
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Faculty Publications

2016-06-10

Cushioned Extended-Periphery Avoidance: A Reactive Obstacle Cushioned Extended-Periphery Avoidance: A Reactive Obstacle

Avoidance Plugin Avoidance Plugin

Timothy McLain
Department of Mechanical Engineering, Brigham Young University, mclain@byu.edu

James Jackson
Department of Mechanical Engineering, Brigham Young University

David Wheeler
Brigham Young University - Provo, dowheeler@gmail.com

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

 Part of the Mechanical Engineering Commons

Original Publication Citation Original Publication Citation
Jackson, J., Wheeler, D., and McLain, T. Cushioned Extended-Periphery Avoidance: A Reactive

Obstacle Avoidance Plugin, 2016 International Conference on Unmanned Aircraft Systems, pp.

399-405, June 2016, Arlington, Virginia.

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
McLain, Timothy; Jackson, James; and Wheeler, David, "Cushioned Extended-Periphery Avoidance: A
Reactive Obstacle Avoidance Plugin" (2016). Faculty Publications. 1879.
https://scholarsarchive.byu.edu/facpub/1879

This Conference Paper is brought to you for free and open access by BYU ScholarsArchive. It has been accepted
for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information,
please contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1879&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1879&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/1879?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1879&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

Cushioned Extended-Periphery Avoidance:
a Reactive Obstacle Avoidance Plugin

James Jackson1, David Wheeler2, Tim McLain3

Abstract— While collision avoidance and flight stability are
generally a micro air vehicle’s (MAVs) highest priority, many
map-based path planning algorithms focus on path optimality,
often assuming a static, known environment. For many MAV
applications a robust navigation solution requires responding
quickly to obstacles in dynamic, tight environments with non-
negligible disturbances. This article first outlines the Reac-
tive Obstacle Avoidance Plugin framework as a method for
leveraging map-based algorithms while providing low-latency,
high-bandwidth response to obstacles. Further, we propose
and demonstrate the effectiveness of the Cushioned Extended-
Periphery Avoidance (CEPA) algorithm. By representing recent
laser scans in the current body-fixed polar coordinate frame,
a 360○ lower-bound understanding of the environment is
available. With this extended field of view, motion assump-
tions common in other reactive planners can be relaxed and
emergency control effort can be applied in any direction. CEPA
is validated in simulation and on hardware in a GPS-denied
environment using strictly onboard computation and sensing.

I. INTRODUCTION

As technological advancements push to meet the size,
weight, and power (SWAP) constraints imposed by micro
air vehicles (MAVs), exciting applications become possible.
Unfortunately the sophistication of estimation and control
laws do not yet meet the safety, reliability, and robustness
required for full integration into society. One open field
of research is autonomous multirotor flight in unknown,
dynamic, tightly confined, and cluttered environments.

As illustrated in Figure 1, path planning and obstacle
avoidance algorithms generally address three objectives:
avoiding collisions, facilitating stable flight, and accomplish-
ing a mission or goal. This field of research is well devel-
oped, particularly in the context of ground robots. Because
a ground robot can generally pause as needed, often the
literature assumes a static, known environment. Further, due
to the slow, stable dynamics of ground vehicles, disturbances,
like wind will rarely induce collisions. These factors, in
conjunction with less restrictive weight and computational
power constraints, motivate the literature’s primary emphasis
on the optimal, or at times suboptimal, accomplishment of
goals with respect to some specific cost function (item 3 in
Figure 1).

Generally a global map, represented in a Cartesian coordi-
nate frame, is provided to the path planner. This map comes

1James Jackson is with the Department of Mechanical Engineering,
Brigham Young University jamesjackson@byu.edu

2David Wheeler is with the Department of Electrical Engineering,
Brigham Young University david.wheeler@byu.edu

3Tim McLain is with the faculty of Mechanical Engineering, Brigham
Young University mclain@byu.edu

Avoid Collisions
- Dynamic, cluttered, tight environments

Smooth, Stable Flight
- Mitigate unmodeled disturbances

Accomplish Mission
- Optimal with respect to cost function

1

2

3

Fig. 1. MAV priorities in general. Avoiding collisions, even when they
violate environment assumptions, is of paramount importance. Of secondary
importance is smooth, stable flight, mitigating destabilizing disturbances.
Accomplishing the desired mission should generally not come at the expense
of items 1 and 2.

from a priori data or from fusing sensor information using Si-
multaneous Localization and Mapping (SLAM) techniques.
For example a 2-D obstacle map can be created as a series of
body-fixed, polar laser scans are transformed into a global,
Cartesian coordinate frame and fused based on sensor and
state uncertainty estimates [1].

