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ABSTRACT 

 

 

 

A NUMERICAL MODEL OF THE FRICTION STIR PLUNGE 

 

 

 

 

Stanford W. McBride 

Department of Mechanical Engineering 

Master of Science 

 

 

 

A Lagrangian finite-element model of the plunge phase of the friction stir welding 

process was developed to better understand the plunge.  The effects of both modeling and 

experimental parameters were explored,  

Experimental friction stir plunges were made in AA 7075-T6 at a plunge rate of 

0.724 mm/s with spindle speeds ranging from 400 to 800 rpm. Comparable plunges were 

modeled in Forge2005. Various simulation parameters were explored to assess the effect 

on temperature prediction. These included the heat transfer coefficient between the tool 

and workpiece (from 0 to 2000 W/m-K), mesh size (node counts from 1,200 to 8,000), 

and material model (five different constitutive relationships). Simulated and measured 

workpiece temperatures were compared to evaluate model quality.  

As spindle speed increases, there is a statistically significant increase in measured 

temperature.  However, over the range of spindle speeds studied, this difference is only 





 

about 10% of the measured temperature increase. Both the model and the simulation show a 

similar influence of spindle speed on temperature.  The tool-workpiece heat transfer coefficient 

has a minor influence (<25% temperature change) on simulated peak temperature. Mesh size has 

a moderate influence (<40% temperature change) on simulated peak temperature, but a mesh size 

of 3000 nodes is sufficient. The material model has a high influence (>60% temperature change) 

on simulated peak temperature. Overall, the simulated temperature rise error was reduced from 

300% to 50%.  It is believed that this can be best improved in the future by developing improved 

material models.  
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1. Introduction 

1.1. Friction Stir Welding 

Friction stir welding is a solid state joining process producing material properties 

generally superior to traditional forms of welding. Friction stir technology was pioneered at The 

Welding Institute of the UK in 1991 (Thomas, 1991). The basic premise of the process is that a 

distinctly designed, rotating tool is plunged into the workpiece material or between two materials 

the operator desires to join. In a butt weld the rotating tool then traverses along the seam between 

the two materials and thermo-mechanically joins the two pieces as seen in Figure 1.  

 

 

 

Figure 1 - Illustration of the friction stir process, (a) rotation of the tool, (b) plunge of the tool, (c) completion of 

the plunge, (d) traverse. (Oliphant, 2004) 
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1.2. Numerical Modeling 

Numerical modeling is one of the best ways to understand a complex process, such as 

friction stir welding. The basic premise of numerical modeling is that a medium is subdivided 

into discrete or finite elements. A computer simulation then models the behavior and properties of 

each of these elements as they are acted upon by an external force by multiple sets of governing 

laws and physical equations. Due to computational limitations, simplifying assumptions are made 

to reduce complexity and computational processing time. As friction stir welding is not well 

understood, it is a candidate for numerical modeling. 

Numerical applications used for better understanding the friction stir process vary from 

single solution multivariate equations to time dependent graphical models. Two-dimensional 

models have been used to approximate the heat distribution through the workpiece, but typically 

focus on the traverse portion of the process. Three-dimensional models give insight into the depth 

component of the process. These models usually focus on simplified heat inputs or used a fluid 

flow method that also concentrates on the traverse portion of the process.  

Because the friction stir weld plunge is a transient, three-dimensional process a more 

complex modeling program is required. Work done by Oliphant (2004) determined that Forge3, a 

modeling program produced by Transvalor of France, showed potential in accurately modeling 

the plunge. The program has subsequently been updated and is known as Forge2005. This 

software package is allows for a fully defined three-dimensional workpiece, a rotating tool 

interface, a variety of material laws, and parameter selection. Oliphant was able to show the 

friction stir plunge could be modeled, but did not explore the capabilities of the program or the 

various effects of changing the parameters within the simulation. A later study by Lasley (2005) 

showed that modification of specific parameters within the simulation could improve the 

accuracy of the model and these parameters could be defined by comparison to experimental 

testing.  
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Numerical models, especially Forge2005, typically contain multiple options for the user 

to change and control. This flexibility is advantageous as it allows the user to created models that 

more accurately represent the true process. But this flexibility is also challenging as the large 

number of adjustable parameters can overwhelm the user. The interactions of multiple changes 

can obscure the influence of any single parameter on the resulting simulation.  

