Cyanobacteria and cyanolichens: can they enhance availability of essential minerals for higher plants?

Kimball T. Harper
Brigham Young University

Rosemary L. Pendleton
Shrub Sciences Laboratory, Intermountain Research Station, USDA Forest Service, Provo, Utah

Follow this and additional works at: https://scholarsarchive.byu.edu/gbn

Recommended Citation
Available at: https://scholarsarchive.byu.edu/gbn/vol53/iss1/8

This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
CYANOBACTERIA AND CYANOLICHENS: CAN THEY ENHANCE AVAILABILITY OF ESSENTIAL MINERALS FOR HIGHER PLANTS?

Kimball T. Harper¹ and Rosemary L. Pendleton²

Abstract—In both field and greenhouse studies, cyanobacteria and cyanolichens of cold-temperate deserts often enhance growth and essential element uptake by associated herbs. That effect is associated with better seedling establishment and larger seedlings. The following are possible mechanisms for these effects: (1) the microbiota concentrate essential elements in available forms in soil surface layers, (2) the microbial surface covers are usually darker colored than the soil itself and produce warmer soils during cool seasons when soil water is most available, (3) the gelatinous sheaths of several cyanobacterial genera common in alkaline deserts contain chelating compounds, and (4) conditions that favor persistent microbial growths on soil surfaces also favor maintenance of larger populations of microorganisms that form mycorrhizal and/or rhizosphere associations with seed plants. There is evidence that associated animals may be nutritionally benefitted by the enhanced mineral content of forage plants growing in well-developed cyanobacterial crusts.

Key words: cryptogamic crusts, mineral uptake, plant nutrition, plant growth, mycorrhizae, deserts, cyanobacteria, Collema, Microclesia.

Dense growths of cyanobacteria, lichens, xerophytic algae, mosses, and microfungi are a common feature of soil surfaces in semiarid and arid temperate regions worldwide (Friedmann and Galun 1974, Harper and Marble 1988, West 1990). Such soil covers are commonly much darker than associated surfaces without such growths (Fig. 1). Previous work on these cryptobiotic surface growths (or "cryptogamic crusts" as they are often called) has focused on their ability to "fix" nitrogen in a biologically available form (MacGregor and Johnson 1971, Mayland et al. 1966, Shields and Durrell 1964) and to stabilize soil surfaces against water (Booth 1941, Fletcher and Martin 1948, Fritsch 1922) or wind erosion (MacKenzie and Pearson 1979). Other studies have shown that nitrogen fixed by cyanobacterial components of the cryptobiotic crusts is available to higher plants (Fuller et al. 1960, Mayland and McIntosh 1966, Stewart 1967).

The intent of this paper is to assemble existing data and report new data bearing on the influence of cyanobacterial-rich assemblages of cryptobiota on mineral nutrition of associated vascular plants.

Pertinent Literature

A large literature documents the role of cyanobacteria, cyanolichens, and free-living bacteria (nonsymbiotic) in desert soils (Harper and Marble 1988, West 1990). Since legumes and other vascular plants that form symbiotic nitrogen-fixing associations with bacteria are uncommon in cold-temperate deserts, their importance as sources of biologically available nitrogen is minimal in such environments (West 1981). Rychert et al. (1978) concluded that "blue-green algae"—lichen crusts—fix significant amounts of atmospheric nitrogen in desert soils (they estimate fixation of 10–100 kg N ha⁻¹ yr⁻¹ in the Great Basin of North America). Available information suggests that nonsymbiotic, heterotrophic nitrogen fixers are responsible for fixation of only ≤2 kg N ha⁻¹ yr⁻¹ in North American deserts (Rychert et al. 1978, Steyn and Delwiche 1970). The input of available nitrogen in annual precipitation is apparently low, with estimates running from 4–6 kg ha⁻¹ yr⁻¹ (West 1990) to 1–2 kg ha⁻¹ yr⁻¹ (Schlesinger 1991). Schlesinger (1991) notes that available N in dry-fall exceeds that in rainfall in some areas, but West and Skujins (1978) argue that since deserts produce
more dust than they receive, N in dust (the primary source of N in dry-fall) probably represents a net export from deserts. Denitrification processes are active in deserts and may equal or exceed rates of fixation (Skujins and Klueck 1978).