Given a map, obstacle-free paths are found through the
environment using one of several methods. Potential field
methods create artificial forces away from obstacles and
towards goals [2]. These methods are generally simple
and quick to calculate, but suffer from local minima and
cannot guarantee obstacle avoidance. The Probability Road
Map (PRM) can be used to randomly generate waypoints
connecting the agent with the goal in a manner to avoid
obstacles [3], but is designed for use by holonomic agents.
Rapidly-Exploring Random Trees (RRT), a modification of
PRM uses a similar obstacle-free waypoint path planning
technique, while taking into account kinematic constraints
of the vehicle. More robust algorithms such as D* Lite [4],
can be used to heuristically find the shortest path to the goal
through the environment.

While derivatives of these approaches have proven to be
effective at fusing sensor measurements and calculating safe
paths through the environment, they can incur significant
computational, memory, and sensing requirements, and often
assume the agent is unaffected by disturbances while safe
paths are calculated. While these assumptions may be valid
for ground robots and MAVs flying in spacious environ-
ments, this problem can become difficult to solve quickly
enough to effectively react to large disturbances and errors
in environment estimation during autonomous flight in tight
quarters.

As an alternative to map-based planning, some simple

Map-Based
Path Planner

(MBPP)

Reactive Obstacle
Avoidance Plugin

(ROAP)
Controller MAV

Sensors &
Estimator

u ǔ

zrel

zrel

Fig. 2. Block diagram illustrating how ROAP supplements an existing
path planner by modifying commands. The inner control loop rate matches
the sensor rate with minimal latency, thereby improving robustness in
dynamic, cluttered, and tight environments with non-negligible unmodeled
disturbances.

and efficient algorithms use the concept of optical flow
to demonstrate effective corridor-centering [5] and obstacle
avoidance [6]. Other, more sophisticated methods use this
type of data combined with other monocular features to train
agents to avoid obstacles based on input data generated by an
expert pilot [7]. These methods have also been demonstrated
to be effective in avoiding obstacles during MAV operation
but require consistent forward motion to generate meaningful
features required by the controller.

In response, we outline the Reactive Obstacle Avoidance
Plugin (ROAP) framework in Section II and propose a new
reactive algorithm, Cushioned Extended-Periphery Avoid-
ance (CEPA) in Section III as a specific implementation of
this framework. We present simulation and hardware results
of CEPA and the ROAP architecture in Section IV and
conclude in Section V.

II. ROAP MOTIVATION

In the ROAP framework, a high-level planner uses any
map-based approach to plan smooth paths through a known
environment while a reactive obstacle avoidance algorithm
is implemented underneath to recover from disturbances or
estimation errors, as illustrated in Figure 2. In this way, an
efficient reactive obstacle avoidance algorithm can match the
rate of the sensor with minimal latency, improving robustness
in dynamic, cluttered, and tight environments with non-
negligible disturbances. This provides the high-level path
planner the time to account for changes in the environment,
such as a recently closed door or moved obstacle, and
plan an alternative feasible path. While a reactive obstacle
avoidance plugin may cause the path to become suboptimal
in a precarious environment, it requires much less in terms
of computational and sensor capabilities, and is effective in
real-life testing [8]–[11].

Clearly, in this configuration, a reactive obstacle avoidance
may take action that prevents the completion of a global
mission but ensures that the MAV does not damage itself or
the environment. This concept parallels the MAVs priorities,
illustrated in Figure 1, where in general, avoiding collisions
and maintaining stable flight is of paramount importance.
This is particularly relevant in environments when sensors
perform poorly, such as during GPS-degradation or in fea-
tureless scenes, and in the presence of disturbances, such as
wind or ground and wall effect.

