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Abstract 

To explore the driving forces behind deformation twinning in Mg AZ31, a machine learning 

framework is utilized to mine data obtained from electron backscatter diffraction (EBSD) scans 

in order to extract correlations in physical characteristics that cause twinning. The results are 

intended to inform physics-based models of twin nucleation and growth. A decision tree learning 

environment is selected to capture the relationships between microstructure and twin formation; 

this type of model effectively highlights the more influential characteristics of the local 

microstructure. Trees are assembled to analyze both twin nucleation in a given grain, and twin 

propagation across grain boundaries. Each model reveals a unique combination of 

crystallographic attributes that affect twinning in the Mg. Twin nucleation is found to be mostly 

controlled by a combination of grain size, basal Schmid factor, and bulk dislocation density 

while twin propagation is affected most by grain boundary length, basal Schmid factor, angle 

from grain boundary plane to the RD plane, and grain boundary misorientation. The machine 
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learning framework can be readily adapted to investigate other relationships between 

microstructure and material response. 

1 BACKGROUND 

With the increasing demand for materials with high strength-to-weight ratios in 

transportation applications, magnesium alloys have emerged as competitive alternatives for 

structural components [1]. However, low formability at room temperatures prevents Mg from 

being a cost effective solution in mass production applications [2-10]. One issue that leads to this 

unfavorable forming characteristic is the strong basal texture of rolled Mg sheets, which forms 

during the rolling process. The hexagonal close packed (HCP) crystal structure of Mg, combined 

with the rolled texture of the sheet material, limits the availability of readily activated slip 

systems. The absence of easy slip systems to accommodate the applied strain leads to 

deformation twinning [3, 6, 8, 11-15]. While they can help accommodate strain, twins can also 

serve as nucleation sites for cracks [6, 11, 15]. The current work aims to elevate understanding of 

relations existing between microstructure characteristics and twin formation at room temperature 

in Mg alloys. 

The nucleation of a deformation twin in Mg depends upon so many variables that it may 

be considered a stochastic event [16-21]. In order to begin to unravel the complexity behind the 

physics of twin deformation, many observations of nucleation events are required (as manifested 

by several of the studies quoted above). Once sufficient data is available, statistical analysis can 

be applied in various forms to extract correlations linking the observed structure and applied 

field variables to nucleation and propagation events.  

Electron backscatter diffraction (EBSD) offers an ideal data collection technique to 

observe nucleation events, with the ability to scan hundreds of sample points per second [22-24]. 

Furthermore, recently developed high-resolution (HR-EBSD) techniques (also referred to as 

cross-correlation EBSD) provide new levels of microstructure data that include improved 

quantification of lattice orientation, local relative strains and dislocation density that may 

critically affect twin formation [25-28].  
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Machine learning is a suitable statistical analysis approach for mining large quantities of 

data, such as that from HR-EBSD methods. Already established in various fields as a reliable 

method for extracting insights and knowledge of relations between attributes in vast databases, 

machine learning provides a framework whereby complex events, such as deformation twinning, 

can be connected with local structure and field parameters [29-32]. In this paper, a J48 machine 

learning algorithm will be employed to create predictive models for twin events in grains, as 

observed by EBSD, in the form of decision trees.  A decision tree framework is particularly 

valuable for its interpretability. Using this approach, instances of nucleated and propagated twins 

in Mg alloy AZ31 will be correlated with microstructure attributes and the relative importance of 

these attributes in triggering the physical phenomena will be investigated.  

Using this proposed machine learning framework, the paper aims to achieve the following: 

1. Create decision tree models for describing twin nucleation in grains and twin propagation 

across grain boundaries in the Mg alloy AZ31 by extracting attribute based rules from 

EBSD data. 

2. Rank the physical factors according to influence on the nucleation or propagation of 

twins. 

3. Demonstrate that the proposed approach provides a reliable machine learning framework 

for mining EBSD data, such that future studies of rare and complex events may be 

accelerated. 

1.1 Deformation Twinning in Magnesium 

Slip in Mg depends upon a complex array of potential slip systems [14, 33-35]: basal <a> 

(2 independent), prismatic <a> (2 independent), pyramidal <a> type I (4 independent), and 

pyramidal <c+a> (5 independent). Furthermore, plastic deformation can be accommodated by 

compression twinning (predominantly the six variants) and tensile twinning (mainly 

the six  variants [36]). The Taylor model of plastic deformation requires that at least 

5 independent slip systems be activated to accommodate an arbitrarily imposed strain [37]. 

While there is a sufficient number of slip systems in Mg to accommodate the Taylor model, only 

the basal system and prismatic <a> systems are easily activated at room temperature, providing 

only 4 independent active slip systems (see Table 1). This leaves a requirement of one additional 

{ } 21101110

{ } 11102110
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deformation mechanism for compliance with the Taylor criterion. Twin activity can provide the 

necessary 5th degree of freedom for deformation. 

The interplay between slip and twin activity can most simply be described by a CRSS 

model. In the case of rolled AZ31 sheet, the strong basal texture requires some slip or twinning 

along the <c> or <c+a> directions in order to accommodate contraction or extension of the c-axis 

[20]. The much higher τcrss values of the <c+a> slip systems relative to those for tensile twins 

(see Table 1 for ranges of values reported in the literature) indicates that tensile twinning will 

occur before <c+a> slip to provide the 5th active system in the Taylor model [3, 14, 33, 38-40]. 

However, such an approach is not adequate to describe the complex response that is seen in 

practice.  

Table 1: Ranges of published τcrss values for deformation mechanisms in Mg at room temperature. 