It is estimated that vascular plants take up 10–12 kg N ha⁻¹ yr⁻¹ in the cold deserts of the Great Basin (West and Skujins 1977). We can infer from work by Romney et al. (1978) that annual uptake of N by vascular plants in the warm deserts of the northern Mohave is slightly greater than that reported by West and Skujins (1977) for cold deserts. In either case, annual uptake is greater than the combined total of new nitrogen added by precipitation and heterotrophic bacteria. Since the amount of N fixed by symbiotic organisms is apparently trivial in deserts of both the Great Basin and the northern Mohave, the input of fixed N by cyanobacterial-lichen crusts is of significance in those deserts (Rychar et al. 1978).

The influence of cryptobiotic crusts on available forms of essential elements other than N in surface soils of deserts has been documented in a variety of reports. Such studies often show that available P, exchangeable K, and surface soil organic matter increase with cryptobiotic crusts (Anderson et al. 1982, Kleiner and Harper 1972, 1977a, 1977b, McKnight 1980). The trend for elements other than N is apparently related, at least in part, to the tendency of the cryptobiotic crusts to trap soil fines (silt and clay) and to sequester essential elements in living cells (Fletcher and Martin 1948, Kleiner and Harper 1972).

Cryptobiotic crusts are usually darker than associated soils in deserts (Fig. 1). As a result, soil surfaces covered by such crusts absorb radiant energy better than nearby uncrusted soils and are warmer (Kleiner and Harper 1977b, Harper and Marble 1988). Temperature differences may be at least 5°C (Harper and Marble 1988) and are probably greatest in cooler seasons. In the Great Basin, where the bulk of biologically usable moisture accumulates from winter storms, areas covered by cyanobacterial- Collema lichen crusts can be expected to be

Fig. 1. Contrast between natural soil color and the dark-colored cryptobiotic growth on the soil surface. Such surface growths of cyanobacteria, the black lichen Collema, and xerophytic mosses are common on desert soils in the Intermountain West of North America. Soil shown is developed from ancient lacustrine deposits, western Utah.
significantly warmer than interspersed uncrusted soils. Both soil microbes and associated vascular plants (especially shallowly rooted species and seedlings) should experience accelerated spring growth on sites where soil temperature is elevated because of well-developed cryptobiotic growth. Enhanced growth of seed plants rooted in cryptobiotic crusts might be expected because of more favorable temperatures and more fertile soils. Physiologists have long recognized that many physiological processes have a Q10 of 2–3; that is, as temperatures within the range of easy tolerance are increased 10°C, metabolic rates for processes such as enzymatic reactions, ion uptake, and ion transport are doubled or tripled (Glass 1989).

Algologists and microbiologists have documented the nature of organic secretions from microorganisms and speculated on their ecological roles in the organism-environmental complex. Algae are known to secrete polysaccharides, amino acids, vitamins, growth factors, steroids, saturated and unsaturated fats, and other beneficial or toxic compounds of unknown structure (Lefèvre 1964). The secretions often form a gelatinous film around the cells. Among cyanobacteria, such sheaths are common and include polysaccharides, organic acids, amino acids, and polypeptides (Lange 1974). In aquatic systems, extracellular organic secretions play a variety of roles including food for heterotrophic organisms, chelating agents that increase availability of essential elements (particularly iron and other trace elements), growth stimulators, toxic compounds that discourage herbivory (and are sometimes autocotoxic), and compounds that complex with and inactivate toxic agents (such as copper) in water (Lefèvre 1964).

Lange (1974) demonstrated that sheath materials of cyanobacteria include chelating agents that permit the organisms to grow vigorously in water having a high pH in which several essential elements would otherwise be available in such low amounts that active growth would be impossible. He demonstrated that some species in each of the following genera secreted enough natural chelators to produce growth equivalent to that of the same species in cultures that received artificial chelators: Anabaena, Anacystis, Lyngbya, Microcystis, and Nostoc. He also demonstrated that the natural chelators were water soluble and that filtrates of cultures in which chelating species had grown supported good growth of nonchelating species. The latter species were unable to grow in the same water if chelating species had not previously grown in it. Lange (1976) concluded that the gelatinous sheaths of cyanobacteria provide a microenvironment around their cells, where essential nutrients can be concentrated from an environment in which those elements exist at levels too low to sustain growth. In alkaline deserts the hygroscopic nature of the copious gelatinous sheaths produced by cyanobacteria (and many associated algae, bacteria, and fungi) suggest another, perhaps essential, role for such extracellular secretions, that of retaining enough water around cells in dry periods to prevent lethal desiccation.

