10-31-1984

A preliminary classification of the natural vegetation of Colorado

William L. Baker
Colorado Natural Heritage Inventory, Denver, Colorado

Follow this and additional works at: https://scholarsarchive.byu.edu/gbn

Recommended Citation
Available at: https://scholarsarchive.byu.edu/gbn/vol44/iss4/11

This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
A PRELIMINARY CLASSIFICATION OF THE NATURAL VEGETATION OF COLORADO

William L. Baker

ABSTRACT.—A classification of the natural vegetation of Colorado is presented. This classification, which uses the Plant Association as the basic unit, was developed by sorting data in the scientific literature, supplemented by field research. The classification uses a standardized nomenclature. Citations are given for the literature from Colorado and adjoining states for each Association. The classification includes a total of 403 Plant Associations, with 28 Angiosperm Forests/Woodlands, 2 Mixed Angiosperm–Gymnosperm Forests/Woodlands, 114 Gymnosperm Forests/Woodlands, 100 Shrub Associations, 74 Grassland Associations, 38 Graminoid Associations, and 47 Herb Associations.

In completing a state flora, a species taxonomist (systematist) would compile existing collection records from herbaria, resolve pertinent taxonomic questions, adopt and synonynize nomenclature, and complete field collections in undercollected parts of the state. The taxonomist aiming at a state compilation of vegetation types would need to take analogous steps. In the western United States, however, there are additional problems specific to syntaxonomy: (1) There is no herbarium analog for vegetation records; the vegetation analog of a plant specimen is a sample (stand) record. Although these are often published in the scientific literature, in some states, such as Colorado, a substantial amount of stand data is not available in the published literature. (2) There is no single, widely utilized method of stand data collection. Stand attributes measured may include cover, frequency, biomass, percent composition, density, or other measures. These may be recorded for each species of plant, or plants may be grouped by life form or other criteria. Data may be collected using visual estimates on large plots, or by more detailed quadrant methods. (3) Many sample plot data are collected but never analyzed, or the analysis includes ordination but not classification. Although ordination procedures may assist in elucidating relationships among samples and in relation to environmental gradients, they are of less value than clustering procedures in determining meaningful vegetation units. (4) In the western U.S., with few exceptions, vegetation classifications are developed for a limited geographic area, usually on the order of a mountain range or basin, and the classification, although made internally consistent, is not often correlated with available regional vegetation data or other classifications. This is analogous to describing species based on specimens in only one herbarium or museum. If the correlation is completed, rarely is the nomenclature adjusted accordingly. (5) There is no standardized system of nomenclature in wide use in the western U.S. The closest approach to such a system is the system used in habitat type studies supported primarily by the U.S. Forest Service (Pfister 1982). Although there are no formal nomenclatural rules for this system comparable to those of the International Code of Phytosociological Nomenclature (Barkman et al. 1976), correlation efforts have resulted in fairly consistent names. There are also scattered studies in the region that have followed the nomenclatural procedures in the International Code (e.g., Komárková 1976). (6) There is disagreement about whether the classification should be of

*Colorado Natural Heritage Inventory, 1350 Lincoln Street, Suite 110, Denver, Colorado 80203.
existing vegetation, potential natural vegetation, presettlement vegetation, or climax vegetation. Also there is no agreement as to whether the latter three of these can be determined, or if they are different. (7) There is no formal agreement on the appropriate level of detail for classifications, though there is wide support for a hierarchy of levels of detail. Finally, (8) though vegetation data have now been collected in the western U.S. for 80 or more years, no one has attempted to systematically revise classifications on a broad scale using a monographic approach, such as is widely and successfully applied in species taxonomy and has been widely used in European syntaxonomy (e.g., Kovář 1981).

If vegetation varies continuously along environmental gradients, as has been shown by many studies (e.g., Whittaker 1956, Curtis 1959), there may be no unique classification possible, and the situation outlined above may not be subject to remedy. But, as Shimwell (1971) observed, similar concerns have been raised regarding the validity of the taxonomic species concept (Grant 1971), and there is continuing discussion about which attributes (morphological, genetic, biochemical, behavioral, etc.) or combination of attributes should be used to classify individuals into species. One author (Hoog 1981) even suggests that the relevant taxonomic decisions should be left to a committee, who would presumably weigh the evidence and make a majority determination. The need for professional judgment or committee determination in the face of conflicting evidence belies the objectivity of the taxonomic species concept, though it remains a viable global organism classification unit in spite of known deficiencies—probably because of its utility.

There may be compelling biological arguments for not classifying species or vegetation, but the absence of comprehensive detailed vegetation classifications has unfortunate results: (1) While species diversity patterns are beginning to be understood on a general level (Peet et al. 1983), and the contribution of species diversity to stability is being elaborated (Pimm 1984), there have been few studies of the diversity of vegetation units, causes of vegetation diversity, its contribution to landscape stability, or its change over time (but see Romme 1982). (2) There have been few studies examining the distribution and abundance of vegetation units in the landscape. Do landscapes contain common as well as unique vegetation types? How are these dispersed in the landscape? (3) Even less is known about vegetation uniqueness. Can vegetation endemism occur in a region that has low species endemism? (4) Little is known about geographic variation within a particular vegetation unit and what environmental basis there is for the variation (analogous to an ecotype study for a species). Does geographic variation manifest itself in compositional variation, changes in abundance, changes in structure, or some combination (cf. Peet 1978)? (5) Can management prescriptions be applied uniformly to all examples of a particular vegetation type? What is the appropriate level of the hierarchy for this to occur? And (6) which vegetation units are being modified by human land uses, which are being irrevocably lost, which are already protected by some means? If individual parts of the vegetation continuum are not named, it is much more difficult to monitor the rate of their loss, or to evaluate their importance for preservation.

The foregoing are among the questions that cannot be addressed effectively without a more systematic classification of vegetation applied over a broad region. Ideally, such a classification would have the following features: (1) a hierarchical system with several levels of detail, (2) within each level of the hierarchy, each unit would encompass a similar amount of variation, (3) standardized nomenclature, (4) a standardized system for revision, and (5) units that are geographically independent. If units are delimited by regions, their total geographic range cannot be studied. In addition, an ideal classification scheme should include a (6) moderately standardized system of data collection, (7) publication of actual stand data, delimitation of type stands, and provision for perpetuation of type stands in natural areas, and (8) classification of presettlement vegetation as much as is still possible, with the closest extant successional stage substituting where no records of presettlement composition and structure remain.
The classification presented here differs from this ideal in several ways. All available stand data on Colorado vegetation (Baker 1983, 1984) are used. These data have been collected in a variety of ways for a variety of purposes. Although it would be desirable to quantitatively analyze this full spectrum of data and objectively divide it into vegetation units, the heterogeneity of data, as well as the size of the matrix that would result, preclude this approach. An effort has been made to define units that encompass similar amounts of variation, but it is not currently possible to evaluate the success of this attempt quantitatively. The classification is not currently a complete hierarchy; only the finest level of the classification, the Plant Association level, is fully developed. Though the Series names listed are in most cases not different from names that have been used in the literature, the Series level presented here is primarily of value as an indexing mechanism. A more meaningful next level for the hierarchy is needed, but its development is beyond the scope of this paper. Most available higher level classificatons (e.g., Brown 1983, UNESCO 1973) have been constructed from the top down and have units that are geographically defined. Although there is value in this approach for many uses, the Plant Associations listed here would overlap several higher level categories in the Brown or UNESCO systems.

For example, the Agropyron spicatum–Poa sandbergii grassland is a well-known and internally consistent unit that occurs over a wide geographic range from southern British Columbia in Canada to northern California, and from Montana to central Colorado (see classification for references). This Plant Association would have to be treated in the Brown system by separating it into at least two units, one under the Great Basin Shrub–Grassland Regional Formation, and one under the Rocky Mountain Montane Grassland Regional Formation. To circumvent this problem it would be desirable to modify such systems, or develop new systems that are derived by grouping similar Plant Associations into higher-level units. This development from the bottom up would insure that higher levels of the hierarchy would be additive upward rather than independent classifications at increasingly broad levels.

The classification uses a standardized nomenclature, but this nomenclature has not been developed with a view toward use outside the western U.S. and does not include many features of a needed formal nomenclatural process (Barkman et al. 1976). It is derived largely from general nomenclatural approaches most in use in this region and would require modification to be useful, for example, in regions containing vegetation with species-rich canopies, such as in some forests of the eastern United States. In those regions floristically based nomenclatures are probably more appropriate (cf Braun-Blanquet 1965) and have been widely utilized in similar forests in Europe. Some features of this floristically based approach are used here in vegetation with more species-rich canopies. Though species-rich canopies present nomenclatural problems for dominance-based nomenclatures, species-poor vegetation presents nomenclatural problems for floristically based nomenclatures. It is likely that the two approaches, or perhaps others, will need to be dovetailed if a comprehensive national classification is to be effectively developed in the U.S. On a local basis the data and most of the syntaxa derived by Komářková (1976) using a floristically based approach have been incorporated in this classification with only some nomenclatural adjustment. That such direct conversion is possible attests to the general consistency of the syntaxonomic process up to the point of naming. Though Komářková’s names are different, her vegetation units are congruent in level-of-detail and amount of homogeneity with other studies of similar vegetation in Colorado. If this is the case in other parts of the U.S., then developing a national scale classification may be partly a matter of devising a broad nomenclatural process.

