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ABSTRACT

MODELING TEMPERATURE REDUCTION IN TENDONS USING GAUSSIAN

PROCESSES WITHIN A DYNAMIC LINEAR MODEL

Richie Wyss

Department of Statistics

Master of Science

The time it takes an athlete to recover from an injury can be highly influenced

by training procedures as well as the medical care and physical therapy received.

When an injury occurs to the muscles or tendons of an athlete, it is desirable to cool

the muscles and tendons within the body to reduce inflammation, thereby reducing

the recovery time. Consequently, finding a method of treatment that is effective

in reducing tendon temperatures is beneficial to increasing the speed at which the

athlete is able to recover. In this project, Bayesian inference with Gaussian processes

will be used to model the effect that different treatments have in reducing tendon

temperature within the ankle. Gaussian processes provide a powerful methodology

for modeling data that exhibit complex characteristics such as nonlinear behavior

while retaining mathematical simplicity.
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1. INTRODUCTION

In order to increase the likelihood of success in athletic competition, it is im-

portant to be able to ascertain the most effective ways to treat sports injuries and

to train athletes to help them perform at their optimum level. When an athlete is

injured in an athletic event, the muscles and joints in the body tend to swell, which

slows the recovery time and increases the chance for injury in future athletic events.

To reduce the swelling and speed the recovery process, various treatments are typi-

cally administered to the athletes in an effort to cool the temperature in the muscles

and joints. Studies have shown that the more quickly the temperature in the muscles

and tendons can be reduced, the more quickly the athlete can recover, thus lowering

the chances for injury in future athletic events (Safran, McKeag, and Camp 2002).

Therefore, it is essential in athletic competition to find the most effective methods

of reducing muscle and tendon temperature and to utilize those methods in both the

training and treatment of the athletes.

In this study, two sets of data will be analyzed to determine whether ice-cooled

whirlpool baths or ice packs are more effective for cooling the temperature of an

athlete’s tendons after exercise. In the first data set, the temperatures of the tendons

of 15 noninjured subjects were measured in degrees Celsius. The temperatures were

measured every 30 seconds at room temperature for 5 minutes, every 30 seconds in

an ice-filled whirlpool bath for 20 minutes, and again at room temperature every

30 seconds for 23 minutes. The second data set consisted of the same sequence

of measurements on the same 15 subjects. The only difference was the treatment

applied. In the second data set, measurements on the temperatures were taken every

30 seconds at room temperature for 5 minutes, every 30 seconds with an ice pack

applied to the tendon for 20 minutes, and again at room temperature with the ice
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pack removed every 30 seconds for 23 minutes. A plot of the data for the 15 subjects

in each set of data can be found in Figure 1.1. Figure 1.1 reveals clear breaks in both

data sets when the treatments are applied and removed.

The purpose of this study is to demonstrate the use of Gaussian processes

within a dynamic linear model setting in describing the behavior of the temperatures

in the tendons as they cool due to treatment. The models will determine if one

method of treatment is significantly more effective than the other in cooling the

temperatures and keeping the temperatures down once the treatment period is over.

More specifically, a model will be fit to each of the first two sets of data described

above using a Bayesian implementation of Gaussian processes. This methodology

models the average behavior of the temperature in the tendons for each set of data as

a function of time and treatment, or environment. To further assess the differences

between the two treatments, the posterior distributions for the difference in the mean

temperature at each time period will be computed. These posterior distributions for

the differences in the mean tendon temperatures will be constructed two separate

ways and the results will be compared to determine the most effective treatment.

As mentioned previously, the main purpose of this project is the incorporation

of Gaussian processes into the methodology used for the analysis. A dynamic model-

building approach will then be taken. Dynamic linear models allow us to continually

update the study with information as it becomes available, thereby increasing the

accuracy of the predictions and models.
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Figure 1.1: Tendon Temperatures of 15 Subjects. The colors represent different
individuals.
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2. LITERATURE REVIEW

Bayesian inference is a powerful tool for performing statistical modeling. The

primary focus of this project is the use of a technique known as Gaussian processes

to model the complex behavior of data. Before we proceed to a detailed description

of the application of these methods, we first describe the concepts and previous use

of the methods.

2.1 Bayesian Methods

In 1764 an essay was published by Reverend Thomas Bayes (Bayes 1764). He

proposed a theorem that has had a significant effect on the methods used in statis-

tics. Bayes proposed a theorem (later known as Bayes Theorem) that became the

foundation for an entire branch of statistics known as Bayesian methods.

The fundamental idea behind Bayesian inference, which differentiates it from

frequentist methodology, is to consider parameters as random quantities. Ashby

(2006) asserts that doing so requires specification of distributions, known as the prior

distributions, for each of the parameters of interest. Ashby further states that these

prior distributions describe the behavior of the parameters and not the data. Using

the prior distributions along with the likelihood function of the data, a posterior

distribution for the parameter or parameters is calculated using Bayes rule (Gelman,

Carlin, Stern, and Rubin 2004). The posterior distributions are then used to make

inference about the parameters of interest.

Formally, given a model or hypothesis, H, the associated set of parameters,

θ, is used to make inference about the behavior of a given set of random variables

or data set X. Inference about the model parameters is made by first specifying

prior knowledge or beliefs about the parameter vector. This specification is made in
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terms of prior probability distributions on the parameters P (θ). If P (X|θ) represents

the likelihood of the data given the parameters and P (X) represents the marginal

distribution of the data, then the posterior distribution from which inference is made

is produced using Bayes rule as follows:

P (θ|X) =
P(X|θ)P(θ)

P(X)
. (2.1)

In practice, the commonly used notation for the above equation is π(θ|y) to

represent the posterior distribution, π(θ) to represent the prior distribution on the

parameters, and f(y|θ) to represent the likelihood of the data. The marginal distribu-

tion of the data, shown as P (X) in the above equation, is equal to
∫
P (X|θ)P(θ)dθ,

which is more commonly seen as
∫
π(θ)f(y|θ)dθ.

When the prior distribution P (θ) on a parameter θ is conjugate, the derivation

of the posterior distribution is greatly simplified and is numerically tractable. For-

mally, if F represents a class of sampling distributions p(y|θ), then a class of prior

distributions, P , for θ is defined as conjugate for F if p(θ|y) ∈ P for all p(.|θ) ∈ F and

p(.) ∈ P (Gelman et al. 2004). The calculated posterior distribution will always have

the same distributional form as the prior distribution (Gelman et al. 2004). Conju-

gate priors imply the posterior distribution is a known closed form. The benefit of

this is that samples can be taken directly from the posterior, thereby simplifying the

computational procedure of obtaining draws from the posterior.

2.2 Markov Chain Monte Carlo

The derivation of the posterior distribution through the use of Bayes theorem

is not always possible through analytical methods. Consequently, numerical methods

are often employed, and Bayesian analysis usually requires the implementation of a

technique known as Markov chain Monte Carlo. Monte Carlo and Markov chains

are two separate ideas that are used in conjunction with one another: Monte Carlo
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methods and Markov chains.