The foregoing literature survey suggests that cryptobiotic crusts may significantly alter the uptake of essential elements by associated desert seed plants. In this paper we report preliminary results on the effects of cryptobiotic covers dominated by cyanobacteria and Collema on tissue chemistry of associated seed plants. Collema is a black-colored lichen in which the photobiont is the cyanobacterium Nostoc. Specifically, we will consider the effects of the
cryptobiotic cover on soil fertility, soil temperature in the cool season, possible chelation effects, and colonization of seed plant roots by microorganisms.

METHODS

Soil samples considered in Tables 1 and 3 consisted of composite samples of the surface 5 cm of the profile taken at 10-12 randomly chosen spots within each of the following surface conditions: areas that supported a well-developed (i.e., >60%) cover of cyanobacteria and the black lichen *Collema tenax*, and areas only a few meters away where prevailing winds or foot traffic had prevented crust development. All soil samples considered were collected in southeastern Utah at sites identified in the legends of Tables 1 and 3.

Soil texture was determined using a hydrometer procedure. Soil reaction was taken with a glass electrode on a saturated soil-water paste. Organic matter was estimated by digestion with 1.0 N potassium dichromate. Total soil nitrogen was analyzed by the micro-Kjeldahl procedure. Phosphorus was determined with the iron-TCA-molybdate method on a soil extract taken with 0.2 N acetic acid. Exchangeable bases were freed from the soil with 1.0 N ammonium chloride. Ion concentrations in the extract were estimated by atomic absorption. All soil analyses were made in the Soil and Plant Analysis Laboratory, Department of Agronomy and Horticulture, Brigham Young University, and all analytical methods were based on those recommended by Black et al. (1965).

Soils for pot trials in the glasshouse were bulk-collected from the Sand Flats site, Grand County, Utah, in January 1991 and immediately spread in a thin layer on a laboratory floor to air-dry. Samples from areas with and without cryptobiotic cover consisted of the surface 5 cm only. Once dried, soils from each surface type were thoroughly mixed (including the biotic cover for that sample set) to ensure a uniform potting mixture. No fertilizer amendments were added. Subsamples from each surface type were taken for subsequent analysis of physical and chemical characteristics. One liter of soil from the sample taken from each surface type was placed in a drained plastic pot having a top diameter of 15 cm. Before pots were filled, drainage holes were covered with a coarse fiberglass mesh to preclude loss of soil. Soils from each surface type were replicated 10 times in individual pots. Pots were immediately placed in a grid on a water-tight table in a glasshouse and watered from the bottom with a 2.5-cm layer of water that was drained off as soon as soil at the pot surface was thoroughly wetted by capillarity. Pots were placed in a 4 × 5 grid with grid intersections 30 cm apart. Cryptobiotic and blow sand soil surface types were alternated in the grid. Six presoaked seeds of *Sorghum halepense* (L.) Pers. were planted in each pot on 11 February 1991. Pots were irrigated with tap water as needed to maintain nonstressful growing conditions.

To evaluate the effects of cyanobacterial growth throughout the rooting zone, we initiated a second trial simultaneously with the foregoing pot trials. In that trial we filled narrow, glass-walled planters with 0.9 liter of the same cryptobiotic-covered soil. Each planter was 1.5 cm wide, 40 cm long, and 30.5 cm deep and was divided into two compartments of equal size by
a redwood strip 1.5 \times 0.5 \times 30.5 \text{ cm} \text{ inserted at the midpoint of the planter before adding soil. The glass walls of one compartment of each planter were covered with aluminum foil to exclude light. Planters were drained and aerated at their bottoms via a perforated tygon tube (4 mm in diameter) open to outside air at both ends. These planters were irrigated and planted with presoaked Sorghum halepense seed at a rate of 6 seeds per compartment on 16 February 1991. This trial was replicated 10 times. It was necessary to water these planters on alternate days with 250–300 ml of water. For convenience, tap water was drawn and stored in a plastic bucket in the glasshouse until needed for irrigation of planters. This water averaged 8–12°C warmer than water taken directly from the tap. The combination of warmer irrigation water and less exposed soil surface from which water could evaporate resulted in root temperatures for plants grown in narrow planters that averaged 3–8.5°C warmer than those of Sorghum plants from the same seed lot grown in the same soil but watered from the bottom. Temperature differences were greatest immediately after irrigation of the pots with cold tap water.

