Dubins paths.

SIMULATION RESULTS

To validate the performance of the presented ADS-B sensor model, estimation scheme, con-
flict/collision detection, and self-separation/avoidance approaches, we conducted two separate
sets of Monte Carlo simulations to address encounter scenarios over short and long ranges. We
developed a simulation environment with a five-degree-of-freedom aircraft model for both the own-
ship and the intruders. The state estimates of the intruders are provided by the ADS-B sensor,
while we assume a perfect knowledge of the ownship states. To avoid simulating encounters that
are unlikely to result in a collision or loss of self-separation, we focus on encounters that occur
in an encounter circle centered on the ownship. The encounter geometry is constructed using an
approach similar to that suggested by Kochenderfer, et al. (Kochenderfer, Kuchar, Espindle, &
Gri�th, 2008). The encounter circles used for simulating short and long range encounter scenarios
have radii of 1.62 nmi and 10 nmi respectively. For both sets of Monte Carlo simulations, the
ownship is initialized at the center of the encounter circle and follows a straight-line waypoint
path. The ownship initial heading is zero, and the initial airspeed is set to 80 kn, which is similar
to the maximum airspeed of the ScanEagle UAS. At the beginning of each simulation, the first
intruder is initialized at one of 20 evenly spaced points on the perimeter of the encounter circle,
while other intruders are initialized by sampling a uniform distribution over the remaining points.
In addition, the intruders are initialized with random headings that are required to penetrate the
encounter region at the initial time. The speed of the intruders is randomly drawn from a uniform
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Figure 8: Self-separation evaluation metrics of ADS-B-based conflict detection and self-separation
algorithms using 2,000 encounter scenarios for each intruder set (a total of 10,000 encounters).

distribution over [39, 250] kn. For the short-range encounter scenarios experiment, 1000 Monte
Carlo simulation runs are conducted at each discrete point on the encounter circle. In the long-
range encounter scenarios experiment, 100 Monte Carlo simulation runs are conducted for each
discrete point on the encounter circle. In both sets of experiments, the Monte Carlo simulations
are repeated to include multiple intruder scenarios.

We have implemented the conflict/collision detection method given by Algorithm 2. In the
long-range experiment, the threshold boundary value that defines a conflict ⌧

th

= 45 s with distance
threshold values of d

th

=5 nmi in the horizontal plane and h

th

=1000 ft in the vertical plane. To
define loss of separation, we consider a well clear boundary defined by a ⌧ value of 35 s with
distance thresholds of 4000 ft in the horizontal plane and 700 ft in the vertical plane (Cook et al.,
2015). In the short-range experiment, the well clear boundary serves as the threshold boundary so
that the collision detection algorithm activates the collision avoidance planner once the well clear
boundary is penetrated. This ensures that collision avoidance is triggered when the self-separation
mode fails to maintain the well clear distance from the intruding aircraft. Our choice of collision
volume is a truncated cylinder of radius 500 ft and height 100 ft. The design parameters used in
Algorithm 2 for both experiments are

m1 = m2 = 1,

�

2
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= �

2
p

+ t

cpa
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, where �
p

= 124 ft , and �

v
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, where �
hr

= 75.9 ft , and �

v

rz

= 27.96 ft/min.
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Figure 9: Collision avoidance evaluation metrics of ADS-B-based collision detection and avoidance
algorithms using 20,000 collision encounter scenarios for each intruder set (a total of 100,000
encounters).

In each Monte Carlo simulation run we have also implemented the conflict/collision detection
algorithm in Algorithm 1 to produce the intruder truth tracks needed to calculate the true number
of conflict and collision events. The number of true conflict/collision detections is compared to the
number of the conflict/collision detections that are predicted using Algorithm (2), which is based
on the track estimates of the intruders. We have also recorded the number of collisions and loss
of separation incidents for each encounter scenario given that the self-separation/collision avoid-
ance algorithm will be activated once an intruder crosses the self-separation/collision avoidance
threshold boundary. We have implemented the local-level frame path planner approach presented
previously in the Self-separation and Collision Avoidance section. The local-level frame map is
discretized into three levels with 38 nodes for the collision avoidance algorithm and five levels
with 150 nodes for self-separation algorithm. The correct detections, missed detections, and false
alarms for both the conflict and collision scenarios are shown in Figures 8 and 9.