For a ROAP implementation to be robust, the algorithm
must exhibit the following properties:

1) Fast response, i.e. low latency, high bandwidth.
2) Independent of a priori or outdated information.
3) Limited memory/computation requirements.
4) No motion assumptions (e.g., constant motion, only

forward motion).
5) Safe commands despite erroneous, outdated, or absent

high-level goals.
Scherer et al. were first to propose a ROAP algorithm in their
paper Flying Fast and Low Among Obstacles (FFLAO) [8]
and demonstrated impressive hardware results using a laser
scanner. While accounting for the first three properties by
responding quickly to the most recent obstacle information,
FFLAO constrains the MAV to move only in the direction of
the sensor, limiting the MAV to forward and yawing motion
alone. While this assumption works under ideal conditions,
we have found that this assumption makes safe navigation
difficult in tight environments or in the presence of infeasible
goals where hovering, reversing and lateral motion are often
necessary.

Since FFLAO, Oleynikova et al. has presented a com-
pelling ROAP implementation using stereo vision [9],
stressing the importance of low computation requirements.
Schopferer et al. has presented a novel decoupled iterative
planning method [12] that achieves near-optimal reactive
avoidance under computational limitations by considering
the kinematic feasibility of planned trajectories. Hrabar
presented a method that blurs the line between reactive
and map-based obstacle avoidance [11] by keeping a local
memory of the environment in the form of a 3D voxel grid
and searching for a feasible path using PRM. While the
ability to hover is added in this method, it focuses primarily
on extending the field-of-view of the sensor, rather than
extending the possible maneuvers of the MAV to include
lateral and reverse motion. While these methods are all
accompanied by impressive results, they are subject to most
or all of the same motion constraints found in FFLAO. To
address this concern, we present the Cushioned Extended-
Periphery Avoidance (CEPA) algorithm, which extends these
previous methods to allow for safe operation of MAVs in
tightly constrained environments in the presence of infeasible
goals and non-negligible disturbances.

III. CEPA ALGORITHM DESCRIPTION

The algorithm addresses two main issues related to safe
autonomous MAV operation:

1) Guide the MAV around obstacles towards waypoints
chosen by the high-level planner.

2) Apply additional control in emergency situations if the
MAV comes too close to an obstacle.

Typical path planning approaches use a Cartesian coordinate
or graph-based system, either iterating through each coor-
dinate or node to form a cost map [13], [14]. CEPA, like
FFLAO, performs planning in the polar, body-fixed, sensor
frame of the laser scanner. Further, CEPA analytically inflates

the proposed path in polar coordinates. As a result, the path
can be verified for obstacles by a simple differencing in the
polar domain. These two features reduce computational load
and algorithm latency.

To remove limiting motion assumptions, CEPA efficiently
fuses recent laser scans to create a lower-bound, 360○ sensor
view. Like [11], this approach blurs the line between a purely
reactive avoidance method and a map-based method, which
could potentially reduce the reactive nature of the algorithm.
However, without a 360○ sensor or some level of local
memory, necessary lateral or reverse movement cannot be
executed safely. A small amount of local memory provides
some of the environmental awareness of a map-based planner
while maintaining the responsiveness of a reactive planner.
CEPA expects velocity commands from a high-level planner
and then outputs modified velocity commands, as needed,
given input from the most recent laser scans, as shown in
Figure 2. With this architecture, CEPA can be paired with any
high-level path planner which outputs body-fixed velocity
commands without modification.

CEPA is derived in two dimensions primarily due to
the sensing capabilities of traditional laser scanners. This
assumes relatively planar motion in a structured environment,
which is often the case for indoor operation of MAVs. To
extend CEPA to 3D operations, CEPA could either be layered
in cylindrical coordinates or performed entirely in spherical
coordinates. Because CEPA leverages the computational ben-
efit of operating directly in the sensor frame, the choice of
3D coordinates should likely mimic the coordinates of the
3D sensor.