After three weeks cyanobacterial growth covered the glass walls of planters not covered by aluminum foil. The cyanobacteria obviously competed with Sorghum roots for essential minerals. Plants grown in planters that received light throughout the rooting zone were smaller, and their leaves were discolored by reddish pigments in contrast to adjacent plants grown under identical conditions except that light was excluded from the rooting zone. As a consequence, glass walls of all planter compartments were covered with aluminum foil 3 weeks after planting. The foil remained in place until plant top growth was harvested for analysis on 29 April 1991. Plants grown in planter compartments previously illuminated in the rooting zone quickly regained normal leaf color and became indistinguishable in size from adjacent plants grown in compartments with foil-covered rooting zones. Chemical analyses of plant tissue from these trials demonstrated that tissue chemistry from plants that had their rooting zone exposed to light for 3 weeks did not differ significantly for any element considered from that of plants that had not received light at any time in the rooting zone.

Plants in narrow planters and those in pots of bottom-irrigated, cyanobacterial-enriched soil were grown from the same seed lot in the same soil and were propagated in the same glasshouse at the same time. These otherwise identical conditions for growth were marked by a strong difference in root temperature, with pots averaging ~16°C and narrow planters ~21°C. To determine the effect of different rooting zone temperatures on mineral composition of Sorghum aboveground growth, we analyzed and compared the chemical composition of top growth of pot-grown plants and planter-grown plants (see Results).

Plant tissue was oven-dried at 60°C for 12 hr and then ground in a steel rotary mill using a 40-mesh sieve. Samples were stored until analyzed in capped plastic vials. Tissue nitrogen was determined using micro-Kjeldahl procedures. Duplicate 1.0-g tissue samples from each experimental replication were digested in a 1:5 solution of concentrated sulfuric and nitric acid. Content of bioessential elements in the digestate was determined using atomic absorption procedures (Page et al. 1982).

The degree of root infection by vesicular arbuscular mycorrhizae and other root symbionts such as Rhizobium bacteria (associated with roots of Lupinus) or Bacillus bacteria (associated with rhizosheaths of Stipahymenoides) was determined by microscopic examination of roots of randomly selected plants growing in well-developed cyanobacterial-Collema crust or on nearby comparable sites where wind action or animal traffic (sometimes areas trampled by people) had precluded growth of cryptobiota. Within each soil surface type, plants were randomly selected using the quarter method (Cottam and Curtis 1956). Plants were collected during early flowering (early May 1992) in Washington and Grand counties, Utah. Bromus tectorum L., Cryptantha pterocarya (Torr.) Greene, Cryptantha crassipes (T. & G.) Greene, Festuca octoflora Walter, Lupinus pusillus Pursh, and Plantago patagonica Jacq. were collected in Washington County. Coleogyne ramosissima Torr., Mentzelia albicaulis Doug. ex Hook., Stipahymenoides, and Streptanthella longirostris (Wats.) Rydb. were collected in Grand County.

Using a shovel, we lifted the root systems from the sandy soils in a block and then freed them from associated sand by hand. Plant tops were immediately excised and roots were placed in 75% ethanol in labeled, screw-cap glass
Plant nomenclature follows Welsh et al. (1987). Lichen nomenclature follows Egan (1987). Statistical significance of differences between group means was determined using an unpaired t-test model (Snedecor and Cochran 1967). Significance of treatment effects in Table 5 was determined using analysis of variance (ANOVA) with species treated as blocks. Percentage data were arcsine transformed prior to analysis by the GLM procedure of the SAS statistical package.

Centered, standardized principal components analysis (PCA) was used to analyze differences among samples collected from crustcd soils and uncrustcd soils (Pielou 1984). Various soil chemical and physical parameters were used in this analysis, which was conducted using the Statgraphics package.

Results

The effect of cryptobiotic growth on surface soil chemistry and texture is particularly impressive for such variables as organic matter, soil N, exchangeable Mn, and “available” P (Table 1). Exchangeable Ca was also much higher on average in soils stabilized by cyanobacterial-rich surface growth. As in other studies (Fletcher and Martin 1948, Kleiner and Harper 1972, 1977a, 1977b), our results show that soil silt and clay are much greater in soils stabilized by cryptobiotic growth. The response of Ca, Mn, and P may be related to textural differences alone (Black 1968), but the increase in soil organic matter and N is probably directly related to the presence of cryptobiota.