It is important to emphasize that the nomenclature does not drive the classification system. Regardless of nomenclatural approach, vegetation units are derived by grouping stands using some set of criteria, perhaps either floristic similarity or similarity in dominants. A name is then applied to the resultant unit. If a stand is then located that has slightly different floristic composition, or
different dominants, the stand may be used as the basis for revising the nomenclature of a particular unit, or it may be the basis for additional data collection to determine if a new vegetation unit is warranted. If new data are automatically placed into new units without reference to previously described syntaxa, a proliferation of poorly demarcated syntaxa will result.

The primary purpose of this paper is to sort and revise extant data into a reasonably internally consistent classification that will be useful as a starting point for more quantitative systematic revision. A basic premise of this paper is that methods of classification used in a variety of natural resources taxonomies such as species taxonomy (Hoog 1981), soil taxonomy (USDA Soil Conservation Service 1975), geologic stratigraphy, and others, all utilize similar methodology involving several steps: (1) collection of field data, (2) grouping into taxa, (3) nomenclature, and (4) revision. In the western United States, taxonomies are incomplete, not because the process lacks meaning or is more difficult than in other natural resource fields, but because development has not proceeded systematically. Although it will always be possible to develop classifications of the vegetation in the western U.S., the opportunities for classifying vegetation reflecting as nearly as possible presettlement conditions are decreasing as natural vegetation is subjected to increasing land use pressures, and as remnants of the presettlement vegetation spectrum are altered or lost.

Methods

Approach

The focus of this classification is on the natural vegetation of the state of Colorado. The term natural here means the vegetation that existed prior to the changes that have accompanied European settlement, essentially the presettlement vegetation. Excluded from the classification, as a consequence, are newly created vegetation types such as lawns, pastures, gardens, and agricultural fields, or vegetation types that are dominated by exotic species, unless these exotic species now dominate all stands of a particular vegetation type and there is no record of composition prior to the replacement. Currently there are no vegetation types in Colorado that have been completely replaced, so far as I am aware, though there are some vegetation types where the majority of stands are now dominated in the understory by exotics (e.g., Atriplex confertifolia/Hilaria jamesii).

The classification does not include only "climax" vegetation types, in the sense used by Daubenmire (1952), because it is likely that large parts of the presettlement landscape contained fire-maintained grasslands and forests or vegetation types whose structure was extensively affected by large native ungulates (e.g., Bouteloua gracilis Shortgrass Prairie). These fire and grazing "climaxes" are here considered to be a part of the natural presettlement spectrum and worthy of classification where this is still possible.

Much recent evidence (White 1979) suggests that natural disturbances are a part of the natural environmental setting of many kinds of vegetation and may even be promoted by the structure of the vegetation or by the adaptations of its component species. A recently burned but revegetated site, for example, may represent two possible successional states, depending on the natural fire frequency: (1) a state that is compositionally and structurally relatively fixed by recurrent fires, or (2) a state that is temporarily present but will disappear due to a low natural fire frequency and a long period between fires. Though there is a range of possibilities between these extremes, they serve to illustrate the successional perspective taken here. In the first case most stands in the landscape will be in the state common not long after a fire. A few stands will have escaped the average high frequency and perhaps have changed compositionally toward a less fire-adapted structure and composition. In the second case most stands in the landscape will be in a state that develops after a long period without a fire, though a few stands may be in a temporary postfire state.

In the first case, the Association would be described and named based on the most common state, the early postfire state. An example of this would be a fire-maintained montane grassland in Colorado. In the second
case the Association would be described and named also based on the most common state, a state after a long period without fire. Other states than those that are the basis for naming would be treated as "Plant Communities," which could be included in the future as a level in the hierarchy under each Plant Association (e.g., Arno 1982). A consequence of this approach is that the number of Plant Associations is finite, but the number of Plant Communities is nearly unlimited, and recently is being dramatically increased as the number of kinds and intensities of human-related environmental effects increases.

This approach assumes a priori knowledge about natural disturbance frequencies that is not completely available, though sufficient information may be available for generalization. General ranges of fire frequencies, for example, have been worked out for the region (Martin 1982) so that we know, for example, that fire return intervals are roughly 5-20 years in dry pine forests and 200-500 years in the subalpine forest. The Plant Associations in subalpine forests would then be described and named based on stands at least 200 years old, and pine forest Associations would be based on stands burned within 20 years. In this context, stands not burned within 20 or so years, if different compositionally, would be considered successional. This approach, though different from Daubenmire's (1952) conception, is implicit in some recent work (e.g., Hess 1981) following that tradition and was suggested in a Working Group report at a workshop on habitat typing in the southwest (Moir and Hendzel 1983). An advantage of this approach is that Plant Associations are real, extant (except where all remnants have been extirpated) kinds of vegetation, rather than a theoretical end point that is seldom reached on most sites due to natural disturbances. In this regard, Daubenmire and Daubenmire (1968:7) remark that "relatively few of our study sites represent climax stands that appear to have reached a completely homeostatic equilibrium."

The Plant Associations in this classification must be considered preliminary because some of the natural disturbance regimes in the region have been altered since settlement. Fire suppression, though, may be less of a factor here than in other areas because, even in dry pine forests here, the natural fire return interval is apparently quite long (Laven et al. 1980); even with suppression, the interval decreased from 66 years prior to settlement to 27 years following initiation of suppression. By the same reasoning, plains Plant Associations that are largely no longer affected by bison or elk grazing must be considered preliminary. Cattle grazing is now prevalent, but cattle differ substantially in diet and grazing behavior from bison (Schwartz and Ellis 1981), with cattle having a more selective diet and spending more time grazing in low areas of the landscape. These differences extended over a long time period would likely result in compositional differences between bison-grazed and cattle-grazed ranges. Although bison-grazed sites are no longer available for sampling, the closest extant successional state would be on sites as free as possible of livestock effects. Extant vegetation on such sites would have to substitute for the presettlement vegetation unless, or until, a natural grazing regime could be reestablished on some sites for study.

The Plant Association is considered here to be a state determined by the prevailing presettlement environmental conditions, including a natural disturbance regime, with some human-related effects. It is primarily a classification unit derived for human purposes, lacking organismic properties, and probably lacking emergent properties. Its primary purpose is for organizing information. It is unlikely that the Plant Associations named here would have retained their composition or structure in perpetuity in the absence of the disturbances associated with settlement. Though the evidence is not extensive, Van Devender and Spaulding (1979) report that the elevational displacement of vegetation associated with the end of the Pleistocene resulted in completely new assemblages. Communities were not simply displaced intact, but were reordered.

This classification does not include only "potential natural vegetation" in the sense used by Kichler (1964) (the vegetation that would result if man were removed from the landscape and the resulting succession telescoped into a short period). Native human cultures, in their use of fire (Moore 1972,
Barrett 1980) and their impact on large mammal populations, may have had a significant indirect effect on the structure of many Colorado plant associations since their inception. There is increasing evidence that both human culture and presettlement vegetation in Colorado have a primarily late-Pleistocene or post-Pleistocene origin (Martin and Mehringer 1965, Van Devender and Spaulding 1979). Total removal of humans would likely result in a new kind of vegetation that has never been extant in the region. A premise of the approach aimed at here is that human effects are “natural,” in that they have been potentially partly a controlling factor in vegetation development in the region, but European settlement has resulted in a dramatically increased rate of change in the vegetation, accompanied in many cases by wide-scale replacement by agricultural crops or other less-desirable exotic plants, as well as by dramatic changes in structure or composition of many other vegetation types. Although this change is in a sense “natural,” the vegetation existing prior to the change is of more than historical interest, because in many cases knowing its composition and structure will be essential if disturbed lands are to be effectively rehabilitated, and if the extinction of the many native plant and animal species poorly adapted to the new cultural vegetation is to be prevented.

This classification is not an integrated classification, combining several attributes of an ecosystem, such as vegetation, soils, and landform, into one system. It is intended to be a classification of the vegetation component of Colorado ecosystems only. An integrated classification system could be developed using this classification for the vegetation component.

Limitations

The classification was developed by sorting actual stand data in the scientific literature identified in Baker (1983, 1984). The classification is preliminary for several reasons: (1) The sorting and evaluating process may result in errors and omissions that can only be corrected with refinement through use and review. (2) Gaps exist in the literature for certain parts of the state (Baker 1982) and for certain kinds of vegetation. Some vegetation types have not been studied in detail and cannot be classified below the Series level. (3) A few new Plant Associations are proposed for the first time here that were not previously described in the literature, but appear reasonable when all available data are examined en masse (e.g., several Deschampsia associations). (4) As classifications are completed in other parts of the western U.S., Colorado Associations that extend into those areas may need to be revised. And (5), though stand data were excluded from consideration if disturbance effects were reported or could be inferred, it is possible that a few of the Associations do not represent presettlement conditions. The list should be viewed as a first approximation.

Hierarchical Structure

The classification is structured hierarchically, with four levels of specificity. The upper three levels and the units within them are designed primarily to facilitate organization.

1. System: Overall physiognomy of vegetation. The following are the Systems:
 - Angiosperm Forests/Woodlands
 - Gymnosperm Forests/Woodlands
 - Shrub Associations
 - Grassland Associations
 - Graminoid Associations
 - Herb Associations

2. Cover Class: The dominant genus in the top stratum of the association (e.g., Pinus).

3. Series: The dominant species in the top stratum of the association (e.g., Pinus ponderosa).

4. Plant Association: This term, which has been widely used in a variety of contexts, is used here to mean a vegetation unit: (1) that is representative of presettlement conditions, (2) that has internal homogeneity in the composition of its component strata (tree, shrub, and herb strata, if present), (3) that is a grouping of several stands, and (4) that has a definable environmental location.