Slip System basal <a> prismatic <a> pyramidal 

<c+a> 
twinning twinning 

τcrss (MPa) 4 8-10 80-100 11-12 76-153 

 

For example, work by Barnett et al showed that twin nucleation in Mg follows a Hall-

Petch relationship, where the required twinning stress increases with smaller grain size [16]. 

Furthermore, Beyerlein et al recently combined atomistic simulations with an extensive EBSD-

based study to demonstrate the effects of grain boundary (GB) misorientation and GB dislocation 

structure on nucleation of twins [17]. The resultant model utilized a stochastic approach to twin 

nucleation and combined it with a CRSS based model for twin propagation. It proposed distinct 

weights for the probability of twin nucleation on grain boundaries above and below 45o 

misorientation, due to the observed tendency of twins to be present at low angle GBs. A similar 

study by Khosravani [41] further categorized twin nucleation events at GBs into spontaneous 

formation of twins (slip-assisted nucleation) and propagation of twins across grain boundaries 

(twin-assisted nucleation). This paper also highlighted the importance of dislocation structure 

near GBs. The study further demonstrated that twins easily propagate through low angle (15-25o) 

GBs and tend to nucleate at high angle GBs (>39o). The different considerations of these various 

studies and models might be reconciled into one framework via a different approach, in which 

large data sets are explored using machine learning to reveal correlations to form the basis for 

model structure and parameters. 

{ }2110 { }1110
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1.2 Electron Backscatter Diffraction (EBSD) 

The automated acquisition of EBSD data has been used in materials science for several 

decades, culminating in tools that achieve common data collection speeds of hundreds of points 

per second. Such speeds allow for relatively large microstructures to be quickly and accurately 

measured (~0.3o resolution in lattice orientation [42]). The gathered EBSD data can then be 

processed by commercially available software (e.g. OIM™) to produce other 

crystallographically significant data related to grain orientation, phase, and morphology [43]. 

Available information from traditional EBSD techniques also includes grain size distribution, 

Schmid factors, variations (gradients) in lattice orientation, and GB misorientations.  

Additionally, in recent years high resolution EBSD (HR-EBSD) techniques have been 

developed to extract even more information from the collected EBSD data [25-28]. These 

methods apply cross-correlation techniques to EBSD images in order to measure orientations and 

relative crystal rotations with even greater angular resolution (0.006o). Using the cross-

correlation technique, HR-EBSD is also capable of being used to measure (relative) elastic strain 

and geometrically necessary dislocation (GND) density at each data point. Both measurements 

rely on the accurate extraction of the elastic distortion gradient, providing reliable strain and 

GND fields over large scan areas [44-47].   

With the combination of HR-EBSD data and standard EBSD metrics the mechanisms 

underlying deformation twinning of Mg can be more fully characterized. Microstructure 

characteristics analyzed in this paper will include grain size, kernel average misorientation, 

geometrically necessary dislocations, orientation of the c-axis relative to the sheet normal 

direction, grain boundary misorientations, and the Schmid factors for <a> type slip, <c+a> type 

slip, and twinning. These attributes provide a broad set of crystallographic measurements that 

may relate to the nucleation and propagation of twinning in AZ31. 

1.3 Machine Learning 

With the abundance of crystallographic information that may affect twinning in AZ31, 

and given the uncertainty underlying the cause and effect of twin nucleation and propagation, a 

modeling approach that minimizes assumptions made about the nature of the events under 

investigation may provide previously unidentified insights into the actual causes of these events. 

Machine learning, inclusive of various types of data mining developed to find statistical 
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correlations among large datasets, offers one such method of non-discriminatory characterization 

[29-32]. The basic idea of machine learning is to create relationships between user defined 

attributes (such as microstructure characteristics) and an outcome (such as a twinning event), 

referred to as a class. This is performed by training an algorithm to predict the resulting class, or 

outcome, based on a set of training instances containing attribute and class data. The trained 

algorithm can then be tested against other sets of instances for accuracy, with potential to be 

deployed as a predictive model if accuracy and precision meet user specifications. By employing 

this approach to predict twin activity in AZ31, the resulting machine learning models will help 

confirm whether all important aspects have been incorporated into current statistical Mg 

twinning models and may give insights into what attributes are missing.  

Machine learning has been utilized in various areas of materials science and engineering 

to develop constitutive relations that establish structure property relationships [48-54].  Many 

such studies treat the resultant machine learning models as a purely black box approach, used to 

predict an event without consideration to interpreting the decision framework behind the 

prediction.  This is particularly true for certain algorithms employed by these studies, such as 

neural networks or naïve bayes predictors, which while providing high levels of accuracy, do not 

have easily interpretable decision hierarchies. In contrast, the primary goal of this paper is to 

create, via machine learning, comprehensible models which describe twinning phenomena in Mg 

and then use those models to elucidate the physics associated with these events. 

Machine learning algorithms can be broken down into three categories: knowledge-

based, rule-based, and skill-based [55]. Knowledge-based learning is equivalent to ab-initio 

studies and therefore requires a greater prior understanding of the studied phenomenon. Rule-

based models however, provide less structured connections while still maintaining a moderate 

level of accuracy. Finally, skill-based algorithms can be compared to complex curve fitting in 

which the resultant model provides an easily implementable mathematical equation but may have 

reduced physical significance and interpretability. For the case of twinning in AZ31, a rule-based 

method is most suitable, given that there is not enough information to develop an accurate 

knowledge-based model, and skill-based models would not provide physically interpretable 

insights into the causes of twinning.   