Principal components analysis of the basic data on which Table 1 is based showed marked differences between crustcd and uncrustcd soils, even though three separate areas (two in Arches National Park and one at Wind Whistle Campground) were studied. The first principal component clearly separated the crustcd soils of the most intensively sampled Arches site from the corresponding uncrustcd samples (Fig. 2A). Crustcd and uncrustcd soils of the other two sites were also separated by the first component. Clear differences among sites were evident in the separation that occurred on the second principal component (Fig. 2A). The percentages of variance in the data accounted for by PC1 and PC2 were 48% and 22%, respectively.
TABLE 2. Tissue elemental content of plants of *Festuca octoflora* (a diminutive annual) and *Mentzelia multiflora* (a short-lived perennial herb) grown on blow sand and nearby sand stabilized by cyanobacterial-Collema crusts. The *Festuca* samples were taken at Wind Whistle Campground in San Juan County, Utah; the *Mentzelia* samples were taken at Courthouse Wash Dunes, Grand County, Utah. All data are from Belnap and Harper (in review). All tissue concentrations are expressed as amount per unit dry weight of aboveground growth and attached root tissue brushed free of sand. Sample size was 5 for each mean.

<table>
<thead>
<tr>
<th>Element</th>
<th>Festuca octoflora</th>
<th>Mentzelia multiflora</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Soil surface condition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cyanobacteria/ lichen cover</td>
<td>Blow sand</td>
</tr>
<tr>
<td>N (%)</td>
<td>2.25</td>
<td>1.95</td>
</tr>
<tr>
<td>P (%)</td>
<td>0.25</td>
<td>0.14</td>
</tr>
<tr>
<td>K (%)</td>
<td>1.38</td>
<td>1.64</td>
</tr>
<tr>
<td>Ca (%)</td>
<td>0.65</td>
<td>0.52</td>
</tr>
<tr>
<td>Mg (%)</td>
<td>0.15</td>
<td>0.13</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>11.0</td>
<td>10.4</td>
</tr>
<tr>
<td>Fe (ppm)</td>
<td>300.3</td>
<td>149.4</td>
</tr>
<tr>
<td>Mn (ppm)</td>
<td>60.3</td>
<td>74.0</td>
</tr>
<tr>
<td>Na (ppm)</td>
<td>61.5</td>
<td>59.8</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>43.0</td>
<td>33.0</td>
</tr>
</tbody>
</table>

*Means significantly different at \(p < .05 \).
**Means significantly different at \(p < .01 \).
***Means significantly different at \(p < .001 \).
*Means not significantly different.

Plotting the component weights (Fig. 2B) yields an explanation for the separation of crusted and uncrusted soils. The first component most clearly represents the differences between uncrusted and crusted soils. Uncrusted soils have higher values on this axis, which means they have higher pH and sand content (positive weights) and lower Ca, Mn, P, Mg, Na, and K (negative weights). Iron and Zn tended to be higher in uncrusted soils but were not as important in separating points on the first axis. The second component most clearly represents site-specific differences. One Arches site (triangles in Fig. 2A) had higher N, K, and Fe (positively weighted) and lower P, Mg, and sand (negatively weighted) than the other two sites (Fig. 2B). The principal components analysis shows that despite some site-specific differences, crusted soils are generally higher in some essential minerals (N, K, P, Ca, Mg, Mn) than are uncrusted soils. Site differences were also clearly delineated in the analyses.

Table 2 clearly shows that cryptobiotic crusts do have a significant influence on tissue content of several bioessential elements in both *Festuca octoflora* and *Mentzelia multiflora* (Nutt.) Gray. Since Belnap and Harper (in review) show that soil textural differences are small (<10% difference in percentage sand) between blow sand and adjacent sands stabilized by surface growth of cryptobiota, the tissue content differences seen in Table 2 would seem to be strongly influenced by microorganisms on the soil surface. Tissue content of both seed plants was significantly greater for N, Mg, and Fe when plants were rooted in cyanobacterial-rich crusts. Although not all differences were statistically significant, 9 of 10 elements were present in greater amounts in tissue of *Festuca* plants grown on cryptobiologically stabilized surfaces; 8 of 10 elements were present in greater amounts in tissue of *Mentzelia* plants grown on the cryptobiotic surfaces. Finally, the data suggest possible competition between cryptobiota and seed plants for P and Mn. We also note that the responses of *Festuca* and *Mentzelia* were unlike in respect to P and Mn uptake.