A. Steering Algorithm

The steering algorithm is designed to choose commands
that are most like the commands provided by the high-level
path planner, but that also safely avoids obstacles. To accom-
plish this, CEPA computes a cost function which balances
modification of an incoming command with proximity to
observed obstacles.

First, a suitable path must be in approximately the same
direction and approximately the same size as the incoming
command when feasible. This can formulated by maximizing
the weighted sum of the inner product and the relative size
of the goal vector v and the outgoing command v̌, expressed
by

k1 (v⊺v̌)+k2
∥v̌∥
∥v∥

. (1)

Secondly, the degree of interference for the proposed
command is calculated by projecting two elongated safety
cushions onto the polar map, with fixed look-ahead time T .
As illustrated in Figure 3, a lower-bound safety cushion of
radius rLB defines the minimum required separation distance
for a feasible path. An upper-bound safety cushion of radius
rUB defines where obstacles begin to influence commands. A
safety cushion for a given radius r at specified bearing angle

v

v̌

rUB rLB

Fig. 3. An example steering configuration. v is the obstacle-laden goal
vector supplied by the path planner. CEPA identifies v̌ as the minimum-
cost, collision-free command and passes it to the controller. The heading
discrepancy and the obstacle intrusion into the outer safety cushion induce
costs shown in red. The proposed path is deemed feasible because the inner
safety cushion is not penetrated. While the figure illustrates a Cartesian
representation, CEPA works in the sensor’s polar coordinate frame.

φ is defined analytically as

SCr(φ , v̌) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rcscφ φ ∈ [γ, π

2)

r φ ∈ [π

2 ,
3π

2
]

−rcscφ φ ∈ (3π

2 ,2π − γ)

d cosφ +
√

r2−d2 sin2
φ φ ∈ [2π − γ,γ)

,

(2)
where d = ∥v̌∥T is the look-ahead distance and γ =
atan2(d,r). Note that Equation 2 assumes v̌ is directed
towards φ = 0. Rotating the safety cushion is as simple
as shifting the indices of the polar array containing the N
returned range measurements.

The lower-bound safety cushion, SCLB, is an estimate of
the space the MAV will occupy during the execution of
the command for the look-ahead time T . Any conflict with
this inner cushion renders the proposed command invalid.
The larger cushion, SCUB, acts as a buffer region that may
become occupied during the execution of a valid command,
but during general operation should remain free. Like a
deformable ball, the proposed path will respond to minimize
intrusions, guiding the MAV away from obstacles. The extent
of the intrusion is found by differencing the safety cushion
and laser scan at each angle LS(φi), after masking the array
to only regard potential conflicts. A discrete integral can then
be used to model the amount of intrusion into the safety
bubble for a potential command given a recent laser scan

Ω(v̌∣LS) =
N

∑
i

κ (φi∣v̌,LS) , (3)

where

κ (φi∣v̌,LS) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞ LS(φi) ∈ [0,SCLB(φi)]
f (SCUB (φi)−LS(φi)) LS(φi) ∈ (SCLB (φi) ,SCUB (φi))
0 LS(φi) ∈ [SCUB (φi) ,∞)

(4)
and f (x) is any positive definite function for x > 0. In our
implementation, f (x) = x2.

A weighted sum of Equations 1 and 3 forms a cost
function whose minimum is the command which is passed
to the controller. Using a polar coordinate frame simplifies
the cost function sufficiently that even a brute-force method
is capable of solving the optimization as fast as the incoming
laser scan measurements, typically 10 to 40 Hz:

v̌∗ = argmin
v̌

[k3Ω(v̌)−k1 (v⊺v̌)−k2
∥v̌∥
∥v∥

] . (5)

The relative size of gains k1, k2, and k3 can be adjusted
for required performance. If k3 is chosen to be larger than
k1 and k2, CEPA will prefer to deviate from the planned
path to ensure safety. A large k3 makes the safety cushion
inelastic, responding rigidly to approaching obstacles, while
a smaller value will provide a softer response. The relative
size of k1 and k2 will determine how CEPA responds to path
deviations. If k1 is larger than k2, then CEPA will prefer
changing direction to slowing down and vice-versa.

