Distribution, Function, And Value Of Parowan Valley Projectile Points

Aaron R. Woods

Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Anthropology Commons

BYU ScholarsArchive Citation
https://scholarsarchive.byu.edu/etd/1720

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
DISTRIBUTION, FUNCTION, AND VALUE OF PAROWAN VALLEY PROJECTILE POINTS

by

Aaron R. Woods

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Arts

Department of Anthropology

Brigham Young University

August 2009
BRIGHAM YOUNG UNIVERSITY
GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Aaron R. Woods

This thesis has been read by each member of the following graduate committee and by majority vote had been found satisfactory.

Date

Joel C. Janetski, Chair

Date

James R. Allison

Date

John E. Clark
As chair of the candidate’s graduate committee, I have read the thesis of Aaron R. Woods in its final form and have found that (1) its Format, citations and bibliographic style are consistent and acceptable and fulfill University and department style requirements; (2) its illustrative materials including Figures, tables, and charts are in place; and (3) the final manuscript is satisfactory to the graduate committee and is ready for submission to the university library.

Date

Joel C. Janetski
Chair, Graduate Committee

Accepted for the Department

Joel C. Janetski
Graduate Coordinator

Accepted for the College

Susan S. Rugh
Associate Dean of Family, Home, and Social Sciences
This thesis primarily addresses the quantities and distributions of Fremont projectile points in the Parowan Valley. First, I review previous research performed in Parowan Valley and outline currently accepted projectile point analysis and typology methods. I also review ethnographic data surrounding the function and value of projectile points. Then, I provide the results of an analysis of all projectile points in the Parowan Valley Archaeological Project collection. I note the large amount of projectile points in this collection and compare it to projectile point counts from other large Fremont sites. I also note chronological patterns in Parowan Valley using projectile points as relative temporal markers. With this data and the data provided by other theses on Parowan Valley, I argue that sites in Parowan Valley served as centers for aggregation and other socio-economic practices in the Late Formative Period.
ACKNOWLEDGEMENTS

I would like to thank the members of my graduate committee for their advice and help with the conceptualization, modification, and finalization of this thesis. I am especially grateful for the help of Dr. Joel Janetski who, as my committee chair and mentor, has provided me with numerous opportunities to learn and grow in the field of archaeology during my time at BYU. The manager of the Department of Anthropology, Evie Forsyth, has served as a valuable guide through the snags and hoops of university administration. For the past six years, the Office of Public Archaeology has served as a wonderful mentoring environment enabling me to gain valuable experience and knowledge. Richard Talbot, Lane Richens, Scott Ure, and Debbie Silversmith of OPA are the unsung and often overlooked heroes of the Department of Anthropology. Each of these individuals taught me vital, career-shaping skills.

I thank fellow students and friends Chris Watkins, Cady Jardine, Dave Yoder, Holly Raymond, Molly Hall, Brad Newbold, and Mark Bodily for their many important conversations and helpful tips that facilitated the construction of this work.

Finally, I acknowledge the contribution of my family. I am grateful to my grandfather, Richard Evans and my mother, Susan Evans Woods for instilling a love of all things Native American in me from an early age. I am also grateful for the love and financial support provided to me by parents and my wife Adrianne. Without Adrianne’s encouragement, love, and patience, this thesis would have never gotten off the ground.
TABLE OF CONTENTS

1 INTRODUCTION ... 1
 Purpose ... 2
 Defining the Fremont .. 3
 Parowan Valley ... 6
 Research Questions .. 13

2 THEORY AND METHOD ... 16
 Theories and Research Concerning Projectile Points 16
 Possibilities in Parowan Valley: Function, Chronology, and Value 20
 Fremont Chipped Stone Research 21
 The Parowan Valley Chipped Stone Assemblage 23
 Parowan Valley Projectile Point Analysis 27

3 PRESENTATION OF DATA ... 31
 Projectile Point Types Identified in the PVAP Assemblage 32
 Quantities and Distributions at Paragonah, Parowan, and Summit Paragonah 41
 Parowan ... 44
 Summit ... 45
 Parowan Valley .. 55

4 DISCUSSION AND CONCLUSIONS .. 58
 Research Questions Revisited .. 58
 Determining Site Function .. 62
 General Site Function in Parowan Valley 78
 General Chronology of Parowan Valley 81
 Were projectile points in Parowan Valley used for a function beyond arrow use? 82
 Symbolism of Projectile Points 84
 Conclusions ... 87

APPENDIX A ... 88

APPENDIX B ... 93

REFERENCES ... 145
LIST OF FIGURES

CHAPTER 1
1.1. Fremont culture area .. 4
1.2. Map of Parowan Valley .. 7

CHAPTER 2
2.1. Measurements and descriptions of measurements (Andrefsky 2005:186) 25

CHAPTER 3
3.1. General sample of projectile point types from Parowan Valley 33
3.2. Ground projectile points from Summit and Parowan. 39
3.3. Temporal Range of Projectile Points at Paragonah .. 42
3.4. Distributions of projectile points from Paragonah ... 42
3.5. Spatial Distribution of Projectile Point Types at Paragonah 43
3.6. Spatial Distribution of Expanding and Contracting Stem Points at Paragonah 45
3.7. Chronological range of projectile points from Parowan 45
3.8. Distributions of projectile points at Parowan .. 47
3.9. Distributions of projectile point types at Parowan ... 47
3.10. Spatial Distribution of Expanding and Contracting Stem Points at Parowan 48
3.11. Chronological range of projectile points from Summit 49
3.12. Distribution of Projectile Points from UCLA excavations at Summit 50
3.13. Distribution of Projectile Points Types from UCLA excavations at Summit 51
3.14. Expanding and Contracting Stem Projectile Points from UCLA Excavations of Summit ... 52
3.15. Total projectile points per residential structure in Parowan Valley 56

CHAPTER 4
4.1. Projectile points per residential structure at selected Fremont sites 61
4.2. Total number of projectile points from selected Fremont sites 61
4.3. Scatterplot of projectile points vs total artifacts from Paragonah 64
4.4. Correspondence analysis of projectile points, gaming pieces, and exotcs; plots represent structures .. 65
4.5. Correspondence analysis of projectile points, other lithic tools, and worked bone at Paragonah ... 66
4.6. Correspondence analysis of projectile points, ceramics, and worked sherds from Paragonah .. 67
4.7. Scatterplot of Projectile Points vs Total Artifacts at Parowan 69
4.8. Correspondence analysis of projectile points, ceramics, and worked sherds from Parowan; plots represent excavation areas 71
4.9. Scatterplot of projectile points vs total artifacts from Summit 74
4.10. Correspondence analysis of projectile points, gaming pieces, and exotics from Summit; plots represent excavation areas 76
4.11. Correspondence analysis of projectile points, other lithic tools, and unworked bone from Summit .. 76
4.12. Reconstructed arrangement of projectile points found in Pit Dwelling A7 (Cozzens 1982:80) ... 85
LIST OF TABLES

CHAPTER 3

3.1. Projectile point quantities from UCLA/SUU excavations. .. 33
3.2. Totals and provenience of projectile points from all Summit excavations. 55

APPENDIX A

A.1. Radiocarbon Dates for the Parowan Valley ... 86

APPENDIX B

B.1. Projectile point type abbreviation reference. ... 90
B.3. Analysis Data from Paragonah ... 91
B.4. Analysis Data From Parowan ... 100
B.5. Analysis data from Summit .. 110
INTRODUCTION

During the Formative Period, a hunter-gatherer and farming culture inhabited the Great Basin and Colorado Plateau of Western North America (Talbot 2000). Called the Fremont by archaeologists, this culture is defined in the archaeological record by several unique items of material culture (Adovasio 1980; Geib 1996; Janetski and Talbot 2000a; Madsen 1989). The emphasis on hunting in Fremont subsistence strategies has led to consistent recovery of chipped stone artifacts (especially projectile points) at Fremont sites.

Due to their imperishable nature, chipped stone artifacts are often the most prevalent and informative artifacts recovered from archaeological sites. Chipped stone assemblages provide valuable insights into technological, socio-economic, and subsistence strategies of many ancient cultures. Throughout the world, chipped stone artifacts are analyzed to enrich knowledge of past life-ways. Particular types of stone tools like projectile points provide archaeologists with perspectives regarding subsistence, tool composition, raw material acquisition, and site chronology.

Projectile points play a particularly important part in the archaeology of the American Great Basin. Due to variations of projectile point size, knapping technology, and toolstone preference, inferences have been made regarding the subsistence and mobility of the inhabitants in and around the Great Basin (Holmer 1980; Holmer and Weder 1986).
PURPOSE

In this thesis, I present the results of an analysis of all projectile points collected by the University of California, Los Angeles and Southern Utah University during excavations at Parowan Valley in Utah. I provide descriptive and distributional data on the projectile points from three large Fremont sites in Parowan Valley: Paragonah (42In43), Parowan (42In100), and Summit/Evans Mound/Median Village (42In40/42In44/42In124). In addition to provision of this data, I interpret it in an attempt to make inferences regarding the socio-economics and chipped-stone technologies of the Parowan Valley Fremont. These interpretations may also contribute to discussions regarding the chronology of sites in Parowan Valley, specifically due to the temporal diagnostic nature of projectile points. I will also include data gathered by the University of Utah during its excavations in Parowan Valley (Berry 1972a; Dodd 1982; Marwitt 1971, 1972b and 1974).

The remainder of this chapter provides a history of the research on and interpretations of Fremont culture. I also discuss past and present archaeological work associated with Parowan Valley. Finally, I present the research questions posed and discussed by this thesis. In chapter 2, I discuss the general research of chipped stone technologies and how this research will be implemented and applied to the research of this thesis. I also outline projectile point typologies established and accepted in the Great Basin, specifically those common among the Fremont. This chapter also includes a discussion of the potential role that projectile points may have played in socio-economic practices of gambling and trade in small-scale societies. In chapter 3, I discuss sampling and analysis methods of the chipped stone assemblage acquired by UCLA and SUU. I will also discuss the general results of my analysis including total quantities and provenience.
In chapter 4, I discuss and interpret my data. I also consider the provenience of the projectile points, and correlate this data with theories regarding craft production and trade. Lastly, I will revisit my research questions, and provide final discussions and interpretations.

DEFINING THE FREMONT

Definitions of the Fremont are often muddled and contradictory. David Madsen states that the Fremont are “characterized by variation and diversity and are neither readily defined nor easily encapsulated within a single description” (Madsen 1989:2-3). Despite this statement, Madsen attempts to define the Fremont with the simplistic application of a formula based on artifacts: if a site contains distinctive grayware ceramics it is most likely a Fremont site (Madsen 1989:3-4). This contradiction is not limited to Madsen; it prevails throughout most of the literature on the Fremont. Researchers apply variant models to Fremont subsistence, settlement, and technology and then use specific styles of artifacts to define “Fremont”. For an extensive discussion on debates surrounding definitions of the Fremont, see Watkins (2006: 14-27). For the purposes of this thesis, my definition of the Fremont will consist of a hybrid of the aforementioned variations.

“Fremont” is a term describing a relatively sedentary foraging and farming lifeway located in the eastern Great Basin and northern Colorado Plateau (see Figure 1.1) between AD 1 and AD 1400 (Talbot 2000). The Fremont possessed a unique material culture that includes ceramic styles, unfired clay figurines, dew-claw moccasins, rock art, and basketry (Adovasio 1980; Madsen 1989). The Fremont also invested in complex residential and storage structure architecture (Marwitt 1986; Talbot et al. 1998).
Figure 1.1. Fremont culture area.
During Fremont occupation of the eastern Great Basin and the northern Colorado Plateau, the Fremont life-way underwent many changes. Through time, the Archaic forager roots of the Fremont branched into a strategy based on the combination of horticulture and foraging. These changes occurred in “a differential rate depending on localized environmental and cultural factors” (Talbot et al. 1998:34).

Some transformations of the Fremont life-way are nicely highlighted by Janetski (1993), in which he describes some of the catalysts for change; specifically the arrival of maize from the south (200 BC), the introduction of bow and arrow technology (AD 200), and the development of ceramic technology (AD 500).

Due to regional variation in strategies within the Fremont area, discussions are often limited to strict geographical boundaries. Throughout the Fremont area, differences in subsistence, architecture, and technology are compared and contrasted with one another. This thesis is no exception. Between AD 1100-AD 1300, Parowan Valley was occupied by the Fremont. Archaeology performed in Parowan Valley suggests that the Parowan Valley Fremont flourished during the Late Formative Period and utilized horticulture, high investment architecture, and part-time craft production. For the balance of this thesis, I will discuss the Fremont of Parowan Valley and their chipped stone technologies.

Fremont Research and Debates

For the past 30 years, the majority of Fremont research has focused on subsistence. Subsistence has been the driving force behind reconstructing and interpreting Fremont life-ways. David Madsen and Steven Simms define the Fremont as a mixed group of sedentary farmers, forager-farmers, and full-time foragers (Madsen 1979, Madsen and Simms 1998). Critics of the variable subsistence perspective suggest that the
Fremont were a more a sedentary group dependant on farming for subsistence (Janetski and Talbot 2000b; Talbot 1996).

Subsistence research has provided an important foundation for understanding the Fremont. Prior to the subsistence studies of Madsen and others, no systematic collection of data on the Fremont existed. These studies prepared a way for research in numerous areas like community organization, socio-economics, and technology studies (Janetski et al. 2000b)

Due to the small scale of Fremont culture, applying Service’s (1962) social classifications of band, tribe, or chiefdom is difficult, but the large size of many Fremont villages, raises questions concerning craft production, inter and intra-group distribution of goods, kinship relations, and raw material acquisition. Fremont studies continue to provide insights into the life-ways of small-scale societies in the Great Basin. Questions regarding subsistence, technology, and social organization remain largely up for debate and there is a need, if possible, for more definitive answers.

PAROWAN VALLEY

Parowan Valley is located approximately 20 miles northeast of Cedar City in Southwestern Utah (Figure 1.2). Vegetation in the valley includes sagebrush and plants of the shadscale community. Parowan Valley is bordered south and east by the Hurricane Cliffs and north and west by the Black Mountains. Vegetation in the Hurricane Cliffs and Black Mountains shifts consistently with elevation from sagebrush and shadscale to pinyon pine and juniper, and conifer and aspen communities (Berry 1972). The Hurricane Cliffs and the Black Mountains once provided water into Parowan Valley and probably the Little Salt Lake via drainages and creeks now diverted for agricultural purposes.
The sites discussed in this thesis, Paragonah, Parowan, and Summit/Evans Mound/Median Village are situated near or in the current towns of Paragonah, Parowan, and Summit. These sites are separated by approximately 15 km and are in close proximity to creeks in the Hurricane Cliffs, specifically Red, Parowan, and Summit Creeks.

European-Americans in Parowan Valley

With the influx of European-Americans into Utah in the mid to late 1800s, Parowan Valley became a source of intrigue and fascination to settlers, historians, and
scientists. Early observations of Parowan Valley alluded to the size and complexity of cultural deposits found therein. In a letter dated 1851, LDS Church President Brigham Young wrote:

We visited the ruins of an ancient Indian village on Red Creek, where we found quantities of broken, burnt, painted earthenware, arrow points, adobes, burnt brick, a crucible, some corn grains, charred cobs, animal bones, and flint stones of various colors. The ruins were scattered over a space about two miles long and one wide. The buildings were about 120 in number, and were composed apparently of dirt lodges, the earthen roofs having been supported by timbers, which had decayed or been burned, and had fallen in, the remains thus forming mounds of an oval shape and sunken at the tip. One of the structures appeared to have been a temple or council hall, and covered about an acre of ground. (Quoted in Janetski 1997:102).

This description, albeit detailed, is most likely biased by Young’s cultural and religious perceptions, specifically in regards to his appellation of one of the mounds as a temple or council hall. Young’s approximations of site size and notations of artifact content however, do shed light on the scale and complexity of sites in Parowan Valley prior to their destruction by agriculture, looting, and archaeological excavations.

First Archaeology in Parowan Valley

Early archaeological work in Parowan Valley was, for the most part, linked to United States Geological Surveys. (for an in-depth discussion on the work in Parowan Valley, see Hall 2008) In 1872 and 1874, a USGS was organized in Parowan Valley, its principle intent to acquire Native American human remains. Survey leader Lt. George Wheeler and crew observed “400 to 500 mounds” near the current town of Paragonah (Janetski 1997:103). Surveys and expeditions into Parowan valley increased in the late 1800s and early 1900s as interest grew in amassing ancient artifacts. Some of the first excavation and artifact collection in Parowan Valley was performed by Edward Palmer.
Palmer provided artifact collections to numerous institutions like Harvard’s Peabody Museum and the Smithsonian (Janetski 1997).

In 1893, Don Maguire of the Smithsonian Institution and Henry Montgomery of the University of Utah performed concurrent and independent excavations in Parowan Valley. Maguire’s motivation was to provide artifacts for the 1893 World’s Columbian Exposition while Montgomery’s was to investigate and test the idea that the sites in Parowan Valley were connected to a large Southwest network of Mesoamerican Aztec outliers (Montgomery 1894:305).

Maguire and Montgomery’s excavation methods were as different as their motivations. Montgomery criticized Maguire’s “plow and scraper” techniques and contrasted them with his more meticulous use of “shovel, trowel, and brush” (Montgomery 1894: 303). Montgomery’s careful methods represent one of the first scientific excavations in Parowan Valley.

In the early 1900s Neil Judd, a professionally trained archaeologist, worked in Paragonah. His field reports of 1915, 1916, and 1917 were invaluable in shaping future research performed in Parowan Valley. In 1915, Judd and his crew exposed four of fifty or so observed mounds, two of which contained coursed adobe architecture. In 1916, Judd excavated one additional mound, revealing 14 more adobe structures. The excavation of Judd’s “Big Mound” at Paragonah in 1917 revealed 43 adobe structures, three pithouses, and “numerous court shelters” (Judd 1926:69). In a synthesis of his work, Judd explained that “the culture represented by the major dwellings, whose walls were constructed entirely of adobe, is certainly Puebloan, yet it differs from that of recognized Pueblo areas” (Judd 1926:22). This designation of the Fremont culture as Puebloan or some branch thereof, continued well into the 1950s.
University of California, Los Angeles

In 1954, Clement W. Meighan of UCLA supervised research and excavations in Parowan Valley for 10 field seasons. The focus of these excavations were the sites of Paragonah, Parowan, and Summit. For the most part, the results of Meighan’s work remains largely unpublished. In 1956 however, Meighan summarized the 1954 excavations in a report published by the University of Utah. During the 10 field seasons Meighan and UCLA worked in Parowan Valley, a sizable amount of artifacts, site reports, excavation notes, and photographs were collected.

College of Southern Utah

In the 1960’s, Richard Thompson of the College of Southern Utah (now Southern Utah University or SUU) began excavations at the site of Summit. Many of the details of his excavations are unknown due to the loss of the excavation notes, but an artifact catalog providing information concerning the artifacts and their provenience does exist (Hall 2008). This catalog is an invaluable aid in helping reconstruct Thompson’s work at Summit. Thompson worked primarily at the site of Median Village, a site so close in proximity to Summit that this research and analysis considers Median Village a part of Summit. Thompson’s work in Parowan Valley yielded few publications, but his knowledge and expertise facilitated the University of Utah Field School’s later excavations in Parowan Valley.

The University of Utah

The University of Utah spent four field seasons excavating at Summit, primarily at Evans Mound and Median Village, considered part of the Summit site. These field
seasons were reported primarily in the graduate work by Michael S. Berry (Berry 1972a, 1972b, and 1974), (Dodd 1982; Marwitt 1970). These excavations were well reported and provide in-depth insights into the work preformed by the University of Utah.

Brigham Young University and the Parowan Valley Archaeological Project

In 1999, Joel C. Janetski and Richard K. Talbot of the Department of Anthropology and Office of Public Archaeology at BYU evaluated the archaeological work performed by UCLA in Parowan Valley. This evaluation gave rise to the Parowan Valley Archaeological Project (PVAP). The PVAP involves professionals and students from BYU, the Fowler Museum of Cultural History at UCLA, and the Archaeology Repository at SUU. The goals of the PVAP are to research sociopolitical, economic, and subsistence issues related to the Fremont through the examination of the Parowan Valley collections amassed by UCLA and SUU during their aforementioned field work (Janetski et al. 2001). The majority of the data from these collections, including excavation notes, artifacts, photographs, maps, and artifact catalogs remain unpublished. It is also another goal of the PVAP to provide access to the aforementioned data to contribute to the greater body of literature regarding the Fremont culture.

BYU obtained the collection of artifacts and field notes used by the PVAP from the Fowler Museum of UCLA in 2001. Joan Meighan, widow of the late Clement W. Meighan, also provided information and photographs from her husband’s personal records. Students involved with the PVAP spent more that four years extracting and digitizing data from excavation notes, maps, and artifact catalogs. The goal of extracting this information was to incorporate it into a system based on defining archaeological features currently in use at BYU. This process of extraction and translation has been laborious and at times confusing, but it has provided useful information concerning the
provenience of artifacts, the number of structures at each site in Parowan Valley, and the excavation strategies used by UCLA and SUU. The ultimate goal of the project is to publish the results of all of the previously described work so that the data from these archaeologically rich sites can be easily accessed by researchers (Hall 2008).

Chronology in Parowan Valley

The multiple excavations in Parowan Valley have contributed several radiocarbon dates. These dates have established a chronology for the sites in Parowan Valley. Radiocarbon dates were acquired by the University of Utah (Berry 1972; Dodd 1983; Marwitt 1972) and more recently, by Brigham Young University and The Office of Public Archaeology. Numerous wood and charcoal samples were also sent to laboratories by BYU and OPA in order to gain tree-ring dates.

The combined efforts of the University of Utah, BYU, and OPA yielded a total of 37 radiocarbon dates and seven tree-ring dates in Parowan Valley. After calibration using 2 sigma values, dates from Parowan Valley range between AD 615 and AD 1629 (Appendix A). This is a broad range, and it is likely that the early dates are outliers or were affected by old wood issues and or sampling techniques. The late date of AD 1629 is possible due to the presence of some Late Prehistoric artifacts, but its provenience within a Fremont pithouse casts some doubts regarding its accuracy. It must also be noted that these dates are radiometric and were reported by Berry (1972) and Marwitt (1970).

When the outliers are disregarded, the majority of dates from Parowan Valley range from AD 900 to AD 1350. At the Paragonah site, nine AMS dates and seven tree-ring dates were acquired. These dates show a temporal range from the late 900s through the late 1200s. Four AMS dates from Parowan range from the late AD 900s through the mid AD 1100s. These dates were acquired from charred corn cobs recovered from
residential structures, and suggest that the excavated portions of the Parowan site were occupied during this temporal range. Finally, four AMS dates from the Summit site demonstrate a temporal range from the early 1000s to the mid 1100s. The remaining dates from Summit are radiometric (Berry 1972; Marwitt 1970) and indicate a much broader chronological range between the late 800s and the mid 1300s. A portion of radiometric dates from Summit have been disregarded due to their inconsistencies with provenience.

RESEARCH QUESTIONS

Can quantities and distributions of projectile points from Parowan Valley provide clues concerning site function and chronology?

A cursory examination of the chipped stone assemblages recovered by UCLA, and SUU suggests that they are very large. These assemblages consist of 17 boxes full of hammerstones, drills, flake tools, and projectile points. Projectile points are numerous in all of the chipped stone assemblage boxes. In order to answer questions about projectile point quantities and site function, other Fremont sites must be compared to the sites in Parowan Valley. This cross-site comparison strategy poses some issues that must be considered.

The first issue to consider is sampling strategy. Differences in excavation methods may prove problematic when comparing several sites. The excavation strategies implemented through time in Parowan Valley by UCLA, SUU, and the University of Utah vary through time. Placing other large Fremont sites into the mix will further demonstrate variant sample strategies. Despite these differences, however, a cross-site comparison is necessary.

The second issue to consider with cross-site comparison is the variations in site size and temporal occupation. The obvious conclusion with this issue is that if a large site were occupied for a long period of time, it would be expected to contain a larger material record that a small site occupied for a short period of time.
These issues must be addressed and resolved. The issue regarding sample strategies will be difficult to resolve due to the amount of time lapsed between Parowan Valley excavations, the analysis of the PVAP collection, and the overall destructive nature of excavation. However, through the efforts of several involved in the PVAP at BYU, some semblance of uniformity with accepted excavation methods and strategies has been applied to the provenience of artifacts recovered from Parowan Valley.

Resolution of varying Fremont site size and temporal occupation may also prove difficult, but if sites of similar size and temporal occupation are considered, some inroads could be made to facilitate cross-site comparisons. If the data from each site are standardized in a consistent method, differences in site size and chronology may not be obstacles.

Spatial distributions of projectile points from Parowan Valley will be considered in an attempt to understand the function of the Paragonah, Parowan, and Summit sites. These distributions will be scrutinized for areas of projectile point concentration. In addition, the locations of specific projectile point types will be considered and used as relative temporal markers in association with radiocarbon dates in order to discuss the chronology of sites in Parowan Valley.

Were projectile points in Parowan Valley being produced for a function beyond arrow use?

Previous research on the subject of production and distribution of goods in Parowan Valley have yielded important information. Hall (2008) demonstrated that Parowan Valley had a significant number of gaming pieces, indicating a popularity of gambling, or at least in-situ production of gaming pieces. Watkins (2006) and Jardine (2007) demonstrated that production of ceramics and the production and trade of exotics were common practices in
Parowan Valley. I propose that a large number of projectile points, in association with the amount of gaming pieces, ceramic production, and trade of exotics suggests Parowan Valley may have served as a small scale production area. I also propose that some of the projectile points recovered from Parowan Valley may have been used as currency in gambling. In order to answer this question, literature regarding production among small-scale societies must be incorporated and discussed. Ethnographic data regarding alternative uses of projectile points and arrows must also be considered. The use of projectile points and arrows beyond their most basic function as missiles will be discussed by using comparative data. These data demonstrate that projectiles may have been employed in extra-missile functions such as non-projectile cutting and digging tools in forager toolkits, currency in gambling, and markers of prestige.
Regional distribution of projectile point types and point chronologies in the Great Basin were also incorporated into the organization of analysis methods. These issues are discussed below with a discussion regarding the socio-economics of projectile point production and use.