Level of Detail

The definition of a Plant Association above does not specify just how much variation is
encompassed in each Association. Though quantitative means have been developed and utilized to define vegetation units within a limited geographic area, objective methods were impractical for this classification. Even with objective methods, only the consequences of choosing a particular level of detail are objectively illustrated. The researcher still must choose the level. Ultimately, the researcher is guided by the purpose for which the classification is designed, or by previous research results and interpretation. This classification extends and modifies the classification method begun by Daubenmire (1952), which has now been completed on many of the National Forests in the western United States (Pfister 1982). It is congruent in scale with comparable efforts in Oregon and Washington (Franklin and Dyrness 1973) and Alaska (Viereck and Dyrness 1980). If extended Nationally, classification on this scale would probably result in some 6,000 Plant Associations, assuming about a 250 to state average, and a 50% overlap between states. This level of detail has been used successfully to map vegetation (Komárková and Webber 1979), though, as with soil mapping, some complexes must be used as mapping units. This level of detail is comparable in magnitude to that in soil classification at the Series level, where some 10,500 Series have been described (USDA Soil Conservation Service 1975).

Nomenclature

Development of nomenclature is the final step in classification prior to testing. Nomenclature used here is similar to that used in many studies of vegetation in the western United States. No formal rules are proposed, but some steps toward standardization are taken. Names used here generally reflect rather closely the composition and structure of the Plant Association, but individual stands may differ somewhat from that composition implied by the name. The range of variation encompassed under a particular name can only be known by consulting the data in the cited references. Although it would be desirable to summarize the variation inherent in each Association, this is beyond the scope of this paper.

Names are generally based on the dominant species (species with the greatest percent canopy cover) in each stratum of most stands of the Association. If a stratum consistently contains co-dominant species (species generally with at least 10% relative cover in a stratum and high constancy in the Association), the most important two or three co-dominants may be included in the name, and are so indicated by being separated by a dash (—). Co-dominants are listed alphabetically within a stratum. If an Association has co-dominants in the top stratum, it would be listed only under the generic name of the first co-dominant (e.g., a Pinus ponderosa—Pseudotsuga menziesii/Carex rossii Association would be listed only under PINUS). This nomenclatural approach differs from that of Daubenmire (1952) in that the apparent reproductive potential of the overstory species is not used to determine a potential climax species. If mature, relatively undisturbed stands consistently have co-dominance, that co-dominance is generally recognized here in the nomenclature. Names may occasionally include differential or characteristic species. These are species that are virtually always present, but not necessarily dominant in the Association, though usually absent from related Associations. These species are identified by a star (*) following the species name. Associations are assumed to contain potentially three strata: tree, shrub, and herb. A particular species is here assumed to only belong to one of these strata (e.g., Picea engelmannii is always considered a tree, so the shrubby Picea engelmannii Associations that characterize krummholz are listed only in the Gymnosperm Forest/Woodland System, not with Shrub Associations). Strata are separated in names by a slash (/). Slashes are not used to separate a dominant from a subdominant. Some associations are heterogenous in a stratum. Their composition may consist of a core species that is always present and an additional species that may be absent from many stands, but that in many stands may be co-dominant with the core species. Because these species lack the high constancy required of a full co-dominant, they are distinguished in names by enclosing them in parentheses (e.g., the Pinus ponderosa—(Pseudotsuga menziesii)/Carex
rossii Association). Physiognomic or environmental descriptors have often been added to names to clarify and add meaning to the name (e.g., Carex microglochin Alpine Wetland).

Names listed here may differ substantially, in some instances, from names used in the sources of information cited. This occurs because ecologists use different naming conventions, or may not have incorporated all available data prior to naming. In addition, the standardization applied here results in some new names for some familiar associations. It is hoped that scientists whose work is cited here will understand that this standardization of names and sorting of data is a necessity if a statewide, and eventually a regionwide, classification is to be developed. The nomenclature proposed here may not be the best for such a regionwide classification, but it is intended to illustrate that standardization can be accomplished, and does serve to clarify a proliferation of names for the same vegetation unit.

Species nomenclature generally follows Kartesz and Kartesz (1980). Agropyron spicatum var. inerme is retained, because it forms grasslands in Colorado that are ecologically very distinct from grasslands formed by A. spicatum var. spicatum. Amelanchier from the same location has been identified as both A. utahensis and A. alnifolia. Until this taxonomy is resolved, only the name A. utahensis is used for all Colorado Amelanchier.

Testing

The classification has been under development since 1981 and has been tested in the field during three field seasons. The current classification changed only about 5% from the previous year’s version, in spite of about a 10% expansion in the literature and available data. There is no question that additional modification will need to occur as new data accumulate, but it appears unlikely the classification would ever be expanded much beyond about 500 Associations. This is so because new data may just as well result in the alteration of existing Associations as in the creation of new ones. In this sense the classification is not open ended. Additional testing and revision will improve the definition of the Associations listed here, but not necessarily result in many new ones.

Use of the Classification

References pertaining to each Association are listed by number in parentheses following the name. Numbers following “CO:” correspond to the numbered references in two bibliographies of Colorado vegetation description (Baker 1983, 1984). For reference 587 in the Colorado literature, all entries are followed immediately by an additional number. This is the number of the Range Site description. CNHI is included in the list of citations if Colorado Natural Heritage Inventory (CNHI) has additional unpublished data on file. Standard two-letter postal abbreviations indicate literature from adjoining states. These include AZ = Arizona, CA = California, ID = Idaho, IL = Illinois, KS = Kansas, MT/Montana, OK = Oklahoma, OR = Oregon, ND = North Dakota, NE = Nebraska, NM = New Mexico, NV = Nevada, SD = South Dakota, TX = Texas, UT = Utah, VA/Washington, WI = Wisconsin, WY = Wyoming. Numbers following these abbreviations correspond to numbered references listed in the Literature Cited section following the classification. It may on occasion be difficult to locate the actual data in the cited sources because they may be listed under a different name or occur in a data table. A general idea of the range of each Association can be gained by scanning the state abbreviations following the name. It is important to note that the coverage of literature is incomplete, because much unpublished and some published literature was unavailable to me. Coverage is generally best for adjoining states.

Acknowledgments

This paper benefited from the review and comments of many ecologists. I would most like to thank Robert K. Peet, Vera Komárová, John Marr, Jane Bunin, Mark Heifner, Walt Kelley, Dieter Wilken, Mike Figgs, Karen Wiley-Eberle, Richard Driscoll, Scott Ellis, Jim Ebersole, S. Reid Schuller, John Pearson, Bonnie Heidle, Ellen Collins, Tamara Naumann, Susan Kennedy, Barry
Johnston, the Piceance Basin field crew, and the staff of the White River Resource Area, Bureau of Land Management. This work was improved by critical discussion with Robert E. Jenkins and the staff of The Nature Conservancy. This work could not have been completed without the support of The Nature Conservancy, and without the encouragement, in particular, of J. Scott Peterson. Other organizations that contributed information and assistance include the Colorado Native Plant Society, the Colorado National Areas Program, the U.S. Forest Service, the Bureau of Land Management, the Soil Conservation Service, and the Boulder County Nature Association.

Literature Cited

Preliminary Classification of the Natural Vegetation of Colorado

ANGIOSPERM FORESTS/WOODLANDS

Acer

- *Acer negundo*
- *Acer negundo—Populus angustifolia*

Alnus

- *Alnus incana ssp. tenuifolia—Betula occidentalis*

Cercocarpus

- *Cercocarpus ledifolius*

Populus

- *Populus angustifolia*

- *Populus angustifolia—Populus deltoides ssp. monilfera—Salix amygdaloides (CO:36, 85, 575)*
- *Populus deltoides ssp. monilfera*

- *Populus deltoides ssp. monilfera—Salix amygdaloides*

- *Populus deltoides ssp. wislizenii*

- *Populus tremuloides*

- *Populus tremuloides—Amelanchier utahensis—Prunus virginiana var. melanocarpa—Symphoricarpos oreophillus/ Carex geyeri (CO:59, 157, 213, 271a, 271b, 272, 662, 695)*
- *Populus tremuloides—Arctostaphylos patula (CO:659)*
- *Populus tremuloides—Arctostaphylos uva-ursi—Juniperus communis (CO:417, 522, 709)*
- *Populus tremuloides—Calamagrostis canadensis (CO:391)*
- *Populus tremuloides—Ceanothus velutinus* (CO:78, 79)
Baker: Colorado Vegetation

- *Populus tremuloides/Festuca Thurberi* (CO:107, 111, 209, 210, 301, 413, 506, 522, 540, 733)
- *Populus tremuloides/Juniperus communis* (CO:123, 355; UT:66; WY:35, 174)
- *Populus tremuloides/Pteridium aquilinum* (CO:78, 79, 213, 385, 392, 695, 733; UT:66; WY:35)
- *Populus tremuloides/Rosa woodsii* (CO:245, 272; WY:35)
- *Populus tremuloides/Rubus parviflorus* (CO:59, 78, 355; SD:134; WY:35)
- *Populus tremuloides/Symphoricarpus oreophilus/Carex geyeri* (CO:59, 210, 540, 571, 662, 681, 695, 733; ID:133)
- *Populus tremuloides/Thalictrum fendleri* (CO:59, 78, 79, 209, 210, 213, 272, 301, 675, 695; WY:35, 174)
- *Populus tremuloides/Thermopsis divaricarpa* (CO:304, 334, 339, 346, 417, 660)
- *Populus tremuloides/Veratrum tenuepetalum* (CO:213, 733)

Mixed Angiosperm-Gymnosperm Forests/Woodlands

Populus-Conifer

- *Populus angustifolia-Picea pungens* (CO:417, 557, 649; WY:35)
- *Populus angustifolia-Pseudotsuga menziesii* (CO:356, CNHI)
- *Populus tremuloides-Picea pungens* (CO:243, 245)

