Analysis of Sawdust by X-ray Photoelectron Spectroscopy

Guilin Jiang
Brigham Young University - Provo

Ghaleb A. Husseini
Brigham Young University - Provo

Larry Lin Baxter
Brigham Young University - Provo, larry_baxter@byu.edu

Matthew R. Linford
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub
Part of the *Chemical Engineering Commons*

BYU ScholarsArchive Citation
https://scholarsarchive.byu.edu/facpub/1735

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Analysis of Sawdust by X-ray Photoelectron Spectroscopy

Article in Surface Science Spectra · January 2004

4 authors, including:

Ghaleb A. Husseini
American University of Sharjah
128 PUBLICATIONS 1,911 CITATIONS

Larry L. Baxter
Brigham Young University - Provo Main Cam...
389 PUBLICATIONS 4,906 CITATIONS

Matthew R Linford
Brigham Young University - Provo Main Cam...
305 PUBLICATIONS 5,282 CITATIONS
Analysis of Sawdust by X-ray Photoelectron Spectroscopy

Guilin Jiang, Ghaleb A. Husseini, Larry L. Baxter, and Matthew R. Linford
Brigham Young University, Provo, Utah 84604

(Received 12 August 2004; accepted 16 November 2005; published 30 December 2005)

Determining the chemical structure and composition of biomass fuels using x-ray photoelectron spectroscopy (XPS) can provide fundamental knowledge of their structures that is useful in understanding and predicting their combustion behavior. Sawdust is an example of a forest product residue (byproduct of paper and lumber production) of potential interest for biomass combustion. The XPS spectra of sawdust provide both its elemental composition and indications of its bonding. Traditional fuel analyses of this fuel are also provided. These include: ultimate analysis — the elemental composition of the overall fuel (C, H, N, S, and O); chlorine analysis — reported here as part of the ultimate analysis but formally a separate procedure; proximate analysis — the proximate composition of the fuel (moisture, fixed carbon, volatiles, and ash); heating value — the specific heat of combustion; ash chemistry analysis — an elemental analysis of the ash content, expressed as oxides (which does not imply that they occur as oxides in the fuel). These data are summarized with the XPS spectra. © 2005 American Vacuum Society. [DOI: 10.1116/11.20040806]

Keywords: biomass; sawdust; XPS; fuel

PACS: 82.80.Pv, 01.30.Kj, 84.60.Rb, 82.60.Cx

SPECIMEN DESCRIPTION

Host Material: sawdust

Host Material Characteristics: homogeneous; amorphous; unknown electrical characteristics; biological material; powder

Chemical Name: cellulose

Host Composition: see entry for History & Significance

Form: powder

History & Significance: Sawdust is an example of a forest product residue (byproduct of paper and lumber production) of potential interest for biomass combustion. Agricultural residues studies here came from 2002 harvests of wood and other agricultural materials in the U.S. and in Europe. The wood came from a commercial saw mill in the western U.S. It is of fairly typical composition of waste materials produced in sawmills. All materials underwent extensive homogenization and particle size classification to produce suitable feed materials for combustion tests conducted in the U.S. Some of the materials were prepared by us and others by collaborators in the U.S. and in Europe.

The XPS spectra of sawdust provide both its elemental composition and indications of its bonding. Traditional fuel analyses of this fuel are also provided. These include: ultimate analysis — the elemental composition of the overall fuel (C, H, N, S, and O); chlorine analysis — reported here as part of the ultimate analysis but formally a separate procedure; proximate analysis — the proximate composition of the fuel (moisture, fixed carbon, volatiles, and ash); heating value — the specific heat of combustion; ash chemistry analysis — an elemental analysis of the ash content, expressed as oxides (which does not imply that they occur as oxides in the fuel). These data are summarized with the XPS spectra.

Table 1: Fuel analysis of bio-fuel sunflower shells (ash free basis except for ash and LHV, which are on an as-received basis).

<table>
<thead>
<tr>
<th>% by weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>O</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>Ash</td>
</tr>
<tr>
<td>Sum</td>
</tr>
<tr>
<td>LHV*, MJ/kg</td>
</tr>
</tbody>
</table>

*Lower heating value

Table 2: Ash composition of sunflower shells (percent of ash basis).

<table>
<thead>
<tr>
<th>Mass %</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
</tr>
<tr>
<td>Al₂O₃</td>
</tr>
<tr>
<td>Fe₂O₃</td>
</tr>
<tr>
<td>CaO</td>
</tr>
<tr>
<td>MgO</td>
</tr>
<tr>
<td>Na₂O</td>
</tr>
<tr>
<td>K₂O</td>
</tr>
<tr>
<td>SO₃</td>
</tr>
<tr>
<td>P₂O₅</td>
</tr>
<tr>
<td>Cl</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Sum</td>
</tr>
</tbody>
</table>

*Author to whom correspondence should be addressed; present address: Chemical Engineering Department, P.O. Box 26666, The American University of Sharjah, Sharjah, United Arab Emirates.
As Received Condition: powder

Analyzed Region: same as host material

Ex Situ Preparation/Mounting: Sawdust powders were used as received. The powders were pressed onto a piece of nonconductive double-sticky tape mounted on a piece of silicon, which was then mounted on the sample stage with a piece of the same tape.