B. Map Memory

Applying a command in a direction that is not currently
observed is inherently presumptuous. Previous ROAP algo-
rithms [8]–[10] assume that it is always possible to find
a viable path while maintaining forward motion. It is not
uncommon, however, that a MAV needs to move in a
direction in which it is not receiving measurements, such as
overshooting a position goal or counteracting a disturbance
propelling the vehicle forward. While it is possible to per-
form large yawing motions to always look in the direction
of motion, the control delay makes rejecting disturbances in
tight environments impossible.

As an alternative to colliding, some measure of memory
must be integrated to ensure that the MAV does not move
into objects that it has seen previously, but cannot currently
observe with its sensor. This can be done by extending
the vehicle’s peripheral vision. The reactive planner should
not, however, provide a full-resolution map of the explored
environment due to computational constraints, but enough to
ensure safe navigation.

To do this, some number of previous laser scans and the
estimates of the relative transform between each, are saved
as a queue in the reactive avoidance memory. In the event
that backward motion is necessary, previous laser scans are
transformed to be with respect to the current body frame,
augmenting the current sensor measurement. If the MAV has
moved forward recently, then the concatenation of even two
180 degree laser scans provide some 360○ understanding of
the environment, as illustrated in Figure 4. With this infor-
mation, the MAV can more confidently execute commands
which are not directly in the field of view.

Fig. 4. A visual description of the way memory is kept in the reactive
planner. Although the MAV can only observe obstacles in the direction
of the current 180○ laser scan (blue-solid), appending previous laser scans
gives the MAV a limited 360○ understanding about the entire shaded area
and allows the MAV to safely move backwards

This approach does not extend the field of view of the
sensor, but rather assumes, (1) an object has not recently ap-
proached the MAV from the rear, and (2) accurate transform
estimates are available. For a more conservative memory
estimate, the covariance of the transforms can be used to
provide the nσ worst-case transform. Further, these covari-
ances can be set to grow with time, shrinking the assumed
distances to obstacles in the rear 180 degrees. This results
in more conservative navigation, but also is more taxing on
the processor during memory updates.

C. Emergency Avoidance

In some cases, a disturbance may cause an obstacle to
penetrate the MAVs lower-bound safety threshold rLB. In
keeping with the proposed priorities presented in Figure 1,
the command provided by the map-based path planner is
temporarily ignored as emergency action is taken.

As illustrated in Figure 5, the periphery-enhanced 360-
degree obstacle map is filtered such that

dρ

dφ
≤K

where K represents the maximum-allowable slope in polar
coordinates. For each obstacle detected within rLB a small
avoidance vector is formed pointing towards the MAV, pro-
portional to the extent of the intrusion. The summation of
these small vectors forms the final command v̌. Filtering is
critical to ensure that small obstacles are not overpowered
by large obstacles in the map. Both small and large ob-
stacles produce commands on similar orders of magnitude
given they intrude the same amount into the cushion. In
this way, the cushion models the physical response of a
deformable ball. With a 360○ understanding provided by the
map memory, this command can be executed with some level
of confidence in any direction.

IV. EXPERIMENTATION AND RESULTS

CEPA was implemented in ROS [15] and tested in a
Gazebo simulator, adapted from [16], and on a hexacopter
platform. The simulation parameters paralleled the hardware

v̌

rLB

Fig. 5. Illustration of emergency avoidance. The red line represents the
360○ filtered obstacle map when K = 0.01. The summation of the individual
red avoidance vectors forms the final command v̌.

(3.81 kg, 1.0 m outer diameter). A 40 Hz Hokuyo UTM-
30LX laser range finder with a 30 meter range and 180
degree field of view was used for obstacle detection and
modeled in the simulator.

A PID velocity controller, using the multirotor model-
inversion technique presented in [17] was used to control
the system. Yaw was controlled with an under-damped
proportional controller, causing the laser scanner to generally
be oriented in the direction of commanded motion. The
following CEPA gains were used: k1 = 1, k2 = 1, k3 = 4,
T = 4 s, K = 0.01, rLB = 0.55 m, rUB = 1.0 m, and f (x) = x2.