Gymnosperm Forests/Woodlands

Abies

- *Abies concolor-Pinus ponderosa-Pseudotsuga menziesii* (CO:676, 677; AZ:103; NM:CO REF 676, 677)
- *Abies concolor-Pinus ponderosa-Pseudotsuga menziesii/Quercus gambelii* (CO:676, 677; NM:106)
- *Abies concolor-Pseudotsuga menziesii/Acer glabrum* (CO:676, 677; AZ:106; NM:106)
- *Abies concolor-Pseudotsuga menziesii/Erigeron eximius* (CO:676, 677; NM:106; CO REF 676, 677)
- *Abies concolor-Pseudotsuga menziesii/Vaccinium sp.* (CO:676, 677; NM:CO REF 676, 677)
- *Abies lasiocarpa* (CO:210, 733; ID:77, 133, 138, 139, 152; MT:120; UT:67; WY:35, 36, 139, 171)
- *Abies lasiocarpa-Carex geyeri* (CO:417, 349, 341, 342, 347-349, 403, 547, 606)
- *Abies lasiocarpa-Picea engelmannii* (CO:59, 136, 173, 213, 304, 417; ID:138, 139; MT:120; UT:66; WY:35, 70, 77, 139)
- *Abies lasiocarpa-Picea engelmannii/Calamagrostis canadensis* (CO:209, 733; ID:133, 138, 139, 152; MT:120; UT:66; WY:35, 36, 139)
- *Abies lasiocarpa-Picea engelmannii/Cardamine cordifolia* (CO:417, 540, 625, 676, 733)
- *Abies lasiocarpa-Picea engelmannii/Carex geyeri* (CO:209, 210, 213, 540, 695)
- *Abies lasiocarpa-Picea engelmannii/Equisetum arvense* (CO:417, 733; ID:138, 139, 152; MT:120; WY:35, 36, 112, 139)
- *Abies lasiocarpa-Picea engelmannii/Erigeron eximius* (CO:676, 677; NM:CO REF 676, 677)
- *Abies lasiocarpa-Picea engelmannii/Limnea borealis* (CO:417, 676, 677, 733; ID:138, 139; MT:120; NM:106; WY:35, 36, 139)
Abies lasiocarpa—Picea engelmannii/Moss (CO:417, 540; NM:CO REF 676, 677; WY:35, 139)
Abies lasiocarpa—Picea engelmannii/Pachistima myrsinites (59, 210, 355, 540, 733)
Abies lasiocarpa—Picea engelmannii/Polemonium deliciatum (CO:136, 417, 540, 676, 677, 733; NM:CO REF 676, 677)
Abies lasiocarpa—Picea engelmannii/Ribes lacustre (CO:59, 417)
Abies lasiocarpa—Picea engelmannii/Ribes montigenum (CO:301, 417, 522, 733; ID:138, 139; MT:120; UT:66, 67, 83, 137; WY:35, 36, 139)
Abies lasiocarpa—Picea engelmannii/Ribes wolfii (CO:59, 301)
Abies lasiocarpa—Picea engelmannii/Salix lasiocarpa Krumholz (CO:417)
Abies lasiocarpa—Picea engelmannii/Salix glauca Krumholz (CO:209, 210, 733)
Abies lasiocarpa—Picea engelmannii/Senecio triangularis (CO:209, 417, 733)
Abies lasiocarpa—Picea engelmannii/Vaccinium myrtillus (CO:8, 59, 246, 272, 301, 344-346, 355, 417, 733; AZ:106)

Juniperus

Juniperus monosperma—Pinus edulis

Juniperus monosperma—Pinus edulis/Bouteloua curtipendula* (CO:733)
Juniperus monosperma—Pinus edulis/Cercocarpus montanus—Ribes cereum (CO:557N0286)
Juniperus monosperma—Pinus edulis/Quercus × pauciloba* (CO:486, 487; NM:82; OK:19, 131, 162)
Juniperus monosperma—Pinus edulis/Stipa neomexicana (CO:CNHI)
Juniperus monosperma—Pinus edulis/Stipa scribneri (CO:97, 517, 587N0279)

Juniperus osteosperma

Juniperus osteosperma

Juniperus osteosperma—Agropyron spicatum (CO:667; UT:165; WY:44, 169)
Juniperus osteosperma—Amelanchier utahensis—Philadelphus microphyllus/Elymus salina (CO:CNHI)
Juniperus osteosperma—Elymus salina (CO:662; UT:137)
Juniperus osteosperma—Pinus edulis—Agropyron smithii (CO:226, 733)
Juniperus osteosperma—Pinus edulis—Agropyron spicatum var. inermé (CO:226, 662, 666; UT:137)
Juniperus osteosperma—Pinus edulis/Amelanchier utahensis—Artemisia tridentata ssp. wyomingensis—Cercocarpus montanus—Symphoricarpos oerophilus—Agropyron spicatum var. inermé (CO:226, 662)
Juniperus osteosperma—Pinus edulis/Amelanchier utahensis—Cercocarpus montanus Marlsone Barren (CO:267, 271a, 662, 666)
Juniperus osteosperma—Pinus edulis/Amelanchier utahensis—Quercus gambelii—Symphoricarpos oerophilus/Carax geyeri (CO:210, 733)
Juniperus osteosperma—Pinus edulis/Artemisia nova—Agropyron spicatum (CO:667; ID:77; UT:140)
Juniperus osteosperma—Pinus edulis/Artemisia nova—Agropyron spicatum var. inermé (CO:226, 662)
Juniperus osteosperma—Pinus edulis/Artemisia tridentata ssp. wyomingensis/Oryzopsis hymenoides—Stipa con ata (226, CNHI)
Juniperus osteosperma—Pinus edulis/Cercocarpus ledifolius var. intricatus (CO:659, 667; UT:48)
Juniperus osteosperma—Pinus edulis—Cercocarpus montanus—Agropyron spicatum (CO:667)
Juniperus osteosperma—Pinus edulis/Cercocarpus montanus/Elymus salina (CO:CNHI)

Juniperus osteosperma—Pinus edulis/Cercocarpus montanus/Oryzopsis hymenoides (CO:210, 226, 358, 597, 602, 733)

Juniperus osteosperma—Pinus edulis/Cercocarpus montanus/Poa fendleriana (CO:150, 152, 153, 226)

Juniperus osteosperma—Pinus edulis/Cercocarpus montanus—Poa phrygian/Artemisia eximius (CO:210, 733)

Juniperus osteosperma—Pinus edulis/Cowanita mexicana (CO:CNHI; UT:111)

Juniperus osteosperma—Pinus edulis/Hilaria jamesii—Oryzopsis hymenoides—Stipa comata (CO:CNHI)

Pinus

Pinus aristata

Picea

Picea engelmannii

Picea engelmannii—Pinus aristata (CO:97, 211, 234, 509, 522, 631)

Picea pungens

Picea pungens—Pseudotsuga menziesii

Pinus

Pinus aristata

Pinus aristata—Calamagrostis purpusascens (CO:733)

Pinus aristata—Trifolium dasyphyllum (CO:209, 733)

Pinus aristata—(Pinus ponderosa)—(Pseudotsuga menziesii)—Festuca arizonica—Muilenbergia montana (CO:522, 548, 676, 677, 733; NM:CO REF 676, 677)

Pinus contorta

Pinus contorta—Arctostaphylos uva-ursi (CO:305, 380, 417, 540, 656, 733; OR:53; UT:66, 77; WY:35, 77)

Pinus contorta—Arctostaphylos uva-ursi—Juniperus communis (CO:8, 305, 339, 380, 417, 522, 554; WY:70, 128)

Pinus contorta—Carex geyeri (CO:209, 210, 380, 540, 733; ID:77, 138; WY:35, 139, 171)

Pinus contorta—Juniperus communis (CO:209, 355, 380, 417, 733; WY:35, 44, 128, 139)

Pinus contorta—Pachistima myrsinites (CO:59, 173, 272, 540, 733)
Great Basin Naturalist

Pinus contorta/Shepherdia canadensis* (CO:209, 210, 213, 285, 380, 540, 625, 733; WY:35, 128, 139)

Pinus contorta/Vaccinium myrtillus (CO:8, 137, 140, 173, 301, 339, 380, 417, 550, 625, 733)

Pinus contorta/Vaccinium scoparium (CO:202, 209, 355, 733; ID:77, 138; MT:120; OR:55; UT:66; WY:8, 35, 44, 70, 77, 128, 139)

Pinus edulis/Amelanchier utahensis—Arctostaphylos patula—Cercocarpus montanus/Carex pittypopha (CO:662, 666)

Pinus edulis/Elymus ambiguus (CO:CNH)

Pinus flexilis/Arctostaphylos uva-ursi (CO:676, 677; NM:CO REF 676, 677)

Pinus flexilis/Calamagrostis purpurascens (CO:209, 417, 733)

Pinus flexilis/Juniperus communis (CO:140, 165, 209, 213, 417, 660, 733; ID:138, 139; MT:77, 120; WY:35, 44, 77, 139)

Pinus flexilis/Trifolium dasyphyllum (CO:209, 733)

Pinus ponderosa/Carex geyeri (CO:59, 733; UT:66; WY:35, 171)

Pinus ponderosa/Carex heliophila (CO:318, 319, 346)

Pinus ponderosa/Ceanothus fendleri* (CO:417, 554, 595)

Pinus ponderosa/Cercocarpus montanus/Andropogon gerardii (CO:CNH)

Pinus ponderosa/Cercocarpus montanus/Carex rossii (CO:209, 264, 733)