Physicists working at the Los Alamos Laboratory showed that complex mathe-

matical problems can be solved through statistical sampling (Hammersley and Hand-

scomb 1964). Stanislaw Ulam, a physicist at Los Alamos laboratory who is considered

the primary inventor of Monte Carlo methods, explained that the central idea behind

Monte Carlo methods is using draws of random numbers or random sampling to

simulate mathematical systems (Metropolis and Ulam 1949). Monte Carlo methods

are useful when modeling systems that are too complex to use direct deterministic

algorithms or procedures.

Andrey Markov developed a theory in stochastic processes which came to be

known as Markov chains. Markov chains have the property that the future state of a

system or variable is independent of past states and is dependent solely on the present

state (Marcus and Rosen 2006). Formally, if X1, X2, X3, ... represents a sequence of

random variables, then P (Xn+1 = x|Xn = xn, ..., X1 = x1) = P (Xn+1 = x|Xn = xn).

P (Xn+1 = x|Xn = xn, ..., X1 = x1) represents the probability that the stochastic

process is in state x at time n + 1 given the present state along with all previous

states at each time period. P (Xn+1 = x|Xn = xn) represents the probability that

the stochastic process is in state x at time n+ 1 given the state of the process at the

current time period (Ross 2007).

Combining these concepts, Nicholas Metropolis developed an algorithm later

generalized by Hastings which uses Markov chain Monte Carlo simulation to obtain

draws of random numbers from posterior distributions (Hastings 1970). A special

case of Metropolis-Hastings is Gibbs sampling, which was developed by Geman and

Geman (1984). Gibbs sampling is less general than Metropolis-Hastings, but still

provides a way to obtain samples from marginal densities using conditional densities.

If the complete conditional distribution of each parameter is available in a closed

form, Gibbs sampling can be utilized in an iterative process to sample from each of
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the conditional posterior distributions and successively substitute the drawn value

into the other complete conditionals (Prabhu and Basawa 1990). When the complete

conditionals are not available in closed form, a more general iterative sampling proce-

dure known as Metropolis-Hastings can be used (Prabhu and Basawa 1990). Because

of the relative ease with which samples can be obtained from known distributional

forms, when possible, priors are chosen in such a way as to result in closed-form solu-

tions for the complete conditionals. As a result, Gibbs sampling is usually considered

the primary computational method when performing Bayesian inference.

The above results provide a way to iteratively sample from the complete con-

ditional density of each parameter for which inference is made. The distribution of

the resulting draws converge to the marginal posterior density for each parameter

(Gelman et al. 2004). The resulting posterior densities can then be used to make

inference about the parameters of interest. These results are important in that they

allow for inference about the posterior distributions to be made when the derivation

for the posterior distributions cannot be obtained analytically. The universal appli-

cability of Metropolis-Hastings and Gibbs sampling is what gives modern Bayesian

methods its power when conducting statistical inference.

2.3 Gaussian Processes

Formally, a Gaussian process is a system of random variables X = Xλ : λ ∈ Λ

such that any finite linear combination
∑
akXλ is a Gaussian random variable, with X

being a stochastic process (Rasmussen and Williams 2006). Hida and Hitsuda (1976)

explain that Gaussian Processes (GPs) are generalizations of multivariate Gaussian

random variables extending to infinite dimensionality.

Rasmussen and Williams (2006) further explain that a function can be thought

of as an infinitely long vector. Where a Gaussian distribution is fully specified by a

mean vector µ and covariance matrix Σ, a Gaussian process is completely specified
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by a mean function m(x)=E[f(x]) and covariance function k(x,x′) and is written as

f(x) ∼ GP (m(x), k(x, x′)). Using the notation above, the random variables that are

used to define a Gaussian process are the values of the function f(x). Usually, a

Gaussian process is defined over time, which is represented or indexed by x.

Thinking of a GP as a Gaussian distribution with an infinitely long vector

and an infinite by infinite covariance matrix may seem impractical when perform-

ing statistical inference. However, the marginalizing property allows inference to

be performed on any subset of the Gaussian variables with the variables still re-

taining their Gaussian properties. The marginalizing property simply states that if

p(x,y) = N
(
( a

b ) ,
(

A B
BT C

))
, then p(x) = N(a,A).

The marginalizing property makes it possible for inference to be made for a

large set of parameters while maintaining mathematical simplicity. This ability to

perform inference on large numbers of parameters is one of the primary advantages

of incorporating a Gaussian process approach when constructing a statistical model

(Mackay 1999). This allows for estimation to be made about complex data behavior

such as nonlinear regression without having to define a functional form of the data and

perform inference on the functional parameters (Mackay 1999). Ebden (2008) further

explains this idea by stating that when modeling any arbitrary data set y = y1, ..., yn,

the n observations can always be thought of as a sample from some n dimensional

multivariate Gaussian distribution and the data can be modeled using a Gaussian

process. Thus Gaussian processes are as universal as they are simple.

Ebden (2008) illustrates this concept in a typical prediction problem using

Gaussian process regression (GPR). Given a set of random variables Y, Ebden first

explains that using traditional methods, the behavior of Y can be described by an

underlying function f(x) through the relation Y = f(x) + N(0,Σ). Ebden explains

that statistical methods can be used to approximate E(Y|x*) by estimating f(x)

from the given set Y. However, he further explains that Gaussian process regression
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is a finer approach than the traditional methods which specify models. A Gaussian

process regression approach allows for f(x) to be represented obliquely, thereby let-

ting the data “speak” more freely. With Gaussian processes, given the set Y, the

objective is to predict y∗, not the actual f∗. Theoretically their expected values are

identical, but the variances of the two methods differ owing to the observational noise

in the data, as well as the covariance function specification. Utilizing the assump-

tion that Y is a sample from a multivariate Gaussian distribution, the prediction or

estimation of y∗ is relatively simple according to Ebden. With P (y∗|y) following a

Gaussian distribution, the best estimate for y∗ is simply the mean of this distribution,

where the distribution is obtained after the specification of the mean and covariance

functions of the Gaussian process (Ebden 2008).

Schervish (2004) further demonstrates the use of Gaussian processes in terms

of a simple two-dimensional regression problem. He explains that the regression

problem consists of a set of data y where each observation is assumed to satisfy

y = f + e where e ∼ N(0, σ2) and f is an underlying function. Placing a zero mean

Gaussian process prior on f , f ∼ N(0,K), the Gaussian marginal likelihood, p(y|θ) =

N(0,K = Iσ2), is obtained where K is the covariance matrix with parameter vector

θ. Placing priors on the hyperparameters, where hyperparameters are parameters on

prior distributions, and using Markov chain Monte Carlo methods, Schervish obtains

estimates θ̂ which are used to make predictions or estimations about the underlying

behavior of the data.

Gaussian processes also allow for parameters within the model to be related to

the other parameters in some way, either through the specification of the covariance

matrix or in the prior distribution specifications (Mackay 1999). This relational idea

between the parameters, or the idea of borrowing strength from previous inference

or data, is a major advantage of the Gaussian process approach. The concept of

borrowing strength allows for an adaptive approach when estimating parameters,
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creating a dynamic model that can continually be updated as information becomes

available.