Glasshouse trials demonstrate the soil "fertilization" effect of the cyanobacterial-Collema cover for growth of *Sorghum* (Tables 3, 4). Differences observed between chemistry of cyanobacteria-free and cyanobacterial-Collema-covered soils (Table 3) are small. The cryptobiotic-covered soil had slightly more N, P, K, and Na. The soil free of cryptobiotic growth averaged somewhat higher in Ca and Fe than the samples supporting cryptobiotic growth.
Table 3. Characteristics of cyanobacterial-Collema-crust-free soil, and from same depth zone only a few cm away that were not colonized by cryptobionts. The latter sands had been stabilized by human trampling for at least a decade. Samples are from Sand Flats, Grand County, Utah. Values for cations are amounts exchangeable in 1.0 N NH₄Cl. These are the soils on which Sorghum tissue considered in Table 4 was grown.

<table>
<thead>
<tr>
<th>Soil characteristic</th>
<th>Free of cryptobiotic growth</th>
<th>Heavy cyanobacterial-Collema crust cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texture (% sand)</td>
<td>38</td>
<td>61</td>
</tr>
<tr>
<td>Reaction (pH)</td>
<td>7.5</td>
<td>7.4</td>
</tr>
<tr>
<td>Organic matter (%)</td>
<td>1.00</td>
<td>0.95</td>
</tr>
<tr>
<td>Ca (ppm)</td>
<td>0.038</td>
<td>0.041</td>
</tr>
<tr>
<td>Mn (ppm)</td>
<td>2.070</td>
<td>1.845</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Fe (ppm)</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Mg (ppm)</td>
<td>78</td>
<td>78</td>
</tr>
<tr>
<td>Mn (ppm)</td>
<td>3.1</td>
<td>3.4</td>
</tr>
<tr>
<td>P (ppm, available)</td>
<td>35</td>
<td>47</td>
</tr>
<tr>
<td>K (ppm)</td>
<td>53</td>
<td>93</td>
</tr>
<tr>
<td>Na (ppm)</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Sample Size</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Given the small physical and chemical differences between soils (Table 3), the often significant differences in Sorghum tissue chemistry when grown on those soils (Table 4) were unexpected. Nitrogen and Zn were taken up in significantly greater amounts on the cyanobacterial-Collema-enriched soil, producing over 3.5 times more top growth than soils with no cryptobiotic growth (Fig. 3). The elements Ca, P, Mn, and Na were present in significantly greater concentrations in tissue of plants grown in the cryptobiotic-free soil. These data suggest that (1) N or Zn (probably the former) is limiting for plant growth in the test soil and (2) there is vigorous competition between the cyanobacteria and Sorghum for Ca, P, Mn, and Na.

It also seems clear that nutrient uptake by Sorghum was strongly affected by temperature in the root zone (Table 4). Nitrogen, Ca, Mg, Cu, and Na were taken up in significantly larger amounts from the cyanobacterial-Collema soil at the higher temperature. Increased temperature seemed to intensify competition between the cyanobacteria and Sorghum for P, Fe, and Mn.

Preliminary data concerning the influence of cyanobacterial-Collema crusts and associated crust-free soils on infection of roots by rhizobacterial symbionts show that 6 of 10 species evidenced infection by root symbionts (Table 5). Of those species whose roots showed some infection, 4 of 6 were annuals, and all infected annuals were colonized by vesicular arbuscular mycorrhizae (VAM). The degree of infection was always greater for plants grown in cyanobacterial-Collema crusts. Seedlings of the shrub Coleogyne ramosissima supported heavier VAM infection than associated annuals, and the relative amount of root colonized by the root symbiont was over three times greater when seedlings emerged from crust-free soils. Roots of the perennial grass Stipa hymenoides always developed rhizosheaths on both types of surface, but the degree of sheet development was greatest on crust-free surfaces (Table 5). The overall effect of crust-free soils on root infection by symbionts was positive and statistically significant (Table 5).

DISCUSSION

The results presented provide strong support for the hypothesis that cryptobiotic soil surface covers (at least those rich in cyanobacteria) have significant effects on uptake of bioessential elements by associated seed plants. In this study we have considered only species (or developmental stages) with a major portion of their root system distributed in the surface 5 cm of soil. The cryptobiotic surfaces appear to consistently enhance uptake of some elements (e.g., N, K, Ca, Mg, and Zn), and to at least occasionally reduce uptake of other essential elements such as P, Fe, Mn, and Na (Tables 2, 4). Those effects are apparently partially explained by enrichment of soils (increased "availability" of essential elements) by cyanobacterial-Collema crusts (Table 1, 3), by elevation of soil temperature during cool seasons when moisture is most likely to be readily available for plant growth, and by greater likelihood of root colonization by mycorrhizal fungi and other root symbionts at sites that are stable enough to support well-developed cryptobiotic crusts. Our preliminary results also suggest that cyanobacterial-Collema crusts may result in an enhanced availability of certain elements through accelerated decomposition or production of chelating compounds (i.e., Mn and P in Table 1; Cu, N, Mg, and Zn in Table 4). Taken together, the data in Tables 3 and 4 suggest that the enhanced uptake of N by...
plants grown on crusted soils must include a considerable amount of N fixed simultaneously by cyanobacteria in the culture or N released by microorganisms decomposing the tissue of cyanobacteria grown during the experiment. Original differences in soil N were too small to account for the large differences observed in plant uptake in the two cultures.