Pinus ponderosa/Cercocarpus montanus/Muhlenbergia montana (CO:417)

Pinus ponderosa/Festuca idahoensis (CO:107, 108, 122, 733; ID:138; MT:120; OR:53; UT:66; WY:35, 70)

Pinus ponderosa/Muhlenbergia montana (CO:106, 209, 417, 676, 677; NM:CO REF 676, 677)

Pinus ponderosa/Oryzopsis hymenoides (CO:676)

Pinus ponderosa/Purshia tridentata—Ribes cereum/Muhlenbergia montana (CO:24, 304, 417, 490, 733)

Pinus ponderosa/Quercus gambelii (CO:16, 78, 201, 207, 210, 355, 417, 508, 533, 542, 733; NM:48, 173; UT:46)

Pinus ponderosa/Quercus × pauciloba (CO:486, 487)

Pinus ponderosa/Stipa scribneri (CO:CNH)

Pinus ponderosa—(Pseudotsuga menziesii)/Arctostaphylos uva-ursi (CO:304, 318, 319, 325, 417, 554, 676, 677; NM:CO REF 676, 677; UT:142; SD:WY:144)

Pinus ponderosa—(Pseudotsuga menziesii)/Carex rossii (CO:209, 417, 733)

Pinus ponderosa—(Pseudotsuga menziesii)/Festuca arizonica—Muhlenbergia montana (CO:96, 106–108, 255–261, 522, 530, 560, 667, 677, 733; AZ:34, 37, 103, 110; NM:106)

Pinus ponderosa—(Pseudotsuga menziesii)/Leucopoa kingii (CO:209, 370, 417, 422, 733)

Pseudotsuga

Pseudotsuga menziesii

Pseudotsuga menziesii/Amelanchier utahensis—Quercus gambelii—Symphoricarpos oreophilus/Carex geyeri—Poa fendleriana (CO:157, 355, 568, 571, 597, 662, 666, 681)

Pseudotsuga menziesii/Arctostaphylos uva-ursi—Juniperus communis (CO:85, 304, 392, 522, 554, 595, 733; MT:120; WY:CO REF 733)

Pseudotsuga menziesii/Carex geyeri (CO:59, 173, 209, 733; ID:138; MT:77, 120; UT:66; WY:35)

Pseudotsuga menziesii/Cercocarpus montanus (CO:733)

Pseudotsuga menziesii/Juniperus communis (CO:173, 597, 709, 733; ID:77, 138, 139; MT:77, 120; WY:35, 44, 77, 139)

Pseudotsuga menziesii/Pachistima myrsinites* (CO:78, 210, 213, 695, 733)

Pseudotsuga menziesii/Quercus gambelii (CO:16, 59, 508, 676, 677, 733)

Pseudotsuga menziesii/Symphoricarpos oreophilus/Carex geyeri—Poa fendleriana (CO:210, 267, 571, 662, 733)
Pseudotsuga menziesii—(Pinus ponderosa)/Jamesia americana—Physocarpus monogynus (CO:209, 304, 417, 733)
Pseudotsuga menziesii—(Pinus ponderosa)/Physocarpus monogynus (CO:14, 209, 417, 733; NM:106; WY:35, 70)

Amelanchier
Amelanchier utahensis—Artemisia tridentata ssp. wyomingensis—Cercocarpus montanus—Purshia tridentata—Symphoricarpos oreophilus

Amelanchier utahensis—Cercocarpus montanus
Amelanchier utahensis—Symphoricarpos oreophilus

Artemisia
Artemisia arbuscula
Artemisia bigelovii—Frankenia jamesii
Artemisia cana
Artemisia cana—Purshia tridentata
Artemisia filifolia
Artemisia longiloba
Artemisia nova
Artemisia tridentata ssp. tridentata
Artemisia tridentata ssp. tridentata Sarcobatus vermiculatus
Artemisia tridentata ssp. vaseyana

Amelanchier utahensis—Artemisia tridentata ssp. wyomingensis—Cercocarpus montanus—Purshia tridentata—Symphoricarpos oreophilus/Carex geyeri (CO:271a, 597, 662)
Amelanchier utahensis—Artemisia tridentata ssp. wyomingensis—Cercocarpus montanus—Purshia tridentata—Symphoricarpos oreophilus/Oryzopsis hymenoides—Stipa comata (CO:157, CNHI)

Amelanchier utahensis—Cercocarpus montanus/Oryzopsis hymenoides (CO:597, 662)
Amelanchier utahensis—Symphoricarpos oreophilus/Agropyron spicatum (CO:564, 587N0237, 689)
Amelanchier utahensis—Symphoricarpos oreophilus/Carex geyeri (CO:597, 662)

Artemisia arbuscula/Festuca idahoensis (CO:733; OR:53; WY:35)
Artemisia bigelovii—Frankenia jamesii/Oryzopsis hymenoides—Stipa neomexicana (CO:587N058, CNHI)
Artemisia cana/Festuca idahoensis (CO:733; ID:20, 68, 133; MT:107; WY:20, 35, 108)
Artemisia cana/Festuca thurberi (CO:209, 564, 578, 689, 733)
Artemisia cana/Purshia tridentata—Stipa comata (CO:121, 587N0293, CNHI)
Artemisia filifolia/Andropogon gerardii var. paucilobus—Calamovilfa longifolia—Stipa comata (CO:1, 106, 124, 135, 154, 180, 486, 487, 503, 518, 527, 587N0016, 587N0019, 733)
Artemisia longiloba/Agropyron smithii (CO:587N0296; WY:35, 153)
Artemisia longiloba/Agropyron spicatum (CO:485, 562; ID:107; WY:20, 35)
Artemisia longiloba/Poa sandbergii (CO:564, 689)
Artemisia nova/Agropyron spicatum (CO:587N0301, 667; CA:4; ID:68, 77, 118, 135; NV:15–17, 20, 175; WY:35, 143, 153)
Artemisia nova/Stipa comata (CO:667; CA:4; NV:15–17, 20, 175)
Artemisia tridentata ssp. tridentata/Agropyron smithii (CO:268, 552, 564, 689)
Artemisia tridentata ssp. tridentata/Elymus cinereus (CO:209, 587N0285, 662, 667, 733; CA:4; ID:20, 68, 77; NV:18; OR:53, 68; WA:68; WY:20, 35)
Artemisia tridentata ssp. tridentata/Hilaria jamesii (CO:66; CA:4; NM:48, 52; UT:111)
Artemisia tridentata ssp. tridentata—Sarcobatus vermiculatus/Agropyron smithii (CO:532, 564, 571, 662, 689)
Artemisia tridentata ssp. vaseyana/Agropyron smithii (CO:532, 562)
Artemisia tridentata ssp. vaseyana/Agropyron spicatum (CO:532, 562, 667; ID:20, 68, 77, 133, 135; MT:20; OR:20, 68; WY:8, 20)
Artemisia tridentata ssp. vaseyana/Festuca idahoensis (CO:209, 210, 532, 552, 562, 689, 733; ID:20, 68, 77, 133, 135, 152; MT:20; NV:93; OR:20, 68; WY:8, 20, 153)
Artemisia tridentata ssp. vaseyana/Festuca thurberi (CO:59, 173, 209, 210, 564, 689, 733)
Artemisia tridentata ssp. vaseyana/Lencopoa kingii (CO:209, 733; WY:35)
Artemisia tridentata ssp. vaseyana/Poa fendleriana (CO:564)
Artemisia tridentata ssp. vaseyana—Purshia tridentata/Agropyron spicatum (CO:564)

Shrub Associations

October 1984
Baker: Colorado Vegetation 661
Artemisia tridentata ssp. wyomingensis