Gaussian processes are usually used within a Bayesian framework. Within the

Bayesian framework, the Gaussian model is based on a prior distribution specified

over a possibly infinite dimensional space of functions (Ashby 2006). When perform-

ing inference on the mean function of a given set of data, if the likelihood function

as well as the prior specifications follow a Gaussian process, the resulting posterior

distribution will also be a Gaussian process (Ashby 2006).

These concepts are illustrated by Gray, Murray-Smith, and Thompson (2003)

in modeling twin tank systems. In this report, Gaussian process priors are used in the

context of this dynamic modeling. The authors demonstrate how the Gaussian process

modeling predicts the behavior of a dynamic system by predicting the distribution of

the next data point based on the system input and the predicted distribution of the

current point (Gray et al. 2003).

Berry and Ruppert (2002) also illustrate the ability of Gaussian processes to

borrow strength in the context of fitting a smoothing spline in a nonparametric re-

gression setting. They define their cubic estimator g of the true spline m as the

minimizer of the sum of squared errors
∑

[m(Xi)− g(X − i)]2. Their g estimator at

each knot is a function of the estimator at all other knots, thereby borrowing strength

or information from the other knots.

Gaussian processes provide a very powerful, yet tractable, way to model com-

plex nonlinear behavior without having to specify complex functional forms. In this

project, we assume that the temperatures at different time periods follow a Gaussian

distribution. By setting Gaussian priors on the temperature means, a Gaussian pro-

cess approach can be employed in performing the analysis on the data sets containing

the temperature values.
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3. METHODS AND APPLICATION

3.1 Distribution of Data and Likelihood

The two data sets that will be analyzed in this project consist of the Achilles

tendon temperatures of individual subjects measured at different time periods. There

are 15 subjects, each being measured at 111 different time periods for a total of 1665

observations. It is reasonable to assume that the expected value of the temperatures

at each time period will differ since the temperatures change as time elapses and

as the treatments are applied. Further, since physical measurements on individuals

are usually normally distributed, it is reasonable to assume that the temperature

measurements on these observations are normally distributed as well. It is assumed

that the variance at each time measurement is the same. Although other assump-

tions could be used allowing for heterogeneity among the variance components, for

the purposes of this project, constant variance across time measurements is fairly

reasonable and, for simplicity, will be implemented. Consequently, it is assumed that

the observations yij ∼ Normal(θi, σ
2), where i represents the ith time period and j

represents the jth individual measured at each time period.

With the data distributed as indicated above and assuming independence be-

tween subjects and conditional independence within the measurements of each sub-

ject, the likelihood function is as follows:

f(yij|θi, σ2) = (2πσ2)
−N
2 exp

{
−
∑t

i=1

∑n
j=1(yij − θi)2

2σ2

}
,

where:

• n = the number or subjects measured at each time period (15 subjects),

• t = the number of time periods (111 in this case), and
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• N = the total number of responses (1665 observations).

3.2 Prior Distribution for Θ and θi: A Gaussian Process Approach

A Gaussian process distribution will be used for the prior distribution on Θ,

which is the vector of the θis. Recall that a Gaussian process is simply a stochastic

process in which the collection of random variables have a joint Gaussian distribu-

tion. Also recall that a Gaussian process is fully specified by its mean function and

covariance function and is written as follows:

Θ ∼ GP (m(x), k(x,x’). (3.1)

According to probability theory, the joint distribution of a set of random vari-

ables or events can be written as the product of the conditional distributions. More

specifically, the joint distribution of Θ can be written as follows:

P (Θ) = P (θ111|θ110...θ1)P (θ110|θ109...θ1)...P (θ1). (3.2)

If we apply the marginalizing property of Gaussian processes or multivariate

normal distributions, it follows that the marginal distribution of each θi, conditioned

on the previous θis, also follows a normal or Gaussian distribution. Because the

time lengths between measurements are equal, it is reasonable to assume that the

variance is constant across time. Further, it is also reasonable to assume that the

mean of the conditional distribution of θi will be closely related to the previous θ or

θi−1. Consequently, it is reasonable to assume that the conditional distribution of

θi will be normally distributed centered around θi−1 with variance τ 2. Formally, the

conditional distribution of θi is written as

(θi|θi−1θi−2...θ1) ∼ N(θi−1, τ
2). (3.3)

If we describe the behavior of the conditional distribution of θi as N(θi−1, τ
2),

the conditional distribution of the current θi is dependent on the previous θ, or θi−1.

12



This prior specification applies to each of the θis except for the first θ or θ1. The prior

set on θ1 is called the initial information, and is given specific values. By setting up

the model such that the current information is affected or updated by previous infor-

mation (θi is influenced by the previous θ or θi−1), the model is considered a dynamic

model where initial information or a starting point is necessary so that subsequent

θs can be updated. In choosing values for the distribution of θ1, it was assumed that

since the measurements were taken at room temperature (degrees Celsius) before the

treatments were applied, the temperatures within the tendons should be between

room temperature and core temperature with mild variation. Consequently, it was

assumed that θ1 ∼ N(25, 2).

With the distribution of θi|θi−1θi−2...θ1 solely dependent on θi−1, we can apply

the Markovian property, which states that the conditional distribution of the future

state or states of a stochastic process is independent of past states and solely depen-

dent on the current state. In other words, applying the Markovian property, it is

reasonable to assume that the distribution of θi|θi−1θi−2...θ1 is equal to the distribu-

tion of θi|θi−1, and therefore P (θi|θi−1θi−2...θ1) = P (θi|θi−1) = N(θi−1, τ
2) and the

joint distribution of Θ can be written as follows:

P (Θ) =
111∏
i=2

P (θi|θi−1)P (θ1) =
111∏
i=2

N(θi−1, τ
2)N(25, 2). (3.4)

One of the most advantageous aspects of using a Gaussian process approach is

incorporated by describing the behavior of θi|θi−1 as normal or Gaussian and basing

its mean value solely on the value of the previous θ or θi−1. Setting up θi|θi−1 in this

fashion allows for strength, or information, to be borrowed from the information that

has already been gathered. As mentioned previously, this idea of borrowing strength

or information creates a dynamic model by updating the information as it becomes

available, thereby increasing the accuracy of the model.
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3.3 Prior Distributions for σ2 and τ 2

With σ2 representing a variance component, the support set is nonnegative.

Therefore, to preserve the parameter space and allow a closed-form solution to the

complete conditionals, an Inverse Gamma prior distribution was used. In choosing

the values for aσ and bσ, it was determined from discussions with professors and

medical doctors that the temperature in the Achilles tendon should not have a range

of more than three or four degrees at each of the time periods. Therefore, to take

the conservative approach from these suggestions, values were chosen for a range

of approximately four degrees. The conservative approach was chosen to provide a

slightly more diffuse prior distribution, thereby allowing the data to carry more weight

in the analysis. It was determined that the average variance of the data should be

approximately one degree. With this reasoning, a prior distribution is placed on σ2

so that it will be centered around one. Values were also chosen so that three standard

deviations from the mean would be approximately two degrees, thereby allowing most

of the data to be contained within a range of four degrees. Using this reasoning, the

values of 5 and 0.2 were chosen for aσ and bσ and the distribution for σ2 can be

written as follows:

σ2 ∼ InverseGamma(5, 0.2).

