Traditional vs. Flipped Library Instruction for the Life Sciences

Michael C. Goates
Brigham Young University, michael_goates@byu.edu

Megan Frost
Brigham Young University, megan@byu.edu

See next page for additional authors

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

Part of the Information Literacy Commons, and the Life Sciences Commons

Original Publication Citation

BYU ScholarsArchive Citation
Goates, Michael C.; Frost, Megan; and Nelson, Gregory M., "Traditional vs. Flipped Library Instruction for the Life Sciences" (2016).
All Faculty Publications. 1756.
https://scholarsarchive.byu.edu/facpub/1756

This Poster is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Authors
Michael C. Goates, Megan Frost, and Gregory M. Nelson
Traditional vs. Flipped Library Instruction for the Life Sciences

Michael C. Goates, Megan Frost, and Gregory M. Nelson, Brigham Young University

Abstract

We compared search statement development between traditional lecture and flipped instruction sessions using two separate flipped models. Students in lecture sessions scored significantly higher on developing search statements than those in the flipped model 1 sessions. However, student scores were not significantly different between the lecture and the flipped model 2 sessions. Reasons for lower flipped-session scores may include a lack of student accountability, strong preference for a live demonstration, and disconnections between online tutorial content and in-class collaborative activities. Students in all sessions expressed a strong preference for pedagogies that incorporate elements from both lecture and flipped methodologies. Librarians using a flipped classroom should consider ways to help students make meaningful connections between online tutorials and in-class activities.

Analysis

• Divided participants into 3 groups
 – Lecture treatment (lecture)
 – Flipped/tutorial (flipped/yes)
 – Flipped/no tutorial (flipped/no)
• Compared scores: one-way ANOVA
• Coded student comments

Student Search Assignment

Topic: The impact of soft drink consumption on childhood obesity.
• Construct an effective search strategy within the Web of Science database to find relevant journal articles on this topic.
• Use the OR, AND, and NOT operators and any necessary limiters (date range, title search, truncation, document type, etc.) to refine your results.
• Once you have modified and refined your search and narrowed your results to a set of relevant articles, list your final search statement, any limiters or modifiers you applied, and the total number of articles found in this final search.

Student Search Statements

Traditional lecture equal to or better than flipped models

<table>
<thead>
<tr>
<th>Model</th>
<th>Group</th>
<th>Mean Difference (95% CI)</th>
<th>p-Value</th>
<th>Mean Score (out of 13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>Lecture</td>
<td>Flipped/Yes</td>
<td>0.97325</td>
<td>0.67951</td>
</tr>
<tr>
<td></td>
<td>Lecture</td>
<td>Flipped/No</td>
<td>1.21014</td>
<td>0.78925</td>
</tr>
<tr>
<td>Model 2</td>
<td>Lecture</td>
<td>Flipped/Yes</td>
<td>0.01263</td>
<td>0.91012</td>
</tr>
<tr>
<td></td>
<td>Lecture</td>
<td>Flipped/No</td>
<td>0.38267</td>
<td>0.70539</td>
</tr>
</tbody>
</table>

Student Feedback by Theme

Study Takeaways:
• Modified flipped classroom model can be as effective as a traditional lecture for teaching search strategy development
• Student-led search demonstration improved performance for all students in a flipped session (regardless of tutorial completion)

Successful flipped classroom considerations:
• Facilitate student engagement – e.g., group activities, student-led demos, active learning
• Encourage student accountability – Incentivize completion of tutorial/out-of-class activity
• Coordinate out-of-class assignments with in-class activities
• Incorporate hybrid teaching methodology with elements from both flipped and traditional lecture models