Artemisia tridentata ssp. wyomingensis-Atriplex confertifolia

Artemisia tridentata ssp. wyomingensis-Atriplex confertifolia-Purshia tridentata

Artemisia tridentata ssp. wyomingensis-Symphoricarpos oreophilus

Artemisia tripartita

Atriplex

Atriplex canescens

Atriplex confertifolia

Atriplex confertifolia-Sarcobatus spinosus

Atriplex corrugata

Atriplex canecata-Frankenia jamesii

Atriplex gardneri

Ceratoideae

Ceratoideae lanata

Great Basin Naturalist Vol. 44, No. 4
Artemisia tridentata ssp. caseyana-Purshia tridentata/Festuca idahoensis (CO:564, 689; OR:53; WY:8)
Artemisia tridentata ssp. caseyana-Purshia tridentata/Poa fendleriana (CO:564)
Artemisia tridentata ssp. wyomingensis/Atriplex dasystachyum ssp. albicans (CO:173, 157, 358, 733)
Artemisia tridentata ssp. wyomingensis/Atriplex smithii (CO:552, 564, 662, 667, 681, 689)
Artemisia tridentata ssp. wyomingensis/Atriplex spicatum (CO:200, 552, 564, 667, 733; ID:20, 68, 77, 133, 135; MT:20, 107; OR:20, 53, 68; WY:153)
Artemisia tridentata ssp. wyomingensis/Elymus ambiguus (CO:200, 733)
Artemisia tridentata ssp. wyomingensis-Stipa comata (CO:200, 733; CA:4; ID:20, 68, 135; NV:150; UT:91; WA:42, 68; WY:35)
Artemisia tridentata ssp. wyomingensis/Stipa occidentalis (CO:564, 689; CA:4; OR:53)
Artemisia tridentata ssp. wyomingensis-Atriplex confertifolia/Elymus salina (CO:662)
Artemisia tridentata ssp. wyomingensis-Atriplex confertifolia-Graijia spinosa*/Stipa comata (CO:667)
Artemisia tridentata ssp. wyomingensis-Purshia tridentata/Atriplex spicatum (CO:564)
Artemisia tridentata ssp. wyomingensis-Purshia tridentata/Stipa comata (CO:CNHI; CA:4)
Artemisia tridentata ssp. wyomingensis-Symphoricarpos oreophilus/Elymus cinereus (CO:662, 666)
Artemisia tridentata ssp. wyomingensis-Symphoricarpos oreophilus/Oryzopsis hymenoides (CO:157, 568, 569, 666)
Artemisia tridentata ssp. wyomingensis-Purshia tridentata/Stipa comata (CO:CNHI; CA:4)
Atriplex canescens/Agropyron smithii-Bouteloua gracilis (CO:1, 224, 284, 366, 557N09, 557N042, 587N0317)
Atriplex canescens/Sporobolus airoides (CO:587N034, 587N037; NM:52)
Atriplex confertifolia/Agropyron spicatum (CO:667)
Atriplex confertifolia/Agropyron spicatum var. inermce-Oryzopsis hymenoides (CO:662, 666)
Atriplex confertifolia/Elymus salina (CO:571, 662, 667; UT:CNHI)
Atriplex confertifolia/Oryzopsis hymenoides (CO:267, 268, 604, 662; CA:4; NV:12; UT:50, 137, 165)
Atriplex confertifolia/Sporobolus airoides* (CO:733)
Atriplex confertifolia/Stipa comata (CO:667)
Atriplex corrugata Shale Barren (CO:66, 177, 324, 589; UT:24, 75, 137, 142, 165, 166; WY:35)
Atriplex canecata-Frankenia jamesii Shale Barren (CO:CNHI)
Atriplex gardneri/Elymus salina (CO:66, 667; UT:CNHI)
Atriplex gardneri/Hilaria jamesii (CO:589, 591; UT:75, 166)
Atriplex gardneri/Oryzopsis hymenoides (CO:667)
Ceratoideae lanata/Agropyron smithii-Bouteloua gracilis (CO:587N039, 587N0281)
Ceratoideae lanata/Oryzopsis hymenoides (CO:587N0276; CA:4; NV:12; UT:50)
Cercocarpus
Cercocarpus ledifolius var. intricatus
Cercocarpus montanus

Cercocarpus montanus-Rhus trilobata

Coleogyne
Coleogyne ramosissima (General:23)

Crataegus
Crataegus douglasii (CO:94, 95)
Crataegus spp.-mixed (CO:332, 478, 479)

Dryas
Dryas octopetala

Opuntia
Opuntia imbricata (CO:88, 107, 135, 181, 279, 280, 349, 481, 520)

Potentilla

Purshia
Purshia tridentata

Quercus
Quercus gambelii-Amelanchier utahensis*

Quercus gambelii-Amelanchier utahensis*-(Artemisia tridentata ssp. wyomingensis-Cercocarpus montanus-Symphoricarpos oreophilus)/Carex geyeri (CO:157, 271a, 568, 597, 662, 681)

Quercus gambelii-Amelanchier utahensis*-(Cercocarpus montanus-Fendlera ripicola-Purshia tridentata-Symphoricarpos oreophilus)-Carex geyeri (CO:134, 150, 201, 508)

Quercus gambelii-Amelanchier utahensis*-(Prunus virginiana var. melanocarpa-Rosa woodsii-Symphoricarpos oreophilus)/Carex geyeri (CO:150, 210, 213, 587N0235, 597, 662)

Quercus gambelii-Cercocarpus montanus*

Quercus gambelii-Cercocarpus montanus*-(Rhus trilobata)/Carex heliophila (CO:318, 319)

Rhus
Rhus trilobata-Ribes cereum

Ribes
Ribes montigenum

Rubus
Rubus idaeus ssp. sachsenensis Alpine Scree (CO:287)
SALIX
Salix arctica—Salix reticulata ssp. nivalis

Salix bebbiana
Salix brachycarpa
Salix brachycarpa—Salix wolffii—Betula glandulosa*
Salix exigua
Salix geyeriana—Salix lutea
Salix geyeriana—Salix monticola

Salix glauca
Salix glauca—Salix planifolia
Salix planifolia

Salix planifolia—Betula glandulosa*—Salix spp.
Salix wolffii—Betula glandulosa*—Potentilla fruticosa*

SARCOCATUS
Sarcocatus tenuisulcatus

SYMPHORICARPOS
Symphoricarpos occidentalis (CO:94, 95, 505, 506; CANADA: 41; SD: 144; WY: 35, 144)
Symphoricarpos oregnulphus

VACCINIUM
Vaccinium caespitosum
Vaccinium scoparium

AGRropyron
Agropyron smithii

GRASSLAND ASSOCIATIONS
Agropyron smithii Alpine Grassland (CO:45, 403, 407, 631)
Agropyron smithii Great Basin Grassland (CO:353, 667; AZ: 110; NV: 104; UT: 32, 33)
Agropyron smithii Plains Swale Grassland (CO:107, 193, 383, 587N010; CANADA: 41; NM: CO REF 609; TX: 100; WY: 7)

Salix arctica—Salix reticulata ssp. nivalis Dwarf Alpine Thicket (CO:112, 123, 210, 249, 278, 287, 362, 534, 611, 631, 636, 639; NM: 3; UT: 92)
Salix bebbiana Montane Carr (CO:662; ID: 133; UT: 46; WY: 136, 144)
Salix brachycarpa/Carex aquatilis*—Carex rostrata* Wet Carr (CO: 47)
Salix brachycarpa—Salix wolffii—Betula glandulosa* — Calamagrostis canadensis Mesic Carr (CO: 47, 255)
Salix exigua/Carex sp. Plains Riparian (CO: 236, 238, 314)
Salix geyeriana—Salix lutea/Carex rostrata Wet Carr (CO: 733)
Salix geyeriana—Salix monticola/Achillea millefolium ssp. lanulosa* Dry Carr (CO:429)
Salix geyeriana—Salix monticola/Calamagrostis canadensis* Mesic Carr (CO: 209, 149, 733; ID: 109, 152; WY: 35, 113)
Salix glauca—(Salix brachycarpa)/Deschampsia cespitosa Mesic Alpine Thicket (CO:209, 210, 733)
Salix glauca—(Salix brachycarpa)/Genus rossii Dry Alpine Thicket (CO: 206, 522)
Salix glauca—Salix planifolia Lacustrine Thicket (CO: 112, 250—254; WY: 58)
Salix planifolia/Callina leptocephala Wet Carr/Alpine Thicket (206, 210, 355, 367, 534, 733)
Salix planifolia/Carex scopulorum Wet Alpine Thicket (CO:209, 210, 287, 733)
Salix planifolia/Deschampsia cespitosa Mesic Carr (CO: 209, 733)
Salix planifolia—(Salix brachycarpa)/Deschampsia cespitosa Mesic Alpine Thicket (CO:206; WY:35)
Salix planifolia—Betula glandulosa*—Salix ssp./Carex aquatilis*—Carex rostrata* Wet Carr (CO:209, 429, 733; ID: 109, 152; WY: 35)
Salix wolffii—Betula glandulosa*—Potentilla fruticosa*/Achillea millefolium ssp. lanulosa* Dry Carr (CO: 47, 112)
Sarcobatus vermiculatus/Distichlis spicata var. stricta—(Sporobolus airoides) (CO:106, 107, 135, 193, 349, 733; CA: 4; MT: 107; OR: 37, 38, 53; WA: 42; WY: 35, 160)
Sarcobatus vermiculatus/Suaeda torreyana (CO:66, 355, 589; NV: 11; OR: 38; UT: 50, 165; WY: 35)

Symphoricarpos oregnulphus/Festuca thurberi (CO: 733)
Vaccinium caespitosum Alpine Heath (CO: 217, 219, 221, 287, 534; UT: 92)
Vaccinium scoparium Alpine Thicket (CO: 45, 287, 403; UT: 92)
Agropyron spicatum

Agropyron spicatum—*Achillea millefolium* ssp. lanulosa* (CO:667)

Agropyron spicatum—*Bouteloua gracilis* Montane Grassland (CO:564, 693; MT:107)

Agropyron spicatum—Poa fendleriana Montane Grassland (CO:564, 693, 733; WY:35, 74)

Agropyron spicatum—Poa sandbergii Palouse Grassland (CO:210, 733; CANADA:145; ID:146; MT:107; OR:53; WA:42; WY:9, 44, 153)

Agropyron spicatum var. inermé Great Basin Grassland (CO:662, 666; UT:60, 73, 117, 121)

Agropyron spicatum var. inermé—*Oryzopsis hymenoides* Great Basin Grassland (CO:662, 666)

Andropogon

Andropogon gerardii

Andropogon gerardii—*Bouteloua curtipendula—Bouteloua gracilis—Schizachyrium scoparium* Xeric Tallgrass Prairie (CO:46, 97, 135, 195, 198, 240, 344, 392, 459, 582, 587N053, 587N070, 587N0206, 587N0210, 733; KS:1, 69, 72, 89; NM:CO REF 609; OK:151, 162; WY:63)

Andropogon gerardii—*Bouteloua gracilis—Muhlenbergia montana—Schizachyrium scoparium* Xeric Tallgrass Prairie (CO:63—65, 189, 587N0213, 587N0216)

Andropogon gerardii—*Panicum virgatum—Schizachyrium scoparium—Sorghastrum nutans* Mesic Tallgrass Prairie (CO:381, 382, 390, 587N036, 587N038, 593, 733; CANADA:96; KS:2, 89; NE:148, 160; OK:19, 28, 29, 64, 81, 126, 130)