During each simulation experiment, wind was modeled
as a succession of applied forces with a normally dis-
tributed magnitude,N (1N,0.5N2), and uniformly distributed
direction. Wind magnitude and direction were recalculated
according to a Poisson process with 1

λ
= 10 seconds. These

wind model parameters were selected to mimic the signif-
icant wall effect that large multirotors experience in tight
environments.

FFLAO, defined in [8] was also implemented in 2D for
comparison. It was implemented with gains kg = 10.5, ko =
0.8, c1 = 1.0, c2 = 0.25, c3 = 1.0 and c4 = 1.0. It should be
noted that this algorithm has demonstrated success in more
than 700 flight tests and at speeds exceeding 10 m/s, but
due to motion assumptions and constraints it is not designed
for operation in tightly confined environments with non-
negligible disturbances. It was implemented as a comparison
to motivate the relaxation of motion constraints necessary in
these types of environments.

A. Simulation Results

Two tightly-constrained environments were used to val-
idate the algorithm. The first environment, shown in Fig-
ure 6 consists of a dense grid of cylinders requiring tight
maneuvering. While the high-level path planner commands
the MAV directly towards the goal, each respective ROAP
algorithm modifies the commands to autonomously navigate
through the environment. Each algorithm was tested 1500
times. The supplied high-level command had a magnitude
between 1.0 m/s and 5.0 m/s and was directed towards the
goal. However, regardless of the commanded magnitude,
as the multirotor entered the cluttered environment, both
CEPA and FFLOA reduced the outgoing command to close
to 0.8 m/s to maintain safe flight throughout the course.

TABLE I
TABLE OF SIMULATION RESULTS FOR SIMULATION SCENARIO 1

FFLAO CEPA
Completion Rate 0.2188 0.9863

Average Duration (s) 71.61 63.54

The collision-free success rate and average flight duration
of successful flights taken for the MAV to autonomously
navigate safely through the several environments and reach
its goal are recorded in Table I.

As can be seen from Table I, placing a constraint on
lateral velocity causes performance to suffer in our tightly-
confined environment with non-negligible disturbances. This
is largely because when moving through such a tightly-
confined environment, forward velocity, u, must be kept
low. This gives opportunity for disturbances to induce non-
negligible lateral velocity which must be corrected in order
to avoid collisions. With a constraint on lateral velocity, the
MAV is much slower at correcting these errors because it
must induce large yawing motions, and therefore is unable
to fly safely. CEPA, on the other hand, is able to handle these
disturbances because of its ability to move the MAV in any
direction to avoid collisions.

The second environment simulates the scenario where a
high-level path planner commands an infeasible goal and
the obstacle avoidance must prevent the MAV from crashing
until a proper goal is received. Specifically, we explored the
scenario when a goal is placed on the far side of recently
closed door, as shown in Figure 7. After recognizing the
obstruction, the avoidance algorithm was required to correct
the commands for 30 seconds until an alternative route was
provided. This second scenario was tested 50 times. In each
trial, the CEPA algorithm enabled the MAV to successfully
pause at the door, accounting for all disturbances while wait-
ing for an updated plan. FFLAO, however, was never able
to complete the task because its imposed motion constraints
disallowed backward motion. As the MAV approached the
closed door, it correctly stopped forward motion, but was
unable to correct for any disturbance.

The average latency of CEPA was 2.9 ms with a standard
deviation of 1.6 ms. Calculations were easily available at the
laser scanner’s bandwidth of 40 Hz even using a brute-force
optimization method.

B. Hardware Results

To definitively understand its effectiveness, CEPA was ex-
ercised in hardware. Flight test computation was performed
using an onboard Intel i7 computer with a 2.4 GHz quad
core processor and 16 GB of RAM. To emphasize the
light-weight nature of CEPA, avoidance was restricted to
use less than 1/16 of the available processing time. State
estimation was performed using the Relative Multiplicative
Extended Kalman Filter described in [18] provided with
position measurements from an RGB-D visual odometry
algorithm described in [19]. No external positioning system
or off-board processing was required.