In addition to a general and regional discussion of research and theory about chipped stone tools, issues regarding projectile point analysis and classification in the Great Basin are discussed. A detailed outline of methods used in the analysis of the Parowan Valley chipped stone assemblage is provided near the end of this chapter.

Theories and Research Concerning Projectile Points

At the basic functional level, projectile points were utilized to increase missile penetration providing higher potential for game procurement. Regional preference, raw material variability, and prey all influenced the type and style of projectile points. Projectile point technology is vital to the subsistence strategies of foragers. Fundamentally, projectile points were used in the acquisition of game to enhance diets and provide valuable raw materials harvested from the animal.

The basic formula that projectile points equal hunting is easy to understand and quantify. Is it possible that points can serve as more than mere index fossils elaborating
issues of subsistence and chronology? A foray into the possible social issues surrounding projectile points and their multiple functions may prove useful.

Beyond Projectiles: Multi-Functional Toolkits

Unlike ceramics and other artifacts associated with small-scale societies, it is difficult to attach additional value, beyond their role as hunting tools, to projectile points. It is possible, however, that projectile points were used for other purposes. Ethnographies serve as one of the best sources on the subject of hunter-gatherer toolkit functions. Russell Greaves observed the hunting and foraging practices of the Pumé, a small foraging group in Venezuela (Greaves 1997:287-320). An interesting observation made by Greaves is that bows, arrows, and projectile points all had multiple functions beyond propelling missiles and killing game (Greaves 1997:290). Greaves’ study documents the relationship between the temporal and geographic length of hunting expeditions and the level of multifunction applied to bows and arrows. Greaves determined that with long hunting trips, the multiple uses of bows and arrows increased (Greaves 1997:312). At the inception of the hunt, bows and arrows are considered to be singular in their function. As distance and different resources were encountered, the Pumé would modify bows by using them as clubs and digging sticks. Arrows were also used as small thrusting spears to catch rodents and fish or used as butchering tools when large game was acquired (Greaves 1997: 301-310). These uses, while limited to subsistence strategies illustrate the possibility that certain elements of small-scale society toolkits, particularly the projectile technologies of bows, arrows, and arrowheads, could have multiple functions.
Socio-Economics of Projectile Points

The examples provided by Greaves (1997) demonstrate that in the confines of a hunting tool kit, certain tools have multiple uses. Is it possible, therefore that projectile points could value beyond hunting implements assigned to them.

In his ethnographies of the Zuni, Frank Cushing (1883) demonstrated that projectile points carried symbolic meaning with functions beyond that of utilitarian tools of hunting or warfare. Cushing discusses several Zuni fetishes associated with the Bow Priesthood and also considers the fetishes of prey gods onto which projectile points were fastened.

In a discussion of Hohokam funerary ritual, Watkins and Rice (2009) discuss the presence of projectile points in Hohokam inhumations. Using Cushing’s (1883) observations of the treatment of projectile points by the Zuni, Watkins and Rice propose that the quantity of projectile points in a burial could illustrate the differences between mere hunting utilitarianism and more symbolic ornamental or fetishistic behavior. In other words, three or more projectile points might represent the remains of a quiver related to hunting activities, while a single point could represent the remains of a Zuni-type fetish or other forms of sympathetic magic.

Other ethnographies have illustrated the spectrum of socio-economic roles played by arrows and projectile points among some groups. It is often the case that projectile points represent cultural contexts and regionally bound social groups (Weissner 1983; Knecht 1997:6). Wilmsen and Roberts make a case for the socio-economic function of projectile points stating: “Projectile points may serve as diagnostic items not because they perform esoteric or especially significant extractive functions…but because they are products of manufacturing processes that inherently amplify morphological differences” (Wilmsen and Roberts 1978:26-27). These ideas are particularly evident in the work of
Polly Wiessner who has demonstrated that certain styles of projectile points transmit information regarding social identity and cultural boundaries among hunter-gatherer groups in the Kalahari (Wiessner 1983).

Wiessner examined the general morphology of projectile points and the regional variance of points used by different linguistic groups. She determined that projectile point manufacture was a high investment process and therefore held high social value (Wiessner 1983:19). In addition, after interviewing and observing the Kalahari San, Wiessner discovered that certain point styles were exclusive to specific regions and linguistic groups. Wiessner’s studies are important because they show part of the spectrum of multiple functions projectile points may have. Not only can projectile points facilitate hunting and game procurement, they also could serve as tools for the transmission of information.

Another ethnography of hunter-gatherer groups demonstrates that arrows and specific types of projectile points have an actual monetary value in at least one economic system. James Woodburn’s ethnographic observations of the Hadza in Tanzanian demonstrate that arrows were used as currency in gambling (Woodburn 1968:53). Woodburn explains that metal-tipped arrows were used as the main currency or “stake” when men gathered to gamble. Arrows with wooden or bone tips were not accepted as gambling currency. A gambler unfortunate enough to lose his metal-tipped arrows would be unable to hunt in subsequent socialized big game hunting and would have difficulty providing for himself and the group (Woodburn 1968:54).

Both of these ethnographies examine the socio-economic value of projectile points and arrows, specifically the values beyond their role as hunting tools. These ideas serve as fodder for speculation regarding the multiple functions and values that may have been applied to projectile points by the Fremont in Parowan Valley
Possibilities in Parowan Valley: Function, Chronology, and Value

The previous discussions regarding the multiple uses of projectile points and arrows among other hunter-gatherer groups are thought provoking and illustrate the complexities of many mobile hunter-gatherer groups. Ideas regarding the social and economic value of projectile points have been outlined along with a discussion of their function as hunting tools. Theoretical discussions aside, the fact that projectile points served as basic hunting tools cannot be forgotten. The basic functionality of a projectile point is still a factor when any attempts are made to reconstruct past life-ways and determine site function.

If points recovered from Parowan Valley were merely used for hunting, could the number of projectile points and faunal bone reflect feasting activities? In the Great Basin, trade festivals and gambling were very common among historic indigenous groups (Steward 1938; Culin 1907; Janetski 2002). These festivals were large events organized around harvest or hunting times to provide food for those in attendance (Steward 1938: 237). It is possible that these ethnographically observed festivals and gatherings are similar to festivals and gatherings among Formative groups in the Great Basin. If the Fremont held festivals or other gatherings in Parowan Valley, the need to provide food for attendants could explain the high number of projectile points reported in the excavations performed by the University of Utah and the large amount of points visually observed in the UCLA/SUU artifact assemblage.

The idea of feasting, gambling and trade festivals occurring in Parowan Valley is not unprecedented. It has been proposed that the Parowan Valley Fremont produced Snake Valley Series ceramics for trade to surrounding areas (Watkins 2006) and large amounts of gaming pieces in all stages of manufacture were recovered suggesting that gambling or at least the production of gambling paraphernalia occurred in Parowan
Valley (Hall 2008). If the ethnographic observations of Cushing (1893), Greaves (1997), Wiessner (1983), and Woodburn (1968) are used as a basis to fuel a different perspective surrounding the production, function, and value of projectile points in Parowan Valley, several new and interesting socio-economic insights on the Fremont are possible. Due to the tyranny of the ethnographic record and the transcontinental nature of the comparisons between modern forager and farming groups and Formative Period North American hunter-gatherers, perspectives into the socio-economics of the Parowan Valley Fremont may not be revolutionary or significant, but they could serve as a foundation for research into the multiple functions of projectile technology.

Fremont Chipped Stone Research

As discussed in chapter 1, Fremont research has generally focused on subsistence, regional variations, and socio-economic interaction with external groups. These issues have been researched and tested by application of models formulated around the archaeological record and ethnographic data of Late Prehistoric groups.

One of the key methods in defining and researching the Fremont is the use of culturally diagnostic artifacts. A case could be made that one of the main artifacts types used in defining the Fremont is ceramics (Madsen 1989:3; Watkins 2006). This is primarily due to their distinct designs, manufacture methods, regional distribution, and non-perishable nature. Another non-perishable diagnostic in the Fremont artifact assemblage are chipped stone tools, specifically projectile points. Projectile points can serve as temporal and regional diagnostics in a way similar to ceramics. Richard Holmer and Dennis Weder (1980) suggest that projectile points should be used in concert with ceramics and other artifacts to shed light on Fremont regional variability, subsistence strategies, and technology.
The most commonly discussed issue associated with Fremont projectile points is that of subsistence (Holmer and Weder 1980:67). Projectile points are considered hunting tools vital to forager toolkits. Therefore, if a Fremont site contained numerous projectile points and large counts of faunal bone, an assumption could be made that hunting was a popular activity at or around that site.

Previous excavations in Parowan Valley by the University of Utah yielded large numbers of projectile points (Berry 1972b; Dodd 1982; Marwitt 1970). A visual estimation indicates that the projectile points in the UCLA and SUU assemblages are also numerous. Due to the large amount of projectile points recovered Parowan Valley, an inference could be made that much hunting occurred in and around the area. This could indeed be the case, as the unworked bone assemblage in the PVAP collection consists of 27 boxes. Unfortunately, until those bones are analyzed, inferences beyond cursory assumptions cannot be made. Despite the fact that the UCLA faunal assemblage has not been analyzed, data from other sites excavated in Parowan Valley, such as Evans Mound and Median Village are available (Marwitt 1970; Metcalf 1982). NISP and MNI data from those sites discuss the large numbers of faunal bone recovered from the excavations.

Analysis Methods

In this thesis, I use a combination of analysis methods used by Brigham Young University’s Department of Anthropology and those outlined by Richard Holmer (1986), and William Andrefsky (2005). I also use Great Basin projectile point classification methods described by Richard Holmer and Dennis Weder (1980), Holmer (1986), and David Hurst Thomas (1981). The methods and insights provided by these authors serve as critical references for the organization and performance of my analysis.
The sample strategies and excavation methods used in Parowan Valley were also considered. The strategies and methods implemented by UCLA, Southern Utah University, and the University of Utah greatly influenced the collection and provenience of artifacts in the PVAP assemblage. The sampling methods applied in the analysis of other data sets from the PVAP collection by Watkins (2006), Jardine (2007), and Hall (2008) and suggestions by Richard Talbot and Joel Janetski also influenced my analysis.

The Parowan Valley Chipped Stone Assemblage

For this analysis, I considered all the available chipped stone collections from excavations at the three main sites in Parowan Valley: Paragonah (42IN43), Parowan (42IN100), and Summit (42IN40). As summarized in the first chapter, sites in Parowan Valley were excavated by several individuals and institutions. This variance of institutions and individuals led to a curatorial scattering of artifacts collected from Parowan Valley. The chipped stone assemblage analyzed from Paragonah included artifacts from the 1954-1960 excavations performed exclusively by UCLA. The collections analyzed from Parowan were also exclusively from UCLA excavations. The chipped stone assemblage analyzed from the Summit site, however, was not entirely from UCLA excavations. Chipped stone assemblages recovered by both UCLA and SUU in the PVAP collection were analyzed, and those data were combined with data reported from the University of Utah’s excavations at Summit (Berry 1972b; Dodd 1982) and Median Village (Marwitt 1970).

Due to the large nature of the PVAP chipped stone collection, a sample analysis of the collection was deemed necessary. All artifacts associated with or on the floor of structures were analyzed. This included expedient flake tools, projectile points, all other bifacially flaked tools, and some cores and hammerstones. In addition to the analysis of
all floor-associated artifacts, the sample included all projectile points. Analysis focused primarily on tools from the PVAP chipped stone collection for two reasons: first, the research questions considered in this thesis are specifically centered on the projectile point assemblage and tool production, and second, UCLA and SUU did not collect debitage from their excavations.

Analysis of the General Chipped Stone Assemblage

After formulation of the research questions posed in chapter 1, the PVAP assemblage was sorted and organized into general patterns based on cursory visual observations. Tools were divided into objective classes including expedient flake tools, unifacially flaked tools, bifacially flaked tools, and projectile points. Since the lifetime and function of chipped stone tools is often mutable, complete confidence in assigning function to many of the tools in the PVAP assemblage was not possible. However, when elements like use-wear, retouch, fracture patterns, and hafting areas were considered, some inferences regarding tool function were made. This analysis determined that the portion of the PVAP collection sampled for this analysis was rich in all types of chipped stone artifacts with the exception of debitage. All tools were measured and cataloged in accordance with methods used by previously mentioned authors and institutions. Since accuracy in projectile point measurements is extremely important, detailed schematics were used to maintain a standardized analysis. Measurements for each projectile point were taken in accordance with methods outlined by Andrefsky (2005) seen in Figure 2.1.
Issues with Projectile Point Identification

Projectile points play vital role in the archaeology of the Great Basin. From the Paleo-Archaic to Late Prehistoric periods, chipped stone projectile points have contributed to knowledge regarding the life-ways of the ancient inhabitants of the Great Basin. Extensive excavations have taken place in the Great Basin for more than one hundred years (Fowler 1980, Janetski 1997). Despite this period of research, an in-depth classification of projectile points from the Great Basin was only established around fifty years ago and is still not completely standardized (Bettinger and Eerkens 1999; Holmer 1986; Thomas 1981).

This classification of Great Basin projectile points, while extensive, is still a subject of debate primarily because of variability in chronologies and point styles.
throughout the Great Basin. These debates have divided the eastern and western portions of the Great Basin into two chronological and typological areas (Heizer and Napton 1970; Hester and Heizer 1978; Holmer 1986; Thomas 1981). This chronological and typological division has caused some difficulty with projectile point analysis and research. According to Bettinger and Eerkens (1999: 232), two distinct but “good” projectile point typologies were developed for the Great Basin. Heizer and Baumhoff (1961), Hester and Heizer (1978), and others developed a typology based on weight and Thomas (1981) developed a typology based on basal width. Thomas (1981) argues that Heizer (1960) and Hester and Heizer (1978) do not take retouching of artifacts into consideration. The weight of a projectile point could be significantly altered if retouched or broken, whereas the basal width (mostly protected by the haft) would be less subject to alteration throughout the use-life of the point. Thus, Thomas argues that a typology based on point weight could be problematic. Interestingly enough, Thomas’ typology was modeled after the typology created by Heizer and others (Bettinger and Eerkens 1999:232). The few revisions made by Thomas however, created difficulties for consistency in analyses performed on points recovered from the eastern portion of the Great Basin.

Those frustrated with the ambiguity of types and chronologies have often resorted to “home-grown” classification methods inconsistent with pre-existing classifications. These problems are well described by Holmer, “to avoid the problems of misapplying type definitions, some researchers attach new names or alphanumerical designators to styles even though they are already known by one or more names” (Holmer 1986:92). After 23 years, Holmer’s observation on disgruntled analysts forging their own typologies may be slightly outdated with increased standardization and acceptance of projectile point types, but the confusion (albeit to a lesser extent, in my opinion) regarding regional variation of projectile points and chronologies still exists. In order to avoid these
difficulties with classification, Holmer proposes two rules:

1) if identical shapes date to different periods at various locales they are considered separate types and are assigned different names, and 2) if multiple names have been used for identical shapes that date to similar (i.e., significantly overlapping) periods at various locales, they are considered to be a single type and the most commonly used name is adopted for all areas (Holmer 1986:92).

Holmer suggests that application of these methods improves standardization in projectile point classifications and encourages analysis based on point morphology and temporal and spatial factors (Holmer 1986:92). The application of the aforementioned, coupled with standardized measurements and a cross sample of Great Basin projectile point assemblages provided Holmer with quantifiable results and an improved standardization of projectile point types and their chronology.

Information from David Thomas’ previously mentioned analysis methods were also used (Thomas 1981). In this article, Thomas provides metric standards for specific projectile point types. Through detailed measurements and cross-site comparisons, Thomas demonstrates that certain point types fall into certain metric standards (Thomas 1981: 14). Thomas’ work is particularly useful in the classification of Late Formative and Late Prehistoric projectile points.

Finally, Noel Justice provided an important regional reference for projectile point types in the Great Basin. His book *Stone Age Spear and Arrow Points of California and the Great Basin* (Justice 2002), also provides metrics and visual representations of projectile points found in the Great Basin.

Parowan Valley Projectile Point Analysis

This analysis has relied heavily on Holmer and Weder (1980), Holmer (1986), Thomas (1981), and Justice (2002) to ensure accuracy and uniformity in its projectile
point classifications. Since the analysis sample of the PVAP chipped stone collection included all projectile points in the collection, application of the methods outlined by Holmer and Thomas is especially appropriate due to projectile point variability.

In keeping with the general analysis of the other elements of the PVAP chipped stone assemblage, projectile points were also divided into visual groups based on size and similarities in hafting elements. After this preliminary division, points were grouped in accordance with accepted projectile point classifications. These visual classifications were tested by taking measurements of blade length, neck height, haft length, blade width, neck width, base width, and weight and comparing them to those outlined by Thomas (1981). While all measurements will be considered, some may be more useful than others when establishing patterns. Due to wear and tear, the metrics of the distal and lateral ends of projectile points are highly variable. Basal width measurements, however, will be held in higher esteem under the assumption that they would not be subject to as much retouch or fracture.

It should be stated however, that despite suggestions of specific measurement guidelines for specific projectile point types (Holmer and Weder 1980; Holmer 1986; Justice 2002; Thomas 1981), there has been little success establishing a metric standard for each projectile point type in the literature. Therefore, visual comparisons and classifications based on morphological differences and similarities are still the most commonly used methods in projectile point classification.

In addition to chronological and morphological groupings and basic measurements, the projectile point assemblage was analyzed with a specific perspective in mind. In *Projectile Technology*, Heidi Knecht states that projectile points should be analyzed in a way that “allows them to be viewed not simply as isolated items, of
material culture, but rather as one element of an integrated system of technology… implemented by a group of living people” (Knecht 1997:5).

Pin-Pointing Chronology in Projectile Points

The projectile points from Parowan Valley were also analyzed in an attempt to provide a good database to further the understanding of site chronology in Parowan Valley. The collection of projectile points in the Parowan Valley assemblage is large enough that sheer numbers may establish patterns of chronology at the three large sites. Spatial distributions of all projectile point types will be considered in an effort to construct a relative chronology of the sites. When this relative chronology is compared with the radiocarbon dates discussed in chapter 1, a more complete perspective into the temporal occupations of Parowan Valley may be possible.

Conclusion

The discussions of theory and method in this chapter were presented in order to demonstrate how the analysis of the Parowan Valley chipped stone assemblage was devised and applied and how the resultant data will be interpreted. The numerous theoretical perspectives outlined in the beginning of this chapter were provided to demonstrate the full spectrum of perspectives applied to the analysis and interpretation of the Parowan Valley chipped stone assemblages. Issues like craft specialization, standardized production, multiplicity of projectile function, and the place of projectiles in the economy of ancient societies have all been discussed and considered.

The analysis methods outlined in the latter part of this chapter are not revolutionary and are fairly standard in general chipped stone analysis. These methods were utilized to organize and classify the chipped stone assemblage from Parowan Valley.
and provide useful raw data for more advanced interpretation though the application of theory regarding chipped stone tools.

This chapter has served as a foundation of theory and method allowing me to present the resultant data from my analysis as it is discussed and interpreted in subsequent chapters. Chapter 3 will present numerical totals, interpret tool provenience and apply the theories outlined in this chapter in an attempt to understand another part of the material culture of the Parowan Valley.
In this section, I will present the raw data gained from my analysis of projectile points for the UCLA and SUU PVAP collections which yielded 2,511 projectile points. I will also provide the projectile points totals from the excavations performed by the University of Utah at Evans Mound (Berry 1972b; Dodd 1982) and Median Village (Marwitt 1970) (both considered part of Summit), but those totals will only be considered as part of a raw total illustrating the sheer amount of projectile points recovered from Parowan Valley. Excavations by the University of Utah yielded 218 from Median Village and 356 from all years of excavation at Evans Mound. If the amounts of projectile points from the PVAP collection and the University of Utah’s work at Median Village and Evans mound are combined, total amount of projectile points recovered from the three main sites in Parowan Valley is 3,085. It must be noted that of these 3,085, 6 projectile points were analyzed that had no provenience to any site. Thus, they are counted as part of the general total, but will not be discussed when individual site totals and distributions are considered. The provenience and quantities of points recovered by the University of Utah will be considered in concert with the provenience of the UCLA and SUU points. I will also discuss and compare the distributions of the projectile points from each individual site in Parowan Valley.
From this analysis, it is apparent that the majority of the projectile points recovered from the excavations are temporally consistent with the Formative period. The Late Archaic and Late Prehistoric points are relatively few in number and their existence at the site may be, in the case of the Late Archaic points, curatorial. In the case of the Late Prehistoric points, they are likely part of a temporary Numic speaking occupation.

A complete summary of the projectile point quantities and types is shown in Table 3.1. A visual range of projectile points is also provided for a reference as the projectile points are described (Figure 3.1).

Humboldt

One possible Humboldt Point was found at the Parowan site. This point is made of a grainy chert and is missing the distal end (Figure 3.1a). The lateral edges are slightly convex and the proximal end is slightly concave. Humboldt points are classified by a lanceolate blade and a concave base. Some Humboldt points also have a narrow stem and blade (Holmer 1978:44). According to Fowler et al (1973), Humboldt points occur in the Great Basin from 3500 to 1800 BC.

Pinto Series

Three Pinto Series points were identified in the PVAP collection. There are three specific forms of Pinto series: shouldered, single shouldered, and shoulderless (Figure 3.1b). Pinto points are generally characterized by large, triangular blades, a stemmed or corner-notched hafting element with sloping shoulders near the base, and a notched base forming rounded tangs on each side (Holmer 1978: 41). Pinto points are found in the Table
3.1. Projectile point quantities from UCLA/SUU excavations.

<table>
<thead>
<tr>
<th>Projectile Point Types</th>
<th>Paragonah</th>
<th>Parowan</th>
<th>Summit</th>
<th>No Prov.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elko Series</td>
<td>6</td>
<td>6</td>
<td>48</td>
<td>1</td>
<td>61</td>
</tr>
<tr>
<td>Pinto Series</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Humboldt</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Gypsum Point</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Unidentified Archaic</td>
<td>2</td>
<td></td>
<td>18</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Rose Spring Corner</td>
<td>28</td>
<td>50</td>
<td>386</td>
<td></td>
<td>464</td>
</tr>
<tr>
<td>Eastgate Expanding Stem</td>
<td>17</td>
<td>26</td>
<td>66</td>
<td></td>
<td>109</td>
</tr>
<tr>
<td>Rosegate</td>
<td>8</td>
<td>14</td>
<td>48</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>Nawthis Side-notched</td>
<td>5</td>
<td>2</td>
<td>14</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Parowan Basal Notched</td>
<td>106</td>
<td>179</td>
<td>998</td>
<td>4</td>
<td>1287</td>
</tr>
<tr>
<td>Bullcreek</td>
<td>6</td>
<td></td>
<td>11</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Desert Side-notched</td>
<td>1</td>
<td>6</td>
<td></td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Unidentified Formative</td>
<td>150</td>
<td>97</td>
<td>199</td>
<td></td>
<td>446</td>
</tr>
<tr>
<td>Total</td>
<td>321</td>
<td>390</td>
<td>1794</td>
<td>6</td>
<td>2511</td>
</tr>
</tbody>
</table>

Figure 3.1. General sample of projectile point types from Parowan Valley: (a) Humboldt, (b) Pinto, (c-e) Elko Series, (f-g) Gypsum, (h-i) Rose Spring Corner-notched (j-k) possible Eastgate Expanding-stem, (l-m) Rosegate, (n-p) Parowan Basal-notched, (q-r) Nawthis Side-notched, (s-t) BullCreek, (u-v) Desert Side-notched
Great Basin and have been dated between 8300 and 6200 BP at Sudden Shelter and Cowboy Cave (Holmer 1978:66). The Pinto points in this assemblage are shouldered with a bifurcated base.

Elko Series

A total of 61 Elko Series points were identified in the UCLA/SUU projectile point assemblage (Figure 3.1 c-e). Elko Series points are characterized by large, triangular blades with straight or slightly convex edges. Elko Corner-notched points have straight or slightly convex bases and Elko Eared-points have deeply notched concave bases. Elko Side-notched points generally have straight bases. Some the larger Elko series points may in fact have been hafted knives, but they are still included in this analysis total. The chronology of Elko Series points is often difficult to determine due to disputes in eastern and western Great Basin chronologies (See Chapter 2 for a discussion of this issue). In addition, the ambiguity of function, i.e. projectile point or hafted biface also causes some problems discerning chronology. Elko Series points first appear around 6000 BC (Holmer 1986:101) and are poor temporal diagnostics due to their presence in both Archaic and Formative Period contexts. Elko Eared points, however, may serve as temporal diagnostics for the eastern Great Basin, especially in the contexts of Hogup and Cowboy Cave (Holmer 1986:102). According to Janetski et al. (1999), there is some evidence that Elko Eared points are diagnostic to the Late Archaic.

Gypsum

Four Gypsum points were identified in this assemblage (Figure 3.1 f-g). Gypsum points are characterized by triangular blades with convex edges with a tapering stem and
a convex or squared base (Holmer 1978:49). Gypsum points date to between 2500 and 1000 BC throughout the Great Basin and Colorado Plateau (Geib et al. 2001:202).

Unidentified Archaic

Twenty projectile points in this assemblage were designated as unidentifiable Archaic. These unidentified points were too fragmented to classify or too aberrant in form to fit into accepted Great Basin types. Due to their size, they were designated as Archaic.

Rose Spring Corner-notched

464 projectile points were identified as Rose Spring Corner-notched (Figure 3.1 h-i). Rose Spring Corner-notched points are small, and are defined by their narrow, triangular blades and corner notches. The blades of some Rose Spring points are serrated. The corner notches of the Rose Spring point create squared shoulders and barbed tangs that do not extend as long as the stem. (Heizer and Hester 1978:32-33). The occurrence of these points in the Great Basin correlates with the appearance of bow and arrow technology (Bettinger and Eerkens 1999:235-236; Jennings 1986:116). Rose Spring points have been dated between AD 300 and 950 on the northern Colorado Plateau but evidence demonstrate that they are associated with later Fremont occupations (Marwitt 1968).

Eastgate Expanding-stem

109 Eastgate Expanding-stem points were identified in this assemblage (Figure 3.1 j-k). Eastgate Expanding-stem points have a wide triangular shape with straight edges, deep corner-notches, and outward expanding basal tangs and stem. Many times, the basal
tangs and stem are the same length. Eastgate Expanding-stem points are generally almost as long as they are wide (Holmer and Weder 1980:60). For the most part, Eastgate points are contemporary with Rosespring Corner-notched points.