Andropogon gerardii var. paucipilus—*Calamovilfa longifolia—Stipa comata* Sandhills Prairie (CO:205, 453, 455, 491, 503, 587N020, 587N022, 733; NE:5, 30, 123, 172; ND:168; WY:35)

Andropogon gerardii var. paucipilus—*Calamovilfa longifolia—Panicum virgatum—Sorghastrum nutans* Sandhills Tallgrass Prairie (CO:587N029, 587N031, CNHI)

Bouteloua

Bouteloua gracilis

Bouteloua gracilis Shortgrass Prairie (CO:12, 166, 198, 200, 223, 224, 349, 366, 520, 555, 592, 593, 595, 596, 653, 733)

Calamagrostis

Calamagrostis canadensis

Calamagrostis canadensis Wetland (CO:188, 287, 391, 392, 646; CANADA:96; ID:109; NE:148; WY:35)

Calamovilfa

Calamovilfa longifolia

Calamovilfa longifolia Sandhills Prairie (CO:455, CNHI; NE:80, 123, 148; WY:35)

Danthonia

Danthonia intermedia

Danthonia intermedia—*Deschampsia cespitosa* Alpine Grassland (CO:146, 202; UT:115)

Danthonia intermedia—*Sibbaldia procumbens* Alpine Grassland (CO:219, 257, 290, 354, 733)

Danthonia intermedia—*Solidago multiradiata* Subalpine Grassland (CO:210, 733)

Danthonia parryi Montane Grassland (CO:209, 443, 444, 473, 483, 581, 733; CANADA:96)

Deschampsia

Deschampsia cespitosa

Deschampsia cespitosa—*Achillea millefolium* ssp. lanulosa* Dry-mesic Alpine Meadow (CO:52, 56, 400, 409, 522)

Deschampsia cespitosa—*Calamagrostis canadensis* Very Wet Meadow (CO:52, 56, 209, 210, 249, 367, 407, 646, 733)

Deschampsia cespitosa—*Carex nebrascensis* Wet Montane Meadow (CO:587N0241, 587N0315)

Deschampsia cespitosa–Ligusticum tenuifolium Snow Glade (CO:75)

Deschampsia cespitosa–Potentilla diversifolia* Mesic Alpine Meadow (CO:52, 56)

Distichlis

Distichlis spicata var. stricta

Distichlis spicata var. stricta Salt Meadow (CO:458, 515, 583, 584, 587N0314; CANADA:47, 97; KS:155, 156; NE:126, 148, 159; NV:11, 24, 104; ND:127, 168; OK:157; OR:38; UT:21, 24, 51, 116; WA:42)

Elymus

Elymus ambigatus

Elymus ambigatus Montane Grassland (CO:97, 209, 733)

Elymus cincereus

Elymus cinereus Great Basin Grassland (CO:1, 157, 568, 587N0245, 597, 596, 662, 733; MT:107; UT:33, 73, 141, 161; WA:42, WY:35)

Festuca

Festuca arizonica–Festuca thurberi Montane Grassland (CO:733)

Festuca arizonica–Muhlenbergia filiculmis Montane Grassland (CO:522, 548)

Festuca idahoensis Alpine Grassland (CO:249)

Festuca idahoensis–Agropyron trachycaulum* Montane Grassland (CO:210, 733; ID:152; MT:107; WY:35, 153)

Festuca idahoensis–Festuca thurberi Montane Grassland (CO:50, 71, 202, 210, 285, 413, 579, 600, 733)

Hilaria

Hilaria jamesii

Hilaria jamesii Great Basin Grassland (CO:86, 208, 355, 591; AZ:110; NM:48, 52; CO REF 609; UT:86, 140; WY:35)

Hilaria jamesii* Mixed Prairie (CO:107, 486, 587N06, 733; NM:CO REF 609; OK:162, TX:100)

Hilaria jamesii–Oryzopsis hymenoides–Stipa comata Great Basin Grassland (CO:CNH; UT:84–87, 140)

Hordeum

Hordeum jubatum

Hordeum jubatum Plains Grassland (CO:474, 585, 593; CANADA:47, 97; KS:156; NE:159; ND:127, 168; UT:51, 116)

Muhlenbergia

Muhlenbergia asperifolia

Muhlenbergia asperifolia Salt Meadow (CO:474, 589; UT:21, 46)

Muhlenbergia filiculmis Montane Grassland (CO:458, 522, 548, 733)

Muhlenbergia montana Montane Grassland (CO:322, 323, 334, 442–444, 474, 515, 733; AZ:103)

Muhlenbergia montana–Stipa comata Montane Grassland (CO:31, 83, 161, 209, 392, 733)

Muhlenbergia pungens Sandhill Mixed Grassland (CO:455, CNH; NE:30, 80, 122, 123, 148)

Muhlenbergia torreyi Shortgrass Prairie (CO:12, 100, 107, 516)
October 1984

Baker: Colorado Vegetation

Oryzopsis

Oryzopsis hymenoides

Oryzopsis hymenoides Shale Barren (CO:552, 564, 689, CNHI)

Oryzopsis hymenoides-Isoraide lancolata* Loose Sand Grassland (CO:349, 450, 453, 455, 458; UT:22, 31)

Oryzopsis hymenoides-Stipa comata Montane Grassland (CO:587N0273, 587N0275, 587N0282; UT:73, 141; WY:35)

Phippsia

Phippsia alpida

Phippsia alpida Alpine Grassland (CO:CNHI; WY:35)

Phragmites

Phragmites australis

Phragmites australis Wetland (CO:662; CANADA:97, 101; ND:43, 127; UT:21; WY:35)

Poa

Poa arctica ssp. grayana

Poa arctica ssp. grayana Alpine Grassland (CO:287)

Poa fendleriana

Poa fendleriana Alpine Grassland (CO:321, 400, 401)

Poa lettermanii

Poa lettermanii Alpine Grassland (CO:287)

Poa rupicola

Poa rupicola Alpine Grassland (CO:403, 636)

Puccinellia

Puccinellia nuttalliana

Puccinellia nuttalliana Salt Meadow (CO:583, 585; CANADA:47, 97, 101; UT:51; WY:35; GENERAL:158)

Redfieldia

Redfieldia flexuosa

Redfieldia flexuosa Sandhills Blowout Grassland (CO:449, 518; NE:30, 80, 122, 123, 148; WY:35)

Schizachyrium

Schizachyrium scoparium

Schizachyrium scoparium Loess Prairie (CO:12, 15, 284, 390, 587N051, 587N052, CNHI: KS:71, 149)

Schizachyrium scoparium Sandhills Prairie (CO:1, 106, 154, 518, CNHI: NE:80, 122, 123, 142)

Schizachyrium scoparium-Eriogonum flacum* (CO:CNHI: CANADA:95)

Spartina

Spartina gracilis

Spartina gracilis Salt Meadow (CO:193, CNHI: CANADA:97; UT:21; WA:42, 53)

Sporobolus

Sporobolus airoides

Sporobolus airoides Salt Meadow (CO:311, 585, 587N046, 587N047, 733; NM:52)

Sporobolus heterolepis

Sporobolus heterolepis Tallgrass Prairie (CO:318, 320; IA:26; NE:164; ND:125; WY:35)

Stipa

Stipa comata

Stipa comata* Mixed Prairie (CO:1, 15, 99, 194, 195, 198, 318, 381, 539, 575, 593, 609; CANADA:41, 95; MT:107; NE:62, 123; ND:59, 124, 125; OK:19, 28; WY:35)

Stipa comata Montane Grassland (CO:209, 443, 733)

Stipa neomexicana* Mixed Prairie (CO:381, CNHI; NM:6)

Stipa neomexicana Stipa spartea Tallgrass Prairie (CO:46, 318, 320; CANADA:170; NE:164; ND:125)

Stipa spartea Plains Grassland (CO:592, 609; CANADA:96)

Stipa viridula

Stipa viridula Plains Grassland (CO:592, 609; CANADA:96)
Carex
- *Carex aquatilis*
- *Carex arparaphoensis*
- *Carex bipartita*
- *Carex ebeveta*
- *Carex elioscharis*
- *Carex elymoides*
- *Carex festivela*
- *Carex foenea*
- *Carex haydeniana*
- *Carex illota*
- *Carex lanuginoso*
- *Carex microglobos*
- *Carex nardina var. hepurnii*
- *Carex nebrasensis*
- *Carex nelsonii*
- *Carex nigricans*
- *Carex pachystachya*
- *Carex perglobos*
- *Carex pyrectnica*
- *Carex rossii*
- *Carex rostrata*
- *Carex rupestris var. drummondi*
- *Carex scpulorum*
- *Carex vernacula*
- *Carex vernacula* Alpine Wetland (CO:287)

Eleocharis
- *Eleocharis acicularis*
- *Eleocharis paustris*
- *Eleocharis punciflora*