The desire for an easily interpretable rule based classifier led to the selection of the J48 

decision tree classifier.  The J48 classifier expands the functionality of the C4.5 algorithm by 
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allowing for classification of continuous variables [56]. J48 produces easily comprehensible 

decision trees. During training, J48 categorically partitions data to maximize the information 

gain at each level of the tree structure, where information gain is a mathematically defined 

property. The result is a hierarchy of attribute (e.g. microstructure property) based divisions that 

results in the selection of a particular class, or an outcome (such as twin formation), for a given 

instance.  Figure 1 is an example of a decision tree created using the J48 classifier. The tree 

hierarchy is composed of a root, multiple branches, and multiple leaves, respectively labeled as 

“R,” “B,” and “L”. The predicted class for each instance is then tested against the actual class for 

that instance and the accuracy of the tree is evaluated.  

 
Figure 1: A typical decision tree and the associated hierarchy (R: Root, B: Branch, and L: Leaf) present in a 

decision tree. Note that the values inside the leaves appear in the following format: (# of classified instances / 

incorrect predictions). The relationships in this tree are provided for illustration and are not part of the 

investigation at hand. 

By definition, attributes found nearer to the beginning of the tree, or “root”, provide 

greater information gain than subsequent attributes and are thus considered to be more influential 

in determining the outcome. “Branches” represent subsequent divisions and “leaves” represent a 

predicted class outcome.  Hence smaller decision trees are desirable since they only retain 

attributes that have the greatest impact on a particular phenomenon. With only the most pertinent 

features captured, the resultant model becomes more physically understandable. 

Thus the model created by a decision tree may be interpreted or applied in several ways:  

i) as a model/constitutive relation for the studied event.  

ii) as a set of insights into the causes of the event that help focus further research. 
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iii) as a way to determine/capture more events for further study by predicting when / 

where critical events will occur. 

The tree also provides a framework to systematically increase the data set from which to train the 

algorithm and thus refine the resulting model. In the case of time-consuming data collection 

procedures, the potential for a refined data collection method is desirable as it has the ability to 

intelligently guide data collection towards areas of interest, as defined by the information 

contained in the decision tree. Such an approach to refined data collection is an area of ongoing 

research and beyond the scope of this paper. 

2 MATERIALS AND METHODS 

The material studied in this research was a 3 mm thick cold rolled and annealed AZ31 

Mg alloy plate with an initially twin-free microstructure. Specimens were prepared as 3mm x 

4mm x 3mm square prisms, cut from a fully annealed AZ31 plates, using wire EDM to minimize 

the amount of deformation on the sample surface. The samples were then prepared for EBSD 

study by mechanical polishing using suitably sized diamond abrasives followed by an OP-S 

colloidal silica slurry polish. Finally, the sample was etched with a solution of 60% ethanol, 20% 

distilled water, 15% acetic acid and 5% nitric acid. Using a focused ion beam, platinum fiducial 

marks were deposited on the specimen surface to measure approximate 2-dimensional strain in 

the scan area [41].   

The first specimen was compressed along the rolling direction (RD) up to ~3% strain, 

and the second specimen was strained slightly further to ~3.5%. This strain was chosen because 

it was the point at which there was sufficient twin nucleation and propagation for detailed 

analysis using machine learning, based on prior work [57]. 

EBSD scans were carried out on an FEI-Helios NanoLabTM 600i SEM equipped with 

OIMTM data acquisition software and a high-speed HikariTM camera [43, 58]. A step size of 300 

nm was selected for two scan areas of 84 x 84 µm2 on the first sample and 70 x 270 µm2 on the 

second. Subsequent post processing of data utilized OIMTM Analysis, MatlabTM, and OpenXY 

(open source HR-EBSD software [59]) to organize attributes for input into the machine learning 

environment [58, 60, 61]. The extracted attributes, their origin, and a brief explanation are listed 

in Table 2. 
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The analysis presented in this paper calls for two separate models to be created, one for 

nucleation of twins in grains and another for propagation of twins across grain boundaries. For 

this study, a nucleation event was classified by identifying at least one twin in a grain (i.e. both 

twins that spontaneously formed in a grain and twins that propagated into the grain from a 

neighboring grain). A propagation event was defined when at least one twin was present on 

either side of a given GB. The nucleation model took into consideration attributes within a grain, 

but ignored GB morphology. The propagation model, on the other hand, focused on parameters 

relating to GBs.   

Several attributes were selected to represent morphological data (e.g. grain size, number 

of neighbors, neighboring grain size, GB length). Attributes relating to feature size play a large 

role in both current Hall-Petch type models [12, 16] and stochastic models [17, 62]. 

Other attributes (such as GB trace orientation, GB straightness, grain orientation relative 

to loading direction, Schmid factors, kernel average misorientation and the related metric of 

GND density) may affect strain compatibility, incentive to slip or twin, and information 

regarding localization of deformation. Kernel average misorientation (KAM) and GND content, 

measureable by HR-EBSD, indicate strain localization in a material, potentially triggering twin 

activity. The Schmid factor of a particular slip or twin system also serves as an indicator of the 

likelihood of the relevant activity. 

Table 2: Input attributes (parameters) for machine learning. Check marks indicate attributes utilized 
as inputs for creating each model (nucleation or propagation). Highlighted check marks indicate the 
important microstructural features as found by each machine learning model. (N: nucleation, P: 
propagation). 