Rosegate

In this assemblage, 70 projectile points were designated as Rosegate points (Figure 3.1 l-m). The term Rosegate comes from the combination of the names Rosespring Corner-notched and Eastgate Expanding-stem. The term Rosegate was first coined by Thomas (1981). Rosegate points tend to be slightly shorter that Rosespring points and the shoulders and stems are more squared off than Rosespring points. Rosegate points also lack the long tangs and expanding stems of Eastgate Expanding stem points. It is often difficult to identify Rosegate points due to their similarities to both Rosespring Corner-notched points and Eastgate Expanding-stem points. Thomas’ (1981) discussions, however, provide some guidelines which were used in this analysis to make these designations.

Parowan Basal-notched

In the PVAP collection, Parowan Basal-notched points were the most commonly identified projectile point (Figure 3.1 n-p). 1,287 Parowan Basal-notched points were recorded from the three main sites excavated by UCLA and SUU. Parowan Basal-notched points are characterized by an elongated triangular blade, two shallow basal notches, and a straight proximal end. Parowan Basal-notched points are commonly found at Fremont sites dating around AD 950-1200 (Holmer and Weder 1980:64).
Nawthis Side-notched

In this assemblage, 21 points were classified as Nawthis Side-notched points (Figure 3.1 q-r). Nawthis Side-notched points have long, thin triangular blades with deep lateral side-notches and straight to slightly convex proximal ends (Holmer and Weder 1980; Jones and O’Connel 1981). Nawthis Side-notched points date to approximately AD 950-1250 (Holmer and Weder 1980:61). Nawthis points are generally found in the central and eastern parts of the Fremont culture area (Holmer and Weder 1980:51).

Bull Creek

17 projectile points were classified as Bull Creek points (Figure 3.1 s-t). Bull Creek points resemble elongated triangles with concave or slightly square bases. The depth of concavity varies by point from deeply concave to only slightly concave. The Bull Creek points with deeply concave bases have thin, pointed proximal tangs. Bull Creek points with more square bases also exhibit some evidence of the squaring off of the proximal tangs providing a less pointed appearance. Bull Creek points are spatially distributed to the southeastern corner of the Fremont culture area. The temporal span of Bull Creek points is between AD 1050 and 1300 (Holmer and Weder 1980: 51, 61). According to Holmer and Weder, based on ceramic comparisons, it appears that Bull Creek points are heavily associated with Kayenta and Mesa Verde ceramics. This correlation led Holmer and Weder to argue that Bull Creek points are more commonly associated with Anasazi sites than Fremont sites (Holmer and Weder 1980:61)

Desert Side-notched

Eight points were defined as Desert Side-notched (Figure 3.1 u-v). Desert Side-notched points are small triangular forms with straight blades, deep side and often basal
notches and expanding proximal ends (Baumhoff and Byrne 1959:37; Holmer and Weder 1980:60). Desert Side-notched points are often categorized by four sub-types: General, Sierra, Delta, and Redding (Thomas 1981:27). Thomas concedes that these sub-types do not need to be considered in-depth in order to validate each sub-type as part of the Greater Desert Side-notch type. The points identified in this collection are either part of the Sierra sub-type or General sub-type.

Unidentified Formative

A total of 446 projectile points were unidentified in this assemblage. These points were either too fragmented or too aberrant of generally accepted projectile point types to be classified. If a point did not fit into the metric standards established by Thomas (1981) and Justice (2002) or the visual and metric descriptions provided by Holmer and Weder (1980) or Holmer (1986), it was not forced. Approximations or possibilities of type were suggested in the analysis notes.

Ground Projectile Points

During this analysis, 4 flaked and subsequently ground projectile points were identified. Three of these points are from Summit, and one is from Parowan. These points are small and resemble Rose Spring Corner-notched points and Parowan Basal-notched points. Three of the points are made of obsidian and one is made of a type of siltstone. It appears that these points were flaked to the desired form and thickness and then heavily abraded to remove the flake scars and sharp edges (Figure 3.2). The function of these items is unknown, but their use as hafted arrow points is unlikely due to their blunted and polished nature. In Figure 3.2, projectile point B is the most thoroughly ground. Upon close inspection, multiple grinding planes can be observed. It should also be noted that
the distal end of point B has been intentionally dulled and polished, not broken and that when analyzed under a microscope, point B appears to have some hematite staining. Profile views of points A and B were shown as they demonstrated significantly more edge grinding that points C and D. The implications surrounding these ground points will be discussed in the next chapter.

Contracting and Expanding Stems

The four previously discussed projectile point types, Rose Spring Corner-notched, Eastgate Expanding-stem, Rosegate, and Parowan Basal-notched often share similar characteristics due to their closeness in age. To verify my visual classifications of these points in the PVAP assemblage, a test was preformed utilizing some basic measurements. The underlying assumption of this test is that projectile points with expanding stems like Rose Spring Corner-notched, Eastgate Expanding-stem, and Rosegate are more prevalent between AD 300 and AD 900 and contracting stem points like Parowan Basal-notched
are more prevalent between AD 950 and AD 1200 (Holmer and Weder 1980). As outlined in chapter 2, detailed measurements of each point were taken. For this particular test, the maximum widths of the distal and proximal ends of each complete stem were measured and then divided. Previous visual classifications of projectile point types were not considered in an attempt to maintain a level of objectivity in this test. If the quotient of distal neck width divided by proximal neck width equaled 1 or more, the projectile point was determined to be an expanding stem. If the quotient was less that one, the projectile point was determined to be a contracting stem. This simple test provided a tool to aid in testing the relative chronology of the sites in Parowan Valley. The quantities and spatial distributions of expanding and contracting stem points will also be considered and mapped in an effort to determine if specific site areas possessed earlier or later points.

Only a fraction of the 2,511 projectile points could be tested. First, the points that were obviously Archaic due to size and morphology were not tested. Second, points that were side-notched or that did not have stems were not considered. Third, points missing parts of the distal or proximal stem widths were not included in the test. A total of 447 projectile points possessed complete stem widths and were able to be tested. Of these 447, 340 have contracting stems and 107 have expanding stems. If the basic assumption that expanding stem points date to earlier time periods and contracting stems date to later periods, the ratio of expanding stem points to contracting stem points (107 to 340) indicates that the sites in Parowan Valley have more points dating to later periods circa AD 950 to AD 1200. When radiocarbon dates (see Appendix A) are considered in conjunction with the relative projectile point dates, it appears that the chronology of Parowan Valley demonstrates a higher occupation during AD 950 to AD 1200.
Quantities and Distributions at Paragonah, Parowan, and Summit Paragonah

When compared with the other two main sites in Parowan Valley, Paragonah has slightly less projectile points than Parowan, and significantly less than Summit. The types of projectile points recovered from Paragonah range in time from Late Archaic to Late Prehistoric. A total of 321 projectile points were classified and typed from Paragonah. Of that 321, 163 points were made of obsidian, the other 158 are made of crypto-crystalline cherts of various colors and qualities. The projectile points from Paragonah were classified into 7 types including Elko Series, Rose Spring Corner-notched, Eastgate Expanding-stem, Rosegate, Nawthis Side-notched and Desert Side-notched (Figure 3.3). Of the 321 points, 150 were not identified. These unidentified projectile points shared some traits of identifiable projectile point types, but were heavily fragmented and either did not resemble generally accepted templates of projectile point types or they did not fall within the generally accepted metrics established by Thomas (1981).

Due to the methods of UCLA’s excavations, it is difficult to identify the original locations of many of the projectile points from the Paragonah site. Of the 321 projectile points from Paragonah, only 173 were provenienced to structures (see Figure 3.4). The provenience of the remainder of points from Paragonah was either ambiguous or associated with extra-mural testing areas that were not consistently plotted on the site maps. In addition to plotting the quantities of projectile points, the distribution of various projectile points types was plotted (Figure 3.5).

In many cases, plan views of test trenches and extra-mural areas are provided but unlabeled, leading to some uncomfortable guess work when designations of provenience are considered. Thirty-seven of the projectile points were located on the floors of 17 structures. The balance of the 173 points was associated with interior fill or other features in the structures. Structure 17 contained the most projectile points associated with the
Figure 3.3. Temporal Range of Projectile Points at Paragonah: (a-c) Elko Series, (d-f) Rose Spring Corner-notched, (g-h) Rosegate, (i-j) Eastgate Expanding-stem, (k-l) Parowan Basal-notched, (m) Desert Side notched

Figure 3.4. Distributions of projectile points from Paragonah
floor level. All projectile points associated with the floor level of structures at Paragonah are Formative Period projectile points, with the exception of 1 floor-contact Elko Series point from Structure 25 that may be curatorial or merely a hafted biface. Projectile points not associated with the floor of the structures were associated with various levels of fill in the structures. All of the 136 points associated with structure fill date to the Formative Period. In order to better understand the chronology of the Paragonah site, the distributions of specific projectile point types will be considered. In addition, the distributions of contracting and expanding stemmed points will also be considered.
Expanding and Contracting Stems from Paragonah

At Paragonah, 47 projectile points were classified into the categories of expanding or contracting stems. Of these, 39 points have contracting stems and 8 have expanding stems. The majority of these points were located in extra-mural areas and their exact provenience is unknown. Figure 3.6 illustrates the distributions and quantities of the expanding and contracting stem points. Both the total counts of expanding to contracting stem points and the spatial distributions highlighted in Figure 3.6, suggest that points with contracting stems are more common than expanding stem points.

Parowan

A total of 390 projectile points were recovered from UCLA excavations at Parowan. Projectile points recovered from Parowan range in time from Late Archaic to Late Prehistoric. Obsidian and crypto-crystalline cherts are the most common toolstone materials. Of the 390 points, 229 are obsidian, 157 are chert, 2 are quartzite, 1 is made of siltstone, and 1 is made of a material that resembles ignimbrite. Projectile points from Parowan were classified into 11 types including Elko Series, Pinto Series, Humboldt, Rose Spring Corner-notched, Eastgate Expanding-stem, Rosegate, Nawthis Side-notched, Parowan Basal-notched, Bull Creek, and Desert Side-notched (Figure 3.7). Of the 390 points, 95 were not identified. These projectile points were not classified due to their general lack of morphological attributes consistent with types established in the Great Basin. Of 390 projectile points, only 14 were associated with excavated structures. All other projectile points were recovered from extra-mural areas like the test trenches surrounding the structures. According to the provenience, no projectile points were found on the floors of structures excavated at Parowan (Figure 3.8 and Figure 3.9)
Figure 3.6. Spatial Distribution of Expanding and Contracting Stem Points at Paragonah

Figure 3.7. Chronological range of projectile points from Parowan: (a-c) Elko Series, (d-f) Rose Spring Corner-notched, (e) Possible Eastgate Expanding-stem, (h-k) Parowan Basal-notched, (l-m) Bullcreek, (n-o) Desert Side-notched.
Expaning and Contracting Stems from Parowan

Sixty-three projectile points from the Parowan assemblage were categorized as expanding or contracting stem points. Of these 63, 55 have contracting stems and 8 have expanding stems. The spatial distribution of these points was successfully plotted in Figure 3.10. The total counts of expanding and contracting stem points and the spatial distributions of these points suggest that contracting stem points were more common than contracting stem points. These totals and spatial distributions are important relative temporal diagnostics to consider in conjunction with radiocarbon dates in order to establish a chronology for the site of Parowan. The presence of many contracting stem points may indicate that Parowan is a later site in the general chronology of Parowan Valley.

Summit

The provenience and quantity of projectile points recovered from Summit will be discussed in three parts. First, data from the UCLA/SUU excavations will be presented and considered. Second, data from the excavations performed by the University of Utah at Evans Mound and Median village will be presented. Third, data and projectile point provenience from all excavations performed at Summit/Evans Mound/Median Village will be combined in order to provide a comprehensive discussion of projectile point quantities and distributions.

UCLA Excavations

The projectile point assemblage collected from Summit by UCLA has a diverse range of Archaic and Formative period types. No Late Prehistoric points were identified.
Figure 3.8. Distributions of projectile points at Parowan.

Figure 3.9. Distributions of projectile point types at Parowan
Eight projectile point types were identified in the Summit assemblage. These types include Elko Series, Pinto Series, Gypsum, Rose Spring Corner-notched, Eastgate Expanding-stem, Rosegate, Parowan Basal-notched, and Bull Creek (Figure 3.11). In addition to these types, 134 points were unidentified due to morphological ambiguity or incompleteness. Obsidian is the dominant toolstone at the Summit site. Of the 1,030 projectile points analyzed in the UCLA Summit collection, 558 are obsidian, 471 are made of various colors and types of chert, and 1 is made of quartzite.

Precise provenience for artifacts from the Summit site was often difficult to determine. Little is known concerning excavation methods, specifically the grid systems...
used in 1960-1961. Accurate maps and grid designations from the final three years of excavation are available, facilitating the provenience process.

With this information, it is possible to locate the provenience of many projectile points excavated after 1961 (Figure 3.12 and Figure 3.13). Of the 1030 projectile points recovered by UCLA, the exact provenience of 686 points is known. Even with this limited knowledge of provenience, some patterns emerge. When examining the areas of projectile point concentrations, it is clear that the heaviest distribution of projectile points occurs in the south-eastern area of the Summit site. The excavation areas near structures 14, 27, and 28 had the highest concentration of projectile points. This concentration
is similar to the concentration of gaming pieces noted by Hall (2008: 58). Only one projectile point is associated with a structure floor. One Rose Spring Corner-notched point was provenience to the floor of structure 26. All other points are associated with the fill of structures or were found in extra-mural areas. The majority of points were found in extra-mural areas.

Expanding and Contracting Stems from Summit (UCLA)

At the Summit site, a total of 162 points were classified as either expanding or contracting stem points. Of these, 113 have contracting stems and 49 have expanding stems. These points were plotted on a plan map in order to provide a stronger relative chronology for the Summit site (Figure 3.14). Since contracting stem points are more
prevalent than expanding stem points at the Summit site, it is likely that the relative chronology of the Summit site is late in the Formative period.

If the radiocarbon dates and relative chronological dates from Summit are compared, it appears that a pattern of later occupation at Summit emerges.

SUU Excavations

The excavations performed by SUU at Summit yielded 764 projectile points. This analysis identified 11 projectile point types including Elko Series, Pinto Series, Gypsum, Rose Spring Corner-notched, Eastgate Expanding-stem, Rosegate, Parowan Basal-
notched, Nawthis Side-notched, and Bull Creek. Seventy points were unidentified in this assemblage. In the SUU assemblage, 380 points are made of obsidian and 382 points are chert. Two points made of fine grained quartzite are also present in this assemblage.

The specific provenience of projectile points from the excavations by SUU is difficult, at best, to determine. This analysis however, has determined an approximation of provenience suggesting that 104 points are associated with structures, 650 are associated with extramural areas, and 10 have no provenience.

Expanding and Contracting Stems from SUU

Despite the fact that the projectile points from the SUU excavations cannot be plotted, the total of expanding and contracting stemmed points was considered in order
to bolster inferences made regarding the relative chronology of the Summit site. These inferences were based on data from the UCLA excavations. When the points from SUU are considered, 133 projectile points have contracting stems and 43 points have expanding stems. When the counts from UCLA and SUU are combined, 249 points have contracting stems and 92 have expanding stems. With the combination of the counts from both excavations, it is still clear that contracting stemmed points are the dominant style. The increase in expanding stemmed point counts suggests that the Summit site may have been occupied during both the early and late Formative Period.

University of Utah Excavations, Evans Mound

The excavations performed at Evans Mound by the University of Utah yielded 356 projectile points. Evans Mound was excavated between 1970 and 1974 and the projectile point designations made during the artifact analysis reflects the accepted projectile point types of that time period. Only six currently accepted projectile point types were discussed in the Evans Mound excavation reports: Pinto, Rose Spring Corner-notched, Eastgate Expanding-stem, Parowan Basal-notched, and Cottonwood Triangular. The other points discussed in the Evans Mound reports were divided into four descriptive types based on morphological characteristics: corner-notched, side-notched, single-shouldered, and stemmed. Points that were not identified by the analysts were listed as unidentified. For the purposes of this thesis and the artifact totals, the points given descriptive names were placed in the unidentified category due to the lack of discussion in the report regarding standardization of these types and the fact that I did not have access to sufficient visual representations of these “types”.

The provenience of projectile points at Evans Mound appears to be fairly straightforward, but there are still some discrepancies. Points from Evans Mound are
spatially distributed throughout structures and extra-mural areas. A total of 130 points are associated with structures, 102 were recovered from the fill of the structures, and 28 were directly associated with the floors of structures. In the extra-mural areas of the excavation (test pits, test trenches, etc), 126 points were recovered. Of the 356 points, 100 had ambiguous or non-existent provenience.

University of Utah Excavations, Median Village

Excavations at Median Village were shorter in duration and yielded fewer artifacts than those at Evans Mound. Excavations recovered 218 projectile points. The typology problems in the Median Village report are similar to those in the Evans Mound report. Only two currently accepted projectile point types were listed in the Median Village report: Parowan Basal-notched and Cottonwood triangular. The rest of the points fall into three descriptive morphological types: Triangular Unstemmed, Triangular side-notched, and Willow Leaf. Unidentified projectile points are also labeled. Since these three types are ambiguous and strictly related to projectile point morphology, it is difficult to determine what the analyst had in mind. Due to difficulties in reconciling these types with currently accepted projectile point types, they were labeled in the general category of unidentifiable.

Projectile points gathered from Median Village were all provenienced to structures or extra mural testing areas. Of the projectile points associated with structures, 93 were recovered from the fill of the structures, and 16 were recovered from the floor. Projectile points associated with test pits, trenches, and other extra-mural areas numbered 109. No projectile points from Median Village had problems with provenience.

When the projectile point totals from the multiple excavations at Summit are combined, the total quantities are impressive. The numbers indicate that the majority of
Table 3.2. Totals and provenience of projectile points from all Summit excavations.

<table>
<thead>
<tr>
<th>Projectile Point Types</th>
<th>Structures</th>
<th>Structure Floors</th>
<th>Extramural Areas</th>
<th>No Prov.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elko Series</td>
<td>5</td>
<td>36</td>
<td>7</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Pinto Series</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Gypsum Point</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Unidentified Archaic</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Rose Spring Corner</td>
<td>40</td>
<td>2</td>
<td>325</td>
<td>39</td>
<td>406</td>
</tr>
<tr>
<td>Eastgate Expanding Stem</td>
<td>13</td>
<td>48</td>
<td>9</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Rosegate</td>
<td>2</td>
<td>33</td>
<td>13</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Nawthis Side-notched</td>
<td></td>
<td>12</td>
<td>2</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Parowan Basal Notched</td>
<td>250</td>
<td>37</td>
<td>903</td>
<td>210</td>
<td>1400</td>
</tr>
<tr>
<td>Bullcreek</td>
<td></td>
<td>11</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cottonwood Triangular</td>
<td>15</td>
<td>3</td>
<td>39</td>
<td>9</td>
<td>66</td>
</tr>
<tr>
<td>Unidentified Formative</td>
<td>47</td>
<td>3</td>
<td>180</td>
<td>49</td>
<td>279</td>
</tr>
<tr>
<td>Total</td>
<td>375</td>
<td>46</td>
<td>1599</td>
<td>348</td>
<td>2368</td>
</tr>
</tbody>
</table>

Projectile points were recovered from extra-mural areas, but they also demonstrate that a sizeable amount of projectile points were recovered from structures. Table 3.2 illustrates the provenience of all projectile points recovered from the Summit site.

Parowan Valley

As mentioned at the beginning of this chapter, the total number of projectile points recovered from Parowan Valley throughout all excavation periods is 3,085. This number, while impressive, is problematic if inter-site and intra-site comparisons are performed. Each site in Parowan Valley varies in size and total area excavated. Finally, no formal site boundaries were established by any of the excavating institutions, therefore it is unknown if the areas excavated are accurate representations of the actual sites of Paragonah, Parowan, and Summit.

To unify the data from all three sites, and enable cross-site comparisons, the quantities of projectile points from each site were standardized. This analysis utilized similar methods of standardization used by Jardine (2007) and Hall (2008) by comparing
the total amount of projectile points to the amounts of residential structures excavated. In previous tables, no distinction was made between residential and storage structures such as granaries. In normalization of data however, this distinction is necessary. Parowan had the highest number of points per residential structure with 65 points, Summit had 34.32, and Paragonah had 12.84 projectile points per residential structure (See Figure 3.15).

Despite the fact that Parowan leads the sites in most points per residential structure, it must be pointed out that only six residential structures were excavated at the Parowan site. When the number of residential structures at Parowan are compared with the residential structures at Paragonah and Summit, 25 and 69 respectively, it is clear that Paragonah and Summit had many more structures excavated. In light of problems with provenience however, the calculation of projectile points per structure seems to be the best method of standardizing this data. In the following chapter, the quantities and distributions of projectile points will be interpreted. The data will be compared to other
large Fremont sites in order to determine the validity of the perception that projectile point quantities from Parowan Valley are significantly high. In addition, the data will be used to re-visit and if possible, answer the research questions posted in the introductory chapter of this thesis.
DISCUSSION AND CONCLUSIONS

In chapter 3, data regarding the quantities and distributions of points in Parowan Valley was presented and discussed. The data were standardized in order to facilitate cross-site comparisons with other large Fremont sites. In this chapter, the data previously presented in chapter 3 and the ethnographic information presented in chapter 2 will be considered in an attempt to answer the research questions posed in chapter 1.

Research Questions Revisited

Can quantities and distributions of projectile points from Parowan Valley provide clues concerning site function and chronology?

Few sites in the Fremont culture area rival the size and density of those in Parowan Valley. Size and density aside, very few sites outside of Parowan Valley have comparable quantities of projectile points. As discussed in chapter 3, a total of 3,085 projectile points were recovered from Parowan Valley. This is obviously a large amount of projectile points, but excavations in Parowan Valley were quiet extensive. At the end of chapter 3, the projectile point data were standardized by comparing the number of residential structures excavated with the number of projectile points excavated from each site. This standardization was performed to facilitate cross-site comparisons. As previously discussed in chapter 1 and chapter 3, these comparisons are imperfect due to differences in excavation strategies, sample size, and differing chronologies of site occupation.
In order to answer questions about projectile point quantities, site function, and chronology in Parowan Valley, other Fremont sites will be used for their comparative data. Two large sites outside of the Parowan Valley were used for comparison to test the assumptions that the large quantity of projectile points from Parowan Valley is unique. These sites are Baker Village and Five Finger Ridge. These sites were chosen due to the high counts of projectile points discussed in the site reports. In chapter 3, the projectile point quantities and distributions from Parowan Valley were discussed. It was determined that Parowan contained the most projectile points per structure at 65, followed by Summit at 34.32, and Paragonah at 12.84.

Baker Village

Baker Village was excavated between 1991 and 1994 by Brigham Young University. The site report (Wilde and Soper 1999) is incomplete and still in draft form. The projectile point assemblage recovered from Baker Village was originally analyzed in 1999 during the compilation of site report draft. The accuracy of methods and total numbers of that analysis are questionable. Recently, I performed a revised analysis of the Baker Village projectile point assemblage for the Office of Public Archaeology to determine the accuracy of the previous analysis. At the time this thesis was written, data from the new analysis has not been published and is being reviewed.

In the provenience table provided in the Baker Village report (Wilde and Soper 1999: 128-131), 615 projectile points are listed and provenienced to structures, test trenches, and other areas throughout the site. In the general discussion of chipped stone tools, however, only 546 projectile points are discussed causing a discrepancy of 69 points. Finally, in my comprehensive re-analysis of projectile points, only 450 objects were classified as projectile points. The previous analysis of the Baker Village collection
erroneously identified several distal fragments of bifaces as projectile points. Since these fragments possess no notches or other hafting elements, these chipped stone tools cannot be defined as projectile points.

These projectile point count discrepancies cause some difficulties in determining the exact number of projectile points per household. Since the most recent analysis identified 450 points, that number will be used to standardize the data at Baker Village. Nine residential structures were excavated at Baker Village. If the number of projectile points is standardized with the number of residential structures, Baker Village has 50 projectile points per structure.

Five Finger Ridge

Five Finger Ridge was excavated as part of the research performed in Clear Creek Canyon in central Utah. According to Talbot, “Five Finger Ridge, at the time of reporting, was the largest Fremont site excavated and perhaps the most completely excavated, although not all of the site was dug” (Talbot et al 2000: xiii). The total number of projectile points recovered from Five Finger Ridge is 223.

The discussion of structure types in the Five Finger Ridge report is thorough and designates 37 of the 81 excavated structures as pithouses. Other structures were classified into categories including secondary pit houses. Secondary pithouses were not designated as residential structures due to their lack of features commonly associated with pithouses (Talbot et al 2000:201-202). When the number of excavated residential pithouses at Five Finger Ridge is standardized with the number of reported projectile points, Five Finger Ridge has approximately 6 projectile points per structure. Figure 4.1 illustrates the comparison between Baker Village, Five Finger Ridge, and the three main sites in Parowan Valley. With the standardization of data from these five sites, it appears that
when measured against residential structures, the quantity of projectile points recovered from sites in Parowan Valley is still relatively high.

When the non-standardized raw numbers are compared, it is easy to see the distinction between sites (Figure 4.2). Inferences regarding site function are often difficult to make especially when only one type of data is considered. It is obvious that the sites in Parowan Valley were residential and enjoyed some type of permanent aggregation due to the labor investments in architecture. This is also the case when Baker Village and Five Finger Ridge are considered.
Determining Site Function

The initial reason for posing a research question concerning site function was to understand why Parowan Valley assemblage contained so many projectile points, and if the presence of these projectile points provided some insights into the lifeway of the Parowan Valley Fremont. Initially, the basic answer to the question regarding the large amount of projectile points was that if a large quantity of projectile points are present in a site’s artifact assemblage, (when compared with other large sites) much hunting occurred at that site. Due to the geographical location of Parowan Valley (a valley surrounded by foot hills and numerous water sources) and the copious amount of faunal bone in the PVAP assemblage, a case for hunting is easily made. Game procurement in Parowan Valley was likely a common subsistence strategy.