2m

0.5m

1m

Fig. 6. Scenario 1: A grid of densely positioned cylinders obstruct the MAV’s path between the start and goal positions represented as blue pillars. The
high-level path planner commanded a 1m/s velocity directly towards the goal at all times during the test. The blue line is the original infeasible path
planned by the high level path planner, while the yellow line is the path ultimately taken by the MAV as a result of CEPA intervention. The red arrow is
the current high-level command. The green arrow is the modified CEPA command with the magenta safety cushion shown.

GoalStart Closed Door

Fig. 7. Scenario 2: The high-level path planner commands an infeasible
path due to a recent environment change. The ROAP block must maintain
safety while a new path is planned.

The MAV was placed in scenarios which isolated three
particular challenges:

1) Selecting an appropriate path around several obstacles.
2) Taking action to avoid a previously observed obstacle

when is no longer in the field of view.
3) Preventing collision when provided and infeasible goal.

Challenges 1 and 2 were addressed in the first scenario,
where the MAV was placed in a wide hallway with two
large obstacles in the middle, as shown in Figure 8. The
high-level path planner continuously provided commands at
0.8 m/s directly towards to the goal, while CEPA correctly
chose a safe path around the obstacles and arrived at the
goal. During this flight, after navigating around the first
obstacle, estimation errors and disturbances caused the MAV
to be pushed backwards towards the first obstacle. Although
the MAV was oriented towards the goal, and could no
longer directly see the first obstacle, it responded correctly
by commanding additional control away from the unseen
obstacle behind it. After avoiding the first obstacle, the MAV
then navigated around the second obstacle and to the goal
without further issues. During the test, the MAV maintained
a distance of at least 0.1 m from any obstacle, successfully

MAV

Goal

Fig. 8. Hardware validation of CEPA in a GPS-denied environment using
strictly onboard computation and sensing.

completing the task with no user input.

In the second scenario, the high-level path planner com-
manded the MAV directly through a flat wall for 5 seconds,
very much like the closed-door simulations performed previ-
ously. In this demonstration, however, there was no feasible
way to reach the goal. During this test, the MAV reached a
minimum distance of 0.1 m from the wall, and after some
damped oscillatory movement, hovered stably 0.5 m from the
wall. Videos of the simulation and hardware demonstrations
are available at https://youtu.be/35Og9PYwXOI.

https://youtu.be/35Og9PYwXOI

V. CONCLUSIONS

We have outlined the Reactive Obstacle Avoidance Plugin
framework, which allows for high-bandwidth, low-latency
control corrections to improve MAV robustness. This method
allows SWAP constrained MAVs to robustly leverage map-
based path planners, generally designed for ground robots
in static, known environments, while mitigating disturbances
and avoiding collisions. To demonstrate the effectiveness of
this framework, we have presented the Cushioned Extended-
Periphery Avoidance algorithm. CEPA relaxes motion as-
sumptions common in other reactive path planners, allowing
for more confident control in tight environments with non-
negligible disturbances. By working in the laser scanner’s
polar coordinate frame, and by incorporating previous laser
scans, safe controls can be efficiently computed despite
erroneous, outdated, or even absent high-level goals.

Future work includes improving the safety cushion looka-
head window by incorporating the MAV’s dynamics (e.g.,
momentum) and allowing trajectory based inputs as well
as extending CEPA to three dimensions. Developing a
fast, camera-based ROAP algorithm without limiting motion
assumption remains an open problem. Current work also
includes more extensive hardware testing, especially in the
presence of moving obstacles.

ACKNOWLEDGEMENTS

This research was supported by the NSF Center for
Unmanned Aircraft Systems (C-UAS), and Brigham Young
University.

REFERENCES

[1] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” IEEE Transac-
tions on Robotics, vol. 23, pp. 34–46, Feb 2007.

[2] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential
field techniques for robot path planning,” 1991.