By introducing a prior distribution on the variance component of θi, a hierar-

chical component to the model is introduced. Again, because τ 2 represents a variance

term, the support set is nonnegative. Similar to the reasoning used in choosing the

prior distribution for σ2, to preserve the parameter space and to allow the complete

conditionals to be solved in closed form, an Inverse Gamma distribution was chosen.

In choosing the prior values for aτ and bτ , since τ 2 represents the variance of the

means of the observations, it is reasonable to assume that the values for τ 2 will be

slightly smaller and tend to vary less than the values for σ2. Using these assumptions,
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along with the opinions of experts in the field, it was determined that the variance of

the means should be minimal and that the range of the means should not be much

larger than two. It was also determined that the mean variance of τ 2 would be slightly

less than the mean variance of σ2 but would still be close to one degree. Using this

reasoning, the following values were chosen for the prior distribution of τ 2: aτ = 10

and bτ = 0.1, and the distribution for τ 2 is written as follows:

τ 2 ∼ InverseGamma(10, 0.1).

The plotted prior distributions for σ2 and τ 2 can be seen in Figure 3.1.

3.4 The Complete Conditionals

As noted earlier in this discussion, one advantage to this choice of prior distribu-

tions is that the complete conditionals have closed-form solutions. The joint posterior

distribution is proportional to the product of each of the relevant prior distributions

and the likelihood function, so that

π(Θ, σ2, τ 2|y) ∝ f(yij|θi, σ2)π(σ2)π(τ2)
t∏

i=1

π(θi|θi−1)π(θ1). (3.5)

Simplifying the above equation, the distributions for the complete conditionals were

calculated.

To obtain the complete conditional for θi, where the complete conditional is

represented as [θi], it is important to realize that all of the parts in the joint posterior

distribution that do not contain θi can be considered constants. The only distributions

in the joint posterior that contain the value of θi in their distribution functions are the

prior distributions, π(θi|θi−1) and π(θi+1|θi), and the likelihood function, f(yij|θi, σ2).

Consequently, the complete conditional for θi is proportional to the simplified product:

π(θi|θi−1)π(θi+1|θi)f(yij|θi, σ2).

Treating all terms in this product that do not contain θi as constants and
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Figure 3.1: Prior Densities for σ2 and τ 2
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simplifying, the following results were obtained:

[θi] ∝ π(θi|θi−1)π(θi+1|θi)f(yij|θi, σ2)

= (2πτ 2)−
1
2 exp

[
−(θi − θi−1)

2

2τ 2

]
(2πτ 2)−

1
2 exp

[
−(θi+1 − θi)2

2τ 2

]
×

t∏
i=1

ni∏
j=1

(2πσ2)−
1
2 exp

[
−(yij − θi)2

2σ2

]

∝ exp

[
−(θi − θi−1)

2

2τ 2

]
exp

[
−(θi+1 − θi)2

2τ 2

]
exp

[
−
∑t

i=1

∑ni
j=1(yij − θi)2

2σ2

]

= exp

[
− 1

2σ2τ 2
(σ2(θi − θi−1)

2 + σ2(θi+1 − θi)2 + τ 2

t∑
i=1

ni∑
j=1

(yij − θi)2)

]
.

Multiplying this out and removing all terms that do not contain θi, the above equation

is proportional to

exp

[
− 1

2σ2τ 2
(σ2(θ2

i − 2θiθi−1) + σ2(−2θi+1θi + θ2
i ) + τ 2(−2

t∑
i=1

ni∑
j=1

yijθi +
t∑
i=1

ni∑
j=1

θ2
i ))

]

∝ exp

[
− 1

2σ2τ 2
(σ2(θ2

i − 2θiθi−1) + σ2(−2θi+1θi + θ2
i ) + τ 2(−2θiniȳi + niθ

2
i ))

]
= exp

[
− 1

2σ2τ 2
(θ2
i σ

2 − 2θiθi−1σ
2 − 2θi+1θiσ

2 + θ2
i σ

2 − 2θiniȳiτ
2 + niθ

2
i τ

2)

]
= exp

[
− 1

2σ2τ 2
(θ2
i (2σ

2 + niτ
2)− 2θi(θi−1σ

2 + θi+1σ
2 + niȳiτ

2))

]
.

Factoring out 2σ2 + niτ
2,

[θi] ∝ exp

[
−2σ2 + niτ

2

2σ2τ 2

(
θ2
i − 2θi

(
θi−1σ

2 + θi+1σ
2 + niȳiτ

2

2σ2 + niτ 2

))]
.

The above expression is the kernel of a Normal, implying that the complete conditional

for θi is distributed as follows:

[θi] ∼ N

(
θi−1σ

2 + θi+1σ
2 + niȳiτ

2

2σ2 + niτ 2
,

σ2τ 2

2σ2 + niτ 2

)
. (3.6)

Similar to obtaining the complete conditional for θi, the complete conditional

for σ2 is obtained by simplifying the joint posterior distribution while treating all
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terms that do not contain σ2 as constants. Doing this results in the following:

[σ2] ∝ π(σ2)f(yij|θi, σ2)

=
β−ασσ

Γ(ασ)
(σ2)−ασ−1exp

[
−1

βσσ2

]
(2πσ2)−N/2exp

[
−
∑t

i=1

∑ni
j=1(yij − θi)2

2σ2

]

∝ (σ2)−ασ−1−N
2 exp

[
−1

σ2

(
1

βσ
+

∑t
i=1

∑ni
j=1(yij − θi)2

2

)]
.

The above expression implies that the distribution of the complete conditional for σ2

is as follows:

[σ2] ∼ IG

aσ +
N

2
,

[∑t
i=1

∑ni
j=1(yij − θi)2

2
+

1

βσ

]−1
 . (3.7)

The complete conditional for τ 2 is obtained by simplifying the following:

[τ 2] ∝ π(τ 2)
t∏
i=1

π(θi|θi−1)

=
β−αττ

Γ(ατ )
(τ 2)−ατ−1exp

[
−1

βττ 2

] t∏
i=1

(2πτ 2)
−1
2 exp

[
−(θi − θi−1)

2

2τ 2

]
∝ (τ 2)−ατ−1− t

2 exp

[
−1

τ 2

(
1

βτ
+

∑t
i=1(θi − θi−1)

2

2

)]
.