Figure 8 shows results from the long-range self-separation assurance simulations, and Figure 9
contains results from the short-range tests for collision avoidance. In each figure five metrics are
presented for the di↵erent numbers of intruders considered. Confict Detection True refers to the
number of collisions detected using truth information for each of the intruders. Missed Detections
refers to the number of collisions detected using intruder truth information that were not detected
using estimated intruder information. Conflict Detection Correct describes the number of con-
flicts detected using estimated information that were also detected using truth information. The

23



relationship between Conflict Detection True, Missed Detections, and Conflict Detection Correct
can be expressed as CD

True

= Missed Detections + CD
Correct

. False Alarms is the number of
collisions detected using estimated information that were not detected using truth information.
Finally, Loss of Self-Separation and Collisions are the number of instances that the well clear or
collision volumes were penetrated by an intruder.

As shown in Figures 8 and 9, both conflict and collision detection algorithms are able to
correctly detect conflict and collision events with a small number of missed detections and few
false alarms. The increasing number of conflict and collision incidents with the increasing number
of intruders is expected since greater numbers of intruders in the encounter circle result in a higher
probability of a conflict or collision with the ownship.

Table 3: Conflict Detection Algorithm: Probability of correct detection, probability of false alarm,
and safety ratio.

Scenario P

cd

P

fa

Safety Ratio

1 intruder 0.998 0.00214 0.002
2 intruders 0.994 0.00209 0.006
3 intruders 0.997 0.00211 0.003
4 intruders 0.994 0.00206 0.006
5 intruders 0.991 0.00225 0.009

Table 4: Collision Detection Algorithm: Probability of correct detection, probability of false alarm,
and safety ratio.

Scenario P

cd

P

fa

Safety Ratio

1 intruder 1.000 0.00051 0.000
2 intruders 1.000 0.00153 0.000
3 intruders 0.990 0.00068 0.010
4 intruders 1.000 0.00089 0.000
5 intruders 1.000 0.00082 0.000

The performance of the proposed conflict/collision detection approach is quantified using the
probability of correct detection P

cd

and the probability of false alarm P

fa

(Sahawneh, Mackie,
Spencer, Beard, & Warnick, 2015; Kuchar, 1996). If N is the number of performed simula-
tions, among which there are E true conflict/collision events, and the proposed conflict/collision
detection algorithm detects M conflicts/collisions, among which e

E detections are the correct con-
flict/collision detections, then the correct detection rate P

cd

and false alarm rate P

fa

are given
by

P

cd

=
e
E

E

, P

fa

=
M �

e
E

N � E

.
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We further quantify the system performance by computing the safety ratio (Kuchar, 1996)

Safety ratio =
1� P

cd

1� P

fa

.

The P

cd

and P

fa

results for both collision and conflict detection are shown in Tables 3 and 4. An
ideal conflict/collision detection algorithm would result in P

fa

= 0 and P

cd

= 1, with all con-
flicts/collisions threats correctly detected and no false alarms. This corresponds to the theoretical
ideal point (P

fa

, P

cd

) =(0,1) in signal detection theory. Unfortunately, due to uncertainty in the
intruder state estimates, this ideal is not achievable. The closer the value of (P

fa

, P

cd

) to the point
(0,1), however, the better the detection performance. In addition, a safety ratio of 0 indicates
that the detection system provides perfect protection from loss of separation/collision incidents.
A safety ratio of 1, however, indicates that the detection system provides no additional protection
from loss of separation/collision incidents. The results shown in Tables 3 and 4 demonstrate that
our approach produces results near the ideal operation point (P

fa

, P

cd

) =(0,1) with a safety ratio
that is near zero.

Table 5: Conflict Detection Algorithm: Event detection time delay.

Scenario Average max. 95th Max.
time delay (s) percentile time delay (s)

1 intruder 1.389 11.280 12.9
2 intruders 1.308 8.900 13.7
3 intruders 1.370 8.160 24.9
4 intruders 1.444 6.255 36.9
5 intruders 1.148 5.200 18.9

Table 6: Collision Detection Algorithm: Event detection time delay.

Scenario Average max. 95th Max.
time delay (s) percentile time delay (s)

1 intruder 2.010 9.990 18.2
2 intruders 2.348 9.900 31.9
3 intruders 2.219 9.900 35.9
4 intruders 2.354 10.245 31.9
5 intruders 2.190 9.900 28.5

The conflict/collision detection algorithm can be also evaluated by measuring the time delay
between a conflict/collision event that has been detected using the intruder truth information,
and the time instant at which the proposed conflict/collision detection algorithm is able to detect
the same event using estimated intruder information. Ideally, the time delay should be zero. Due
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Table 7: Conflict Detection: Execution time for one cycle of estimator, and conflict detection, and
self-separation algorithms.

Scenario Average max. 95th Max.
computation time (s) percentile computation time (s)

1 intruder 0.218 0.292 0.363
2 intruders 0.387 0.523 0.649
3 intruders 0.519 0.627 0.645
4 intruders 0.521 1.022 2.131
5 intruders 0.578 0.930 2.403

Table 8: Collision Detection: Execution time for one cycle of estimator, and collision detection,
and avoidance algorithms.