Other studies have shown results similar to those reported here. Marble (1990) demonstrated that scalping the surface 1.0 cm of cyanobacterial-Collema crust around rosettes of Lepidium montanum var. montanum Nutt. two months prior to flowering significantly reduced aboveground plant weight and tissue content of K, Na, and Cu at flowering time. Several other elements (Ca, Mg, Fe, Mn, and Zn) were also lower in tissue of plants around which the cryptobiotic crust had been removed, but those differences were not statistically significant (p > .05). J. Belnap (unpublished) has analyzed plant tissue for the annual Streptanthella longirostris (Brassicaceae) and seedlings of Coleogyne ramosissima (Rosaceae) grown on well-developed cyanobacterial-Collema crusts and on comparable soils without such crusts. Her data show that average plant size of both species was significantly larger on crusted soils, and tissue of both species contained significantly more N, Ca, Mg, and Cu per unit dry weight when grown on cryptobiotic surfaces. Belnap also has unpublished leaf chemistry data for adult shrubs of Coleogyne ramosissima and the long-lived, woody-rooted herb Lepidium montanum var. jonesii (Ryd.) C. L. Hitchc. As one might have predicted, adult plants of these species showed no enhancement of essential mineral uptake while growing on cyanobacterial-rich crusts. The vast majority of their feeder roots lie well below those portions of the soil profile that are influenced by cryptobiotic crusts.

As seen in Table 4, Sorghum growth was severely limited on soils free of cyanobacterial-Collema inoculum (Fig. 3). Nitrogen seemed inadequate in such soils to support healthy growth of Sorghum. In fact, growth was so minimal
in those soils that the species would probably never have flowered and set seed on that substrate. When *Sorghum* was grown on a soil enriched by inclusion of the cyanobacterial-*Collema* inoculum, growth was much greater even though only N and Zn occurred in significantly greater concentrations in the tissue (i.e., all other essential elements occurred in higher concentration in plants grown on cryptobiotic-free soil). These results suggest that even though cyanobacterial-rich crusts sometimes enhance uptake of several essential elements, plant growth (at least *Sorghum* growth) was limited by N (and perhaps Zn) only on the soil considered.

Evidence does exist that the cryptobiotic surface layers (especially those rich in cyanobacteria and/or cyanolichens) have a beneficial influence on seedling establishment under field conditions. Harper and Marble (1988) summarize the results of an experimental seeding of five species onto plots dominated by cyanobacteria and the lichen *Collema*. At time of seeding, roughly half of 83 plots were randomly chosen for a treatment in which the surface 1.0 cm of cryptobiotic crust was scalped away. Each species was seeded on 10–22 randomly chosen plots through a template at 32 locations per 1.0-m² plot. After the first growing season four of the five species had more seedlings on plots where the cryptobiotic crust was left intact; in total there were slightly over three times as many seedlings on the average crusted plot as on the average scalped plot. After three years a larger percentage of the seedlings survived on crusted than on scalped plots for all five species tested.

In Nevada, Eckert et al. (1986) planted seeds of six species on three types of surfaces: (1) those covered by a sparse plant litter cover and beneath a shrub canopy; (2) polygonal patterned surfaces covered by a vigorous growth of cryptogamic cover, and (3) polygonal patterned surfaces with little cryptogamic cover and in interspaces between shrubs as was surface type 2. Five of the six species tested established as well on the type 2 surface as on other surface types, or even better on type 2 surfaces; the other species established best on type 3 surfaces.
and did poorly on type 2 surfaces. Lesica and Shelly (1992) reported that cryptogamic soil surface cover appeared to increase survival of established plants of *Arabidopsis thaliana* in Montana.

The foregoing reports suggest that establishment and survival of seed plants native to arid lands may often be enhanced by cryptobiotic cover on soil surfaces. As Harper and Marble (1988) show, several scientists have successfully used inocula of cyanobacteria to increase establishment and growth of agricultural crops in various parts of the world. Accordingly, observations of positive interactions between cyanobacterial-rich crusts and seedling establishment and growth in natural arid land environments are not surprising.