In Situ Preparation: none

Pre-Analysis Beam Exposure: No damage was observed in the sample even after several hours of exposure to x-ray radiation. After 4 h of exposure to x rays, the intensity of the N 1s scan did not change.

Charge Control: A flood gun was applied. The flood gun voltage was 4 V, and its current was less than 50 mA. A metal screen was used to mask the sample. The charge control was determined by observing zirconia Zr 3p½ peak positions under different flood gun settings. XPS spectra showed a Zr 3d½ at 182.3 eV. The metal screen used was nickel, 1 mm distance, 70 lines/in, and 90% transmission.

Temp. During Analysis: 298 K

Pressure During Analysis: <2.0×10⁻⁶ Pa

INSTRUMENT DESCRIPTION

Manufacturer and Model: Surface Science Instruments SSX-100
Analyzer Type: spherical sector
Detector: resistive anode position detector
Number of Detector Elements: 128

INSTRUMENT PARAMETERS COMMON TO ALL SPECTRA

■ Spectrometer
Analyzer Mode: constant pass energy

Throughput (T=E³): N=0
Excitation Source Window: 12 μm aluminum foil
Excitation Source: Al Kα monochromatic
Source Energy: 1486.6 eV
Source Strength: 200 W
Signal Mode: multichannel direct

■ Geometry
Incident Angle: 55°
Source to Analyzer Angle: 70.8°
Emission Angle: 55°
Specimen Azimuthal Angle: 0°
Acceptance Angle from Analyzer Axis: 0°

DATA ANALYSIS METHOD

Peak Shape and Background Method: background Shirley function

Quantitation Method: Sensitivity factors were obtained from ESCA 2000 NT software supplied by Service Physics. The peak areas are the areas above a linear background.

ACKNOWLEDGMENTS

The authors acknowledge U.S. DOE Biomass Power Program for financial support, and Elsam engineering and Eltra, both Danish companies, which provided complementary analyses and some financial support for this investigation.
SPECTRAL FEATURES TABLE

<table>
<thead>
<tr>
<th>Spectrum ID #</th>
<th>Element Transition</th>
<th>Peak Energy (eV)</th>
<th>Peak Width FWHM (eV)</th>
<th>Peak Area (counts)</th>
<th>Sensitivity Factor</th>
<th>Concentration (at. %)</th>
<th>Peak Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>00900-02</td>
<td>O 1s</td>
<td>528.2</td>
<td>3.9</td>
<td>88500</td>
<td>2.5</td>
<td>21.3</td>
<td>...</td>
</tr>
<tr>
<td>00900-03</td>
<td>C 1s</td>
<td>280.9</td>
<td>4.3</td>
<td>126000</td>
<td>1</td>
<td>76</td>
<td>...</td>
</tr>
<tr>
<td>00900-04</td>
<td>N 1s</td>
<td>396.7</td>
<td>5.2</td>
<td>169000</td>
<td>1.68</td>
<td>0.6</td>
<td>...</td>
</tr>
<tr>
<td>00900-05</td>
<td>Si 2p</td>
<td>99.3</td>
<td>4.8</td>
<td>122000</td>
<td>0.9</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>00900-06</td>
<td>O 1s</td>
<td>528.3</td>
<td>3.5</td>
<td>24000</td>
<td>2.5</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>00900-07</td>
<td>C 1s</td>
<td>281.0</td>
<td>4.1</td>
<td>32100</td>
<td>1</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>00900-08</td>
<td>N 1s</td>
<td>396.7</td>
<td>4.8</td>
<td>20300</td>
<td>1.68</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

GUIDE TO FIGURES

<table>
<thead>
<tr>
<th>Spectrum (Accession) #</th>
<th>Spectral Region</th>
<th>Voltage Shift*</th>
<th>Multiplier</th>
<th>Baseline</th>
<th>Comment #</th>
</tr>
</thead>
<tbody>
<tr>
<td>900-1</td>
<td>Survey</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>900-2</td>
<td>O 1s</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>900-3</td>
<td>C 1s</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>900-4</td>
<td>N 1s</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>900-5</td>
<td>Si 2p</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>900-6</td>
<td>O 1s</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>900-7</td>
<td>C 1s</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>900-8</td>
<td>N 1s</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

* Voltage shift of the archived (as-measured) spectrum relative to the printed figure. The figure reflects the recommended energy scale correction due to a calibration correction, sample charging, flood gun, or other phenomenon.