 

 

1.3. Thesis Statement 

The friction stir plunge is a transient process that is better understood through numerical 

modeling and experimental testing.  This work intends to improve the modeling of the friction stir 

plunge. Better friction stir plunges and numerical models are created when the associated 

parameters influencing the behavior are understood. The understanding of the effects of selected 

parameters is achieved through the study of simulations conducted in Forge2005, a series of 

related experimental results, and the comparison of simulation and experiment.  

The areas of study that are given specific consideration in experimentation are the 

influence of spindle speed and the behavior during the plunge and during the dwell. The focus of 

the parameter study is the influence and significance of the heat transfer coefficient between the 

tool and the workpiece, the influence of mesh size, the capability of material model, and the 

influence of spindle speed on the temperature in the workpiece. Each of these areas of study 

defines the behavior or significance of a parameter that influences the temperatures observed in 

the friction stir plunge process.  
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2. Background 

Friction stir processing has captured the interest of groups the world over as the process 

becomes more reliable, the safety in performing the weld is known, and the quality of the weld is 

recognized. Academics and industry alike have studied portions of the friction stir process and 

additional modifications of and applications for the process are discovered each year. Computer 

models are used by researchers to understand the friction stir process and learn about the laws that 

govern the process. Simulation and experimental research have laid a rich foundation for 

numerical modeling research and comparative experimentation.   

 

 

2.1. Numerical Modeling 

Numerical modeling is a continually expanding field of research and technological 

improvement. Basic numerical modeling simplifies engineering processes by reducing an 

infinitely fine medium into discreet portions, applying a fixed set of mechanical, material, and 

other laws to modify the medium, and produce usable results. Through advances in hardware and 

software greater detail in simulation have produced better results in a shorter time frame.  
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5. Conclusions and Recommendations 

5.1. Summary  

Several parameters contribute to the composite behavior of the friction stir plunge. 

Within the plunge experimental, temperatures were compared with simulated temperatures to 

evaluate the quality of the prediction material. Forge2005 simulations are used to evaluate the 

influence of mesh size and the heat transfer coefficient on the numerical temperature result. 

Comparison of the experimental and simulations reveals the general behavior of the two methods, 

the significance of the heat transfer coefficient, and the influence of the material model.  

 

 

5.1.1. Plunge Experiments 

5.1.1.1. Spindle Speed Effect 

There is a small but generally statistically significant increase in measured thermocouple 

temperature with increasing spindle speed. Using linear estimations for slope averaged from 

samples times at 4, 6, and 8 seconds for each of the thermocouple locations an average slope of 

.070
o
C / rpm is representative of the behavior of the experiment. Relative to the large transient 
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changes that are occurring over the short plunge this small variation controlled by spindle speed 

is of minimal consequence to the friction stir plunge.  

 

 

5.1.1.2. Dwell Results 

Temperature stabilizes in the thermocouples closest to the tool (TC2, TC3, and TC4) 

during the dwell. Temperature continues to climb in the other measured areas during the dwell as 

heat continues to disperse through the medium.   

 

 

5.1.2. Forge2005 Simulations 

5.1.2.1. Mesh Size Influence 

Mesh size significantly impacts the results of the simulation. However with the increased 

number of nodes the computation time dramatically increases. In selecting a balance between the 

duration and accuracy the medium mesh size of 3,000 nodes is sufficient.  