The above expression implies that the distribution for the complete conditional of τ 2

is

[τ 2] ∼ IG

(
aτ +

t

2
,

[∑t
i=1(θi − θi−1)

2

2
+

1

βτ

]−1
)
. (3.8)

Using the specified complete conditionals along with the statistical methods de-

scribed above, Gaussian process models representing the behavior of the temperature

for both treatments will be produced. By placing a Gaussian process prior on the

parameter vector Θ, the posterior distributions for a potentially infinite vector of θis

can be analyzed without increased complexity. In this project, since we only have

data collected at 111 different time periods, the posterior distributions at each of the

111 periods will be used to model the behavior of the temperatures in each of the

data sets.
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3.5 How to Deal with First and Last θi

The model has been set up in such a way that the complete conditional of θi

depends upon θi−1 and θi+1. This framework presents problems for the first and last

means of interest. For θ1 there is no previous mean temperature or θ0, and for θ111

there is no subsequent mean temperature or θ112 on which to base updates.

Since the complete conditionals are computed conditioning on the assumed

known information, the complete conditional for θ111 is computed without condition-

ing on the prior conditional distribution for π(θi+1|θi). Although the prior for θi+1

incorporates information contained in θi, since θi+1 does not exist at time 111, that

information is simply removed and the complete conditional for θ111 is calculated by

simplifying the product π(θ111|θ110)f(yij|θi, σ2) to obtain

[θ111] ∝ π(θ111|θ110)f(yij|θi, σ2)

= (2πτ 2)−
1
2 exp

[
−(θ111 − θ110)

2

2τ 2

] t∏
i=1

ni∏
j=1

(2πσ2)−
1
2 exp

[
−(yij − θi)2

2σ2

]

∝ exp

[
−(θ111 − θ110)

2

2τ 2

]
exp

[
−
∑t

i=1

∑ni
j=1(yij − θi)2

2σ2

]

= exp

[
− 1

2σ2τ 2
(σ2(θ111 − θ110)

2 + τ 2

t∑
i=1

ni∑
j=1

(yij − θi)2)

]

∝ exp

[
− 1

2σ2τ 2
(σ2(θ2

111 − 2θ111θ110) + τ 2(−2
t∑
i=1

ni∑
j=1

yijθi +
t∑
i=1

ni∑
j=1

θ2
i ))

]

∝ exp

[
− 1

2σ2τ 2
(σ2(θ2

111 − 2θ111θ110) + τ 2(−2θ111nȳ111 + n111θ
2
111))

]
= exp

[
− 1

2σ2τ 2
(θ2

111σ
2 − 2θ111θ110σ

2 − 2θ111nȳ111τ
2 + nθ2

111τ
2)

]
= exp

[
− 1

2σ2τ 2
(θ2

111(σ
2 + nτ 2)− 2θ111(θ110σ

2 + nȳ111τ
2))

]
∝ exp

[
−σ

2 + nτ 2

2σ2τ 2

(
θ2
111 − 2θ111

(
θ110σ

2 + nȳ111τ
2

σ2 + nτ 2

))]
.

The above expression is the kernel of a Normal distribution, implying that the com-

19



plete conditional distribution for θ111 is as follows:

[θ111] ∼ N

(
nτ 2ȳ111 + θ110σ

2

nτ 2 + σ2
,

σ2τ 2

nτ 2 + σ2

)
. (3.9)

The product π(θ1)π(θ2|θ1)f(yij|θi, σ2) is simplified to obtain the complete con-

ditional distribution for θ1. The simplification process to obtain the complete con-

ditional for θ1 is similar to the process used to obtain the complete conditional for

θi. The only difference is that prior values are placed on θ1 and the distribution on

θ1 is called the initial information as mentioned above. (See above for prior value

specification). Simplifying the above product of distributions, the following results

were obtained:

[θ1] ∝ π(θ1)π(θ2|θ1)f(yij|θi, σ2)

= (2π(2))−
1
2 exp

[
−(θ1 − 25)2

2(2)

]
(2πτ 2)−

1
2 exp

[
−(θ2 − θ1)

2

2τ 2

]
×

t∏
i=1

ni∏
j=1

(2πσ2)−
1
2 exp

[
−(yij − θi)2

2σ2

]

∝ exp

[
−(θ1 − 25)2

2(2)

]
exp

[
−(θ2 − θ1)

2

2τ 2

]
exp

[
−
∑t

i=1

∑ni
j=1(yij − θi)2

2σ2

]

= exp

[
− 1

2(2)σ2τ 2
(σ2τ 2(θ1 − 25)2 + 2σ2(θ2 − θ1)

2 + 2τ 2

t∑
i=1

ni∑
j=1

(yij − θi)2)

]
.

∝ exp

[
− 1

2(2)σ2τ 2
(σ2τ 2(θ2

1 − 2(25)θ1) + 2σ2(−2θ2θ1 + θ2
1) + 2τ 2(−2θ1n1ȳ1 + n1θ

2
1))

]
= exp

[
− 1

2(2)σ2τ 2
(θ2

1σ
2τ 2 − 2(25)θ1σ

2τ 2 − 2(2)θ2θ1σ
2 + 2θ2

1σ
2 − 2(2)θ1n1ȳ1τ

2 + 2n1θ
2
1τ

2)

]
= exp

[
− 1

2(2)σ2τ 2
(θ2

1(σ2τ 2 + 2σ2 + 2n1τ
2)− 2θ1(25σ2τ 2 + 2θ2σ

2 + 2n1ȳ1τ
2))

]
.

Factoring out σ2τ 2 + 2σ2 + 2n1τ
2,

[θ1] ∝ exp

[
−σ

2τ 2 + 2σ2 + 2n1τ
2

2(2)σ2τ 2

(
θ2
1 − 2θ1

(25σ2τ 2 + 2θ2σ
2 + 2n1ȳ1τ

2)

σ2τ 2 + 2σ2 + 2n1τ 2

)]
,

which is the kernel of a Normal distribution, implying that the complete conditional
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distribution for θ1 is as follows:

[θ1] ∼ N

(
(25σ2τ 2 + 2θ2σ

2 + 2n1ȳ1τ
2)

σ2τ 2 + 2σ2 + 2n1τ 2
,

2σ2τ 2

σ2τ 2 + 2σ2 + 2n1τ 2

)
. (3.10)

3.6 Comparison of Treatments

To assess whether there is a difference between the ice pack and whirlpool bath

in reducing tendon temperature, the posterior distributions of the differences between

the means of the data sets at each time period were used to model the behavior of

the differences between the treatments. This is similar to how the posterior distribu-

tions of the mean of each of the treatments was used to model the behavior of the

temperatures, and this technique uses the same idea as the Gaussian process analysis

that was performed on the original data sets in that the inference is performed on the

parameter space directly.

To obtain the posterior distributions of the differences, two different methods

which should yield similar results were applied. First, a third data set was created

by pairing up the individuals for each of the two treatments and taking the difference

in their respective temperatures at each time period. The same Gaussian process

methods were used in modeling this set of data as were used in modeling the previous

two sets of data. Also, the same likelihood and prior distributions were used as

previously described, resulting in the same complete conditionals, with the exception

of the complete conditional for θdiff1 . With θdiff1 representing the mean difference

in the temperatures between the two data sets at time 1, a prior mean of zero was

placed on θdiff1 instead of a value of 25, which was used for the original data sets,

and θdiff1 ∼ N(0, 2).