[3] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensionalconfiguration spaces,”
Robotics and Automation, IEEE Transactions on, vol. 12, no. 4,
pp. 566 – 580, 1996.

[4] S. Koenig and M. Likhachev, “D* Lite,” Proceedings of the Eighteenth
National Conference on Artificial Intelligence, pp. 476–483, 2002.

[5] C. McCarthy and N. Barnes, “Performance of optical flow techniques
for indoor navigation with a mobile robot,” IEEE International Con-
ference on Robotics and Automation, vol. 2, no. April, pp. 5093–5098,
2004.

[6] J. R. Deming and S. Bruder, “Obstacle avoidance using image flow in
an RT-Linux environment in a PC-104 platform,” Machine Learning
and Applications, 2004. Proceedings. 2004 International Conference
on, pp. 215–219, 2004.

[7] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey,
J. A. Bagnell, and M. Hebert, “Learning monocular reactive UAV
control in cluttered natural environments,” Proceedings - IEEE In-
ternational Conference on Robotics and Automation, pp. 1765–1772,
2013.

[8] S. Scherer, S. Singh, L. Chamberlain, and S. Saripalli, “Flying fast and
low among obstacles,” Proceedings - IEEE International Conference
on Robotics and Automation, pp. 2023–2029, 2007.

[9] H. Oleynikova, D. Honegger, and M. Pollefeys, “Reactive Avoidance
Using Embedded Stereo Vision for MAV Flight,” 2015.

[10] J. Saunders, R. Beard, and J. Byrne, “Vision-based Reactive Multiple
Obstacle Avoidance for Micro Air Vehicles,” 2009 American Control
Conference, Vols 1-9, pp. 5253–5258, 2009.

[11] S. Hrabar, “Reactive obstacle avoidance for rotorcraft UAVs,” IEEE
International Conference on Intelligent Robots and Systems, pp. 4967–
4974, 2011.

[12] S. Schopferer and F. M. Adolf, “Rapid trajectory time reduction
for unmanned rotorcraft navigating in unknown terrain,” in 2014
International Conference on Unmanned Aircraft Systems, ICUAS 2014
- Conference Proceedings, pp. 305–316, 2014.

[13] S. Koenig and M. Likhachev, “Fast replanning for navigation in
unknown terrain,” IEEE Transactions on Robotics, vol. 21, no. 3,
pp. 354–363, 2005.

[14] S. Scherer, D. Ferguson, and S. Singh, “Efficient C-space and cost
function updates in 3D for unmanned aerial vehicles,” 2009 IEEE
International Conference on Robotics and Automation, pp. 2049–2054,
2009.

[15] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source Robot
Operating System,” ICRA, vol. 3, no. Figure 1, p. 5, 2009.

[16] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, Robot Operating
System (ROS): The Complete Reference (Volume 1), ch. RotorS—A
Modular Gazebo MAV Simulator Framework, pp. 595–625. Cham:
Springer International Publishing, 2016.

[17] J. Ferrin, R. Leishman, R. Beard, and T. McLain, “Differential flatness
based control of a rotorcraft for aggressive maneuvers,” in Intelligent
Robots and Systems (IROS), 2011 IEEE/RSJ International Conference
on, pp. 2688–2693, Sept 2011.

[18] R. C. Leishman and T. W. McLain, “Multiplicative Extended Kalman
Filter for Relative Rotorcraft Navigation,” Journal of Aerospace Infor-
mation Systems, pp. 1–17, 2014.

[19] J. Zhang, M. Kaess, and S. Singh, “Real-time depth enhanced monoc-
ular odometry,” IEEE International Conference on Intelligent Robots
and Systems, pp. 4973–4980, 2014.

	Cushioned Extended-Periphery Avoidance: A Reactive Obstacle Avoidance Plugin
	Original Publication Citation
	BYU ScholarsArchive Citation

	Introduction
	ROAP Motivation
	CEPA Algorithm Description
	Steering Algorithm
	Map Memory
	Emergency Avoidance

	Experimentation and Results
	Simulation Results
	Hardware Results

	Conclusions
	References