 

 

5.1.2.2. Heat Transfer Coefficient Influence 

The exchange of heat in the simulation, as regulated by the heat transfer coefficient, 

between the tool and the workpiece follows the convention that as the coefficient increases the 

temperature decreases by a proportion of .007%. A large increase in the heat transfer coefficient 

is required to make a change of more than a few 
o
C in the workpiece.  
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5.1.3. Comparison 

5.1.3.1. General Comparison of Temperature Curves 

Model variations consistently show the simulation under-predicts temperature near the 

tool and over-predicts temperature far from the tool. While change in the material model does 

modify specific values of the resultant temperature the qualitative behavior is consistent in all 

observations. This indicates the simulations models require further refinement for before an exact 

model can be produced.  

 

 

5.1.3.2. Comparative Spindle Speed Influence 

Both the simulation and the experimentation show that with increased spindle speed the 

temperature in the workpiece increases. The spindle speed influence as a function of radius 

matches between the simulation and the experiment. 

 

 

5.1.3.3. Heat Transfer Coefficient Significance 

A wide range of heat transfer values was tested.  Changes in the heat transfer coefficient 

had only a small effect on the simulation results relative to the changes that occur in the 

experimental temperatures over the course of a simulation.  
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5.1.3.4. Material Model Influence on Temperature Spread 

Material model variations tested do not significantly impact the ability to model the 

temperature spread found in the area immediately around the tool. The results of these 

experiments show that the tested material models do not provide a good approximation of the 

temperature spread that occurs in the experimental temperatures.  Other untested material models 

might provide a better match.  

 

 

5.1.3.5. Material Model Influence on Average Temperature 

Material model variations tested show that the average temperature across the interval 

can be modified by use of different material models. Some results of the selected simulation 

models show average temperatures below the experimental temperatures, while others show 

average temperatures above the experimental temperatures. This supports the possibility that the 

material model can be adjusted so that the mean temperature is in agreement with the 

experimental average temperature , but the specific material model that would lead to this result is 

not identified. 

 

 

5.1.3.6. Summary of Model Improvements 

Prior work done by Oliphant had the simulation over predicting the experimental 

measures by 300%. Current work reduces the over and under prediction to less than 50%. Efforts 

of this work have brought the experimental and simulation temperatures into closer agreement.  
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5.2. Future Work 

Many opportunities exist for additional research in relation to the topics discussed in this 

work. A correct material model would allow researchers in all areas of numerical research to 

improve the model and better understand the parameter behaviors observed. This material model 

would require gleeble work and interpolative mapping for all necessary data points. Other 

thicknesses of material could be used to understand heat transfer and welding in the material. 

Thinner materials would allow the testing of weld strength. The users could also work to optimize 

additional parameters in the simulation. These parameters could include the use of EVP or 

Norton-Hoff based equations, the deformation increment, variable heat transfer coefficients and 

others. These additional parameters would allow for even more accuracy improvements in the 

model than were found in this work.  
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Appendix A 

Experimental Tool Design 

 

Figure 54  – CAD drawings of tool with holes for thermocouples.  



 

Simulation Tool Geometry

Figure 55 – CAD projection of tool geometry used in simulation.

 

Figure 56  – CAD projection of workpiece geometry used in simulation.
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Simulation Tool Geometry 

 

CAD projection of tool geometry used in simulation. 

 

CAD projection of workpiece geometry used in simulation. 



 

Anvil System 

Figure 57  – CAD projection of secondary anvil allowing thermocouple probes to exit back of workpiece.
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CAD projection of secondary anvil allowing thermocouple probes to exit back of workpiece.

 

CAD projection of secondary anvil allowing thermocouple probes to exit back of workpiece. 



 

Test Specimens 

Figure 58  – CAD projection of test plate as seen from the back side.

 

Figure 59  – Sketch of circular array of thermocouple holes found in back of test plate.
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CAD projection of test plate as seen from the back side. 

 

Sketch of circular array of thermocouple holes found in back of test plate. 

 

 