I propose that sites in Parowan Valley were densely populated and that activities like hunting, gambling, and trade occurred there. Hall (2008), Jardine (2007), and Watkins (2006) have argued that gambling and trade occurred in Parowan Valley. These activities and others would have encouraged aggregation during certain times of the year (Steward 1938:237). As mentioned in chapter 1, trade festivals and gambling were common among historic Native American groups in the Great Basin and elsewhere (Culin 1907; Janetski 2002; Steward 1938). If festivals were occurring in Parowan Valley, the high number of projectile points recovered from excavations should not be surprising. One of the fundamental elements of festivals and gatherings is feeding those in attendance (Steward 1938:237-239). If large-scale gatherings occurred in Parowan Valley, a need for the production of many projectile points would arise. Therefore, I propose that the sites in Parowan Valley functioned as more than mere residential areas and served as central gathering places during specific seasonal periods or social occasions.
In chapter three, spatial distributions of projectile points were discussed and placed on maps to determine if any patterns could be observed. The quantities and distributions of each projectile point type were also plotted in order to facilitate inferences regarding site chronology. Due to the ever-present difficulties with provenience from the excavations in Parowan Valley, comparisons of inter-site projectile point distributions were often problematic. In the next pages, I will discuss the provenience of the projectile points and compare them to the provenience of exotics and gaming pieces outlined by Jardine (2007) and Hall (2008). I also compare projectile point proveniences to other artifact types in the PVAP assemblage. These comparisons are discussed to determine if inferences regarding site function can be made based on artifact provenience.

Site Function at Paragonah

The aforementioned difficulties with provenience are particularly problematic at Paragonah. Throughout Paragonah’s excavation, structures are clearly labeled and designated. This is not the case however, when extra-mural areas like test pits or test trenches are concerned. Many of these features are designated on the site plan maps, but they are not labeled with specific numbers to facilitate provenience. Of the 321 projectile points analyzed in this assemblage, I was only able to plot 173. These were all located in structures. Points are evenly distributed throughout the site in both residential storage structures. It should be noted however, that projectile points occurring in concentrations higher than 1 or 2 occur exclusively in residential structures (see Figure 3.4). To determine if the quantities of projectile points from Paragonah were indeed in high concentrations, the projectile point total was compared to the total number of artifacts from Paragonah and listed in the general aggregate catalog. In Figure 4.3, each dot in the scatter plot graph represents a structure from Paragonah. In the lower left had part of the
scatter plot, structures with low counts of projectile points and all other artifact types are clustered. In the upper right hand corner of the graph, however, some outliers should be noted. These outliers indicate that at Paragonah, areas with a higher concentration of total artifacts are more likely to have high counts or concentrations of projectile points. In order to test this assumption, simple correspondence tests were performed. In these tests, the total amount of projectile points was compared to the total numbers of various artifact types.

A cursory examination of the distributional data of exotics, gaming pieces, and projectile points at Paragonah, based on the site maps produced by Hall and Jardine, suggests that these artifact types are clustered in similar areas (Hall 2008:40; Jardine 2007:65). Twenty five structures in Paragonah had projectile points provenienced to them. Of these 25, 18 contained gaming pieces and projectile points and only 5 contained Olivella or turquoise ornaments, gaming pieces, and projectile points. As Hall observed in her thesis, every structure containing gaming pieces also contained Olivella and turquoise artifacts (Hall 2008:76). This is not the case for structures containing projectile points. All exotics and gaming pieces from Paragonah were found in residential structures, and with
the exception of 3 storage structures, the majority of projectile points were also found in residential structures. When the total counts of projectile points, exotics, and gaming pieces from each structure are compared and plotted on an axis, it appears that the cursory assumption that points, exotics, and gaming pieces share similar concentrations and distributions is correct (See Figure 4.4).

This is particularly true in the case of Structure 22. It should be noted that while projectile points were recovered from every structure in Paragonah, some structures lacked gaming pieces, exotics, or both. Therefore, some aspects of this correspondence analysis are attenuated by the absence said artifacts in certain structures. Two other correspondence analyses were run in order to look for patterns in artifact distribution at Paragonah. A correspondence analysis between projectile points, lithic tools, and unworked bone was performed as well as a correspondence analysis between points, ceramics, and unworked bone. Projectile points, lithic tools, and unworked bone were compared to test the possible association with hunting, butchering, and discard of animal remains. In Figure 4.5, two clusters of structures appear, the cluster in the upper left
corner indicates structures with low counts of projectile points, other stone tools, and unworked bone.

The cluster in the upper right corner of the graph shows structures with high counts of projectile points, other stone tools, and unworked bone. The correlation between high counts of projectile points, other stone tools, and unworked bone is clear suggesting certain structures in Paragonah may have been involved with game procurement and processing.

Finally, when the correspondence between projectile points, ceramics, and worked sherds is considered, similar patterns emerge. In Figure 4.6, the cluster in the lower left hand corner indicates the correspondence strength between counts of ceramics, projectile points, and worked sherds. Since the ceramic amounts are in the thousands, the data is most likely skewed due to the fact that projectile points and worked sherds occur at Paragonah in much small amounts. It is unlikely that there is any real connection to the number of projectile points and ceramic artifacts at Paragonah. In must be noted, however, that in structures 22, 14, and 12 where the highest counts of ceramics occur, the highest amount of projectile points are also present.
In addition to inferences of site function based on artifact type and distribution, the presence of specific projectile points may bolster the argument for aggregation. In the Paragonah assemblage, three Nawthis Side-notched points were identified (see Figure 3.5). The presence of Nawthis Side-notched points at Paragonah suggests a possibility of interaction (trade, gambling, other aggregation) with Fremont groups to the northeast of Parowan Valley. The combination of exotics, gaming pieces, and Nawthis Side-notched points suggest that Paragonah functioned as a residential site where some trade and other aggregation occurred.

Determining specific site function at Paragonah, however, is difficult. Since much of the information regarding extramural excavation provenience has been lost, little can be said regarding activity areas or gathering places. The mere presence of exotics, gaming pieces, and specific projectile point types, however, may suggest that aggregation, trade, and hunting occurred at Paragonah. The exotics and gaming pieces present in the Paragonah artifact assemblage indicate that some form of socio-economic activities occurred at Paragonah.

Figure 4.6. Correspondence analysis of projectile points, ceramics, and worked sherds from Paragonah.
Chronology of Paragonah

The radiocarbon dates obtained from Paragonah range from the late AD 900s to the late 1200s (see Appendix A). Due to the time-sensitive nature of projectile point types, these dates can be compared with the relative ages of certain point styles. At Paragonah, Parowan Basal-notched points are the most common projectile point type. Rose Spring-corner notched points are also common. Rosespring corner-notched and Parowan Basal-notched points have relative dates around AD 300-900 and AD 950-1200 (Holmer and Weder 1980). When these relative dates are compared to the radiocarbon dates, it appears that the chronology of Paragonah is fairly accurate.

In chapter 3, a simplified typology was devised based on contracting and expanding stemmed points. As mentioned in chapter 3, the idea is that expanding stem points are older in age (approximately AD 300 to 900) than contracting stem points (approximately AD 900 to AD 1200). At Paragonah (see Figure 3.6), 39 contracting stem points and 8 expanding stems were identified in the assemblage. A higher quantity of contracting stem point suggests that Paragonah may have been more densely occupied between AD 950 and AD 1200. When these relative dates are considered with the radiocarbon dates, the chronology of Paragonah becomes clearer, indicating that this site was most densely occupied in the Formative Period.

Parowan Site Function

At Parowan, 337 of the total 390 projectile points were plotted to the grid demonstrated in chapter 3, Figure 3.8. Of these 337, only 14 were provenienced to structures. The rest of these points were provenienced to extra-mural areas such as test pits, excavation areas, and test trenches. There are some concentrations of projectile points at Parowan, specifically in the eastern area of the site. These concentrations, while
not directly in the structures, are in very close proximity to them. Figure 4.7 is a scatter plot of the total amount of projectile points compared to the total amount of artifacts listed in the PVAP artifact catalog. This scatter plot indicates that specific excavation areas at Parowan had higher concentrations of projectile points. The excavation areas of E15, F16, and F15 have the highest amount of projectile points when compared to the total number of artifacts. The area of highest projectile point concentrations is excavation area E15. Excavation area E15 is next to five other excavation areas in the eastern portion of Parowan that have high concentrations of projectile points. These areas are D16, E15, E16, F15, and F16. All of these excavation areas each contain more than 10 projectile points and are directly associated with structures 4, 10, and 16 (See Figure 3.8). These areas of projectile point concentrations are, unlike Paragonah, similar to concentrations of exotics and gaming pieces described by Jardine (2007:58) and Hall (2008:52). Projectile points, gaming pieces, and exotics from Parowan are all located in areas near residential structures. No exotics were associated with storage structures, but gaming pieces and projectile points were recovered from said structures. Only one excavation area at Parowan was exclusively limited to exotics. The rest of the excavation areas combined all
three artifact types or were exclusive to gaming pieces or projectile points. It is possible that the areas of highest projectile point concentration may also be areas of manufacture. Concentrations of projectile points, gaming pieces, and exotics are more clearly visible in the maps of Parowan.

When the amounts of projectile points, gaming bones, and exotics were tested to test the above assumptions, the graph demonstrated that the correlation between the three artifact types was weak, and at times non-existent. The only possible pattern observed in this particular artifact cluster was the cursory visual appraisal of the raw data which suggested that areas of high projectile point counts (E15, F15, and F16) were also areas where high amounts of gaming bones and exotics were recovered. When plotted in the correspondence graph however, this pattern did not appear. A comparison between projectile points, ceramics, and worked sherds however, is consistent with the areas of projectile point concentration. In Figure 4.8, the cluster in the lower left hand corner of the graph demonstrates that areas with high ceramic artifact concentrations also contain high concentrations of projectile points.

Other simple correspondence tests of artifacts from Parowan demonstrated a lack of patterning or clusters consistent with the lack of patterning described in the summary of the analysis of projectile points, gaming pieces, and exotics. In order to make inferences regarding site function, however, these other artifact types must be considered. At Parowan, the dominant artifact types are ceramics, unworked bone, and projectile points. As mentioned, gaming pieces and exotics are present at Parowan in greater amounts than at Paragonah. In spite of clear patterning or association with projectile points and other artifacts, the presence of gaming pieces and exotics suggest that some type of trade or other socio-economic activities occurred at Parowan. While the quantities and distributions of projectile points and other artifacts do not correlate well with the
gaming pieces and exotics, the presence of certain projectile point types at Parowan may bolster the case for aggregation and trade.

In the Parowan site artifact assemblage, Five Bullcreek points and 1 Nawthis Side-notched points were identified. As mentioned in chapter 3, and in Holmer and Weder (1980), Bullcreek points are most common in the eastern and southern parts of the Fremont culture area, and Nawthis Side-notched points are most common northeast of Parowan Valley. The identification of these point types and the presence of exotics and gaming pieces may confirm that some trade with and aggregation of external groups from the northeast and southeast of Parowan Valley occurred.

Parowan Chronology

Radiocarbon dates from Parowan range from the late AD 900s through the mid 1100s. The projectile point assemblage from Parowan gives credence to these dates. The most commonly occurring projectile points type in the Parowan assemblage is the Parowan Basal-notched points. Rosespring Corner-notched points are also present but in
smaller amounts (see Figure 3.9). The presence of these point types provides a relative chronology that is consistent with the radiocarbon dates obtained from Parowan.

The simplified types expanding stem and contracting stem were identified and plotted for the Parowan assemblage (see Figure 3.10). The results of this distribution are similar to results at Paragonah. Contracting stem points are more common than expanding stem points. As mentioned in chapter 3, 55 points have contracting stems and 8 points have expanding stems. The presence of a high amount of contracting stem points may indicate that Parowan was more commonly occupied in the late Formative Period. The abundance of contracting stem points and the total counts of visually identified Parowan Basal-notched points serve as relative temporal markers to indicating that Parowan was may have been occupied even later than the radiocarbon dates suggest.

Summit Site Function

The excavations at Summit were the most extensive of all sites excavated in Parowan Valley. As summarized in chapters 1 and 3, Summit was excavated by several institutions over the course of many years. This variance of excavation strategies caused disparities of artifact provenience, definitions of site boundaries, and artifact catalog organization. The excavations performed by SUU are particularly problematic. Due to the incomplete nature of the excavation notes from the SUU excavations, no projectile points or other artifacts can be plotted on a site map. An artifact catalog does exist and with some approximations of provenience, it places the majority of projectile points in extra-mural areas. Of the 764 projectile points analyzed, 104 are associated with structures, 650 were located in extra-mural areas, and 10 have no provenience. Therefore, the projectile points from the SUU assemblage will not be considered in specific discussions of distributional data due to their ambiguous provenience. The excavations performed
by the University of Utah at Median Village and Evans Mound provide more detailed information and as with previous discussions of data, will be considered with the data from the UCLA excavations.

A total of 1,604 projectile points were recovered by UCLA and the University of Utah from Summit. Of these, only 1,160 have reliable provenience. The projectile points plotted on the plan map of Summit in chapter 3, (Figure 3.13) only demonstrate the provenience of 686 projectile points recovered by UCLA. In accordance with the data presented by Jardine (2007) and Hall (2008), the only provenience data considered in the distributions of exotics and gaming pieces is that from the UCLA excavations. Data from Median Village, Evans Mound, and SUU are considered as part of the grand totals, but not when issues of artifact distributions and projectile point identifications are concerned. I felt it best to continue in this pattern since it is implemented in the artifact distribution comparisons for Paragonah and Parowan.

When the provenience of projectile points from the UCLA excavations is considered, only 47 of the 686 were associated with structures. According to the aggregate artifact catalog, an additional 30 projectile points are associated with structures excavated in 1960 and 1961, but the provenience of these points and the exact locations of those structures are incomplete due to poor mapping during those excavation years. The balance of projectile points from the UCLA excavations is provenienced to extramural areas. The vast majority of artifacts in the Summit catalog come from the southeast areas of the Summit site. These areas consist of several surface storage structures, three pithouses, and 22 excavation areas. The excavation area with the highest combined amount of these artifacts is excavation area 18A23, directly next to Structure 28.

In order to determine if the total number of projectile points recovered from Summit is statistically significant to the total number of other artifacts, the projectile
point total was tested against the total of all artifacts listed in the Summit catalog. Figure 4.9 is a scatter plot of the total amount of projectile points compared to the total amount of artifacts listed in the PVAP artifact catalog for Summit. This scatter plot indicates that specific excavation areas at Summit had higher concentrations of projectile points than others. Figure 4.9 suggests that the total amount of projectile points in certain areas is indeed higher than expected.

In order to make inferences regarding the general site function at Summit, the total amount of artifacts was considered and compared to the total amount of projectile points. Like Paragonah and Parowan, gaming pieces and exotics were recovered from the Summit excavations. The patterns of gaming piece and exotic concentrations are very similar to concentrations of projectile points. The majority of these artifacts occur in the southeast area of the Summit site. A correspondence analysis was performed comparing the total quantity of projectile points to various artifact types from Summit. In Figure 4.10, the projectile point quantities were compared to the quantities of gaming pieces and
exotics. The cluster patterns in Figure 4.10, suggest that certain areas had higher densities of projectile points, gaming pieces, and exotics relative to other areas and artifact densities. Excavation areas 21A22 and 19A23 illustrate this correlation particularly well. When the total numbers of projectile points, other stone tools, and unworked bone are compared in a correspondence analysis, two clusters are visible (Figure 4.11). The cluster to the right of the x and y axis shows a correlation between high counts of projectile points, other stone tools, and unworked bone. The vertical cluster on the left side of the graph has been attenuated by the lack of bones recovered from these areas. Despite this attenuation, however, this graph suggests that in areas with high concentrations of unworked bone, other lithic tools and projectile points are more likely to be present. It must be noted though, that in areas where unworked bone counts are small or non-existent, the projectile point counts are still high especially in areas 17A22-21A23.

Simple correspondence tests based in the total number of ceramics, worked sherds, and projectile points were performed, but due to the high number of ceramics recovered from Summit, no clear patterns emerged that showed the projectile quantities were unusually abundant relative to ceramics in certain areas.

The number of residential structures and the frequency of super-positioned residential structures at Summit indicate that the site was a heavily occupied residential site in Parowan Valley. The presence of gaming pieces, exotics, and unusually high projectile point and unworked bone concentrations suggest that some form socio-economic practices like trade and gambling may have occurred at the Summit site. Much of the provenience and distributional data is difficult to discern, however, so inferences beyond speculation are not completely possible. Another factor that may strengthen the case for some sort of aggregation, is the presence of certain projectile point types.
Figure 4.10. Correspondence analysis of projectile points, gaming pieces, and exotics from Summit; plots represent excavation areas.

Figure 4.11. Correspondence analysis of projectile points, other lithic tools, and unworked bone from Summit.
The analysis of the assemblage from Summit (consisting of the points in the UCLA and SUU assemblages) identified 14 Nawthis Side-notched points and 11 Bullcreek points. The presence of Nawthis Side-notched points at this site suggests that interactions between the Fremont in Parowan Valley and Fremont groups to the north may have interacted. The combined presence of exotics, gaming pieces, and projectile point types common to other parts of the Fremont culture area shows some evidence that Summit, like Paragonah and Parowan experienced some form of trade and social aggregation.

Summit Chronology

The radiocarbon dates from Summit show a chronological range from the early AD 1000s to the mid 1100s. Radiometric dates were also taken by Berry (1971) and Marwitt (1970). These radiometric dates indicate a temporal range between the late AD 800s and the mid 1300s for Summit.

The projectile points recovered from Summit provide relative temporal markers that confirm the radiocarbon and radiometric dates. The most common projectile points type in the Summit assemblage is Parowan Basal-notched. Rosespring Corner-notched points are the second most common projectile point type recovered from Summit. These projectile point types date from AD 900 to 1250 and AD 300 to 900 respectively (Holmer and Weder 1980).

The simplified types of contracting and expanding stem points should also be considered. In Figure 3.14, the distributions of contracting and expanding points were plotted on the Summit site map. Contracting stem points are the predominant point type at Summit. The totals of contracting to expanding stem points are 362/141. It should be noted however, that more expanding stem points are present at Summit than Paragonah.
and Parowan. In addition, two excavation areas at Summit contained more expanding stem points than contracting stem points. This fact is particularly interesting if the basic assumption that expanding stem points are older in age than contracting stem points. The presence of these expanding and contracting stem points at Summit, the super-positioning of pithouses, and the radiocarbon and radiometric dates demonstrate that Summit was occupied during a period spanning the late AD 800s and the early 1300s.

General Site Function in Parowan Valley

Since the sites in Parowan Valley were occupied for a long span of time, it is unlikely that sites maintained a consistent *modus operandi*, especially when highly variable social constructs like trade and aggregation are concerned. The mutability of site function through time at any archaeological site poses some problems when inferences are made. If radiocarbon dates, projectile point types and their distributions are considered in correlation with other artifacts from Parowan Valley, inferences of site function may be derived with more confidence.

The general quantities and distributions of projectile points from Paragonah, Parowan, and Summit have been presented and discussed in an attempt to understand site function and chronology at each respective site. The general assumption is that Paragonah, Parowan, and Summit were residential sites that were occupied for spans of hundreds of years. I argue that due to the presence of certain artifact types in large quantities, certain socio-economic practices such as trade and aggregation occurred in Parowan Valley. At the beginning of this chapter, it was proposed that concentrations of projectile points, gaming pieces, exotics, and other types of artifacts would be found in the same areas of each site. Through correspondence testing, that assumption can not be made with as much confidence, however, certain areas at all three sites demonstrate
that some concentrations are in fact, legitimate and that there are certain areas at each
site where projectile points and other artifacts are unusually abundant relative to other
artifacts. These patterns may suggest a uniformity of site function in Parowan Valley.
It is likely that each site in Parowan Valley experienced interaction with groups to the
north and east and that this interaction involved trade, gambling, and other activities that
encouraged aggregation.

Extra-mural Areas

A final consideration regarding general site function in Parowan Valley must be
considered. The discussions of provenience in chapter 3 determined that the majority
of projectile points were found in extra-mural areas. Further correspondence analysis,
specifically in the case of the Summit site confirmed the presence of specific artifact
concentrations in extra-mural areas, especially projectile points.

An exact function of these areas is unknown since these areas were created during
evacuation. No formal site boundaries were designated by the excavating institutions and
therefore the term “extra-mural area” is problematic in and of itself. For the purposes
of this discussion, the term “extra-mural area” suggests an area outside of residential
or storage structures. Some inferences regarding extra-mural areas may be possible and
should be considered in order to better understand site function in Parowan Valley. The
function of these areas is unknown but they could be general activity areas where events
like trade or gathering occurred, or they could merely be midden areas.

Since the majority of points were recovered from these extra-mural areas, it is
possible that these points were discarded or dropped. The presence of broken projectile
points in these areas may indicate their disposal after breaking. If points were discarded
in midden areas after breaking, a tally of the ratio of broken to complete points may prove useful.

Broken and Complete Points from Parowan Valley

Of the 321 points recovered from Paragonah, 296 are broken. At Parowan, 364 of the total 390 projectile points were broken, and at Summit (UCLA/SUU), 1465 of the total 1794 points were broken. The most common fracture patterns in the Parowan Valley projectile point assemblage are hinge fractures. These fractures most commonly occur among finished projectile points from impacts associated with use (Whittaker 1994:191-193). Since the majority of these broken points were recovered from extra-mural areas it is possible that these extra-mural areas served as refuse areas or midden areas for Paragonah, Parowan, and Summit. If midden areas in Parowan Valley could be determined, it is possible that site boundaries and site function could be better determined.

Broken and Complete Points from Baker Village

In order to test the hypothesis that a presence of many broken points correlates with the creation and use of refuse or midden areas, the broken and complete projectile point ratios from Baker Village were compared. The broken and complete point data from Five Finger Ridge were not available.

Prior to a discussion on the data, a caveat regarding the definition of broken projectile points must be made. In the analysis of the PVAP collection, any projectile point missing portions of tangs, lateral edges, and distal or proximal ends was considered a broken point. This strategy was also used in the most recent analysis of the Baker Village collection.
When amounts of broken and complete projectile points from Parowan Valley are compared those from Baker Village, a similar pattern emerges. In the Baker Village assemblage, 375 points are broken and 77 are complete. This is similar to the broken and complete point counts in the Parowan Valley assemblage.

As previously mentioned, the majority of projectile points in the PVAP collection are loosely provenienced to extra-mural areas. At Baker Village, the majority of projectile points are provenienced to structures. This pattern suggests that the provenience of broken points is not always consistent and the establishment of potential midden areas is not possible simply based on the consideration of broken and complete points. Another issue to consider is the general wear and tear that projectile points experience both during and after their active use. Delicate tangs and distal tips could snap easily during processes of climate, bioturbation, and modern excavation.

Therefore, with these conflicts of provenience and the delicate nature of projectile points, the benefits of using broken and complete points to bolster inferences of site function, especially concerning the creation and use of midden areas, seem inconclusive.

General Chronology of Parowan Valley

In chapter 1, I discussed the general chronology of Parowan Valley and the existing dates obtained from Paragonah, Parowan, and Summit and the complete list of radiometric, radiocarbon, and tree-ring dates obtained from Parowan Valley is provided in Appendix A.

The absolute and relative dates from each site were discussed and the general pattern that emerges indicates that Paragonah, Parowan, and Summit were occupied predominantly between AD 800 and AD 1300. The use of projectile point types as
relative temporal markers contributed to the formation of this time span of occupation in Parowan Valley.

Were projectile points in Parowan Valley used for a function beyond arrow use?

It was proposed in chapter 2 that projectile points from Parowan Valley may have been employed for purposes beyond basic utilitarian missile use. This idea was proposed for several reasons, the most prominent being the presence of thousands of projectile points in Parowan Valley collection and the discovery of 11 projectile points with unique in-situ arrangements and non-utilitarian characteristics.

The collection of 3,079 projectile points from Parowan Valley is one of the largest assemblages of Fremont Projectile points from one area in the Great Basin. This large quantity led to the initial speculations suggested in chapters 1 and 2, that there was a large surplus of projectile points in Parowan Valley. In other words, it was proposed that projectile points were being produced in massive quantities beyond the everyday utilitarian needs of the inhabitants of Parowan Valley. After an in-depth discussion of artifact distributions and a standardization of projectile points per residential structure, it appears that the idea is still a possibility. Approximately 100 residential structures were excavated at the three sites in Parowan Valley. If the 3,079 projectile points are divided by the total number of residential structures, the quotient is 30.79 projectile points per structure. Thirty projectile points per structure is a large amount and may suggest a surplus of projectile points used for other purposes outside of utilitarian household practices. The vast majority of projectile points were found in concentrations in extra-mural areas.
Gambling and Aggregation in Parowan Valley

In her thesis, Molly Hall argued that large quantities of gaming pieces at particular sites are the result of intensive gaming activities (Hall 2008:91). Hall elaborates, demonstrating that in the ethnographic record, intensive gaming is highly associated with festivals and other periods of aggregation (Hall 2008:91). In the previous discussions of artifact distribution, it is clear that the highest concentrated gaming piece clusters in Parowan Valley are located in the southeast section of the Summit site near Structures 14, 27, and 28. This concentration of gaming pieces is located in the exact same area as the largest projectile point concentration at Summit. Due to the incomplete nature of the excavations in this area however, the complete dimensions of Structures 14, 27, and 28 are unavailable, as is information regarding other features present in these excavation units.

In chapter 2, Woodburn’s ethnographic observations the Hadza of Tanzania were discussed (Woodburn 1968). Woodburn observed that many of the Hadza used arrows as currency in gambling activities. Stewart Culin (1907) has also discussed several games of chance and skill involving the use of arrows. These games were commonly tests of accuracy, providing prizes to the best marksmen. Since the highest projectile point concentrations are located at Summit and are in direct association with the highest concentrations of gaming pieces, it may be possible that projectile points played some part in the gaming or aggregation practices of the Parowan Valley Fremont. Another key element to aggregation in the ethnographic record is the provision of food for feasting. If the projectile points were not being used as currency in gambling, it is most likely that they were used to procure food for those in attendance at the gambling or trade festivals. Currently, the faunal assemblage from Parowan Valley is still being analyzed, but according to the PVAP aggregate catalog, there are approximately 75,000 faunal bones
in the collection. The completion of this analysis may provide more insights into feasting activities in Parowan Valley and serve as a plausible explanation for the thousands of projectile points in the collection.