Juncus
- *Juncus balticus*
- *Juncus drummondi*

Kobresia
- *Kobresia myosuroides*

Graminoid Associations

- *Carex aquatilis*-Carex rostrata Wetland (CO:47, 209, 210, 253, 301, 646, 733; ID:109, 152; WY:58, 112)
- *Carex arparaphoensis* Alpine Talus (CO:287, 534, 733)
- *Carex bipartita* Alpine Wetland (CO:287)
- *Carex ebeveta* Wetland (CO:400, 401, 445)
- *Carex elioscharis Montante Turf* (CO:443, 445, 446, 458)
- *Carex elymoides Alpine Turf* (CO:45, 68, 143, 146, 209, 249, 287, 290, 301, 321, 362, 403, 412, 445, 513, 618, 636, 639, 727, 733; NM:3; UT:92; WY:78)
- *Carex festivela Montante Wetland* (CO:168, 445, 458, 483)
- *Carex foenea Alpine Talus* (CO:287, 400, 401, 445, 733)
- *Carex haydeniana Alpine Wetland* (CO:287, 733)
- *Carex illota Alpine Wetland* (CO:287)
- *Carex lanuginoso Montante Wetland* (CO:391-393, 445, 548)
- *Carex microglobos Alpine Wetland* (CO:287, 733)
- *Carex nardina var. hepurnii Alpine Turf* (CO:287)
- *Carex nebrasensis-Catabrosa aquatica-Juncus batticious Spring Wetland* (CO:662)
- *Carex nebrasensis-Juncus batticious Wetland* (CO:94, 95, 163, 318, 455; ID:109; UT:40; WY:108, 144)
- *Carex nelsonii Alpine Wetland* (CO:287)
- *Carex nigricans-(Juncus drummondi) Alpine Wetland* (CO:112, 287, 445, 534, 733; ID:133; OR:53)
- *Carex pachystachya Alpine Wetland* (CO:253, 254, 445)
- *Carex perglobos Alpine Rock Outcrop* (CO:287, 733)
- *Carex pyrectnica Alpine Wetland* (CO:278, 287, 290, 367, 409, 513, 630, 639)
- *Carex rossii Subalpine Turf* (CO:445)
- *Carex rostrata Wetland* (CO:391-393, 445, 464; CANADA:98; CA:10; ID:109, 133; OR:53; UT:83; WY:108)
- *Carex rupestris var. drummondi* Alpine Turf (CO:45, 97, 99, 112, 210, 278, 362, 367, 412, 430, 513, 631, 633, 639, 640, 733; NM:3; UT:25, 92)
- *Carex scpulorum-Argopyron tracheycalum* Alpine Wetland (CO:287)
- *Carex scpulorum-Caltia leptosepala* Alpine Wetland (CO:97, 210, 367, 409, 513, 633, 636; WY:35)
- *Carex vernacula* Alpine Wetland (CO:287)

Eleocharis
- *Eleocharis acicularis* Montane Wetland (CO:445, 483, 548)
- *Eleocharis punciflora* Wetland (CO:287, 646; CA:10; OR:53; WY:35)

Juncus
- *Juncus drummondi* Alpine Wetland (CO:45, 287, 290, 362, 403, 409, 513, 534, 636, 639, 733; ID:133)

Kobresia
- *Kobresia myosuroides* Alpine Turf (CO:68, 278, 287, 636, 639)
- *Kobresia myosuroides-Geum rossiti* Alpine Turf (CO:68, 112, 146, 155, 209, 210, 346, 367, 467, 522, 534, 633, 639, 733; NM:3; UT:92; WY:35)
- *Kobresia myosuroides-Trifolium dasyphyllum* Alpine Turf (CO:522, 733)
Scirpus

Scirpus americanus

Scirpus maritimus

Scirpus tabernaemontani (S. calidus)

Aletes

Aletes anisatus

Antennaria

Antennaria alpina

Aquilegia

Aquilegia caerulea

Aquilegia micrantha

Arenaria

Arenaria hookeri

Artemisia

Artemisia arctica ssp. saxicola

Athyrium

Athyrium distentifolium

Caltha

Caltha leptosepala

Cardamine

Cardamine cordifolia

Cirsium

Cirsium scopulorum

Claytonia

Claytonia megarhiza

Erigeron

Erigeron peregrinus ssp. callianthemus

Geum

Geum rossii

Heuchera

Heuchera spp.

Iva

Iva axillaris

Scirpus maritimus Wetland (CO:474, 585; CANADA:94, 97; KS:155, 156; NV:11; ND:45; OK:119, 157; UT:21, 51; GENERAL:158)

Scirpus tabernaemontani-Typha latifolia Wetland (CO:99, 177, 455; OR:53)

Aletes anisatus-Scutellaria brittonii Gravel Slide (CO:97)

Antennaria alpina Alpine Wetland (CO:287, 733)

Aquilegia caerulea-Cirsium scopulorum Alpine Talus (CO:278, 287, 733)

Aquilegia micrantha-Mimulus elongatius Hanging Gardens (CO:CNHI, UT:99)

Arenaria hookeri* Barrens (CO:15, 384; NE:123)

Artemisia arctica ssp. saxicola Alpine Meadow (CO:167, 287, 633, 636, 639, 733)

Athyrium distentifolium Alpine Talus (CO:287)

Caltha leptosepala Wetland (CO:9, 287, 522, 526, 534, 612, 631, 646, 733; WY:35)

Cardamine cordifolia Alpine Wetland (CO:287; UT:46)

Cirsium scopulorum-Polemonium viscosum Alpine Talus (CO:287, 733)

Claytonia megarhiza Alpine Rock Outcrop (CO:278, 287, 321, 494, 733; WY:78)

Erigeron peregrinus ssp. callianthemus-Ligusticum tenuifolium-Trollius laxus ssp. albiflorus Alpine Wetland (CO:287, 733)

Geum rossii-Polygonum bistortoides Alpine Meadow (CO:209, 210, 534, 733)

Geum rossii-Sibbaldia procumbens Alpine Meadow (CO:44, 45, 135, 146, 409, 534, 618)

Heuchera bracteata-Heuchera parviflora var. nivalis Alpine Rock Crevice (CO:287, 657, 733)

Iva axillaris Salt Meadow (CO:667; WY:160)
Great Basin Naturalist

KoENIA
Koenia islandica

Koenisia islandica Alpine Wetland (CO:287, 362, 513, 636, 639)

LEWISIA
Lewisia pygmaea

Lewisia pygmaea Alpine Meadow (CO:287)

LIGUSTICUM
Ligusticum porteri

Ligusticum porteri—Lapinus parriflorus sp. myrianthus Subalpine Meadow (CO:301, 733)
Ligusticum porteri—Vicia americana Subalpine Meadow (CO:210)
Ligusticum tenuifolium—Deschampsia cespitosa* Snow Glade (CO:75)

MENTENIA
Mertensia ciliata

Mertensia ciliata Alpine Wetland (CO:257, 733; ID:109; WY:112)

MINUARTIA
Minuartia obtusiloba

MYRIOPHYLLUM
Myriophyllum exalbescens

Myriophyllum exalbescens Wetland (CO:253, 254; CANADA:101)

NYPHAR
Nuphar luteum ssp. polysepalum

Nuphar luteum ssp. polysepalum Wetland (CO:349, 464; OK:119)

POLENONIUM
Polemonium viscosum

Polemonium viscosum Alpine Meadow (CO:403, 636)

POLYGONUM
Polygonum amphibium
Polygonum viriparum

Polygonum amphibium Montane Wetland (CO:250–254, 451, 458)
Polygonum viriparum—Carex capillaris* Alpine Wetland (CO:287, 733; CANADA:98)

POTAMOGETON
Potamogoton filiformis

Potamogeton filiformis Montane Wetland (CO:253, 254)

PRIMULA
Primula parryi

Primula parryi Alpine Wetland (CO:287, 409, 526, 733; AZ:132)

RANUNCULUS
Ranunculus aquatilis

Ranunculus aquatilis—Callitriche verna* Montane Wetland (CO:168, 483)

RORIPPA
Rorippa curvipes var. alpina

Rorippa curvipes var. alpina Alpine Wetland (CO:287)

SALICORNIA
Salicornia rubra

Salicornia rubra Salt Meadow (CO:1, 583–585; CANADA:47, 97, 101; KS:155, 156; NE:123, 159; NV:11, 24; ND:127, 168; UT:24, 51; WY:35)

SAXIFRAGA
Saxifraga chrysantha
Saxifraga odorotoloma
Saxifraga ricularis

Saxifraga chrysantha Alpine Rock Outcrop (CO:278, 287)
Saxifraga odorotoloma Alpine Wetland (CO:287, 733)
Saxifraga ricularis Alpine Rock Outcrop (CO:287)

SEDUM
Sedum spp.

Sedum integrifolium—Sedum rhodanthum Alpine Wetland (CO:287, 526)
Baker: Colorado Vegetation

671

Senecio
Senecio taraxacoides
Senecio triangularis

Sibbaldia
Sibbaldia procumbens

Sparaganium
Sparaganium emersum

Trifolium
Trifolium dasyphyllum
Trifolium parryi

Triglochin
Triglochin maritima

Typha
Typha domingensis
Typha latifolia

Senecio taraxacoides-Oxyria digyna* Alpine Tuffs (CO:287)
Senecio triangularis Alpine Wetland (CO:287, 733)
Sibbaldia procumbens Snow Glade (CO:75)
Sparaganium emersum Wetland (CO:97, 168, 445, 464, 483)
Trifolium dasyphyllum Alpine Fellfield (CO:45, 68, 217, 219, 221, 278, 287, 290, 321, 362, 367, 403, 522, 612, 633, 636, 639, 733; NM:3; UT:61)
Trifolium parryi Alpine Fellfield (CO:68, 123, 167, 287, 290, 343, 346, 367, 392, 403, 522, 636, 733; UT:61)
Triglochin maritima Salt Meadow (CO:583, 585; CANADA:47, 97; UT:21, 51; GENERAL:158)
Typha domingensis Wetland (CO:662; AZ:56)
Typha latifolia Wetland (CO:91, 312, 13, 330, 364; NV:11; ND:45, 79; UT:21; WY:35)

Literature Cited

Numbers preceded by CO correspond to reference numbers listed in the following two publications:

Numbers preceded by other state abbreviations are listed below:

edaphic factors in a pristine community. J. Range Mgmt. 30:286-289.