In addition, the posterior distributions for the differences at each time period

were obtained by using draws from the posterior distributions of the individual treat-

ment means and subtracting the difference in the temperature value. This process

was repeated for each time period and the resulting mean differences produced values
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that model the behavior of the posterior distribution for the differences in tempera-

ture means between the two treatments at that time period. Continuing this process

for each time period resulted in a posterior distribution for the difference in the mean

temperature for each time period.

With the posterior distributions of the differences at each time period computed

as described above, a 95% credible interval at each time period was calculated to

determine if there was a significant difference between the treatment means at each

of the time periods. By noting if zero was contained within the interval, it was

determined if there is a significant difference between the two treatments at any time

period.
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4. RESULTS

4.1 Modeling Temperature Means

The posterior distribution at each of the time periods for both the whirlpool

and ice pack data sets were obtained. Figure 4.1 shows all 111 posterior distributions

for the whirlpool treatment data set plotted on the same plot. The marginal posterior

distributions for the θis for the ice pack treatment data set are similar.

As mentioned previously, it is desirable to understand the behavior of the tem-

peratures as they change throughout time. To do this, the mean of each density was

used as an estimate of the temperature at each time period. Figure 4.2 shows the

mean of the posterior distributions for each data set plotted against time along with

the 95% credible interval for the mean of each distribution at each time.

The behavior in the temperatures as modeled through time is similar in both

sets of data. It is apparent from Figure 4.2 that the temperatures of the tendons are

drastically reduced in both sets of data when the treatments are applied. The plots

also indicate a gradual increase in the temperature in both the data sets when the

treatments are removed.

4.2 Modeling Temperature Differences

To better assess which treatment is more effective in decreasing the temperature

of the tendons as well as keeping the temperatures low after the treatment is removed,

the posterior distributions of the differences of the temperatures between the two data

sets were computed.

The individuals used when measuring tendon temperatures in the whirlpool

data set were the same individuals used when taking measurements on tendon tem-
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Figure 4.1: Posterior Densities for θi i=1,...,111
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Figure 4.2: Posterior Densities for θi i=1,...,111
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peratures in the ice pack data set. Consequently, the differences in the treatment

temperatures for each individual can be modeled.

Using the two methods described previously, the posterior distributions of the

differences in mean temperature at each time period were obtained (the whirlpool

data set was subtracted from the ice pack data set). The posterior means along

with the 95% credible intervals for the differences in temperatures between the two

treatments for both methods can be seen in Figure 4.3. The posterior distributions

of the differences in temperatures that were obtained are similar for both methods.

4.3 Conclusions and Comparisons

Its characteristics of general applicability, mathematical simplicity, and the abil-

ity to update the model as information becomes available make the method of Gaus-

sian processes implemented within a dynamic linear model setting arguably more

powerful in modeling complex nonlinear behavior than other methods. In 2007 John

Howell performed a similar analysis on the tendon temperature data sets using a

technique known as smoothing splines. Howell (2007) shows that, similar to Gaus-

sian processes, smoothing splines offer more flexibility than traditional polynomial

regression when fitting nonlinear behavior. However, Howell points out that some

challenges and limitations arise due to assumptions about parameters and distribu-

tional forms that need to be made when using smoothing splines. Although Gaussian

processes offer more flexibility when modeling complex behavior, the results obtained

by Howell are very similar to those obtained using Gaussian processes.

Figure 4.3 shows the 95% credible intervals for each of the posterior distributions

at each time period. Because none of the credible intervals contain the value 0 after

the treatments are applied, we believe that the treatments are significantly different

at each time period when the treatment is applied as well as when the treatments are

removed. Again, because Figure 4.3 displays the differences in temperatures where the
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observations from the whirlpool treatment are subtracted from the ice pack treatment,

we conclude that the whirlpool treatment is significantly more effective in reducing

the Achilles tendon temperatures as well as keeping the temperatures down once the

treatments are removed.

By examining Figure 4.3, we also conclude that the temperature differences are

the greatest between the two treatments during the first few time periods when the

treatments are applied as well as the later time periods when the treatments are re-

moved. Figure 4.3 indicates that the whirlpool treatment decreases the temperatures

faster in the tendons, but that the temperatures eventually become more similar the

longer the treatments are applied. Once the treatments are removed, the tempera-

tures in the tendons increase faster in the means where the ice pack treatment was

applied. This further indicates that the whirlpool treatment is preferable to the ice

pack treatment. Incorporating a Gaussian process approach within a dynamic linear

model setting to model the behavior of the temperatures makes it clear that the more

effective treatment is the whirlpool bath. The whirlpool treatment both reduces the

temperatures more quickly and keeps the temperatures lower for a longer period of

time after the treatments are removed.
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A. R CODE

library(MASS)
library(MCMCpack)
library(msm)
library(rgl)

#PLOTTING THE DATA
data<-read.table(’whirlpool.txt’,header=TRUE)
data<-data[,c(-1,-3,-5,-7,-9,-11,-13,-15,-17,-19,-21,-23,-25,-27,-29)]
data<-as.matrix(data)
data.Ice<-read.table(’icepack.txt’,header=TRUE)
data.Ice<-data.Ice[,c(-1,-3,-5,-7,-9,-11,-13,-15,-17,-19,-21,-23,-25,-27,-29)]
data.Ice<-as.matrix(data.Ice)
Time<-seq(.5,55.5,.5)
par(mfrow=c(1,2))
plot(Time,data[,1],main=’Whirlpool Data’,ylim=c(5,32),pch=1,ylab=’Temperature’

,xlab=’Time in Minutes’)
for(i in 2:15){
points(Time,data[,i],pch=i,col=i)
}
plot(Time,data.Ice[,1],main=’Ice Pack Data’,ylim=c(5,32),pch=1,ylab=’Temperature’

,xlab=’Time in Minutes’)
for(i in 2:15){
points(Time,data.Ice[,i],pch=i,col=i)
}

###PLOTTING PRIORS#####
mean(rgamma(10000,shape=5,scale=.2))
mean(1/rgamma(10000,shape=5,scale=.2))
var(1/rgamma(10000,shape=5,scale=.2))
xxx<-seq(0,10,.01)
par(mfrow=c(1,2))
plot(xxx,dinvgamma(xxx,shape=4,scale=1/.2),type=’l’,main=’’,xlab=expression(sigma^2)

,ylab=’Prior Density’)
plot(xxx,dinvgamma(xxx,shape=10,scale=1/.1),type=’l’,main=’’,xlab=expression(tau^2)

,ylab=’Prior Density’)
alpha<-10
beta<-.1

data<-t(data)
data.Ice<-t(data.Ice)
nobs<-10000

#whirlpooldata
meany<-apply(data,2,mean)
n<-dim(data)[1]
N<-dim(data)[1]*dim(data)[2]
T<-dim(data)[2]
theta<-matrix(1,nrow=nobs,ncol=111)
tau2<-rep(5,nobs)
sig2<-rep(7.5,nobs)
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#priors for whirlpool data
asig<-5
bsig<-.2
atau<-100
btau<-100