As mentioned in the discussions of site function and chronology, the presence of several projectile points more common in areas outside of Parowan Valley was noted. These points could have been left or traded by travelers to the Parowan Valley from the North and East suggesting a pattern of aggregation of external groups to Parowan Valley. If common socio-economic activities like gambling, trade, and feasting happened in Parowan Valley, they would serve as reasons for the gathering of external groups.

Symbolism of Projectile Points

In chapter 2, some theories regarding the symbolic or ritual nature of projectile points were proposed. In numerous ethnographies of the Zuni, Frank Cushing outlines the symbolic meanings attributed to projectile points and their placement on or association with certain hunting fetishes (Cushing 1883). Stewart Culin (1907) also provides an in-depth discussion regarding Zuni shrines to war gods and other deities associated with the religious practices of the Bow Priesthood. These shrines or altars were adorned with quivers of arrows, projectile points, and other hunting paraphernalia. Culin suggests that through time, several Native American groups developed symbolic ritual games surrounding bow and arrow use. Among the Zuni, he describes the transition of the symbolic weapons of the Zuni twin war gods into types of gaming pieces: “The significant emblems of the Twins are their weapons. These consist of a -club made of heavy wood, their bows and cane arrows…and a netted shield…Gaming implements are almost exclusively derived from these symbolic weapons. For example, the stick dice are either arrow shafts or miniature bows, and a similar origin may be asserted for the
implements used in the hand game and in the four stick game...In the games of dexterity we find again bows and arrows and the netted shields with bows” (Culin 1907:33).

The multiple levels of symbolism surrounding bows, arrows, hunting, and gaming may have important application in Parowan Valley. If the sites in Parowan Valley served as aggregation areas for gambling, feasting, and trade, it is also possible that some type of games or symbolic activities associated with projectile points may have taken place.

Additional data from Parowan Valley also suggest that some projectile points in the assemblage may have been used for other purposes that hafted projectiles. In chapter 3, four unique projectile points were discussed (see Figure 3.2). These projectile points have been ground smooth in certain areas. It appears that these points were flaked in a normal reduction sequence, and when the desired thickness and shape were acquired, they were ground smooth along the lateral, distal, and proximal ends. This intensive grinding would not be technologically advantageous in the utilitarian practice of game procurement.
or warfare. The edges and distal tips of these projectile points would have little success
penetrating the hide or cutting into the flesh of prey. Therefore, the exact function of these
ground projectile points is unknown. These objects could range in function from pieces of
adornment to objects associated with some sort of sympathetic magic similar to that utilized
by the Zuni. The provenience of these points provides no clue to their function. They are
found in extra-mural areas not associated with large concentrations of projectile points.

In addition to these ground projectile points, another atypical use of projectile
points occurred at Evans Mound. A unique in-situ alignment of projectile points provides
the final example used in the speculation that projectile points may have functions
beyond utilitarian (Figure 4.12). During the final year of excavations at Evans Mound,
an alignment of projectile points was found near a human burial. Whether the association
with the burial was direct or indirect is unknown, but it is in close proximity. The
alignment is described: “Also possibly associated with the burial were 7 Parowan Basal-
notched projectile points resting on the surface of an inverted metate in the northeast
corner of the floor of structure A7. Four of the 7 were laid alternately point to base and
side to side. It is likely that they all had been arranged in a similar fashion” (Pecotte
1982:120).

If these projectile points are associated with Burial 1, it is possible that their
alignment had some sort of ritual or symbolic significance. The individual was also
buried with the remains of a great horned owl (*Bubo virginianus*), the remains of nine
magpies (*Pica pica*), pieces of worked bone (including a bone whistle), several bifaces,
bone shavings, and a quartz crystal. 8 ceramic vessels, 2 of which contained various seeds
were located near the burial and it is speculated that 7 of the 8 vessels were associated
with the burial (Pecotte 1982:120).
As rule, burial goods are conspicuously absent from Fremont burials (Janetski et al 2000: 252-256; Madsen and Lindsay 1977:77). This burial from Evans Mound is a large exception to that rule. The number and nature of objects associated with this burial indicate that this individual held some sort of status in this society. The inclusion and positioning of projectile points near the burial goods, suggests that a ritual importance was, in some form, associated with these projectile points. The data regarding the ground projectile points, the points associated with the burial, and the associations of points, gaming pieces, exotics, and other artifact types in similar concentrations and distributions throughout the site suggest that some of the projectile points from Parowan Valley may have enjoyed a function or role beyond that of utilitarian projectiles.

Conclusions

The high quantities of projectile points in Parowan Valley provide numerous opportunities for speculations regarding site function, site chronology, and projectile point use among the Fremont. The magnitude of the PVAP collection has hindered the abilities of researchers to make clear inferences regarding these aforementioned issues. To date, the only completely analyzed data sets from the PVAP collection are the exotic ornaments and the worked bone gaming pieces. The chipped stone collection was sampled and this thesis focused exclusively on the projectile points from Parowan Valley. There are several data sets that need to be analyzed before a thorough understanding of the activities in Parowan Valley can be achieved.

In this thesis, I presented the results of an extensive chipped stone tool analysis. I also attempted to answer questions regarding site function, site chronology, projectile point provenience and the relationship between projectile points and other artifact types. With the use of comparative data provided by Jardine (2007), Hall (2008), and the total
amount of artifacts in the PVAP catalog, I was able to further promote the idea that sites in Parowan Valley experienced some sort of aggregation due to the quantities and distributions of certain artifacts. On a purely utilitarian level, if numerous gatherings occurred in Parowan Valley, many projectile points would be needed to procure game and feed those in attendance. These assumptions, however, remain incomplete due to the fact that the faunal and ceramic assemblages have yet to be completely analyzed.

Finally, I discussed the possible social and economic values associated with projectile points. The similar distributions of projectile points and gaming pieces, particularly at Summit and the ethnographic information provided by Woodburn (1968), Cushing (1883), and Culin (1907) may suggest that projectile points played some role in the gaming systems, and by default, the economic systems of Parowan Valley. The examples of the ground projectile points and the in-situ placement of projectile points in the burial at Evans Mound also suggest that points may have possessed a value beyond that of utilitarian missiles.

When used in concert with all previously reported and discussed data from Parowan Valley, this information regarding Parowan Valley projectile points opens one more perspective into reconstructing the life-ways of the Parowan Valley Fremont. In addition, it is my hope that the discussions and models proposed concerning projectile point function will be tested at other large Fremont sites in order to expand research into the ever growing literature surrounding the complexities of Fremont social organization.
Table A.1. Radiocarbon Dates for the Parowan Valley

<table>
<thead>
<tr>
<th>Site</th>
<th>Str./ Location</th>
<th>Sample Number</th>
<th>Conv. Date</th>
<th>Calibrated Date (2σ)</th>
<th>Analysis</th>
<th>Material</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summit</td>
<td>Structure 12</td>
<td>PRI-07-58-395-4712</td>
<td>970 ± 20 BP</td>
<td>AD 1010-1060 and AD 1070-1160</td>
<td>AMS</td>
<td>Corn cob</td>
<td>No Reference, BYU</td>
</tr>
<tr>
<td>Summit</td>
<td>Structure 1</td>
<td>PRI-07-58-283-3101</td>
<td>965 ± 20 BP</td>
<td>AD 1010-1060 and AD 1070-1160</td>
<td>AMS</td>
<td>Corn cob</td>
<td>No Reference, BYU</td>
</tr>
<tr>
<td>Summit</td>
<td>Structure 18</td>
<td>PRI-07-58-509-3236</td>
<td>945 ± 20 BP</td>
<td>AD 1020-1160</td>
<td>AMS</td>
<td>Corn cob</td>
<td>No Reference, BYU</td>
</tr>
<tr>
<td>Summit</td>
<td>Structure 3</td>
<td>PRI-07-58-365-2814</td>
<td>990 ± 20 BP</td>
<td>AD 990-1050 and AD 1080-1150</td>
<td>AMS</td>
<td>Corn cob</td>
<td>No Reference, BYU</td>
</tr>
<tr>
<td>Summit</td>
<td>Pit Dwelling A7</td>
<td>UGa-2713</td>
<td>1825 ± 60 BP</td>
<td>AD 59-346</td>
<td>Radiometric</td>
<td>Unknown</td>
<td>Dodd, 1982</td>
</tr>
<tr>
<td>Summit</td>
<td>Pit Dwelling 14</td>
<td>GX-1549</td>
<td>1295 ± 90 BP</td>
<td>AD 596-900</td>
<td>Radiometric</td>
<td>Charcoal</td>
<td>Marwitt, 1970, p.144</td>
</tr>
<tr>
<td>Summit</td>
<td>Pit Dwelling B2</td>
<td>RL-237</td>
<td>1190 ± 90 BP</td>
<td>AD 615-1025</td>
<td>Radiometric</td>
<td>Unknown</td>
<td>Dodd, 1982</td>
</tr>
<tr>
<td>Summit</td>
<td>Pit Dwelling A1</td>
<td>RL-236</td>
<td>1050 ± 90 BP</td>
<td>AD 780-1210</td>
<td>Radiometric</td>
<td>Wood</td>
<td>Dodd, 1982</td>
</tr>
<tr>
<td>Summit</td>
<td>Pit Dwelling 1</td>
<td>GX-2405</td>
<td>940 ± 90 BP</td>
<td>AD 895-1255</td>
<td>Radiometric</td>
<td>Unknown</td>
<td>Berry 1972</td>
</tr>
<tr>
<td>Summit</td>
<td>Pit Dwelling 11</td>
<td>GX-2407</td>
<td>870 ± 90 BP</td>
<td>AD 920-1290</td>
<td>Radiometric</td>
<td>Charred Beam</td>
<td>Berry 1972</td>
</tr>
<tr>
<td>Summit</td>
<td>Pit Dwelling 3</td>
<td>GX-2404</td>
<td>830 ± 80 BP</td>
<td>AD 1025-1325</td>
<td>Radiometric</td>
<td>Charred Beam</td>
<td>Berry 1972</td>
</tr>
<tr>
<td>Summit</td>
<td>Pit Dwelling 2</td>
<td>GX-2406</td>
<td>775 ± 90 BP</td>
<td>AD 1048-1344</td>
<td>Radiometric</td>
<td>Charred Beam</td>
<td>Berry 1972</td>
</tr>
<tr>
<td>Summit</td>
<td>Pit Dwelling 6</td>
<td>GX-2403</td>
<td>595 ± 90 BP</td>
<td>AD 1248-1428</td>
<td>Radiometric</td>
<td>Charred Beam</td>
<td>Berry 1972</td>
</tr>
<tr>
<td>Site</td>
<td>Str/ Location</td>
<td>Sample Number</td>
<td>Conv. Date</td>
<td>Calibrated Date (2σ)</td>
<td>Analysis</td>
<td>Material</td>
<td>Reference</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Summit</td>
<td>Structure 2</td>
<td>GaK-2114</td>
<td>1050 ± 90 BP</td>
<td>AD 774-1185</td>
<td>Radiometric</td>
<td>Charred wood</td>
<td>Marwitt, 1970, p.144</td>
</tr>
<tr>
<td>(Median Village-42IN124)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Median Village-42IN124)</td>
<td></td>
<td></td>
<td></td>
<td>AD 855-1215</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summit</td>
<td>Structure 9</td>
<td>GaK-2116</td>
<td>990 ± 100 BP</td>
<td>AD 784-787 AD 825-841</td>
<td>Radiometric</td>
<td>Charred wood</td>
<td>Marwitt, 1970, p.144</td>
</tr>
<tr>
<td>(Median Village-42IN124)</td>
<td></td>
<td></td>
<td></td>
<td>AD 862-1259</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summit</td>
<td>Structure 9</td>
<td>GaK-2117</td>
<td>500 ± 80 BP</td>
<td>AD 1291-1523 AD 1572-1629</td>
<td>Radiometric</td>
<td>Charred wood</td>
<td>Marwitt, 1970, p.144</td>
</tr>
<tr>
<td>(Median Village-42IN124)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paragonah (42IN43)</td>
<td>Structure 38</td>
<td>Beta-1 71936</td>
<td>1120 ± 40 BP</td>
<td>AD 810-840 and 860-1000</td>
<td>AMS</td>
<td>Charred corn cobs</td>
<td>No Reference, BYU</td>
</tr>
<tr>
<td>Paragonah (42IN43)</td>
<td>Structure 19</td>
<td>Beta-1 71932</td>
<td>1040 ± 40 BP</td>
<td>AD 910-920 and 960-1030</td>
<td>AMS</td>
<td>Charred corn cobs and kernels</td>
<td>No Reference, BYU</td>
</tr>
<tr>
<td>Paragonah (42IN43)</td>
<td>Structure 13</td>
<td>Beta-1 71928</td>
<td>1030 ± 40 BP</td>
<td>AD 960-1040</td>
<td>AMS</td>
<td>Charred corn cobs and kernels</td>
<td>No Reference, BYU</td>
</tr>
<tr>
<td>Paragonah (42IN43)</td>
<td>Structure 15</td>
<td>Beta-1 71930</td>
<td>990 ± 60 BP</td>
<td>AD 960-1180</td>
<td>Radiometric</td>
<td>Charred corn cobs</td>
<td>No Reference, BYU</td>
</tr>
<tr>
<td>Paragonah (42IN43)</td>
<td>Structure 27</td>
<td>Beta-1 71934</td>
<td>970 ± 40 BP</td>
<td>AD 1000-1170</td>
<td>AMS</td>
<td>Charred corn cobs</td>
<td>No Reference, BYU</td>
</tr>
<tr>
<td>Paragonah (42IN43)</td>
<td>Structure 8</td>
<td>Beta-1 71925</td>
<td>960 ± 40 BP</td>
<td>AD 1000-1180</td>
<td>AMS</td>
<td>Charred corn cobs</td>
<td>No Reference, BYU</td>
</tr>
<tr>
<td>Paragonah (42IN43)</td>
<td>Structure 12</td>
<td>Beta-1 71927</td>
<td>960 ± 40 BP</td>
<td>AD 1000-1180</td>
<td>AMS</td>
<td>Charred corn kernels</td>
<td>No Reference, BYU</td>
</tr>
<tr>
<td>Site</td>
<td>Str/ Location</td>
<td>Sample Number</td>
<td>Conv. Date</td>
<td>Calibrated Date (2σ)</td>
<td>Analysis</td>
<td>Material</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------------</td>
<td>----------------------</td>
<td>----------</td>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Paragonah (42IN43)</td>
<td>Structure 28</td>
<td>Beta-171935</td>
<td>940 ± 40 BP</td>
<td>AD 1010-1190</td>
<td>AMS</td>
<td>Charred corn cobs</td>
<td>No Reference, BYU</td>
</tr>
<tr>
<td>Paragonah (42IN43)</td>
<td>Structure 14</td>
<td>Beta-171929</td>
<td>920 ± 60 BP</td>
<td>AD 970-1280</td>
<td>Radiometric</td>
<td>Corn cobs</td>
<td>No Reference, BYU</td>
</tr>
<tr>
<td>Paragonah (42IN43)</td>
<td>Structure 22</td>
<td>Beta-171933</td>
<td>920 ± 40 BP</td>
<td>AD 1020-1210</td>
<td>AMS</td>
<td>Charred corn cobs</td>
<td>No Reference, BYU</td>
</tr>
<tr>
<td>Paragonah (42IN43)</td>
<td>Structure 17</td>
<td>Beta-171931</td>
<td>910 ± 40 BP</td>
<td>AD 1020-1220</td>
<td>AMS</td>
<td>Charred corn cobs and kernels</td>
<td>No Reference, BYU</td>
</tr>
<tr>
<td>Paragonah (42IN43)</td>
<td>Structure 10</td>
<td>Beta-171926</td>
<td>900 ± 90 BP</td>
<td>AD 980-1280</td>
<td>Radiometric</td>
<td>Charred corn cobs</td>
<td>No Reference, BYU</td>
</tr>
<tr>
<td>Parowan (42IN100)</td>
<td>Structure 8</td>
<td>GX-1547</td>
<td>1005 ± 80 BP</td>
<td>AD 878-1218</td>
<td>Radiometric</td>
<td>Charred wood</td>
<td>Marwitt, 1970, p.144</td>
</tr>
<tr>
<td>Parowan (42IN100)</td>
<td>Structure 10</td>
<td>PRI-07-58-433-9688</td>
<td>1005 ± 20 BP</td>
<td>AD 980-1050 and AD 1080-1150</td>
<td>AMS</td>
<td>Corn cob</td>
<td>No Reference, BYU</td>
</tr>
<tr>
<td>Parowan (42IN100)</td>
<td>Structure 4</td>
<td>PRI-07-58-433-9646</td>
<td>990 ± 20 BP</td>
<td>AD 990-1050 and AD 1080-1160</td>
<td>AMS</td>
<td>Corn cob</td>
<td>No Reference, BYU</td>
</tr>
<tr>
<td>Parowan (42IN100)</td>
<td>Structure 7</td>
<td>PRI-07-58-433-7825</td>
<td>985 ± 20 BP</td>
<td>AD 990-1050 and AD 1070-1160</td>
<td>AMS</td>
<td>Corn cob</td>
<td>No Reference, BYU</td>
</tr>
<tr>
<td>Parowan (42IN100)</td>
<td>Structure 12</td>
<td>PRI-07-58-433-8266</td>
<td>960 ± 20 BP</td>
<td>AD 1020-1060 and AD 1070-1160</td>
<td>AMS</td>
<td>Corn cob</td>
<td>No Reference, BYU</td>
</tr>
<tr>
<td>Parowan (42IN100)</td>
<td>Feature 2 in Grid E16</td>
<td>GX-1548</td>
<td>700 ± 80 BP</td>
<td>AD 1178-1413</td>
<td>Radiometric</td>
<td>Charcoal</td>
<td>Marwitt, 1970, p.144</td>
</tr>
<tr>
<td>42IN2262</td>
<td>Burial</td>
<td>Beta-222448</td>
<td>990 ± 40 BP</td>
<td>AD 990-1160</td>
<td>AMS</td>
<td>Bone collagen extraction</td>
<td>No Reference, BYU or Ron Rood</td>
</tr>
<tr>
<td>Site</td>
<td>Str./ Location</td>
<td>Sample Number</td>
<td>Conv. Date</td>
<td>Calibrated Date (2σ)</td>
<td>Analysis</td>
<td>Material</td>
<td>Reference</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>---------------</td>
<td>------------</td>
<td>----------------------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Paragonah (42IN43)</td>
<td>Structure 15</td>
<td>1157 (tree dying when felled)</td>
<td>UTM 117</td>
<td>No Reference, BYU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paragonah (42IN43)</td>
<td>Structure 15</td>
<td>March-May 1168</td>
<td>UTM 118</td>
<td>No Reference, BYU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paragonah (42IN43)</td>
<td>Structure 15</td>
<td>May 1174-March 1175</td>
<td>UTM 119</td>
<td>No Reference, BYU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paragonah (42IN43)</td>
<td>Structure 16</td>
<td>Unknown number of years after 1108</td>
<td>UTM 120</td>
<td>No Reference, BYU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paragonah (42IN43)</td>
<td>Structure 30</td>
<td>May 1108</td>
<td>UTM 122</td>
<td>No Reference, BYU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paragonah (42IN43)</td>
<td>Structure 30</td>
<td>May 1108</td>
<td>UTM 123</td>
<td>No Reference, BYU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paragonah (42IN43)</td>
<td>Structure 31</td>
<td>May 1137-March 1138</td>
<td>UTM 124</td>
<td>No Reference, BYU</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX B

All projectile point type abbreviations used in the analysis and illustrated in the subsequent analysis tables are consistent with the Intermountain Antiquities Computer System (IMACS). The toolstone type abbreviations are used and developed by The Department of Anthropology, Brigham Young University. Tables B.1 and B.2 provide a reference to understand the abbreviations.

Table B.1. Projectile point type abbreviation reference.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>Elko Series</td>
</tr>
<tr>
<td>CC</td>
<td>Pinto Series</td>
</tr>
<tr>
<td>CD</td>
<td>Humblodt</td>
</tr>
<tr>
<td>CM</td>
<td>Gypsum</td>
</tr>
<tr>
<td>CZ</td>
<td>Unidentified Archaic</td>
</tr>
<tr>
<td>DC</td>
<td>Rosespring Corner-notched</td>
</tr>
<tr>
<td>DG</td>
<td>Eastgate Expanding-stem</td>
</tr>
<tr>
<td>RG</td>
<td>Rosegate</td>
</tr>
<tr>
<td>DD</td>
<td>Nawthis Side-notched</td>
</tr>
<tr>
<td>DE</td>
<td>Parowan Basal-notched</td>
</tr>
<tr>
<td>HG</td>
<td>Bullcreek</td>
</tr>
<tr>
<td>DZ</td>
<td>Unidentified Formative</td>
</tr>
<tr>
<td>EC</td>
<td>Desert Side-notched</td>
</tr>
</tbody>
</table>

Table B.2. Toolstone Material Reference

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>Cryptocrystalline chert, generally white or gray in color, translucent or opaque.</td>
</tr>
<tr>
<td>CD</td>
<td>Darker colored cryptocrystalline chert, generally dark brown or black, mostly opaque.</td>
</tr>
<tr>
<td>CR</td>
<td>Red, yellow, and orange cryptocrystalline chert</td>
</tr>
<tr>
<td>OB</td>
<td>Obsidian</td>
</tr>
<tr>
<td>QC</td>
<td>Coarse Grained Quartzite</td>
</tr>
<tr>
<td>ZZ</td>
<td>Various tool stone types like siltstone that were in the minority.</td>
</tr>
</tbody>
</table>
Table B.3. Analysis Data from Paragonah