Attribute (Abbreviation in 
decision tree) 

Description Source Model 

N P 

Grain size (SIZE) 
 

– Equivalent diameter. Calculated as the diameter 
of a circle with the same area as the measured grain 

OIM 
Analysis 

 
 

 
 

Neighboring grain size (NBRSIZE) – Average neighbor grain size    
Relative grain size  (RELSIZE) – Grain size divided by neighboring grain size    
Number of neighbors (NUMNBRS) – number of neighboring grains    
Deviation of c-axis from RD, TD, 
and ND (RDMISO, NDMISO, 
TDMISO) *  

– Smallest angle of misorientation    

Kernel average misorientation 
(MISO) * 

– Average misorientation of directly neighboring 
points (with 5o cutoff) 

  
 

 
 

Schmid factors (SF) of basal <a> 
and pyramidal <c+a> slip systems 
(BASALSF, CASF)* 

– Maximum value of each slip system taken as a 
grain average 
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Schmid factors of  

tensile twins (TWINSF) 

- Maximum value, taken as a grain average (also 
considers the possibility of negative values) 
 

Matlab  
 
 

 
 

 
Ratio of twinning Schmid factor to 
<c+a> Schmid factor (TWINCASF)* 

– Maximum SF for twinning divided by max SF for 
pyramidal <c+a> 

   

GB misorientation (GBMISO) – Rodriguez misorientation    
GB length (LENGTH) – Length along measured GB segment    
GB straightness (STRAIGHT) 
 
 

– Average distance of the measured boundary from 
a straight line connecting the boundary endpoints 

   
 
 

Approximate GB orientation 
(RDANGLE)* 

– Angle between the GB trace and RD    

Local dislocation densities 
(LOGDD)*  

– Grain average of sum of Nye tensor terms HR-EBSD   

*Value for attribute recorded on both sides of a given grain boundary in addition to the average difference 
in values over the boundary – leading to multiple attributes relating to each of these items. They are labeled in 
decision trees with the prefix MAX, MIN, or DIFF preceding the attribute label given in Table 2. 

 
The remaining attribute of GB misorientation not only reflects morphology (local relative 

orientations), but also partially reflects energy associated with GBs. This also relates to GB 

defects, and has already been linked to twin nucleation and propagation [41, 63]. 

The metrics collected were gathered for grains that did not twin and grains that twinned, 

also referred to as parent grains. Grains and grain boundaries near the edge of the scanned area 

were excluded from consideration due to a lack of complete information for various local 

attributes (such as grain size). 

Once the previously described attributes were collected for each grain and grain 

boundary, they were organized into a data structures suitable for input into a machine learning 

program. This study used a publicly available machine learning package, WEKA, for the data 

mining process [64]. A J48 decision tree classifier was then chosen to find correlations between 

input parameters and twinning [65]. The algorithm employs a method that increases the 

information gain of the data as it is partitioned at each node of the tree. Information gain for J48 

is calculated by the following relations: 

𝑮𝑮(𝑺𝑺,𝑨𝑨) = 𝑬𝑬(𝑺𝑺) − ∑ |𝑺𝑺𝒗𝒗|
|𝑺𝑺| 𝑬𝑬(𝑺𝑺𝒗𝒗)𝒗𝒗∈𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽(𝑨𝑨)                (1) 

𝑬𝑬(𝑺𝑺) = ∑ −𝒑𝒑𝒊𝒊 𝐥𝐥𝐥𝐥𝐥𝐥𝟐𝟐 𝒑𝒑𝒊𝒊𝒄𝒄
𝒊𝒊=𝟏𝟏                  (2) 

In these equations S is the total set of instances being considered, Sv is the subset of S 

with value v, A is the attribute under consideration, v is a particular value of the considered 

attribute A, c is the set of possible outputs (these being ‘twin’ or ‘no twin’ for this study) for 

{ } 11102110
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value v, and p is the probability of instance i having value v. Eqn. 1 calculates the information 

gained with selection of a particular attribute and  Eqn. 2 calculates the entropy of moving 

toward that attribute. When the information gain for an attribute is higher than a user defined 

threshold and the entropy required for moving towards this attribute is lower than the entropy 

required for moving towards other attributes, the algorithm selects this attribute as most suited 

for forming a branch or root in the decision tree.  

In this study the data used to train the algorithm indicates, using a class variable, whether 

a grain nucleates a twin or not for the first study (nucleation), and whether a grain boundary 

propagates or blocks a twin for the second study (propagation). Relevant roots, branches and 

leaves of each decision tree are labeled “R,” “B,” and, “L” respectively in Figures 2 and 4 in this 

paper. 

Additional constraints were placed on the machine learning algorithm to avoid arriving at 

an overly complicated model; these include applying a confidence factor of 0.25 (an algorithm 

parameter) and disallowing any leaf with less than two instances. The confidence factor value 

sets a limit on the minimum acceptable information gain for a branch to be included in the tree. 

Its values are greater than zero, with larger values requiring less information gain per branch. 

Requiring a minimum of two instances to create a leaf prevents overfitting the model to a 

particular dataset by reducing the effect of noise or outliers. 

The two decision trees (for nucleation and propagation) were initially trained and 

validated using data from a single scan. They were subsequently tested on a second larger scan. 

In order to create a valid model using the initial data set, standard 10 fold cross-validation 

techniques were applied to the decision tree algorithm. Cross-validation is a proven machine 

learning technique where the data is split into 10 stratified subsets called folds. One fold is 

removed from the dataset, and the other 9 are used to train the classifier.  The removed fold is 

then used to test the model created by the other 9.  This is repeated with each of the 10 folds used 

to test against the model formed by the other 9 and a final average model is generalized from the 

results. A minimum of two instances per leaf was also required as an additional precaution to 

avoid the effects of over fitting [30, 31]. Over fitting is an occurrence in machine learning that 



12 
 

can cause a model to have poor generalization capabilities (i.e. the model only accurately 

describes the relatively small subset of training instances). 