Scenario Average max. 95th Max.
computation time (s) percentile computation time (s)

1 intruder 0.108 0.198 0.386
2 intruders 0.108 0.329 0.392
3 intruders 0.072 0.079 0.140
4 intruders 0.014 0.026 0.734
5 intruders 0.019 0.042 0.878

to the errors in the state estimates of the intruders, however, this cannot be always achieved. The
average of the maximum, the 95th percentile, and the maximum of simulation time delays is shown
in Tables 5 and 6. Figure 3 shows that a small UAS similar to a ScanEagle has 105.5 s to a loss of
separation and 109.9 s to a collision when encountering an intruder approaching head-on at speed
of 240 kn. Table 6 shows that the average of the maximum time delay to detect a collision for all
of the five di↵erent scenarios is 2.224 s which leaves the ownship with about 103 s to plan and fly
an avoidance maneuver. Even with the maximum time delay recorded (35.9 s), the ownship still
has about 74 s to plan and execute an avoidance maneuver.

Another important aspect of evaluating the performance of the whole system is its ability to
run in real time. The DAA system must be able to process the measurement information provided
by the sensor, provide estimates of the current states of the intruders, assess the encounter risk,
and plan an avoidance path, while leaving ample time to avoid the intruder and ensure that the
constraint on the minimum required safe distance from the intruder is not violated. To demonstrate
this capability, we have recorded the time required to execute these processes from the point the
measurements are provided to the estimator until a new waypoint command is generated by the
path planner and is ready to be delivered to the ownship autopilot. The average, 95th percentile,
and the maximum time required to execute one cycle of the estimation, the conflict/collision
detection, and the self-separation/collision avoidance algorithm are shown in Tables 7 and 8.
The algorithms were run using Matlab on an Intel i7 processor. The ADS-B estimator provides
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estimates at a sample rate of 0.1 s. To process all of the estimator data, the other algorithms
should operate at the same sample rate. Table 7 shows that the average of the maximum run
time to execute the estimator, conflict detection, and the self-separation algorithms is 0.445 s, and
the maximum recorded run time is 2.403 s. Similarly, in Table 8 the average of the maximum
run time of the estimator, collision detection, and avoidance algorithms for all of the five di↵erent
scenarios is 0.064 s, while the maximum recorded run time is 0.878 s. Although the recorded run
times are larger than the 0.1 s, these algorithms are running near real time in Matlab. We expect
that implementing these algorithms in a compiled language, such as C or C++, will show that
real-time execution is feasible using low-cost computational hardware.

In these experiments, the collision volume is large (500 ft radius, 100 ft height) compared to
the size of the ownship aircraft. If the collision volume were reduced to more closely reflect the
aircraft size, the number of collisions detected drops even further. For example, Figure 9 shows
a total number of 10 collisions out of the 1928 potential collisions detected using intruder truth
information for the five intruder scenario case. If the collision volume is reduced to a third of the
original size, then the number of collisions decreases to only one. If the collision volume is further
reduced to a cylinder of radius 10 ft, approximating the wingspan of a small UAS, and height of 3
ft, we record zero collisions. From this we can conclude that none of these collision incidents were
actual collisions, but only a violation of the surrounding collision volume.

CONCLUSIONS

We have introduced in this paper an ADS-B-based collision detection and avoidance approach that
is computationally feasible for small UAS. Taking advantage of the long-range detection o↵ered
by the ADS-B system, the proposed approach is used to detect conflict events over the range of 5
to 10 nmi, and consequently provide self-separation of the host ownship.

The results from Monte Carlo simulations show that the proposed system supports a high level
of safety. In the 10,000 executed self-separation simulations, well clear was fully maintained. For
the 100,000 collision scenarios, the number of collision-volume violations was only 17, with no
physical collisions occuring. The run-time results also indicate that the estimation scheme, detec-
tion method, and avoidance logic are capable of running in near real time in Matlab. Considering
the increase in computational e�ciency that would result from a compiled-code implementation
of the algorithm, real-time execution can be easily achieved.

A key result of this paper is that it demonstrates that mandating ADS-B Out equipage for all
aircraft could play a significant role in the safe integration of UAS into the NAS. The theoretical
basis and positive simulation results presented here demonstrate the feasibility of the proposed
system. While the FAA 2020 mandate for ADS-B includes only some aircraft, requiring all aircraft
to have ADS-B Out would create a suitable environment for implementation of ADS-B-based DAA.
Ultimately, the combination of complete ADS-B equipage and DAA system like the one presented
here would be a major step toward allowing UAS to safely operate in the NAS with manned
aircraft.
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