<table>
<thead>
<tr>
<th>Accession of Catalog No.</th>
<th>Provenience</th>
<th>Material</th>
<th>Projectile Point Type</th>
<th>Length</th>
<th>Width</th>
<th>Neck length</th>
<th>Dstral Neck Width</th>
<th>Proximal Neck width</th>
<th>Thickness</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>125-5170</td>
<td>24"-36" Level of Structure 6</td>
<td>CC</td>
<td>DC/ DG</td>
<td>16.7</td>
<td>6.3</td>
<td>3.3</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-5169</td>
<td>24"-36" Level of Structure 6</td>
<td>OB</td>
<td>DE</td>
<td>45.6</td>
<td>13.3</td>
<td>5.3</td>
<td>3.7</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-5897</td>
<td>Floor of Structure 9</td>
<td>OB</td>
<td>DZ</td>
<td>15.8</td>
<td></td>
<td>4.1</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-5998</td>
<td>24"-Floor Level of Structure 10</td>
<td>CR</td>
<td>DZ</td>
<td>14.9</td>
<td></td>
<td>3.7</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-5997/5999</td>
<td>24"-Floor Level of Structure 10</td>
<td>CR</td>
<td>DZ</td>
<td>9.2</td>
<td></td>
<td>3</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-5996</td>
<td>24"-Floor Level of Structure 10</td>
<td>CC</td>
<td>DE</td>
<td>18</td>
<td>6.5</td>
<td>4.1</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6616</td>
<td>12"-24" Floor Level of Structure 13</td>
<td>CC</td>
<td>DE</td>
<td>28.2</td>
<td>17</td>
<td>3.7</td>
<td>7</td>
<td>3.2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>125-6615</td>
<td>12"-24" Floor Level of Structure 13</td>
<td>CR</td>
<td>DG</td>
<td>17.2</td>
<td>4.6</td>
<td>5.5</td>
<td>3.3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6614</td>
<td>12"-24" Floor Level of Structure 13</td>
<td>CC</td>
<td>DZ</td>
<td>16.5</td>
<td></td>
<td>2.8</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6974</td>
<td>Clay Rimmed Hearth of Structure 14</td>
<td>CC</td>
<td>DZ</td>
<td>15.4</td>
<td></td>
<td>3.5</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6892</td>
<td>12"-24" Floor Level of Structure 14</td>
<td>CR</td>
<td>DZ</td>
<td>16.9</td>
<td></td>
<td>4.7</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6892</td>
<td>12"-24" Floor Level of Structure 14</td>
<td>CR</td>
<td>DZ</td>
<td>16.9</td>
<td></td>
<td>4.7</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6882</td>
<td>12"-24" Floor Level of Structure 14</td>
<td>OB</td>
<td>DZ</td>
<td>16</td>
<td></td>
<td>4.1</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6881</td>
<td>12"-24" Floor Level of Structure 14</td>
<td>OB</td>
<td>DE</td>
<td>15.6</td>
<td></td>
<td>5</td>
<td>3</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6880</td>
<td>12"-24" Floor Level of Structure 14</td>
<td>CC</td>
<td>DD</td>
<td>11.9</td>
<td>3.4</td>
<td>8.3</td>
<td>2.8</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6879</td>
<td>12"-24" Floor Level of Structure 14</td>
<td>CC</td>
<td>DE</td>
<td>16</td>
<td></td>
<td>5.8</td>
<td>3.3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6876</td>
<td>12"-24" Floor Level of Structure 14</td>
<td>CC</td>
<td>DE</td>
<td>15.2</td>
<td>2.2</td>
<td>5.5</td>
<td>4.4</td>
<td>2.2</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>125-6878</td>
<td>12"-24" Floor Level of Structure 14</td>
<td>CC</td>
<td>DZ</td>
<td>15.6</td>
<td>3.1</td>
<td>5.6</td>
<td>5.8</td>
<td>3.6</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>125-6877</td>
<td>12"-24" Floor Level of Structure 14</td>
<td>CC</td>
<td>DE</td>
<td>16.3</td>
<td>6</td>
<td>4.8</td>
<td>2.9</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6877</td>
<td>12"-24" Floor Level of Structure 14</td>
<td>CC</td>
<td>DE</td>
<td>16.5</td>
<td></td>
<td>5.5</td>
<td>3.4</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6875</td>
<td>12"-24" Floor Level of Structure 14</td>
<td>OB</td>
<td>DE</td>
<td>20.8</td>
<td></td>
<td>5.5</td>
<td>3.9</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6874</td>
<td>12"-24" Floor Level of Structure 14</td>
<td>CC</td>
<td>DZ</td>
<td>33.7</td>
<td>13.1</td>
<td>2.6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6873</td>
<td>12"-24" Floor Level of Structure 14</td>
<td>OB</td>
<td>DC</td>
<td>13.6</td>
<td></td>
<td>5.5</td>
<td>3</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6872</td>
<td>12"-24" Floor Level of Structure 14</td>
<td>OB</td>
<td>DC</td>
<td>13.7</td>
<td></td>
<td>5.2</td>
<td>3.3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6871</td>
<td>12"-24" Floor Level of Structure 14</td>
<td>OB</td>
<td>DD</td>
<td>28.3</td>
<td>12.2</td>
<td>1.6</td>
<td>5.2</td>
<td>3.5</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>125-3546</td>
<td>Subfloor of Structure 17</td>
<td>CC</td>
<td>DC</td>
<td>14.2</td>
<td></td>
<td>5.2</td>
<td>3.8</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-3545</td>
<td>Subfloor of Structure 17</td>
<td>CC</td>
<td>DE</td>
<td>23.4</td>
<td>15.7</td>
<td>5.6</td>
<td>2.6</td>
<td>3.8</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>125-3348</td>
<td>Subfloor of Structure 17</td>
<td>OB</td>
<td>DE</td>
<td>18.1</td>
<td></td>
<td>5.4</td>
<td>3.6</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-3348</td>
<td>Subfloor of Structure 17</td>
<td>OB</td>
<td>DZ</td>
<td>20.7</td>
<td>11.9</td>
<td>2.6</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-2949</td>
<td>Floor of Structure 17</td>
<td>OB</td>
<td>DC</td>
<td>19.2</td>
<td></td>
<td>6.5</td>
<td>3.4</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-2948</td>
<td>Floor of Structure 17</td>
<td>CC</td>
<td>DG</td>
<td>18.3</td>
<td></td>
<td>7.5</td>
<td>3.7</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7276</td>
<td>Floor of Structure 19</td>
<td>OB</td>
<td>DE</td>
<td>19.1</td>
<td></td>
<td>6.5</td>
<td>3.3</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7275</td>
<td>Floor of Structure 19</td>
<td>CC</td>
<td>DE</td>
<td>17.7</td>
<td>3.4</td>
<td>7.1</td>
<td>6</td>
<td>3.7</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>125-7465</td>
<td>Floor of Structure 25</td>
<td>OB</td>
<td>DC/ DG</td>
<td>17</td>
<td></td>
<td>7.1</td>
<td>4.1</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7465</td>
<td>Floor of Structure 25</td>
<td>OB</td>
<td>DC/ DG</td>
<td>17</td>
<td></td>
<td>4.1</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7769</td>
<td>Floor 1 of Structure 22</td>
<td>CR</td>
<td>DZ</td>
<td>21.1</td>
<td>17.8</td>
<td>2.8</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7426</td>
<td>Floor of Structure 23</td>
<td>OB</td>
<td>DC</td>
<td>13.1</td>
<td></td>
<td>7.1</td>
<td>3.7</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7422</td>
<td>Floor of Structure 23</td>
<td>CC</td>
<td>DZ</td>
<td>18.7</td>
<td>6.3</td>
<td>6.3</td>
<td>2.8</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession of Catalog No.</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Width</td>
<td>Neck length</td>
<td>Distal Neck Width</td>
<td>Proximal Neck Width</td>
<td>Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>125-9074</td>
<td>Floor of Structure 26</td>
<td>CC</td>
<td>DC/ DG</td>
<td>6.3</td>
<td>3</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9160</td>
<td>Floor of Structure 28</td>
<td>OB</td>
<td>DE</td>
<td>18.8</td>
<td>3.8</td>
<td>6.7</td>
<td>4.2</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9159</td>
<td>Floor of Structure 28</td>
<td>OB</td>
<td>DZ</td>
<td>11.2</td>
<td></td>
<td>4.3</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9158</td>
<td>Floor of Structure 28</td>
<td>CR</td>
<td>DC</td>
<td>13.7</td>
<td>3.3</td>
<td>5.9</td>
<td>3.3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9157</td>
<td>Floor of Structure 28</td>
<td>CR</td>
<td>DE</td>
<td>16.2</td>
<td>6.2</td>
<td>5.3</td>
<td>3.2</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-11,852</td>
<td>Floor 2 of Structure 32</td>
<td>CR</td>
<td>DE</td>
<td>16.4</td>
<td></td>
<td>6.7</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9998</td>
<td>Floor 1 of Structure 32</td>
<td>DZ</td>
<td>DZ</td>
<td>36.4</td>
<td>17.4</td>
<td>4.2</td>
<td>7.4</td>
<td>7.7</td>
<td>3.4</td>
<td>1.5</td>
</tr>
<tr>
<td>125-11,461</td>
<td>Floor 1 of Structure 32</td>
<td>CD</td>
<td>DC/ DG</td>
<td>31.1</td>
<td>15.8</td>
<td>3.6</td>
<td>6.5</td>
<td>6.7</td>
<td>3.6</td>
<td>1.1</td>
</tr>
<tr>
<td>125-10,255</td>
<td>0"-26" Fill above Surface 4</td>
<td>CC</td>
<td>DZ</td>
<td>12.7</td>
<td></td>
<td>3.1</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-10,254</td>
<td>0"-26" Fill above Surface 4</td>
<td>OB</td>
<td>DE</td>
<td>16.8</td>
<td></td>
<td>7.5</td>
<td>3.6</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-11,926</td>
<td>Floor of Structure 35</td>
<td>CR</td>
<td>DE</td>
<td>15.6</td>
<td></td>
<td>6.2</td>
<td>3.9</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-11,702</td>
<td>Floor of Structure 37</td>
<td>CC</td>
<td>DZ</td>
<td>14</td>
<td></td>
<td>4.1</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-11,683</td>
<td>Floor of Structure 37</td>
<td>CC</td>
<td>DE</td>
<td>16.4</td>
<td></td>
<td>16.4</td>
<td>4</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-11,371</td>
<td>Floor of Structure 37</td>
<td>CC</td>
<td>DE</td>
<td>32.1</td>
<td>17.3</td>
<td>3.5</td>
<td>6</td>
<td>5.3</td>
<td>2.9</td>
<td>1.3</td>
</tr>
<tr>
<td>125-11,237</td>
<td>Floor of Structure 37</td>
<td>OB</td>
<td>DZ</td>
<td>16.2</td>
<td></td>
<td>4.1</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-11,978</td>
<td>Floor of Structure 38</td>
<td>CC</td>
<td>DE</td>
<td>19.6</td>
<td></td>
<td>7</td>
<td>3.1</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-11,663</td>
<td>Floor of Structure 38</td>
<td>OB</td>
<td>DZ</td>
<td>16.2</td>
<td></td>
<td>3.4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-10,559</td>
<td>Mound X</td>
<td>CR</td>
<td>DZ</td>
<td>14.2</td>
<td>4</td>
<td>2.6</td>
<td>4.7</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-2504</td>
<td>Site Surface</td>
<td>OB</td>
<td>DE</td>
<td>19.4</td>
<td>4.1</td>
<td>5.7</td>
<td>6.5</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-3038</td>
<td>Site Surface</td>
<td>OB</td>
<td>DE</td>
<td>19.4</td>
<td>3.1</td>
<td>3.3</td>
<td>6</td>
<td>5.7</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>125-3039</td>
<td>Site Surface</td>
<td>OB</td>
<td>DC/ DG</td>
<td>17.4</td>
<td>3.5</td>
<td>3.8</td>
<td>7.4</td>
<td>5.7</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>125-9477</td>
<td>Site Surface</td>
<td>OB</td>
<td>DC</td>
<td>15.2</td>
<td>3.5</td>
<td>2.9</td>
<td>7.5</td>
<td>8</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>125-560</td>
<td>6"-18" Level of Structure 1</td>
<td>OB</td>
<td>DE</td>
<td>15.7</td>
<td>4.6</td>
<td></td>
<td>5.6</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-2146</td>
<td>12"-36" Level of Structure 4</td>
<td>CC</td>
<td>DE</td>
<td>18.2</td>
<td>13.9</td>
<td>2.4</td>
<td>4.9</td>
<td>4</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>125-1651</td>
<td>18"-24" Level of Pit H-13 Mound B</td>
<td>OB</td>
<td>CA</td>
<td>22</td>
<td>5.7</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-1652</td>
<td>18"-24" Level of Pit H-13 Mound B</td>
<td>CC</td>
<td>DZ</td>
<td>14.2</td>
<td>4.4</td>
<td></td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-1885</td>
<td>12"-18" Level of Pit F-14 Mound B</td>
<td>CC</td>
<td>DZ</td>
<td>12.2</td>
<td>3</td>
<td></td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-2129</td>
<td>0"-18" Level of Pit F14-15 Mound B</td>
<td>OB</td>
<td>DE</td>
<td>12.9</td>
<td>2.7</td>
<td>3.5</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-2129</td>
<td>0"-18" Level of Pit F14-15 Mound B</td>
<td>OB</td>
<td>CA</td>
<td>16.4</td>
<td>3.6</td>
<td></td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-1859</td>
<td>12"-18" Level of Pit G-13 Mound B</td>
<td>CC</td>
<td>DE</td>
<td>16</td>
<td>3.2</td>
<td>4.5</td>
<td>6.4</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-1837</td>
<td>18"-24" Level of Pit G-15 Mound B</td>
<td>OB</td>
<td>DC</td>
<td>12.2</td>
<td>3</td>
<td>6.6</td>
<td>5</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-2061</td>
<td>30"-60" Level of Pit G-15 Mound B</td>
<td>CR</td>
<td>DC</td>
<td>13.5</td>
<td>3</td>
<td>4.6</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-2848</td>
<td>0"-6" Level of Structure 5</td>
<td>CC</td>
<td>DZ</td>
<td>18</td>
<td>3.9</td>
<td></td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-3690</td>
<td>24"-30" Level of Structure 5</td>
<td>OB</td>
<td>DE</td>
<td>15</td>
<td>3.2</td>
<td></td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-4017</td>
<td>24"-30" Level of Structure 8</td>
<td>OB</td>
<td>DC</td>
<td>14.1</td>
<td>3.2</td>
<td>5.8</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-4030</td>
<td>30"+ Level of Structure 8</td>
<td>OB</td>
<td>DG</td>
<td>18.7</td>
<td>3.2</td>
<td>3.7</td>
<td>6.3</td>
<td>5</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Accession of Catalog No.</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Width</td>
<td>Neck length</td>
<td>Distal Neck Width</td>
<td>Proximal Neck Width</td>
<td>Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>125-2245</td>
<td>12"-18" Level of Structure 8</td>
<td>OB</td>
<td>DC/DG</td>
<td>14</td>
<td>2.5</td>
<td>8</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-2274</td>
<td>30"-36" Level of Structure 8</td>
<td>CR</td>
<td>DZ</td>
<td>14.4</td>
<td>2.6</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-5820</td>
<td>12"-18" Level of Structure 8</td>
<td>OB</td>
<td>DZ</td>
<td>22.8</td>
<td>2.3</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-5676</td>
<td>6"-12" Level of Structure 8</td>
<td>OB</td>
<td>DZ</td>
<td>24.9</td>
<td>5</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-5684</td>
<td>6"-12" Level of Structure 8</td>
<td>OB</td>
<td>DZ</td>
<td>16.1</td>
<td>2.3</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-5877</td>
<td>30"-36" Level of Structure 8</td>
<td>CC</td>
<td>DC</td>
<td>16.1</td>
<td>2.9</td>
<td>3.8</td>
<td>5.2</td>
<td>4.3</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>125-5878</td>
<td>30"-36" Level of Structure 8</td>
<td>CR</td>
<td>DZ</td>
<td>11.7</td>
<td>3.1</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-5415</td>
<td>18"-24" Level of P-3</td>
<td>OB</td>
<td>DZ</td>
<td>19.7</td>
<td>3.9</td>
<td>2.3</td>
<td>7.6</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-5969</td>
<td>12"-24" Level of Structure 10</td>
<td>OB</td>
<td>DE</td>
<td>18.9</td>
<td>4.7</td>
<td>5.5</td>
<td>4.9</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-5969</td>
<td>12"-24" Level of Structure 10</td>
<td>CD</td>
<td>DC/DG</td>
<td>15.9</td>
<td>3.8</td>
<td>3.1</td>
<td>5.4</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-5970</td>
<td>12"-24" Level of Structure 10</td>
<td>CD</td>
<td>DC/DG</td>
<td>16.7</td>
<td>2.5</td>
<td>5.7</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6246</td>
<td>12"-Floor Level of Structure 12</td>
<td>OB</td>
<td>DE</td>
<td>19.9</td>
<td>3.6</td>
<td>7.4</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6466</td>
<td>Subfloor Pit of Structure 12</td>
<td>CC</td>
<td>DE</td>
<td>17.8</td>
<td>3.6</td>
<td>3.9</td>
<td>8.2</td>
<td>5.8</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>125-6465</td>
<td>12" Level of Structure 12</td>
<td>CC</td>
<td>DZ</td>
<td>16.2</td>
<td>3.8</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6467</td>
<td>12" Level of Structure 12</td>
<td>CR</td>
<td>DE</td>
<td>17.1</td>
<td>3.4</td>
<td>7.5</td>
<td>6.7</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6468</td>
<td>12" Level of Structure 12</td>
<td>CR</td>
<td>DE</td>
<td>14.6</td>
<td>2.9</td>
<td>6.2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6469</td>
<td>12" Level of Structure 12</td>
<td>CC</td>
<td>DZ</td>
<td>15.4</td>
<td>4.4</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6470</td>
<td>12" Level of Structure 12</td>
<td>OB</td>
<td>DC/DG</td>
<td>24</td>
<td>15.2</td>
<td>3.8</td>
<td>2.7</td>
<td>6.6</td>
<td>7.7</td>
<td>1.1</td>
</tr>
<tr>
<td>125-6472</td>
<td>12" Level of Structure 12</td>
<td>OB</td>
<td>DG</td>
<td>17.5</td>
<td>3.8</td>
<td>6.2</td>
<td>7</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6473</td>
<td>12" Level of Structure 12</td>
<td>OB</td>
<td>DG</td>
<td>16.7</td>
<td>3.4</td>
<td>2.5</td>
<td>8</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6474</td>
<td>12" Level of Structure 12</td>
<td>OB</td>
<td>DE</td>
<td>13.7</td>
<td>3.1</td>
<td>7.3</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6475</td>
<td>12" Level of Structure 12</td>
<td>OB</td>
<td>DE</td>
<td>15</td>
<td>3</td>
<td>5.6</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-6941</td>
<td>54" Level of Structure 14</td>
<td>CC</td>
<td>DE</td>
<td>15.4</td>
<td>2.7</td>
<td>6.3</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7003</td>
<td>20"-32" Level of Structure 15</td>
<td>CC</td>
<td>DZ</td>
<td>15.1</td>
<td>3.3</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7003</td>
<td>20"-32" Level of Structure 15</td>
<td>OB</td>
<td>DZ</td>
<td>14.9</td>
<td>3.6</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7068</td>
<td>32"-Floor of Structure 15</td>
<td>CR</td>
<td>DZ</td>
<td>18.3</td>
<td>3.2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7077</td>
<td>32"-Floor of Structure 15</td>
<td>CC</td>
<td>DC</td>
<td>13.6</td>
<td>4.3</td>
<td>3.8</td>
<td>8.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-3977</td>
<td>Subfloor of Structure 17</td>
<td>CC</td>
<td>DE</td>
<td>17.4</td>
<td>3.2</td>
<td>6.4</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-2874</td>
<td>Ventilator Fill of Structure 17</td>
<td>CC</td>
<td>DG</td>
<td>15.5</td>
<td>2.9</td>
<td>8.4</td>
<td>8</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7263</td>
<td>Fill of Structure 19</td>
<td>CC</td>
<td>DZ</td>
<td>22.8</td>
<td>5.2</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7265</td>
<td>Fill of Structure 19</td>
<td>OB</td>
<td>DZ</td>
<td>15.3</td>
<td>4.1</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7354</td>
<td>Fill of Structure 20</td>
<td>OB</td>
<td>DC</td>
<td>15.5</td>
<td>2.6</td>
<td>3.6</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7360</td>
<td>Fill of Structure 20</td>
<td>OB</td>
<td>DE</td>
<td>17.2</td>
<td>4.5</td>
<td>6.1</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7362</td>
<td>Fill of Structure 20</td>
<td>OB</td>
<td>DC</td>
<td>15.2</td>
<td>3.9</td>
<td>4.9</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7366</td>
<td>Fill of Structure 20</td>
<td>CR</td>
<td>DE</td>
<td>16</td>
<td>3.6</td>
<td>6.9</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession of Catalog No.</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Width</td>
<td>Neck length</td>
<td>Distal Neck Width</td>
<td>Proximal Neck width</td>
<td>Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>125-7656</td>
<td>Fill of Structure 21</td>
<td>OB</td>
<td>DZ</td>
<td>16.7</td>
<td>3.6</td>
<td>5.2</td>
<td>3.3</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7490</td>
<td>Ventilator of Structure 20</td>
<td>CC</td>
<td>DE</td>
<td>15.9</td>
<td>3.8</td>
<td>4.4</td>
<td>3.3</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7533</td>
<td>Fill of Structure 20</td>
<td>OB</td>
<td>DE</td>
<td>18.2</td>
<td>3.6</td>
<td>5.5</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7534</td>
<td>Fill of Structure 20</td>
<td>CC</td>
<td>DZ</td>
<td>39.2</td>
<td>18.1</td>
<td>4.2</td>
<td>3</td>
<td>8.4</td>
<td>6.5</td>
<td>2</td>
</tr>
<tr>
<td>125-7655</td>
<td>Fill of Structure 21</td>
<td>OB</td>
<td>DZ</td>
<td>13.9</td>
<td>3.6</td>
<td>5.5</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7657</td>
<td>Fill of Structure 21</td>
<td>OB</td>
<td>DZ</td>
<td>27.5</td>
<td>14.6</td>
<td>2.7</td>
<td>1.8</td>
<td>7.7</td>
<td>7.5</td>
<td>1.1</td>
</tr>
<tr>
<td>125-7700</td>
<td>Fill of Structure 22</td>
<td>OB</td>
<td>DE</td>
<td>25.2</td>
<td>15.9</td>
<td>4.5</td>
<td>3</td>
<td>6.1</td>
<td>5.1</td>
<td>1.2</td>
</tr>
<tr>
<td>125-7701</td>
<td>Fill of Structure 22</td>
<td>CC</td>
<td>DZ</td>
<td>13.4</td>
<td>4.2</td>
<td>5.5</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7702</td>
<td>Fill of Structure 22</td>
<td>CR</td>
<td>DZ</td>
<td>13.3</td>
<td>3</td>
<td>5.5</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7703</td>
<td>Fill of Structure 22</td>
<td>CC</td>
<td>DZ</td>
<td>14.2</td>
<td>4</td>
<td>5.5</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7704</td>
<td>Fill of Structure 22</td>
<td>OB</td>
<td>DE</td>
<td>31.2</td>
<td>19.5</td>
<td>3.1</td>
<td>3.9</td>
<td>7</td>
<td>5.9</td>
<td>1.1</td>
</tr>
<tr>
<td>125-7705</td>
<td>Fill of Structure 22</td>
<td>OB</td>
<td>DC</td>
<td>15.5</td>
<td>3.5</td>
<td>5.5</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7708</td>
<td>Fill of Structure 22</td>
<td>OB</td>
<td>DZ</td>
<td>14</td>
<td>2.9</td>
<td>5.5</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7841</td>
<td>Fill of Structure 22</td>
<td>OB</td>
<td>DZ</td>
<td>18.5</td>
<td>3.3</td>
<td>5.5</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7786</td>
<td>Fill of Structure 22</td>
<td>CR</td>
<td>DZ</td>
<td>18.1</td>
<td>3.4</td>
<td>5.5</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7809</td>
<td>Burial of Structure 22</td>
<td>CR</td>
<td>DC</td>
<td>17.2</td>
<td>3.7</td>
<td>6.4</td>
<td>5</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7423</td>
<td>Floor of Structure 23</td>
<td>CR</td>
<td>DC</td>
<td>11.5</td>
<td>3.5</td>
<td>5.5</td>
<td>4.2</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-8821</td>
<td>Fill of Structure 25</td>
<td>CR</td>
<td>DZ</td>
<td>14.9</td>
<td>2.2</td>
<td>5.5</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-8823</td>
<td>Floor of Structure 25</td>
<td>CC</td>
<td>CA</td>
<td>20.9</td>
<td>19.2</td>
<td>7.3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9006</td>
<td>6”-12” Level of Structure 26</td>
<td>CR</td>
<td>DZ</td>
<td>15.8</td>
<td>3.3</td>
<td>3.7</td>
<td>5.6</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9311</td>
<td>Floor of Structure 27</td>
<td>OB</td>
<td>DE</td>
<td>17.2</td>
<td>2.8</td>
<td>5.5</td>
<td>6.6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9177</td>
<td>0”-12” Level of Structure 27</td>
<td>OB</td>
<td>DZ</td>
<td>14.1</td>
<td>3.1</td>
<td>5.5</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9284</td>
<td>12”-18” Level of Structure 27</td>
<td>OB</td>
<td>DZ</td>
<td>15.6</td>
<td>3.6</td>
<td>5.5</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9303</td>
<td>6”-12” Level of Structure 27</td>
<td>OB</td>
<td>DZ</td>
<td>2.3</td>
<td>5.5</td>
<td>0.6</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9295</td>
<td>18”-29” Level of Structure 27</td>
<td>OB</td>
<td>DZ</td>
<td>15.2</td>
<td>3.6</td>
<td>5.5</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-8072</td>
<td>6”-12” Level of Structure 28</td>
<td>OB</td>
<td>DZ</td>
<td>14.2</td>
<td>3</td>
<td>5.5</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-8073</td>
<td>6”-12” Level of Structure 28</td>
<td>CR</td>
<td>DE</td>
<td>15.4</td>
<td>3.8</td>
<td>5.5</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9014</td>
<td>9”-15” Level of Structure 28</td>
<td>OB</td>
<td>DZ</td>
<td>12.9</td>
<td>3.8</td>
<td>5.5</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9029</td>
<td>15”-21” Level of Structure 28</td>
<td>OB</td>
<td>DG</td>
<td>3.6</td>
<td>7.3</td>
<td>5.3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9030</td>
<td>15”-21” Level of Structure 28</td>
<td>OB</td>
<td>DZ</td>
<td>14.1</td>
<td>4.1</td>
<td>5.5</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9001</td>
<td>21”-27” Level of Structure 28</td>
<td>OB</td>
<td>DZ</td>
<td>12.3</td>
<td>3.2</td>
<td>5.5</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9009</td>
<td>21”-27” Level of Structure 28</td>
<td>OB</td>
<td>DG</td>
<td>20.5</td>
<td>3.1</td>
<td>6.9</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9047</td>
<td>27”-33” Level of Structure 28</td>
<td>OB</td>
<td>DG</td>
<td>22.7</td>
<td>15.1</td>
<td>3.3</td>
<td>7</td>
<td>4.8</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>125-8956</td>
<td>Trench Through Structure 28</td>
<td>OB</td>
<td>DD</td>
<td>12</td>
<td>4.1</td>
<td>2.7</td>
<td>8.5</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9192</td>
<td>Structure 29</td>
<td>OB</td>
<td>DZ</td>
<td>36.9</td>
<td>13.2</td>
<td>3.4</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9124</td>
<td>0”-12” Level of Structure 30</td>
<td>OB</td>
<td>DE</td>
<td>17</td>
<td>3.3</td>
<td>3.3</td>
<td>6.2</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9125</td>
<td>0”-12” Level of Structure 30</td>
<td>OB</td>
<td>DZ</td>
<td>18.7</td>
<td>6.5</td>
<td>5.5</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9089</td>
<td>Structure 30</td>
<td>OB</td>
<td>DE</td>
<td>2.6</td>
<td>5.5</td>
<td>0.6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-10,056</td>
<td>0”-18” Level of Structure 31</td>
<td>CC</td>
<td>DZ</td>
<td>14.6</td>
<td>3.4</td>
<td>5.5</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession of Catalog No.</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Width</td>
<td>Neck length</td>
<td>Distal Neck Width</td>
<td>Proximal Neck width</td>
<td>Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>125-9877</td>
<td>0"-18" Level of Structure 31</td>
<td>OB</td>
<td>DG</td>
<td>23.1</td>
<td>3.3</td>
<td>5.3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-10,143</td>
<td>0"-23" Level of Structure 31</td>
<td>CC</td>
<td>DZ</td>
<td>18.2</td>
<td>4.6</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-10,007</td>
<td>24"-46" Level of Structure 32</td>
<td>OB</td>
<td>DZ</td>
<td>17.2</td>
<td>3.9</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-10,010</td>
<td>24"-46" Level of Structure 32</td>
<td>CC</td>
<td>DZ</td>
<td>13.9</td>
<td>3.8</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-10,225</td>
<td>24"-46" Level of Structure 32</td>
<td>CC</td>
<td>DZ</td>
<td>17.3</td>
<td>4.2</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-10,226</td>
<td>24"-46" Level of Structure 32</td>
<td>OB</td>
<td>DC/DG</td>
<td>13.8</td>
<td>2.8</td>
<td>2.6</td>
<td>5.3</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-10,619</td>
<td>24"-46" Level of Structure 32</td>
<td>OB</td>
<td>DG</td>
<td>17.2</td>
<td>3.2</td>
<td>4</td>
<td>6.5</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-10,777</td>
<td>24"-46" Level of Structure 32</td>
<td>CR</td>
<td>DZ</td>
<td>13.9</td>
<td>2.3</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-10,778</td>
<td>24"-46" Level of Structure 32</td>
<td>OB</td>
<td>DZ</td>
<td>15.9</td>
<td>3.8</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-11,008</td>
<td>24"-46" Level of Structure 32</td>
<td>CR</td>
<td>DE</td>
<td>19.2</td>
<td>4.1</td>
<td>4.3</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-11,389</td>
<td>24"-46" Level of Structure 32</td>
<td>CC</td>
<td>DZ</td>
<td>17.9</td>
<td>3.5</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-11,391</td>
<td>24"-46" Level of Structure 32</td>
<td>CC</td>
<td>DE</td>
<td>16.5</td>
<td>4.5</td>
<td>3.8</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9820</td>
<td>24"-46" Level of Structure 32</td>
<td>CC</td>
<td>DZ</td>
<td>16</td>
<td>4.2</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9822</td>
<td>24"-46" Level of Structure 32</td>
<td>OB</td>
<td>DZ</td>
<td>11.9</td>
<td>2.1</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9825</td>
<td>24"-46" Level of Structure 32</td>
<td>CR</td>
<td>DZ</td>
<td>43.3</td>
<td>16.7</td>
<td>3.6</td>
<td>4</td>
<td>6.5</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>125-9826</td>
<td>24"-46" Level of Structure 32</td>
<td>OB</td>
<td>DE</td>
<td>29</td>
<td>17.7</td>
<td>4.1</td>
<td>3.5</td>
<td>8.7</td>
<td>8.3</td>
<td>1.3</td>
</tr>
<tr>
<td>125-9827</td>
<td>24"-46" Level of Structure 32</td>
<td>CC</td>
<td>DZ</td>
<td>16.6</td>
<td>3.7</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-11,392</td>
<td>24"-46" Level of Structure 32</td>
<td>CC</td>
<td>DE</td>
<td>20.4</td>
<td>3.6</td>
<td>7.4</td>
<td>5.3</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9848</td>
<td>0"-12" Level of Structure 35</td>
<td>CR</td>
<td>DZ</td>
<td>14.1</td>
<td>3.3</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-10,266</td>
<td>12"-42" Level of Structure 35</td>
<td>OB</td>
<td>DZ</td>
<td>19.7</td>
<td>3.7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-10,422</td>
<td>12"-42" Level of Structure 35</td>
<td>CC</td>
<td>DZ</td>
<td>11.3</td>
<td>3.4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-10,434</td>
<td>12"-42" Level of Structure 35</td>
<td>OB</td>
<td>DC</td>
<td>11.4</td>
<td>3.3</td>
<td>3.3</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-10,490</td>
<td>12"-42" Level of Structure 35</td>
<td>CR</td>
<td>DE</td>
<td>15.3</td>
<td>3.4</td>
<td>5.9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9808</td>
<td>12"-42" Level of Structure 35</td>
<td>CR</td>
<td>DZ</td>
<td>14.2</td>
<td>3.2</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-10,111</td>
<td>0"-18" Level of Structure 36</td>
<td>CC</td>
<td>DZ</td>
<td>23.3</td>
<td>5.5</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-10,189</td>
<td>0"-18" Level of Structure 36</td>
<td>OB</td>
<td>DE</td>
<td>16.4</td>
<td>4.6</td>
<td>4.5</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-10,187</td>
<td>4"-24" Level of Structure 36</td>
<td>CC</td>
<td>DE</td>
<td>14.5</td>
<td>2.8</td>
<td>4.4</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-10,396</td>
<td>4"-24" Level of Structure 36</td>
<td>CC</td>
<td>DE</td>
<td>17.8</td>
<td>3.4</td>
<td>8.9</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-10,795</td>
<td>0"-12" Level of Structure 37</td>
<td>OB</td>
<td>DE</td>
<td>14.7</td>
<td>3.5</td>
<td>6.1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-10,818</td>
<td>12"-48" Level of Structure 37</td>
<td>OB</td>
<td>DG</td>
<td>18.8</td>
<td>3</td>
<td>6.3</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-11,112</td>
<td>12"-48" Level of Structure 37</td>
<td>CR</td>
<td>DZ</td>
<td>12.4</td>
<td>4</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-10,663</td>
<td>0"-24" Level of Structure 38</td>
<td>CR</td>
<td>DG</td>
<td>18.7</td>
<td>3.3</td>
<td>5.9</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-10,966</td>
<td>0"-24" Level of Structure 38</td>
<td>CR</td>
<td>DE</td>
<td>15.6</td>
<td>2.5</td>
<td>6.3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-11,415</td>
<td>24"-Floor Level of Structure 38</td>
<td>CC</td>
<td>DG</td>
<td>18.8</td>
<td>3</td>
<td>4.9</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-54</td>
<td>0"-12" Level of F11</td>
<td>OB</td>
<td>DZ</td>
<td>20.9</td>
<td>3.5</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-80</td>
<td>12"-18" Level of F11</td>
<td>CC</td>
<td>DG</td>
<td>20.9</td>
<td>15</td>
<td>3.2</td>
<td>4.3</td>
<td>6.7</td>
<td>4.7</td>
<td>0.7</td>
</tr>
<tr>
<td>125-123</td>
<td>0"-12" Level of G10</td>
<td>CC</td>
<td>DC</td>
<td>14.7</td>
<td>3.8</td>
<td>5.8</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-39</td>
<td>0"-12" Level of G11</td>
<td>CC</td>
<td>DC</td>
<td>13.6</td>
<td>3.7</td>
<td>3</td>
<td>6.9</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-334</td>
<td>0"-12" Level of I10</td>
<td>CR</td>
<td>DZ</td>
<td>14</td>
<td>3.6</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table B.3. Continued