The models generated for this study used detailed inputs from 104 grains to build the 

nucleation model and 130 grain boundaries to create the propagation model, from the first 

specimen described above. Among the 104 grains used in the creation of the nucleation model, 

38 had detectable twins present. The nucleation model took into account a total of 13 attributes, 

taken from Table 2, including grain size, number of neighboring grains, average size of 

neighboring grains, relative size of a grain compared to its neighbors, kernel average 

misorientation, deviation of the c-axis from the RD, TD, and ND, basal Schmid factor, pyramidal 

<c+a> Schmid factor, tensile twin Schmid factor, the ratio of the twin Schmid factor to the 

pyramidal <c+a> Schmid factor, and log10 of dislocation density measured by HR-EBSD.  

Of the 130 observed grain boundaries that came in contact with one or more twins, 30 

were found to facilitate twin propagation. The propagation model took into account a total of 19 

attributes, based on attributes listed in Table 2. Included were kernel average misorientation, 

basal Schmid factor, the ratio of the twin Schmid factor to the pyramidal <c+a> Schmid factor, 

log10 of dislocation density measured by HR-EBSD, and deviation of the c-axis from the ND.  

These 5 attributes were calculated on both sides of a given grain boundary along with the 

difference between them.  GB straightness, approximate GB orientation, GB length, and GB 

misorientation were also included.  

The second dataset contains 1239 grains and 1127 GBs.  This data was used to test the 

models created with the smaller dataset, giving insight into the accuracy of the models when 

applied to a more generic dataset.  

The overall accuracy of each model was assessed as the total number of correct 

predictions divided by the total number of instances used to create the model. Each model has 

two accuracy percentages, the first is the accuracy of the model against the training data, or the 

smaller dataset, and the second is the accuracy of the model when tested against the larger 

dataset, which was not used in training.  The second accuracy suggests the feasibility of the 

model in being deployed for use against other independent datasets.  Maps of correct and 

incorrect predictions were also created to visually represent model accuracy in the 

microstructure. Attributes found to be influential were compared with literature on twinning in 
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Mg to either confirm previous findings or suggest new areas of investigation.  The number of 

correct predictions versus incorrect predictions at each leaf was also evaluated. 

3 RESULTS 

3.1 Twin Nucleation in Grains - Results 

The model created for nucleation of twins as a function of microstructure attributes is 

shown in Figure 2. In testing the observed microstructure against the created decision tree, 

86.5% of the 104 grains and 75.1% of the 1239 grains were correctly categorized by the model 

as either twinning or not twinning. 

 

 

 
Figure 2: Decision tree for characterizing twin nucleation within an individual grain. Labels R, B and 

L index the root, branches and leaves, respectively.  Attribute labels used in the tree are defined in Table 2. 

This decision tree is relatively shallow, with only five branches (decision points) and six 

leaves (end points). As seen in Figure 2,  only 4 attributes were needed to accurately define twin 

nucleation within a grain.  They are, ranked in order of importance: 

1. grain size. 

2. basal Schmid factor. 

3. dislocation density. 
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4. c-axis to ND deviation. 

The presence of grain size in the machine learning model coincides with the findings of 

many researchers (e.g. [16]). Furthermore, the location of grain size at the “root” of the tree, and 

a further appearance at branch B3 within the tree, emphasize its fundamental importance. The 

next attribute of importance in the decision tree is basal Schmid factor; its appearance is in line 

with the findings of others, as it indicates whether a grain is “hard” or “soft”, and therefore prone 

to twinning (e.g. [41]). The dislocation density and c-axis to ND deviation might be considered 

new findings pertinent to the twinning phenomenon in Mg. Influence of c-axis misorientation on 

twinning has previously been proposed for statistical models, but the previous study focused on 

the somewhat different attribute of misorientations between the c-axis of neighboring grains 

[66]. These attributes appear near the end of the tree, indicating that they do not provide as much 

information gain as the other attributes, such as grain size. If the lower attributes are removed 

and replaced with random class assignments, the accuracy of the tree on the training data drops 

by approximately 10%; this suggests that grain size is dominant, but not the exclusive factor in 

twin formation. 

Additionally, the validation of the model is visually ascertained by mapping the 

predictions made in the decision tree onto the grain structure tested (see Figure 3).  Several 

insights into the model are made clear by the maps in Figure 3.  The first is that the model 

appears to better predict twin activity in small area grains than large grains, which is likely due to 

the uneven distribution of instances in the training data.  The uneven distribution of training 

instances can result in a final model that is slightly biased, as seen in the difference in accuracy 

between small and large grains. It is also seen that misclassified grains are often clustered 

together, suggesting a limitation in the current model.  Twinning is known to often form in 

localized bands; by using grain based attributes in the model as opposed to local area attributes, 

this inter-granular interaction is not accounted for. 
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Figure 3: Error maps of decision tree for predicting twinning in individual grains. Microstructure used 

to build model, 104 grains (left) and test generalization, 1239 grains (right). Correct predictions (blue) and 
incorrect predictions (red) are shown except for edge grains (gray) which were excluded due to incomplete 
information. 

3.2 Twin Propagation across Grain Boundaries - Results 

The decision tree model for twin propagation is shown in Figure 4. The model correctly 

predicted whether a twin propagated across a given grain boundary (GB) in 125 GBs out of the 

130 GBs (96.1%) used to create the model, and in 851 GBs out of the 1127 GBs (75.5%) used 

for testing  the model. However, the higher accuracy came with an increased depth of decision 

tree. The nucleation of twins within grains has a relatively small decision tree (5 branches and 6 
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leaves), whereas the model for twin propagation has 11 branches and 12 leaves i.e. 

approximately twice the size of the prior tree.  