1. 800 μm x-ray beam diameter, 150 eV pass energy
2. 300 μm x-ray beam diameter, 50 eV pass energy
<table>
<thead>
<tr>
<th>Accession #</th>
<th>09900-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Material</td>
<td>sawdust</td>
</tr>
<tr>
<td>Technique</td>
<td>XPS</td>
</tr>
<tr>
<td>Spectral Region</td>
<td>survey</td>
</tr>
<tr>
<td>Instrument</td>
<td>Surface Science Instruments SSX-100</td>
</tr>
<tr>
<td>Excitation Source</td>
<td>Al K_{α} monochromatic</td>
</tr>
<tr>
<td>Source Energy</td>
<td>1486.6 eV</td>
</tr>
<tr>
<td>Source Strength</td>
<td>200 W</td>
</tr>
<tr>
<td>Source Size</td>
<td>0.8 mm \times 0.8 mm</td>
</tr>
<tr>
<td>Analyzer Type</td>
<td>spherical sector</td>
</tr>
<tr>
<td>Incident Angle</td>
<td>55°</td>
</tr>
<tr>
<td>Emission Angle</td>
<td>55°</td>
</tr>
<tr>
<td>Analyzer Pass Energy</td>
<td>150 eV</td>
</tr>
<tr>
<td>Analyzer Resolution</td>
<td>1.5 eV</td>
</tr>
<tr>
<td>Total Signal Accumulation Time</td>
<td>2200 s</td>
</tr>
<tr>
<td>Total Elapsed Time</td>
<td>2400 s</td>
</tr>
<tr>
<td>Number of Scans</td>
<td>10</td>
</tr>
<tr>
<td>Source Beam Size at Specimen Surface</td>
<td>0.8 mm \times 1.392 mm</td>
</tr>
<tr>
<td>Effective Detector Width</td>
<td>19 eV</td>
</tr>
<tr>
<td>Analyzer Width</td>
<td>1500 μm \times 12000 μm at 84 eV</td>
</tr>
</tbody>
</table>
Accession #: 00900-03
Host Material: sawdust
Technique: XPS
Spectral Region: O 1s

Instrument: Surface Science Instruments SSX-100
Excitation Source: Al Kα monochromatic
Source Energy: 1486.6 eV
Source Strength: 200 W
Source Size: 0.8 mm × 0.8 mm
Incident Angle: 55°
Analyzer Type: spherical sector
Analyzer Pass Energy: 150 eV
Analyzer Resolution: 1.5 eV
Emission Angle: 55°
Total Signal Accumulation Time: 306.5 s
Total Elapsed Time: 475.5 s
Number of Scans: 5
Source Beam Size at Specimen Surface: 0.8 mm × 1.392 mm
Effective Detector Width: 19 eV

Analyzer Width: 1500 μm × 12000 μm at 84 eV

Accession #: 00900-02
Host Material: sawdust
Technique: XPS
Spectral Region: C 1s

Instrument: Surface Science Instruments SSX-100
Excitation Source: Al Kα monochromatic
Source Energy: 1486.6 eV
Source Strength: 200 W
Source Size: 0.8 mm × 0.8 mm
Incident Angle: 55°
Analyzer Type: spherical sector
Analyzer Pass Energy: 150 eV
Analyzer Resolution: 1.5 eV
Emission Angle: 55°
Total Signal Accumulation Time: 306.5 s
Total Elapsed Time: 475.5 s
Number of Scans: 5
Source Beam Size at Specimen Surface: 0.8 mm × 1.392 mm
Effective Detector Width: 19 eV

Analyzer Width: 1500 μm × 12000 μm at 84 eV
Accession #: 00900-05
Host Material: sawdust
Technique: XPS
Spectral Region: N 1s

Instrument: Surface Science Instruments SSX-100
Excitation Source: Al K$_\alpha$ monochromatic
Source Energy: 1486.6 eV
Source Strength: 200 W
Source Size: 0.8 mm \times 0.8 mm
Incident Angle: 55°
Analyzer Type: spherical sector
Analyzer Pass Energy: 150 eV
Analyzer Resolution: 1.5 eV
Emission Angle: 55°
Total Signal Accumulation Time: 3065 s
Total Elapsed Time: 3234 s
Number of Scans: 50
Source Beam Size at Specimen Surface: 0.8 mm \times 1.392 mm
Effective Detector Width: 19 eV
Analyzer Width: 1500 μm \times 12000 μm at 84 eV

Accession #: 00900-04
Host Material: sawdust
Technique: XPS
Spectral Region: Si 2p

Instrument: Surface Science Instruments SSX-100
Excitation Source: Al K$_\alpha$ monochromatic
Source Energy: 1486.6 eV
Source Strength: 200 W
Source Size: 0.8 mm \times 0.8 mm
Incident Angle: 55°
Analyzer Type: spherical sector
Analyzer Pass Energy: 150 eV
Analyzer Resolution: 1.5 eV
Emission Angle: 55°
Total Signal Accumulation Time: 1226 s
Total Elapsed Time: 1395 s
Number of Scans: 20
Source Beam Size at Specimen Surface: 0.8 mm \times 1.392 mm
Effective Detector Width: 19 eV
Analyzer Width: 1500 μm \times 12000 μm at 84 eV