#icepack data
meany.Ice<-apply(data.Ice,2,mean)
theta.Ice<-matrix(1,nrow=nobs,ncol=111)
tau2.Ice<-rep(1,nobs)
sig2.Ice<-rep(1,nobs)

#priors for icepack data
asig.Ice<-5
bsig.Ice<-2
atau.Ice<-50
btau.Ice<-30

#here theta1 and theta111 are different
#start MCMC loop
for (j in 2:nobs)
{
#WHIRL POOL DATA-update theta1

alpha<-((2*n*meany[1]*tau2[j-1])+(sig2[j-1]*tau2[j-1]*25)+
(2*theta[j-1,2]*sig2[j-1]))/((2*n*tau2[j-1])+
(2*sig2[j-1])+(sig2[j-1]*tau2[j-1]))

gamma<-(2*sig2[j-1]*tau2[j-1])/((2*n*tau2[j-1])+(2*sig2[j-1])
+(sig2[j-1]*tau2[j-1]))

theta[j,1]<-rnorm(1,alpha,sqrt(gamma))

#ICE PACK DATA-update theta1.Ice
alpha.Ice<-((2*n* meany.Ice[1]*tau2.Ice[j-1])+(sig2.Ice[j-1]*tau2.Ice[1]*25)

+(2*theta.Ice[j-1,2]*sig2.Ice[j-1]))/((2*n*tau2.Ice[j-1])
+(2*sig2.Ice[j-1])+(sig2.Ice[j-1]*tau2.Ice[j-1]))

gamma.Ice<-(2*sig2.Ice[j-1]*tau2.Ice[j-1])/((2*n*tau2.Ice[j-1])
+(2*sig2.Ice[j-1])+(sig2.Ice[j-1]*tau2.Ice[j-1]))

theta.Ice[j,1]<-rnorm(1,alpha.Ice,sqrt(gamma.Ice))

#WHIRL POOL DATA-update theta2 - theta110
for (i in 2:110)
{
alpha<-((n*meany[i]*tau2[j-1])+(theta[j,i-1]*sig2[j-1] )+

(theta[j-1,i+1]*sig2[j-1]))
/((n*tau2[j-1])+(2*sig2[j-1]))

gamma<-(sig2[j-1] *tau2[j-1]) / ((n*tau2[j-1])+(2*sig2[j-1]))
theta[j,i]<- rnorm(1,alpha,sqrt(gamma))

}

#ICE PACK DATA-update theta2 - theta110
for (i in 2:110)
{
alpha.Ice<-((n*meany.Ice[i]*tau2.Ice[j-1])+(theta.Ice[j,i-1]

*sig2.Ice[j-1])+(theta.Ice[j-1,i+1]*sig2.Ice[j-1]))
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/((n*tau2.Ice[j-1])+(2*sig2.Ice[j-1]))
gamma.Ice<-(sig2.Ice[j-1]*tau2.Ice[j-1])/((n*tau2.Ice[j-1])

+(2*sig2.Ice[j-1]))
theta.Ice[j,i]<- rnorm(1,alpha.Ice,sqrt(gamma.Ice))

}

#WHIRL POOL DATA-update theta111
alpha<-((tau2[j-1]*n*meany[111]+sig2[j-1]*theta[j,110])

/(n*tau2[j-1]+sig2[j-1]))
gamma<-(sig2[j-1]*tau2[j-1])/(n*tau2[j-1]+sig2[j-1])
theta[j,111]<-rnorm(1,alpha,sqrt(gamma))

#ICE PACK DATA-update theta111
alpha.Ice<-((tau2.Ice[j-1]*n*meany.Ice[111]+sig2.Ice[j-1]

*theta.Ice[j,110])/(n*tau2.Ice[j-1]+sig2.Ice[j-1]))
gamma.Ice<-(sig2.Ice[j-1]*tau2.Ice[j-1])/(n*tau2.Ice[j-1]+sig2.Ice[j-1])
theta.Ice[j,111]<-rnorm(1,alpha.Ice,sqrt(gamma.Ice))

#WHIRL POOL DATA-update tau2
astartau<-atau +T/2
tausum<-0
for (i in 2:111)
{

tausum<- tausum + ((theta[j,i] - theta[j,i-1])^2)/(2)
}
bstartau<-(1/btau + tausum)^(-1)
tau2[j]<-1/rgamma(1,shape=astartau,scale=bstartau)

#ICE PACK DATA-update tau2
astartau.Ice<-atau.Ice+T/2
tausum.Ice<-0
for (i in 2:111)
{

tausum.Ice<- tausum.Ice + ((theta.Ice[j,i] - theta.Ice[j,i-1])^2)/(2)
}
bstartau.Ice<-(1/btau.Ice + tausum.Ice)^(-1)
tau2.Ice[j]<-1/rgamma(1,shape=astartau.Ice,scale=bstartau.Ice)

#WHIRL POOL DATA-update sigma2
astarsig<-asig + N/2
tempthetamat<-rep(theta[j,1],n)
for(i in 2:111)
{
tempthetamat<-cbind(tempthetamat,rep(theta[j,i],n))

}
sigsum <- sum((data-tempthetamat)^2)/2
bstarsig<-(sigsum+1/bsig)^(-1)
sig2[j]<-1/rgamma(1,shape=astarsig,scale=bstarsig)

#ICE PACK DATA-update sigma2
astarsig.Ice<- asig.Ice + N/2
tempthetamat.Ice<-rep(theta.Ice[j,1],n)
for(i in 2:111)
{
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tempthetamat.Ice<-cbind(tempthetamat.Ice,rep(theta.Ice[j,i],n))
}
#tempthetamat<-cbind(rep(theta[j,1],n),rep(theta[j,2],n),rep(theta[j,3],n)

,rep(theta[j,4],n),rep(theta[j,5],n),rep(theta[j,6],n))
sigsum.Ice <-sum((data.Ice-tempthetamat.Ice)^2)/2
bstarsig.Ice<-(sigsum.Ice+1/bsig.Ice)^(-1)
sig2.Ice[j]<-1/rgamma(1,shape=astarsig.Ice,scale=bstarsig.Ice)

}

PLOTTING MARGINAL POSTERIOR DENSITIES FOR WHIRLPOOL DATA
par(mfrow=c(1,3))
plot(density(theta[500:nobs,1]),xlim=c(5,30),main=’Posterior

Densities’,xlab=’Temperature’)
abline(v=meany[1],col="red")
for(i in 2:111)
{
lines(density(theta[500:nobs,i]))
abline(v=meany[i],col="red")
}

#WHIRL POOL DATA-average thetas and plots of average thetas
average.thetas<-NULL
HPD1<-NULL
HPD2<-NULL
for(i in 1:111)
{
average.thetas[i]<-mean(theta[500:nobs,i])
HPD1[i]<-quantile(theta[500:nobs,i],.025)
HPD2[i]<-quantile(theta[500:nobs,i],.975)
}
time<-seq(.5,55.5,.5)
par(mfrow=c(1,2))
plot(time,average.thetas,xlab=’Time in Minutes’,

ylab=’AveragePosterior Temperature’,type=’p’,
ylim=c(10,30),main=’Whirlpool’)

lines(time,HPD1,type=’l’,col=’green’)
lines(time,HPD2,type=’l’,col=’green’)
abline(v=5,col=’red’)
abline(v=25,col=’blue’)