In the propagation decision tree, 9 of the possible 19 distinct attributes are present. They 

are:  

1. GB length. 

2. GB misorientation. 

3. minimum twin to <c+a> Schmid factor ratio. 

4. difference of twin to <c+a> Schmid factor across the GB.  

5. minimum basal Schmid factor.  

6. difference of basal Schmid factor across the GB. 

7. difference of kernel average misorientations across the GB. 

8. the approximate angle of the GB on the sample surface relative to the RD.  

9. the maximum basal Schmid factor.  

Several of the attributes in the model reflect findings from previous work. For example, 

GB misorientation was considered by both Beyerlein et al [63] and Khosravani et al [41]. The 

basal Schmid factor appears several times in the tree, confirming the finding by Khosravani et al. 

that showed the correlation between twin nucleation and basal dislocation buildup at a grain 

boundary. Other attributes such as GB length capture multiple aspects of prior research such as 

Figure 4: Decision tree for characterizing twin propagation across grain boundaries. Attribute labels used in the tree 
are defined in Table 2. 
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the grain size effect observed by Barnett [16] and the statistical nature of twinning at a boundary 

observed by Beyerlein, since larger boundaries have more potential twin nucleation sites. 

In order to visualize the accuracy of the GB propagation model, a different type of map is 

required from that shown in Figure 3. In this case, twin boundaries were colored as either 

allowing or blocking propagation.  Incorrect predictions in either case were highlighted as seen 

in Figure 5.  

  
Figure 5: Error maps of the decision tree for predicting twin propagation across grain boundaries. 

Microstructure used to build model, 130 GBs (left) and test generalization, 1127 GBs (right). GBs that were 
predicted to allow propagation of twins are shown in red while those that predicted barriers to twin 

propagation are pale. incorrect prediction assignments are highlighted in yellow (appears orange in the right 
image). Grain boundaries that do not intersect twins are displayed in black. 

4 DISCUSSION 

4.1 Twin Nucleation in Grains – Analysis of Model 

In analyzing the results and accuracy of the decision tree models, the potential benefits 

include both a twin prediction model (in this case, provided by the decision tree), and detailed 

insights into microstructure attributes that contribute most to twin activity. An analysis of the 

grain nucleation model (Figure 2) reveals a hierarchy of attributes that influence twin formation.  

The detailed correlations between these attributes and twin activity can be explored in more 

depth using standard statistical analysis. The relative frequency of twinning across the range of 
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values of selected attributes is shown in Figure 6 revealing functional dependence which is not 

entirely captured in the decision tree, and aids the discussion of the overall performance of the 

decision tree approach. 

The most critical contributor to twin formation within a grain is grain size, at the root (R) 

of the decision tree. At this point the tree splits into a terminal leaf (L1) and a branch (B1). This 

initial division on the tree, dividing grains that are greater or smaller than 7.2 µm, illustrates the 

difficulty of twin nucleation in relatively smaller grains, consistent with the Hall-Petch approach 

on the twinning shear stress described by Barnett [16]. This also aligns with the stochastic view 

of twinning [67], where smaller grains would be less likely to nucleate twins due to fewer 

available nucleation sites. A more detailed view of this relationship can be seen in Figure 6c, 

where increasing grain size generally results in increased likelihood of twinning. However, leaf 

L1 has a relatively high error (12 of 65 predictions were incorrect), highlighting one negative 

aspect of the decision tree approach, representing non-linear data using discrete divisions. For 

example, Figure 6c displays a somewhat non-linear relationship between grain size and twin 

occurrence; however, the decision tree creates a discrete division based on a single grain size to 

segregate grains that are more likely to twin from those that are less likely to twin. The non-

linear relationship can be partially incorporated into the tree by the appearance of multiple 

branches containing the same attribute (as in branch B3 in this tree). More sophisticated machine 

learning algorithms can be used to better capture the non-linear functional dependence (for 

example, neural networks); however, such algorithms are not as good at quantifying the relative 

importance of the attributes and thus at clarifying the physics underlying the phenomena of 

interest. 

Another source of error relating to grain size correlations is inherent in the nature of the 

data being used. EBSD infers a grain size from a 2D slice of the grain. While on average, 

stereological values of grain size have been shown to be correct [68], there will be various cases 

when a large grain is assumed to be small due to the fact that it has been sliced near to one end. 

This type of error will reduce as the size of the data set increases.  

The B1 branch in Figure 2 partitions the remaining instances into two sets based upon the 

basal Schmid factor being greater or less than ~0.29. Once again, the relevant chart in Figure 6a 

displays a more complex relationship between Schmid factor and twin probability; nevertheless, 

the simple cutoff value approach in the model highlights the fact that lower Schmid values 
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correlate with a higher tendency to twin, potentially owing to the lack of appropriately oriented 

basal slip systems to accommodate strain. 

 

 
Figure 6: Bar charts of relevant features used in the decision tree for the twin nucleation model: basal 

Schmid factor (a), dislocation density (b), grain size (c), and ND deviation from the c-axis (d). 

Of lesser influence in the production of twins is dislocation density, as apparent at branch 

B2, immediately below the basal Schmid factor branch (B1), indicating a correlation between lower 

dislocation content (<2.23e15 m-2) and twin activity. This is presumably because of the presence 

of greater slip activity which reduces the necessity for strain accommodation by twinning. Such 

dependence may not have been immediately apparent from a simple view of the relationship 

between dislocation density and twin activity, as seen in Figure 6b. The strong correlation comes 

to light only after the small grains and those with low basal Schmid factors are filtered out using 

the decision tree approach.  