<table>
<thead>
<tr>
<th>Accession of Catalog No.</th>
<th>Provenience</th>
<th>Material</th>
<th>Projectile Point Type</th>
<th>Length</th>
<th>Width</th>
<th>Neck length</th>
<th>Distal Neck Width</th>
<th>Proximal Neck Width</th>
<th>Thickness</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>125-44</td>
<td>0"-12" Level of I11</td>
<td>CR</td>
<td>DC</td>
<td>13.6</td>
<td>3.1</td>
<td>3.4</td>
<td></td>
<td></td>
<td>6.5</td>
<td>1.2</td>
</tr>
<tr>
<td>125-733</td>
<td>0"-12" Level of I11</td>
<td>CC</td>
<td>DC</td>
<td>12.6</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td>5.3</td>
<td>1</td>
</tr>
<tr>
<td>125-495</td>
<td>0"-12" Level of I6</td>
<td>OB</td>
<td>DE</td>
<td>14.7</td>
<td>3.2</td>
<td>8.3</td>
<td></td>
<td></td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>125-160</td>
<td>12"-18" Level of J11</td>
<td>OB</td>
<td>DZ</td>
<td>16.2</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>125-133</td>
<td>0"-6" Level of C3</td>
<td>CC</td>
<td>DC</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>125-109</td>
<td>6"-12" Level of C3</td>
<td>CC</td>
<td>DC</td>
<td>14.5</td>
<td>3.5</td>
<td>2.4</td>
<td>5.9</td>
<td>4.7</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>125-147</td>
<td>6"-12" Level of C4</td>
<td>OB</td>
<td>DC</td>
<td>15.9</td>
<td>4.9</td>
<td>2.9</td>
<td>6.9</td>
<td>7.2</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>125-555</td>
<td>0"-6" Level of C7</td>
<td>CC</td>
<td>DZ</td>
<td>17.8</td>
<td>5.3</td>
<td></td>
<td></td>
<td></td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>125-210</td>
<td>6"-12" Level of D3</td>
<td>OB</td>
<td>DE</td>
<td>27.3</td>
<td>14.6</td>
<td>2.9</td>
<td>6.7</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>125-430</td>
<td>6"-12" Level of D5</td>
<td>OB</td>
<td>DE</td>
<td>17.1</td>
<td>3.3</td>
<td></td>
<td>8.9</td>
<td>4.7</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>125-512</td>
<td>12"-18" Level of D5</td>
<td>OB</td>
<td>DE</td>
<td>15.8</td>
<td>2.9</td>
<td></td>
<td>6.1</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-513</td>
<td>12"-18" Level of D5</td>
<td>OB</td>
<td>DZ</td>
<td>15.8</td>
<td>2.1</td>
<td></td>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-991</td>
<td>0"-24" Level of D5</td>
<td>CC</td>
<td>DE</td>
<td>13.2</td>
<td>3.9</td>
<td>5.6</td>
<td>4.3</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-679</td>
<td>0"-6" Level of D7</td>
<td>CC</td>
<td>DZ</td>
<td>12.6</td>
<td>4.3</td>
<td></td>
<td></td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-630</td>
<td>0"-6" Level of D8</td>
<td>OB</td>
<td>DE</td>
<td>16.5</td>
<td>2.7</td>
<td></td>
<td>5.3</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-214</td>
<td>6"-14" Level of E3</td>
<td>OB</td>
<td>DE</td>
<td>13.1</td>
<td>2.3</td>
<td></td>
<td>3.9</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-256</td>
<td>6"-12" Level of E4</td>
<td>OB</td>
<td>DE</td>
<td>20.3</td>
<td>3.7</td>
<td>7.6</td>
<td>6.2</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-265</td>
<td>12"-18" Level of E4</td>
<td>CC</td>
<td>DE</td>
<td>16.6</td>
<td>3.9</td>
<td>5.6</td>
<td>4.5</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-267</td>
<td>12"-18" Level of E4</td>
<td>OB</td>
<td>DE</td>
<td>3</td>
<td>6.9</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-324</td>
<td>18"-24" Level of E4</td>
<td>OB</td>
<td>DC/ DG</td>
<td>23.6</td>
<td>15</td>
<td>3.2</td>
<td>2.4</td>
<td>6.2</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>125-307</td>
<td>0"-6" Level of E5</td>
<td>OB</td>
<td>DC</td>
<td>13.4</td>
<td>3.5</td>
<td></td>
<td>5.1</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-417</td>
<td>6"-12" Level of E5</td>
<td>OB</td>
<td>DZ</td>
<td>36.1</td>
<td>20.8</td>
<td>5.2</td>
<td></td>
<td>2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-462</td>
<td>12"-18" Level of E5</td>
<td>OB</td>
<td>DZ</td>
<td>17.8</td>
<td>3.9</td>
<td></td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-1865</td>
<td>18"-24" Level of E5</td>
<td>OB</td>
<td>DZ</td>
<td>19.7</td>
<td>4.4</td>
<td></td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-1865</td>
<td>18"-24" Level of E5</td>
<td>OB</td>
<td>DZ</td>
<td>19.7</td>
<td>4.4</td>
<td></td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-325</td>
<td>0"-6" Level of E6</td>
<td>CC</td>
<td>DC</td>
<td>14.3</td>
<td>3.1</td>
<td>2.4</td>
<td>6.4</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-564</td>
<td>0"-6" Level of E7</td>
<td>OB</td>
<td>DE</td>
<td>13.9</td>
<td>3.4</td>
<td></td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-1945</td>
<td>1"-18" Level of E9</td>
<td>OB</td>
<td>CA</td>
<td>17.2</td>
<td>2.8</td>
<td></td>
<td></td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-1999</td>
<td>12"-18" Level of F15</td>
<td>OB</td>
<td>DE</td>
<td>16.7</td>
<td>4.3</td>
<td></td>
<td>5.9</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-205</td>
<td>6"-12" Level of F4</td>
<td>OB</td>
<td>DE</td>
<td>15.7</td>
<td>3.2</td>
<td></td>
<td>7.1</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-206</td>
<td>6"-12" Level of F4</td>
<td>OB</td>
<td>DG</td>
<td>13.5</td>
<td>2.6</td>
<td>3.1</td>
<td>5.8</td>
<td>4.9</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>125-294</td>
<td>0"-6" Level of F5</td>
<td>OB</td>
<td>DZ</td>
<td>33.4</td>
<td>14.1</td>
<td>4.4</td>
<td></td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-549</td>
<td>0"-6" Level of F9</td>
<td>OB</td>
<td>DZ</td>
<td>14</td>
<td>2.8</td>
<td></td>
<td></td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-2030</td>
<td>24"-30" Level of G15</td>
<td>CD</td>
<td>DZ</td>
<td>16.7</td>
<td>4.2</td>
<td></td>
<td></td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-1900</td>
<td>6"-12" Level of G16</td>
<td>OB</td>
<td>DC</td>
<td>11.4</td>
<td>3.1</td>
<td>3.3</td>
<td>4.6</td>
<td>8.6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>125-10</td>
<td>0"-6" Level of G3</td>
<td>CC</td>
<td>DZ</td>
<td>12.3</td>
<td>3.4</td>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7</td>
<td>0"-6" Level of G3</td>
<td>OB</td>
<td>DZ</td>
<td>13.7</td>
<td>3.4</td>
<td></td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-98</td>
<td>6"-12" Level of G3</td>
<td>CC</td>
<td>DG</td>
<td>15.9</td>
<td>3.5</td>
<td>2.6</td>
<td>6.7</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-119</td>
<td>6"-12" Level of G4</td>
<td>OB</td>
<td>DE</td>
<td>13.7</td>
<td>2.8</td>
<td></td>
<td>3</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession of Catalog No.</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Width</td>
<td>Neck length</td>
<td>Distal Neck Width</td>
<td>Proximal Neck Width</td>
<td>Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td>------------------</td>
<td>--------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>125-421</td>
<td>12"-20" Level of G5</td>
<td>CC</td>
<td>CA</td>
<td>22.1</td>
<td>4.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>125-1321</td>
<td>0"-6" Level of H13</td>
<td>OB</td>
<td>DG</td>
<td>23.2</td>
<td>16.3</td>
<td>2.8</td>
<td>6.6</td>
<td>4.7</td>
<td>8.3</td>
<td>0.7</td>
</tr>
<tr>
<td>125-261</td>
<td>6"-12" Level of H15</td>
<td>CR</td>
<td>DE</td>
<td>13.2</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.1</td>
</tr>
<tr>
<td>125-1270</td>
<td>6"-12" Level of H16</td>
<td>OB</td>
<td>DE</td>
<td>15.2</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.3</td>
</tr>
<tr>
<td>125-997</td>
<td>6"-12" Level of H8 Mound B</td>
<td>CC</td>
<td>DE</td>
<td>13</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.8</td>
</tr>
<tr>
<td>125-1269</td>
<td>24"-30" Level of N3</td>
<td>CR</td>
<td>DE</td>
<td>24.3</td>
<td>17.3</td>
<td>4.7</td>
<td></td>
<td></td>
<td></td>
<td>5.9</td>
</tr>
<tr>
<td>125-239</td>
<td>0"-6" Level of Strata Pit 1</td>
<td>CC</td>
<td>DZ</td>
<td>15.4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.7</td>
</tr>
<tr>
<td>125-358</td>
<td>30"-36" Level of Strata Pit 1</td>
<td>OB</td>
<td>DG</td>
<td>18.3</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>125-401</td>
<td>54"-57" Level of Strata Pit 1</td>
<td>CC</td>
<td>DE</td>
<td>17.1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>7.6</td>
<td>1.3</td>
</tr>
<tr>
<td>125-402</td>
<td>54"-57" Level of Strata Pit 1</td>
<td>CR</td>
<td>DC</td>
<td>33.2</td>
<td>15.8</td>
<td>3.4</td>
<td>4.4</td>
<td>4.9</td>
<td>5.7</td>
<td>1.3</td>
</tr>
<tr>
<td>125-645</td>
<td>24"-30" Level of Strata Pit 3</td>
<td>OB</td>
<td>DZ</td>
<td>17</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>125-646</td>
<td>24"-30" Level of Strata Pit 3</td>
<td>OB</td>
<td>DG</td>
<td>14.7</td>
<td>3.9</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td>6.9</td>
</tr>
<tr>
<td>125-2809</td>
<td>0"-6" Level of E17</td>
<td>CC</td>
<td>DZ</td>
<td>16.7</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>125-5778</td>
<td>6"-12" Level of F17/18-G17/18</td>
<td>OB</td>
<td>DE</td>
<td>13.7</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.9</td>
</tr>
<tr>
<td>125-3180</td>
<td>0"-6" Level of G18</td>
<td>OB</td>
<td>DG</td>
<td>17.3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>125-3395</td>
<td>6"-12" Level of G18</td>
<td>CR</td>
<td>DE</td>
<td>15.6</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.4</td>
</tr>
<tr>
<td>125-2503</td>
<td>12"-18" Level of H18</td>
<td>CC</td>
<td>DZ</td>
<td>21.1</td>
<td>17.2</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>125-2601</td>
<td>Wall of I17</td>
<td>CR</td>
<td>DE</td>
<td>18.1</td>
<td>3.7</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
<td>4.3</td>
</tr>
<tr>
<td>125-3081</td>
<td>24"-30" Level of I21</td>
<td>CR</td>
<td>DZ</td>
<td>17</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>125-5557</td>
<td>0"-6" Level of J6</td>
<td>OB</td>
<td>DZ</td>
<td>16.7</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>125-5558</td>
<td>0"-6" Level of J6</td>
<td>CC</td>
<td>DE</td>
<td>19.2</td>
<td>3.2</td>
<td>3</td>
<td>7.9</td>
<td>6.4</td>
<td></td>
<td>6.5</td>
</tr>
<tr>
<td>125-5557</td>
<td>24"-30" Level of J7</td>
<td>CC/ CR</td>
<td>DE</td>
<td>18.3</td>
<td>4.1</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td>5.2</td>
</tr>
<tr>
<td>125-5095</td>
<td>12"-18" Level of K5</td>
<td>OB</td>
<td>DZ</td>
<td>21.3</td>
<td>18.1</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>125-5230</td>
<td>30"-34" Level of K5</td>
<td>OB</td>
<td>DE</td>
<td>15.5</td>
<td>3.1</td>
<td>5.3</td>
<td></td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>125-5131</td>
<td>12"-18" Level of K6</td>
<td>OB</td>
<td>DE</td>
<td>16</td>
<td>3.1</td>
<td>2.5</td>
<td></td>
<td></td>
<td>6.7</td>
<td>1.2</td>
</tr>
<tr>
<td>125-5132</td>
<td>12"-18" Level of K6</td>
<td>OB</td>
<td>DZ</td>
<td>13.3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>125-5694</td>
<td>12"-18" Level of K7</td>
<td>OB</td>
<td>DC</td>
<td>12.8</td>
<td>3.1</td>
<td>4.1</td>
<td></td>
<td></td>
<td>4.1</td>
<td>0.8</td>
</tr>
<tr>
<td>125-3810</td>
<td>12"-18" Level of L5</td>
<td>OB</td>
<td>DE</td>
<td>18.3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>7.4</td>
<td>0.9</td>
</tr>
<tr>
<td>125-3959</td>
<td>18"-24" Level of L5</td>
<td>OB</td>
<td>DZ</td>
<td>17</td>
<td>2.7</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>125-3967</td>
<td>24"-30" Level of L5</td>
<td>CR</td>
<td>DE</td>
<td>29.7</td>
<td>19.5</td>
<td>3.2</td>
<td>6.9</td>
<td>5.3</td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>125-5508</td>
<td>30"-36" Level of M7</td>
<td>OB</td>
<td>DC</td>
<td>13.2</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td>6.5</td>
<td>0.7</td>
</tr>
<tr>
<td>125-5509</td>
<td>30"-36" Level of M7</td>
<td>OB</td>
<td>DE</td>
<td>16.2</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td>6.5</td>
<td>0.9</td>
</tr>
<tr>
<td>125-3414</td>
<td>24"-30" Level of N12</td>
<td>OB</td>
<td>DZ</td>
<td>16.7</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>125-3016</td>
<td>12"-18" Level of P12</td>
<td>OB</td>
<td>DZ</td>
<td>18.6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>125-5443</td>
<td>18"-24" Level of R1</td>
<td>CC</td>
<td>DE</td>
<td>18.2</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td>5.5</td>
<td>1</td>
</tr>
<tr>
<td>125-4024</td>
<td>6"-12" Level of M6</td>
<td>CD</td>
<td>DZ</td>
<td>15.5</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>125-6188</td>
<td>0"-12" Level of A16</td>
<td>CC</td>
<td>DZ</td>
<td>14.4</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>125-6302</td>
<td>0"-12" Level of A20</td>
<td>CC</td>
<td>DZ</td>
<td>12.8</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>125-6302</td>
<td>0"-12" Level of A20</td>
<td>CC</td>
<td>DZ</td>
<td>12.8</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Accession of Catalog No.</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Width</td>
<td>Neck length</td>
<td>Distal Neck Width</td>
<td>Proximal Neck Width</td>
<td>Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------</td>
<td>----------</td>
<td>------------------------</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>125-6173</td>
<td>0"-12" Level of B13</td>
<td>CR</td>
<td>DZ</td>
<td>21.5</td>
<td>4.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.6</td>
</tr>
<tr>
<td>125-6281</td>
<td>6"-12" Level of B19</td>
<td>OB</td>
<td>DZ</td>
<td>15</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>125-6228</td>
<td>0"-12" Level of Z18</td>
<td>OB</td>
<td>DE</td>
<td>13.5</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.8</td>
</tr>
<tr>
<td>125-7872</td>
<td>Excavation Unit BP#8</td>
<td>CC</td>
<td>DZ</td>
<td>16.9</td>
<td>3.5</td>
<td>7.7</td>
<td>4.6</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-7309</td>
<td>0"-12" Level of N11 E8</td>
<td>OB</td>
<td>DE</td>
<td>14.9</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.8</td>
</tr>
<tr>
<td>125-7230</td>
<td>18"-24" Level of S3 E10</td>
<td>OB</td>
<td>DD</td>
<td>12.6</td>
<td>3.2</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td>10.4</td>
</tr>
<tr>
<td>125-7219</td>
<td>18"-24" Level of S4 E10</td>
<td>OB</td>
<td>DZ</td>
<td>18.1</td>
<td>4.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>125-7220</td>
<td>18"-24" Level of S4 E10</td>
<td>CR</td>
<td>CA</td>
<td>47.8</td>
<td></td>
<td>25.1</td>
<td>4.5</td>
<td></td>
<td></td>
<td>5.1</td>
</tr>
<tr>
<td>125-7221</td>
<td>18"-24" Level of S4 E10</td>
<td>CC</td>
<td>DZ</td>
<td>15.2</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>125-9540</td>
<td>0"-41" Level of Trench C</td>
<td>OB</td>
<td>DE</td>
<td>18.4</td>
<td>2.5</td>
<td>6.5</td>
<td>5.4</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125-9541</td>
<td>0"-41" Level of Trench C</td>
<td>CC</td>
<td>DE</td>
<td>14.4</td>
<td>3.3</td>
<td>2.8</td>
<td>7.5</td>
<td>6.2</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>125-9512</td>
<td>0"-18" Level of Trench E</td>
<td>CC</td>
<td>DC/ DG</td>
<td>17.1</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.1</td>
</tr>
<tr>
<td>125-9629</td>
<td>0"-25" Level of Trench H</td>
<td>CC</td>
<td>DE</td>
<td>13.6</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.2</td>
</tr>
<tr>
<td>125-9629</td>
<td>0"-18" Level of Trench I</td>
<td>OB</td>
<td>DZ</td>
<td>14.6</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.2</td>
</tr>
<tr>
<td>125-9721</td>
<td>0"-18" Level of Trench I</td>
<td>OB</td>
<td>DE</td>
<td>18.7</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.6</td>
</tr>
<tr>
<td>125-9606</td>
<td>0"-24" Level of Trench J</td>
<td>OB</td>
<td>DE</td>
<td>17.2</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.9</td>
</tr>
<tr>
<td>125-10,180</td>
<td>0"-30" Level of Trench M</td>
<td>CR</td>
<td>DD</td>
<td>13.7</td>
<td>3.2</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td>6.7</td>
</tr>
<tr>
<td>125-10,181</td>
<td>0"-30" Level of Trench M</td>
<td>CC</td>
<td>DZ</td>
<td>14.8</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>125-10,627</td>
<td>24"-30" Level of F4</td>
<td>OB</td>
<td>DZ</td>
<td>18.4</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td>125-11,040</td>
<td>18"-24" Level of G4</td>
<td>OB</td>
<td>DE</td>
<td>16.9</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.7</td>
</tr>
<tr>
<td>125-10,905</td>
<td>30"-36" Level of H4</td>
<td>OB</td>
<td>DE</td>
<td>17.9</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.3</td>
</tr>
<tr>
<td>125-10,071</td>
<td>18"-24" Level of H8</td>
<td>CC</td>
<td>DC</td>
<td>13.4</td>
<td>2.8</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td>4.8</td>
</tr>
<tr>
<td>125-11,313</td>
<td>0"-24" Level of Section B</td>
<td>OB</td>
<td>DZ</td>
<td>31.6</td>
<td>20.6</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
<td>1.9</td>
</tr>
<tr>
<td>125-8270</td>
<td>18"-24" Test Trench</td>
<td>CR</td>
<td>DZ</td>
<td>19</td>
<td>4.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>125-8271</td>
<td>18"-24" Test Trench</td>
<td>OB</td>
<td>DE</td>
<td>16.6</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td>125-8352</td>
<td>24"-30" Test Trench</td>
<td>OB</td>
<td>DZ</td>
<td>15.3</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>125-9314</td>
<td>18"-29" Unit 5B</td>
<td>OB</td>
<td>DZ</td>
<td>13.6</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>125-9341</td>
<td>18"-29" Unit 5B</td>
<td>CC</td>
<td>DC</td>
<td>14.9</td>
<td>2.6</td>
<td>3.9</td>
<td>4.8</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>125-8076</td>
<td>12"-18" Unit 5D</td>
<td>CC</td>
<td>DE</td>
<td>14.9</td>
<td>3.7</td>
<td>2.8</td>
<td>6.3</td>
<td>4.9</td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>125-9340</td>
<td>18" to Floor Unit 6B</td>
<td>OB</td>
<td>DE</td>
<td>19.3</td>
<td>4.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.3</td>
</tr>
<tr>
<td>125-11,929</td>
<td>No Provenience</td>
<td>CC</td>
<td>DC</td>
<td>16.6</td>
<td></td>
<td>5.7</td>
<td>3.8</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2313-1</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>16.4</td>
<td>3.3</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td>5.4</td>
</tr>
<tr>
<td>2313-2</td>
<td>No Provenience</td>
<td>OB</td>
<td>DC</td>
<td>16.3</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.1</td>
</tr>
<tr>
<td>2313-3</td>
<td>No Provenience</td>
<td>OB</td>
<td>DZ</td>
<td>14.5</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.8</td>
</tr>
<tr>
<td>2313-4</td>
<td>No Provenience</td>
<td>CC</td>
<td>DE</td>
<td>18.1</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.3</td>
</tr>
<tr>
<td>2313-5</td>
<td>No Provenience</td>
<td>CC</td>
<td>DZ</td>
<td>13.7</td>
<td>3.3</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td>3.7</td>
</tr>
<tr>
<td>2313-6</td>
<td>No Provenience</td>
<td>CR</td>
<td>DC</td>
<td>16.2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.1</td>
</tr>
<tr>
<td>125-2180</td>
<td>No Provenience</td>
<td>CR</td>
<td>DZ</td>
<td>22</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.5</td>
</tr>
<tr>
<td>125-3737</td>
<td>No Provenience</td>
<td>CC</td>
<td>DE</td>
<td>28.4</td>
<td>17.5</td>
<td>3.5</td>
<td>2.5</td>
<td>6.7</td>
<td>6</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Table B.3. Continued
Table B.3. Continued