#ICE PACK DATA-average thetas and plots of average thetas
average.thetas.Ice<-NULL
HPD1.Ice<-NULL
HPD2.Ice<-NULL
for(i in 1:111)
{
average.thetas.Ice[i]<-mean(theta.Ice[500:nobs,i])
HPD1.Ice[i]<-quantile(theta.Ice[500:nobs,i],.025)
HPD2.Ice[i]<-quantile(theta.Ice[500:nobs,i],.975)
}
time<-seq(.5,55.5,.5)
plot(time,average.thetas.Ice,xlab=’Time in Minutes’,

ylab=’AveragePosterior Temperature’,type=’p’,
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ylim=c(10,30),main=’Ice Pack’)
lines(time,HPD1.Ice,type=’l’,col=’green’)
lines(time,HPD2.Ice,type=’l’,col=’green’)
abline(v=5,col=’red’)
abline(v=25,col=’blue’)

###PART 2 POST DISTRIBUTION OF DIFFERENCES IN DRAWS FROM POSTERIOR####
theta.diff<-theta.Ice-theta
#DIFFERENCES IN THETAS
average.thetas.diff<-NULL
HPD1.diff<-NULL
HPD2.diff<-NULL
for(i in 1:111)
{
average.thetas.diff[i]<-mean(theta.diff[500:nobs,i])
HPD1.diff[i]<-quantile(theta.diff[500:nobs,i],.025)
HPD2.diff[i]<-quantile(theta.diff[500:nobs,i],.975)
}
time<-seq(.5,55.5,.5)
par(mfrow=c(1,2))
plot(time,average.thetas.diff,xlab=’Time’,ylab=’Average

PosteriorTemperature’,type=’p’,main=’Differences in Draws’
,ylim=c(0,10))

lines(time,HPD1.diff,type=’l’,col=’green’)
lines(time,HPD2.diff,type=’l’,col=’green’)
abline(v=5,col=’red’)
abline(v=25,col=’blue’)

###PART 3 DATA SET 3 (DIFFERENCES IN TREATMENTS)####
#Creating data
data<-read.table(’whirlpool.txt’,header=TRUE)
data.Ice<-read.table(’icepack.txt’,header=TRUE)
data<-as.matrix(data)
data.Ice<-as.matrix(data.Ice)
for(i in 1:15)
{
data<-data[,-i]
data.Ice<-data.Ice[,-i]
}
data<-t(data)
data.Ice<-t(data.Ice)
data.minus<-data.Ice-data
nobs<-10000

#data.three
meany.minus<-apply(data.minus,2,mean)
n<-dim(data.minus)[1]
N<-dim(data.minus)[1]*dim(data.minus)[2]
T<-dim(data.minus)[2]
theta.minus<-matrix(1,nrow=nobs,ncol=111)
tau2.minus<-rep(1,nobs)
sig2.minus<-rep(1,nobs)

#priors for data.minus
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asig.minus<-5
bsig.minus<-.2
atau.minus<-10
btau.minus<-.1
j<-1000
#here theta1 and theta111 are different
#start MCMC loop
for (j in 2:nobs)
{

#MINUS DATA-update theta1 ####
alpha.minus<-((2*n*meany.minus[1]*tau2.minus[j-1])+

(sig2.minus[j-1]*tau2.minus[j-1]*0)+
(2*theta.minus[j-1,2]*sig2.minus[j-1]))
/((2*n*tau2.minus[j-1])
+(2*sig2.minus[j-1])+(sig2.minus[j-1]*
tau2.minus[j-1]))

gamma.minus<-(2*sig2.minus[j-1]*tau2.minus[j-1])
/((2*n*tau2.minus[j-1])+(2*sig2.minus[j-1])
+(sig2[j-1]*tau2[j-1]))

theta.minus[j,1]<-rnorm(1,alpha.minus,sqrt(gamma.minus))

#MINUS DATA-update theta2 - theta110
for (i in 2:110)

{
alpha.minus<-((n*meany.minus[i]*tau2.minus[j-1])

+(theta.minus[j,i-1]*sig2.minus[j-1])
+(theta.minus[j-1,i+1]*sig2.minus[j-1]))
/((n*tau2.minus[j-1])+(2*sig2.minus[j-1]))

gamma.minus<-(sig2.minus[j-1] *tau2.minus[j-1])/
((n*tau2.minus[j-1])+(2*sig2.minus[j-1]))

theta.minus[j,i]<-rnorm(1,alpha.minus,sqrt(gamma.minus))
}

#MINUS DATA-update theta111
alpha.minus<-((tau2.minus[j-1]*n*meany.minus[111]+

sig2.minus[j-1]*theta.minus[j,110])
/(n*tau2.minus[j-1]+sig2.minus[j-1]))

gamma.minus<-(sig2.minus[j-1]*tau2.minus[j-1])/
(n*tau2.minus[j-1]+sig2.minus[j-1])

theta.minus[j,111]<-rnorm(1,alpha.minus,sqrt(gamma.minus))

#MINUS-update tau2
astartau.minus<-atau.minus +T/2
tausum.minus<-0
for (i in 2:111)
{
tausum.minus<-tausum.minus+((theta.minus[j,i]-theta.minus[j,i-1])^2)/(2)

}
bstartau.minus<-(1/btau.minus + tausum.minus)^(-1)
tau2.minus[j]<-1/rgamma(1,shape=astartau.minus,scale=bstartau.minus)

#MINUS-update sigma2
astarsig.minus<-asig.minus+N/2
tempthetamat.minus<-rep(theta.minus[j,1],n)
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for(i in 2:111)
{
tempthetamat.minus<-cbind(tempthetamat.minus,rep(theta.minus[j,i],n))

}
sigsum.minus <- sum((data.minus-tempthetamat.minus)^2)/2
bstarsig.minus<-(sigsum.minus+1/bsig.minus)^(-1)
sig2.minus[j]<-1/rgamma(1,shape=astarsig.minus,scale=bstarsig.minus)

}

#WHIRL POOL DATA-average thetas and plots of average thetas
average.thetas.minus<-NULL
HPD1.minus<-NULL
HPD2.minus<-NULL
for(i in 1:111)
{
average.thetas.minus[i]<-mean(theta.minus[500:nobs,i])
HPD1.minus[i]<-quantile(theta.minus[500:nobs,i],.025)
HPD2.minus[i]<-quantile(theta.minus[500:nobs,i],.975)
}
time<-seq(.5,55.5,.5)
plot(time,average.thetas.minus,xlab=’Time’,ylab=’Average Posterior Temperature’

,type=’p’,ylim=c(0,10),main=’Differences in Observations’)
lines(time,HPD1.minus,type=’l’,col=’green’)
lines(time,HPD2.minus,type=’l’,col=’green’)
abline(v=5,col=’red’)
abline(v=25,col=’blue’)
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