The additional consideration of c-axis to sample-ND deviation contributes the last unique 

attribute found in the machine learning model, and is found in branch B4. This attribute is used as 

a measure of how strongly aligned a grain is with the basal texture found in the tested samples 

(i.e. distinguishing “hard” and “soft” grains). The final leaves (L5, L6) of the model indicate that 
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grains which are closer to the basal texture tend to twin more, presumably because of the need to 

accommodate c-axis expansion by means other than <a> type slip. Again, the statistical analysis 

in Figure 6d provides further insight into the nature of this correlation by illustrating the trend 

that lower ND misorientations (stronger basal orientation) twin more frequently.  

4.2 Twin Propagation across Grain Boundaries - Analysis of Model 

While the model presented for finding grains containing twins was relatively simple, the 

decision tree for characterizing propagation of twins across GBs (Figure 4) involved a larger 

number of parameters and was more complex. This is also highlighted by the statistical 

correlations of underlying dependencies for various attributes, as shown in Figure 7. Therefore, 

the focus of the analysis of this model will not be to explain the tree in its entirety but to extract 

as many reliable conclusions as possible.   

The first attribute that appears at the root of the decision tree (R) for propagation is GB 

length, and attribute that is not always considered in twin models. However, clearly larger GB 

areas statistically increase the probability of twins nucleating or propagating across a boundary; 

longer grain boundaries propagate twins more readily than their shorter counterparts (≤10.1 μm.  

The next most important attribute in the decision tree is GB misorientation (B1), which 

had been previously studied by other researchers (e.g. [63]). In the machine learning model, GB 

misorientation appears at three distinct branches (B1, B4, B9), pointing to a more complex 

relationship between misorientation and twin activity than might previously have been captured 

by models in the literature. In general, grain boundaries with lower misorientation are more 

likely to propagate twins while higher misorientation grain boundaries serve as barriers to twin 

propagation. The machine learning model identified 27.1o as the approximate threshold angle of 

misorientation below which propagation is favored, showing good agreement with the 25-39o 

found by Khosravani et al [41]. Note that this apparent correlation may also be due to the fact 

that hard grains neighboring soft grains tend to have high angle boundaries, and that, strain 

accommodated in the soft grain by slip must be accommodated in the hard grain by twins (see 

the discussion in [41]). However, the overall effect of GB misorientation on twin propagation is 

fairly complex, as seen in Figure 7b. This complexity is expressed in the decision tree model by 

the reoccurrence of GB misorientation. It is interesting to note the presence of spikes in twin 
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propagation instances in Figure 7b.  While not investigated in this work, these could correlate 

with special grain boundary types. 

 

 

 
Figure 7: Bar charts of relevant features used in the decision tree for the twin propagation model: 

grain boundary length (a), grain boundary misorientation (b), maximum basal Schmid factor (c), and the 
angle between the grain boundary trace and loading direction, RD (d). 

Another significant attribute in the machine learning model is the basal Schmid factor near 

grain boundaries (B2, B6, B7). As presented in the decision tree, the maximum basal Schmid 

factor is pivotal in deciding whether longer grain boundaries block or propagate twins. This can 

also be visualized to some extent via the basal SF plot in Figure 7c. According to B2, when the 

maximum basal SF on either side of a boundary is less than ~0.36, twins tend to propagate. If 

basal slip systems cannot easily accommodate the stress state caused by a twin on the opposing 

side of a GB then twinning may occur in order to accommodate that stress. Previous research has 

demonstrated the stress rise at GBs and triple junctions, using finite element modeling, for 

various materials and triple junction configurations [69, 70]. In these studies, the stress at a triple 

junction has been shown to be as much as 30% higher than the average stress in the grain. 

Referring back to Table 1 this increase in stress may accommodate the transition from activation 
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of prismatic slip (8-10 MPa) to activation of tensile twinning (11-12 MPa). Furthermore, Koike 

[14] discussed the formation of twins due to stress concentration and Barnett [11] showed that 

twins intersecting other boundaries can lead to void/crack nucleation which also serves to 

illustrate the increased stresses at these locations. In brief, the stress concentration caused by a 

twin intersecting a GB may be sufficient to increase the local stress above the threshold for 

tensile twinning, causing that twin to propagate across the boundary.  

Other attributes present in the decision tree include the ratio of twin Schmid factor to 

<c+a> Schmid factor (B3, B5), kernel average misorientation (B8), and the average angle between 

the GB and loading direction (B10). The ratio of Schmid factors (B3, B5) provides information as 

to whether incompatibility will exist at a GB which would then need to be accommodated by a 

twin. Smaller differences between these ratios across a GB may encourage twins to propagate, 

since both grains are more likely to twin than activate <c+a> slip. Additionally, kernel average 

misorientation (B8) has been used by some researchers as an estimate of dislocation activity [71]. 

In the decision tree smaller differences across a GB tend to result in propagation of twins, and 

larger differences serve as barriers. Similar observations were made by Khosravani that 

suggested that dislocation pileups can correlate with poor twin propagation as well as 

spontaneous twin nucleation [41]. The final morphological measure of grain boundary trace 

angle (B10) seems to show that boundaries more perpendicular to the RD will propagate twins, 

likely due to the increased area across which the incoherent twin boundary spans. This 

relationship cannot be seen clearly in Figure 7d but is extracted through the machine learning 

algorithm pointing to a potential advantage of the method presented in this paper.  