Although the influence of cyanobacterial-rich soil crusts on essential mineral uptake by associated seed plants appeared to be strongly beneficial for N only, there is reason to believe that enhanced tissue content of N, Ca, Mg, Na, and P may be beneficial to associated herbivorous and granivorous animals. Robbins (1983) notes that increased dietary protein consistently hastens growth and onset of reproductive maturity in herbivorous animals. Cyanobacterial crusts consistently increased protein content of associated shallow-rooted seed plants and seedlings of deeper-rooted plants in this study (Tables 2, 4: Belnap, personal communication).

Aumann (1965), Aumann and Emlen (1965), Belovsky (1981), and Robbins (1983) suggest that sodium in plant tissues is often inadequate to maintain healthy herbivores. Robbins's (1983) review of dietary sodium requirements for animals suggested that diets with less than 500 ppm sodium will eventually result in poor growth or death of animals. We note that cyanobacterial crusts always enhanced plant tissue content of Na in this study (Tables 2, 4). In our study, however, even plants grown on crusts did not contain the recommended minimum content of Na. Thus, animals must resort to local "mineral licks" to obtain adequate Na. Such licks may be widely spaced on sandy uplands such as those sampled for this report. Small mammals such as the granivorous heteromyid rodents common on deserts considered here may be especially dependent on Na in plant tissue, since they defend small territories that would rarely include a lick where supplementary minerals could be acquired. In such cases, increased tissue content of Na in plants growing on cyanobacterial-rich surface crusts may be of critical importance to associated heteromyid rodents.

Robbins (1983) considered that "calcium deficiencies are probably the major mineral problem encountered in captive wildlife." He noted that Ca and P are major constituents of the vertebrate skeletal system. In mature animals, 90% of Ca and 80% of P occur in bone, which
has a Ca:P ratio of about 2:1. Since these elements are so intricately associated in bone, they are often discussed together. Birds use Ca not only in bone but also in eggshells, which are 98% CaCO₃, and less than 1% P. Osteoporosis is related to deficiencies in Ca and/or P in the diet or to major imbalances in their presence in the food base. Osteoporosis has been reported for free-ranging carnivores in Alaska, for reindeer on lichen-dominated ranges, and for the desert tortoise, a herbivore, from the warm deserts of southwestern Utah (Jarchow 1987, Robbins 1983). Carnivores may be especially prone to osteoporosis since flesh contains little calcium. Osteoporosis in the desert tortoise is surprising; Jarchow (1987) considered the disease to be a principal cause of death for the tortoise in Utah. He found the onset of osteoporosis to be premature and pathogenic in the animals examined. No disease could be shown to be associated with osteoporosis; thus Jarchow (1987) concluded that the condition was caused by dietary deficiencies. Since the principal food plants taken by the tortoise in southwestern Utah (Hansen et al. 1976) do not appear to be deficient in Ca (Jarchow 1984), the limiting element is probably P. Jarchow’s (1984) and our own data (Tables 2, 4) both show less P in plant tissue than is considered necessary by Robbins (1983).

Since growth on cryptobiotic crusts has been observed to increase plant tissue content of P in Festuca octoflora (Table 2), Coleogyne ramosissima seedlings, Lepidium montanum var. jonesii (Belnap personal communication), and L. montanum var. montanum (Marble 1990), and to have no effect on tissue P content in Streptanthella longirostris (Belnap personal communication), it seems possible that cryptobiotic crusts could affect dietary intake of P by the desert tortoise. Since our data show that cryptobiotic crusts consistently enhanced Mg content of tissue of associated plants (Tables 2, 4). We suggest that the influence of cryptobiotic crusts on Mg in plants eaten by the desert tortoise merits further attention.

ACKNOWLEDGMENTS

This work was partially supported by a subcontract from the Shrub Sciences Laboratory, Intermountain Research Station, U.S. Forest Service at Provo, Utah. The contract was funded by the U.S. Army Corps of Engineers, Construction Engineering Laboratory, Champaign, Illinois. We thank J. Belnap for permitting us to review unpublished data from her files. The PCA analyses presented in Figure 2 were performed by Jeffrey Johansen, John Carroll University, University Heights, Ohio.

LITERATURE CITED

ANDERSON, D. C., K. T. HARPER, AND R. C. HOLMGREN. 1982. Factors influencing development of cryptogamic...