The decision tree is very accurate for the original data set from which it was derived, but 

less so for the larger test data. This may be due, in part, to the large size of the tree. Large trees / 

models tend to increase the likelihood of over fitting which limits the models ability to 

accurately characterize generalized data sets. Regardless of the potential errors in this model, 

attributes nearest to the root of the tree would most likely remain the most important across more 

general datasets, thus maintaining the relative accuracy and interpretation of the model. 
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4.3 Machine Learning Framework - Discussion 

When selecting the decision tree algorithm, it was understood that it would provide a 

rule-based description of the studied events related to twinning in AZ31, and not a knowledge-

based description.  Knowledge based machine learning methods, such as neural networks, tend to 

produce more accurate models, but require prior knowledge about the event studied.  The 

methods employed by using J48 do not require previous knowledge about the events and thus 

cannot create the more complex, yet more accurate, knowledge based results. While trade off of 

accuracy might be considered a weakness of this machine learning framework, it is in fact an 

advantage since understanding of twin nucleation and propagation is not sufficient to create a 

model based on prior knowledge. The idea of extracting structure/ phenomena relations and 

ranking the importance of different structure attributes, without prior understanding of the 

physics, is perhaps the greatest benefit of using this rule-based machine learning approach. For 

example, if one considers a scenario where no previous work had been done to study twinning in 

Mg, then the results of machine learning could have focused subsequent studies on the 

highlighted individual attributes found in the decision trees. Even as prior knowledge was 

considered here, modest insights beyond current models have been identified for deformation 

twinning in AZ31. 

The difference in accuracy between the small and large dataset should be noted.  The 

models did not perform as well on the larger datasets, likely for several reasons.  First, the model 

is biased towards the small dataset, as it was used to train the model.  Second, small differences 

in strain or texture between the samples could greatly affect their accuracy.  Despite the 

differences in accuracy, the 75% accuracy of the model in comparison to the large dataset 

confirms that the framework produces robust models that have potential to be deployed for use 

with new data. 

For example, one significant attribute found using the machine learning framework is the 

deviation of the c-axis from the sample ND. This new knowledge could lead to a more in-depth 

study to observe highly non-basal grains in a mostly basal textured material in an effort to come 

up with a measure of strain incompatibility that would then help explain twinning in these grains.  

Another potential application of machine learning as it applies to the findings of this 

paper is the opportunity to refine and accelerate microscope-based studies on twinning in Mg 

AZ31. The knowledge gained via the machine learning method gives future researchers the 
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ability to quickly select areas of interest (e.g. regions where twin nucleation is probable) and 

capture high quality data in these areas. The model may also be applied to observe twin 

nucleation at its earliest detectable stages by looking for the highlighted attributes at lower levels 

of global strain. Such tools could serve to help future studies of any complex materials 

phenomenon observable by EBSD. 

5 CONCLUSION 

Twin formation within grains and twin propagation across grain boundaries in Mg alloy 

AZ31 was studied using a machine learning framework (J48 decision tree), which extracted 

attribute based rules. Models emerging from the study were 86.5% accurate for predicting twin 

nucleation and 96.1% accurate for predicting twin propagation across grain boundaries against 

the cross validated training set of 104 grains. The accuracy of the models against an independent 

test set was 75.1% for twin nucleation in 1239 grains and the twin propagation model was 75.5% 

accurate on 1127 GBs. The compression strain and distribution of twinned vs untwinned 

instances were slightly different between the test and model samples, which may have led to 

discrepancies between the accuracies between the two datasets.  

The important observations associated with twin nucleation on the grain level, in order of the 

greatest to lowest relevance, include: 

• increased twin nucleation in larger grains (>7.2 µm) 

• decreased twin nucleation in grains with maximum basal Schmid factors above ~0.29 

• decreased twin nucleation in grains with average dislocation densities above 2.23e15 m-2 

• increased twin nucleation in grains where the angular deviation between c-axis and 

sample ND was less than 30.5o 

The important observations associated with twin propagation across a grain boundary, in 

order of relevance include: 

• increased twin propagation across GBs with a length greater than 10.05 µm 
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• increased twin propagation at GB misorientations <27.1o 

• decreased twin propagation for GBs where the maximum basal Schmid factor exceeded 

0.359 

• increased twin propagation across GBs where the difference between the ratio of twin 

Schmid factor to <c+a> Schmid factor was less than or equal to 0.317 

• decreased twin propagation across GBs with a difference between kernel average 

misorientation greater than 0.032o 

• decreased twin propagation across GBs where the average angle between the GB and 

loading direction was less than or equal to 46.63o 

The combination of these attributes provide the greatest overall information gain of the 

available features and help understand the physical processes associated with tensile twinning in 

AZ31. Furthermore, the findings of this paper stand in agreement with work done by previous 

researchers (grain size corresponds to Hall-Petch/Barnett models [16], boundary length 

corresponds to Beyerlein [17], and GB misorientation corresponds to both Khosravani [41] and 

Beyerlein [17]) while building upon it with new insights. These additional insights provide a 

deeper understanding of some of the previously hidden details affecting twinning in AZ31, 

leading to potentially more accurate models in future work. 

In conjunction with the findings on twinning in this Mg alloy, a machine learning framework 

for utilizing EBSD data has been adopted that can be used to analyze a variety of complex 

phenomena. The benefits of this technique are two-fold. They are; i) underlying processes, or 

microstructural features, behind studied events can be quickly revealed, and ii) continued study 

of a phenomenon will be aided by the ability to quickly refine data collection to areas of interest 

in a microstructure. The framework presented in this study is not limited to twinning in Mg or its 

alloys but extends to the broader set of crystalline materials. Ultimately this technique has 

potential for analyzing complex metallographic phenomena rapidly, which will allow for 

acceleration in researching links between microstructure and material properties. 
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