<table>
<thead>
<tr>
<th>Accession of Catalog No.</th>
<th>Provenience</th>
<th>Material</th>
<th>Projectile Point Type</th>
<th>Length</th>
<th>Width</th>
<th>Neck length</th>
<th>Distal Neck Width</th>
<th>Proximal Neck width</th>
<th>Thickness</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>125-546</td>
<td>No Provenience</td>
<td>CR DZ</td>
<td></td>
<td>12.2</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>125-7427</td>
<td>No Provenience</td>
<td>OB DE</td>
<td></td>
<td>17.9</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>125-Y744</td>
<td>No Provenience</td>
<td>OB DE</td>
<td></td>
<td>20.3</td>
<td>3.3</td>
<td>3</td>
<td>7.3</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>125-Y745</td>
<td>No Provenience</td>
<td>OB EC</td>
<td></td>
<td>18.1</td>
<td>11.2</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>125-Y746</td>
<td>No Provenience</td>
<td>OB DE</td>
<td></td>
<td>15.6</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>125-Y747</td>
<td>No Provenience</td>
<td>OB DE</td>
<td></td>
<td>18.9</td>
<td>3.1</td>
<td>3.5</td>
<td>6.6</td>
<td>5.6</td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>125-Y748</td>
<td>No Provenience</td>
<td>OB DC</td>
<td></td>
<td>21.4</td>
<td>11.8</td>
<td>3.5</td>
<td>1.9</td>
<td>5.5</td>
<td>5.7</td>
<td>0.7</td>
</tr>
<tr>
<td>125-Y749</td>
<td>No Provenience</td>
<td>OB DE</td>
<td></td>
<td>15.1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>125-Y750</td>
<td>No Provenience</td>
<td>OB DE</td>
<td></td>
<td>22.3</td>
<td>15.3</td>
<td>3.4</td>
<td></td>
<td>4.9</td>
<td>4.6</td>
<td>0.7</td>
</tr>
<tr>
<td>125-Y751</td>
<td>No Provenience</td>
<td>OB DZ</td>
<td></td>
<td>13</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>125-Y752</td>
<td>No Provenience</td>
<td>CR DZ</td>
<td></td>
<td>15.8</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>125-Y753</td>
<td>No Provenience</td>
<td>OB DZ</td>
<td></td>
<td>20.9</td>
<td>17</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>125-Y754</td>
<td>No Provenience</td>
<td>OB DC</td>
<td></td>
<td>12.1</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>125-Y755</td>
<td>No Provenience</td>
<td>OB DZ</td>
<td></td>
<td>13.6</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>125-Y756</td>
<td>No Provenience</td>
<td>OB DZ</td>
<td></td>
<td>18.6</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>125-9187</td>
<td>No Provenience</td>
<td>CC DE</td>
<td></td>
<td>19.2</td>
<td>3.6</td>
<td></td>
<td>6.6</td>
<td>5.2</td>
<td></td>
<td>1.6</td>
</tr>
</tbody>
</table>
Table B.4. Analysis Data From Parowan

<table>
<thead>
<tr>
<th>Accession</th>
<th>Provenience</th>
<th>Feature #</th>
<th>mtl</th>
<th>Point Type</th>
<th>Length</th>
<th>Width</th>
<th>Neck Length</th>
<th>Distal Neck Width</th>
<th>Proximal Neck Width</th>
<th>Thickness</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>433-8355</td>
<td>12”-18” Structure 3</td>
<td>353</td>
<td>OB</td>
<td>CA</td>
<td>23.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.3</td>
<td>3.6</td>
</tr>
<tr>
<td>433-9543</td>
<td>60”-66” Structure 8</td>
<td>853</td>
<td>OB</td>
<td>DZ</td>
<td>12.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.9</td>
<td>0.7</td>
</tr>
<tr>
<td>433-9515</td>
<td>48”-54” Structure 10</td>
<td>1051</td>
<td>OB</td>
<td>DZ</td>
<td>24.3</td>
<td>15.7</td>
<td>3.8</td>
<td>6</td>
<td>2.4</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>433-9744</td>
<td>54”-60” Structure 10</td>
<td>1052</td>
<td>CC</td>
<td>DE</td>
<td>16.3</td>
<td></td>
<td></td>
<td>7</td>
<td>3.1</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>433-9696</td>
<td>54”-60” Structure 10</td>
<td>1052</td>
<td>OB</td>
<td>DZ</td>
<td>26.3</td>
<td></td>
<td></td>
<td></td>
<td>4.6</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>433-8073</td>
<td>30”-36” Level of E14</td>
<td>2251</td>
<td>OB</td>
<td>DE</td>
<td>17.2</td>
<td></td>
<td></td>
<td></td>
<td>7.6</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>433-9453</td>
<td>26”-42” Level of E14</td>
<td>2252</td>
<td>OB</td>
<td>DE</td>
<td>14.8</td>
<td></td>
<td></td>
<td></td>
<td>6.7</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>433-9276</td>
<td>54”-60” Level of E14</td>
<td>2255</td>
<td>CC</td>
<td>DE</td>
<td>22</td>
<td>13.2</td>
<td>2.1</td>
<td>4</td>
<td>4.3</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>433-6112</td>
<td>12”-18” Level of D17</td>
<td>3002</td>
<td>CC</td>
<td>DE</td>
<td>26.8</td>
<td>16.3</td>
<td>2.3</td>
<td>6.8</td>
<td>6.2</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>433-6118</td>
<td>12”-18” Level of D17</td>
<td>3002</td>
<td>CC</td>
<td>DE</td>
<td>14.7</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>433-6869</td>
<td>12”-18” Level of D17</td>
<td>3002</td>
<td>OB</td>
<td>DE</td>
<td>2.4</td>
<td></td>
<td></td>
<td>6.5</td>
<td>3.6</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>433-6858</td>
<td>12”-18” Level of D17</td>
<td>3002</td>
<td>OB</td>
<td>DZ</td>
<td>10.2</td>
<td></td>
<td></td>
<td></td>
<td>2.6</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>433-606</td>
<td>12”-18” Level of D17</td>
<td>3002</td>
<td>OB</td>
<td>DZ</td>
<td>13.1</td>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>433-5194</td>
<td>30”-36” Level of D17</td>
<td>3005</td>
<td>OB</td>
<td>DE</td>
<td>17.9</td>
<td></td>
<td></td>
<td>8.3</td>
<td>3.2</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>433-7964</td>
<td>36”-42” Level of D17</td>
<td>3006</td>
<td>CC</td>
<td>DE</td>
<td>13.2</td>
<td></td>
<td></td>
<td>7.7</td>
<td>4.7</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>433-7941</td>
<td>36”-42” Level of D17</td>
<td>3006</td>
<td>CC</td>
<td>DE</td>
<td>25.8</td>
<td>16.1</td>
<td>7</td>
<td>5.8</td>
<td>2.2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>433-7965</td>
<td>36”-42” Level of D17</td>
<td>3006</td>
<td>CC</td>
<td>DC</td>
<td>15.5</td>
<td>2.1</td>
<td>8.7</td>
<td>7.2</td>
<td>4.1</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>433-7975</td>
<td>36”-42” Level of D17</td>
<td>3006</td>
<td>OB</td>
<td>DZ</td>
<td>14.1</td>
<td></td>
<td></td>
<td></td>
<td>3.2</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>433-7962</td>
<td>36”-42” Level of D17</td>
<td>3006</td>
<td>CC</td>
<td>DZ</td>
<td>28.5</td>
<td>16.2</td>
<td></td>
<td></td>
<td>3.2</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>433-7977</td>
<td>42”-48” Level of D17</td>
<td>3007</td>
<td>OB</td>
<td>DE</td>
<td>16.1</td>
<td></td>
<td></td>
<td>5.9</td>
<td>4.5</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>433-7837</td>
<td>42”-48” Level of D17</td>
<td>3007</td>
<td>CC</td>
<td>DE</td>
<td>15.6</td>
<td>2.8</td>
<td>7.6</td>
<td>6.8</td>
<td>3.8</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>433-6124</td>
<td>42”-48” Level of D17</td>
<td>3007</td>
<td>OB</td>
<td>DC</td>
<td>18.2</td>
<td></td>
<td></td>
<td>6.7</td>
<td>4.1</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>433-3067</td>
<td>6”-12” Level of D19</td>
<td>3011</td>
<td>OB</td>
<td>DG</td>
<td>25.9</td>
<td>17.7</td>
<td>2.7</td>
<td>7</td>
<td>7.7</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>433-3819</td>
<td>12”-18” Level of D19</td>
<td>3012</td>
<td>CR</td>
<td>DZ</td>
<td>27.1</td>
<td>19.1</td>
<td></td>
<td>3.9</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-6252</td>
<td>12”-18” Level of D19</td>
<td>3012</td>
<td>CC</td>
<td>DJ</td>
<td>16.3</td>
<td></td>
<td></td>
<td>2.8</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-6371</td>
<td>18”-24” Level of D19</td>
<td>3013</td>
<td>OB</td>
<td>DC</td>
<td>14.8</td>
<td>1.7</td>
<td></td>
<td>5.2</td>
<td>3.2</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>433-6286</td>
<td>18”-24” Level of D19</td>
<td>3013</td>
<td>OB</td>
<td>DC</td>
<td>14.5</td>
<td>2.6</td>
<td></td>
<td>5.5</td>
<td>3.6</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>433-5365</td>
<td>24”-30” Level of D19</td>
<td>3014</td>
<td>CR</td>
<td>DG</td>
<td>27.1</td>
<td>13.4</td>
<td>2.4</td>
<td>6.4</td>
<td>3.7</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>433-5366</td>
<td>24”-30” Level of D19</td>
<td>3014</td>
<td>OB</td>
<td>DZ</td>
<td>34.2</td>
<td>20.1</td>
<td>3.1</td>
<td>7.7</td>
<td>8.1</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>433-8270</td>
<td>42”-48” Level of D19</td>
<td>3017</td>
<td>CC</td>
<td>DZ</td>
<td>18.8</td>
<td></td>
<td></td>
<td>3.9</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-2056</td>
<td>0”-6” Level of D20</td>
<td>3023</td>
<td>OB</td>
<td>DE</td>
<td>15.8</td>
<td></td>
<td></td>
<td>7</td>
<td>3.3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>433-2055</td>
<td>0”-6” Level of D20</td>
<td>3023</td>
<td>OB</td>
<td>DC</td>
<td>15</td>
<td></td>
<td></td>
<td>5.1</td>
<td>3.3</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>433-2069</td>
<td>0”-6” Level of D20</td>
<td>3023</td>
<td>OB</td>
<td>DC</td>
<td>11.8</td>
<td></td>
<td></td>
<td>4.5</td>
<td>3.3</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>433-2058</td>
<td>0”-6” Level of D20</td>
<td>3023</td>
<td>CC</td>
<td>DC</td>
<td>16.8</td>
<td>3.6</td>
<td>7.9</td>
<td>6.7</td>
<td>4.2</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>433-2136</td>
<td>6”-12” Level of D20</td>
<td>3024</td>
<td>CC</td>
<td>DE</td>
<td>18.1</td>
<td></td>
<td></td>
<td>7.4</td>
<td>3.5</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>433-3505</td>
<td>6”-12” Level of D20</td>
<td>3024</td>
<td>CC</td>
<td>DG</td>
<td>15.9</td>
<td>2.1</td>
<td></td>
<td>5.2</td>
<td>3.4</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>433-3615</td>
<td>6”-12” Level of D20</td>
<td>3024</td>
<td>CR</td>
<td>DG</td>
<td>17.3</td>
<td>2.9</td>
<td></td>
<td>6.8</td>
<td>3.3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Feature #</td>
<td>mtrl</td>
<td>Point Type</td>
<td>Length</td>
<td>Width</td>
<td>Neck Length</td>
<td>Distal Neck Width</td>
<td>Proximal Neck Width</td>
<td>Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------------</td>
<td>-----------</td>
<td>------</td>
<td>------------</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>433-2138</td>
<td>6”-12” Level of D20</td>
<td>3024</td>
<td>CC</td>
<td>DZ</td>
<td>14.9</td>
<td>2.7</td>
<td>7.1</td>
<td>4</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-3905</td>
<td>12”-18” Level of D20</td>
<td>3025</td>
<td>OB</td>
<td>DC</td>
<td>14.9</td>
<td></td>
<td></td>
<td>5.8</td>
<td>2.4</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>433-5772</td>
<td>12”-18” Level of D20</td>
<td>3025</td>
<td>OB</td>
<td>DG</td>
<td>17.9</td>
<td>2.5</td>
<td>7.3</td>
<td>6.4</td>
<td>2.8</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>433-2137</td>
<td>12”-18” Level of D20</td>
<td>3025</td>
<td>CC</td>
<td>CA</td>
<td>26.6</td>
<td></td>
<td></td>
<td>5</td>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-5104</td>
<td>24”-30” Level of D20</td>
<td>3027</td>
<td>CC</td>
<td>DE</td>
<td>17.7</td>
<td></td>
<td></td>
<td>6.8</td>
<td>3.9</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>433-5106</td>
<td>24”-30” Level of D20</td>
<td>3027</td>
<td>CC</td>
<td>DE</td>
<td>15.1</td>
<td></td>
<td></td>
<td>6.8</td>
<td>3.7</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>433-4620</td>
<td>24”-30” Level of D20</td>
<td>3028</td>
<td>CC</td>
<td>DE</td>
<td>17.4</td>
<td></td>
<td></td>
<td>6.3</td>
<td>3.9</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>433-5117</td>
<td>30”-26” Level of D20</td>
<td>3028</td>
<td>OB</td>
<td>DZ</td>
<td>15.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.8</td>
<td>1</td>
</tr>
<tr>
<td>433-8176</td>
<td>48”-54” Level of D20</td>
<td>3034</td>
<td>CC</td>
<td>DC/ DG</td>
<td>18.6</td>
<td>4.2</td>
<td>8.9</td>
<td>3.7</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-3271</td>
<td>0”-6” Level of F19</td>
<td>3038</td>
<td>CC</td>
<td>DE</td>
<td>18.5</td>
<td>3.4</td>
<td>7.1</td>
<td>3.9</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-2284</td>
<td>0”-6” Level of F19</td>
<td>3038</td>
<td>CC</td>
<td>DE</td>
<td>13.7</td>
<td>1.9</td>
<td>6.5</td>
<td>2.7</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-2285</td>
<td>0”-6” Level of F19</td>
<td>3038</td>
<td>OB</td>
<td>DE</td>
<td>17.1</td>
<td></td>
<td></td>
<td>7.3</td>
<td>3.6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>433-3150</td>
<td>6”-12” Level of F19</td>
<td>3039</td>
<td>CC</td>
<td>DE</td>
<td>15.6</td>
<td></td>
<td></td>
<td>3.7</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-2701</td>
<td>6”-12” Level of F19</td>
<td>3039</td>
<td>OB</td>
<td>DG</td>
<td>13.8</td>
<td></td>
<td></td>
<td>4.9</td>
<td>3.5</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>433-7002</td>
<td>18”-24” Level of F19</td>
<td>3042</td>
<td>CR</td>
<td>DE</td>
<td>18.9</td>
<td></td>
<td></td>
<td>7.6</td>
<td>3.8</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>433-7559</td>
<td>30”-36” Level of F19</td>
<td>3044</td>
<td>CC</td>
<td>DE</td>
<td>16</td>
<td></td>
<td></td>
<td>4.9</td>
<td>3.1</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>433-7566</td>
<td>30”-36” Level of F19</td>
<td>3044</td>
<td>CC</td>
<td>DE</td>
<td>19.3</td>
<td></td>
<td></td>
<td>9.2</td>
<td>2.6</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>433-7022</td>
<td>18”-24” Level of E19</td>
<td>3049</td>
<td>OB</td>
<td>DE</td>
<td>41.2</td>
<td>13.4</td>
<td></td>
<td>4.7</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-9097</td>
<td>30”-36” Level of E19</td>
<td>3051</td>
<td>CC</td>
<td>DE</td>
<td>20.4</td>
<td>8.6</td>
<td>7.6</td>
<td>3.8</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-8863</td>
<td>36”-42” Level of E19</td>
<td>3052</td>
<td>OB</td>
<td>DE</td>
<td>17.9</td>
<td></td>
<td></td>
<td>5.7</td>
<td>3.5</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>433-9037</td>
<td>36”-42” Level of E19</td>
<td>3052</td>
<td>OB</td>
<td>DC/ DG</td>
<td>15</td>
<td>2.1</td>
<td>6.5</td>
<td>3.2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-9035</td>
<td>36”-42” Level of E19</td>
<td>3052</td>
<td>OB</td>
<td>DE</td>
<td>20</td>
<td></td>
<td></td>
<td>7.5</td>
<td>3.8</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>433-9040</td>
<td>36”-42” Level of E19</td>
<td>3052</td>
<td>CC</td>
<td>DZ</td>
<td>18.4</td>
<td></td>
<td></td>
<td>4</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-9120</td>
<td>42”-48” Level of E19</td>
<td>3053</td>
<td>OB</td>
<td>DE</td>
<td>16.1</td>
<td></td>
<td></td>
<td>6.1</td>
<td>3.1</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>433-6487</td>
<td>48”-54” Level of E19</td>
<td>3054</td>
<td>OB</td>
<td>DE</td>
<td>17.8</td>
<td>2.1</td>
<td>6.5</td>
<td>5.6</td>
<td>2.9</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>433-4917</td>
<td>0”-6” Level of F17</td>
<td>3058</td>
<td>CR</td>
<td>DE</td>
<td>15.7</td>
<td></td>
<td></td>
<td>6.6</td>
<td>3.8</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>433-7128</td>
<td>0”-6” Level of F17</td>
<td>3058</td>
<td>CC</td>
<td>DE</td>
<td>29.1</td>
<td>16.2</td>
<td>1.8</td>
<td>6.6</td>
<td>5.7</td>
<td>3.5</td>
<td>1.4</td>
</tr>
<tr>
<td>433-4916</td>
<td>0”-6” Level of F17</td>
<td>3058</td>
<td>OB</td>
<td>DC</td>
<td>15</td>
<td>2.2</td>
<td>7.5</td>
<td>8.7</td>
<td>2.9</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>433-7403</td>
<td>6”-12” Level of F17</td>
<td>3059</td>
<td>OB</td>
<td>DE</td>
<td>15.4</td>
<td></td>
<td></td>
<td>6.6</td>
<td>3.7</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>433-2999</td>
<td>0”-6” Level of E20</td>
<td>3060</td>
<td>OB</td>
<td>DC</td>
<td>12.9</td>
<td></td>
<td></td>
<td>5.8</td>
<td>3.1</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>433-3391</td>
<td>6”-12” Level of E20</td>
<td>3061</td>
<td>CR</td>
<td>DE</td>
<td>17.8</td>
<td>3</td>
<td></td>
<td>6.5</td>
<td>4.2</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>433-3390</td>
<td>6”-12” Level of E20</td>
<td>3061</td>
<td>CC</td>
<td>DE</td>
<td>32.8</td>
<td>17</td>
<td>2.3</td>
<td>6.8</td>
<td>5.7</td>
<td>3.4</td>
<td>1.1</td>
</tr>
<tr>
<td>433-3385</td>
<td>6”-12” Level of E20</td>
<td>3061</td>
<td>OB</td>
<td>DZ</td>
<td>17.4</td>
<td></td>
<td></td>
<td>4</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-3928</td>
<td>12”-18” Level of E20</td>
<td>3062</td>
<td>CC</td>
<td>DC/ DG</td>
<td>15.1</td>
<td>2.6</td>
<td></td>
<td>6.6</td>
<td>3.6</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>433-9698</td>
<td>30”-36” Level of E20</td>
<td>3065</td>
<td>CC</td>
<td>DE</td>
<td>17.8</td>
<td></td>
<td></td>
<td>6.2</td>
<td>4.3</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>433-7497</td>
<td>30”-36” Level of E20</td>
<td>3066</td>
<td>OB</td>
<td>DE</td>
<td>15.8</td>
<td></td>
<td></td>
<td>7.8</td>
<td>3.5</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Feature #</td>
<td>mtrl</td>
<td>Point Type</td>
<td>Length</td>
<td>Width</td>
<td>Neck Length</td>
<td>Distal Neck Width</td>
<td>Proximal Neck Width</td>
<td>Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------</td>
<td>-----------</td>
<td>------</td>
<td>------------</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>433-7490</td>
<td>36”-36” Level of E20</td>
<td>3066</td>
<td>CC</td>
<td>DE</td>
<td>32.4</td>
<td>17.5</td>
<td>1.6</td>
<td>8.3</td>
<td>7.4</td>
<td>3.3</td>
<td>1.3</td>
</tr>
<tr>
<td>433-7494</td>
<td>36”-36” Level of E20</td>
<td>3066</td>
<td>OB</td>
<td>DG</td>
<td>32.7</td>
<td>18.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-7495</td>
<td>36”-36” Level of E20</td>
<td>3066</td>
<td>CC</td>
<td>DC/DG</td>
<td>24.6</td>
<td>17.1</td>
<td>3.5</td>
<td>9.8</td>
<td>8.4</td>
<td>3.4</td>
<td>1.1</td>
</tr>
<tr>
<td>433-4166</td>
<td>36”-42” Level of E20</td>
<td>3067</td>
<td>CC</td>
<td>DE</td>
<td>13.8</td>
<td>10.7</td>
<td></td>
<td></td>
<td></td>
<td>5.8</td>
<td>3.1</td>
</tr>
<tr>
<td>433-4164</td>
<td>36”-42” Level of E20</td>
<td>3068</td>
<td>OB</td>
<td>DE</td>
<td>14.1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>2.6</td>
<td>0.5</td>
</tr>
<tr>
<td>433-4163</td>
<td>36”-42” Level of E20</td>
<td>3068</td>
<td>OB</td>
<td>DC</td>
<td>14.4</td>
<td>8.4</td>
<td></td>
<td></td>
<td></td>
<td>4.3</td>
<td>2.8</td>
</tr>
<tr>
<td>433-2220</td>
<td>42”-50” Level of E20</td>
<td>3069</td>
<td>CC</td>
<td>DC</td>
<td>19.1</td>
<td>19.1</td>
<td>3</td>
<td>8</td>
<td>7.6</td>
<td>4.1</td>
<td>1.6</td>
</tr>
<tr>
<td>433-2216</td>
<td>42”-50” Level of E20</td>
<td>3070</td>
<td>CC</td>
<td>DC</td>
<td>15.1</td>
<td>15.1</td>
<td></td>
<td></td>
<td></td>
<td>2.2</td>
<td>0.7</td>
</tr>
<tr>
<td>433-2218</td>
<td>42”-50” Level of E20</td>
<td>3071</td>
<td>OB</td>
<td>DE</td>
<td>12.8</td>
<td>12.8</td>
<td></td>
<td></td>
<td></td>
<td>2.6</td>
<td>0.6</td>
</tr>
<tr>
<td>433-3016</td>
<td>18”-24” Level of D16</td>
<td>3072</td>
<td>OB</td>
<td>DZ</td>
<td>16.8</td>
<td>16.8</td>
<td>2</td>
<td>6</td>
<td>4.3</td>
<td>2.8</td>
<td>0.8</td>
</tr>
<tr>
<td>433-5896</td>
<td>24”-30” Level of D16</td>
<td>3073</td>
<td>OB</td>
<td>DG</td>
<td>17.3</td>
<td>17.3</td>
<td></td>
<td></td>
<td></td>
<td>8.4</td>
<td>4.2</td>
</tr>
<tr>
<td>433-9658</td>
<td>24”-30” Level of D16</td>
<td>3074</td>
<td>OB</td>
<td>DZ</td>
<td>12.6</td>
<td>12.6</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.7</td>
</tr>
<tr>
<td>433-5895</td>
<td>24”-30” Level of D16</td>
<td>3075</td>
<td>OB</td>
<td>DE</td>
<td>16.3</td>
<td>16.3</td>
<td>6</td>
<td>6</td>
<td>5.7</td>
<td>4.2</td>
<td>1.8</td>
</tr>
<tr>
<td>433-5974</td>
<td>36”-42” Level of D16</td>
<td>3076</td>
<td>CR</td>
<td>DE</td>
<td>18.1</td>
<td>18.1</td>
<td>2</td>
<td>7</td>
<td>7.1</td>
<td>3.3</td>
<td>1</td>
</tr>
<tr>
<td>433-6175</td>
<td>36”-42” Level of D16</td>
<td>3077</td>
<td>CR</td>
<td>DE</td>
<td>17.2</td>
<td>17.2</td>
<td></td>
<td></td>
<td></td>
<td>6.9</td>
<td>3.2</td>
</tr>
<tr>
<td>433-6192</td>
<td>36”-42” Level of D16</td>
<td>3078</td>
<td>CR</td>
<td>DE</td>
<td>15.3</td>
<td>15.3</td>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
<td>5.1</td>
</tr>
<tr>
<td>433-5800</td>
<td>42”-48” Level of D16</td>
<td>3079</td>
<td>CR</td>
<td>DE</td>
<td>19</td>
<td>19</td>
<td>1</td>
<td>6</td>
<td>7.9</td>
<td>3.2</td>
<td>0.9</td>
</tr>
<tr>
<td>433-3675</td>
<td>12”-18” Level of E14</td>
<td>3081</td>
<td>CC</td>
<td>DE</td>
<td>20.2</td>
<td>20.2</td>
<td></td>
<td></td>
<td></td>
<td>8.8</td>
<td>3.9</td>
</tr>
<tr>
<td>433-6552</td>
<td>18”-24” Level of E14</td>
<td>3082</td>
<td>OB</td>
<td>DE</td>
<td>16</td>
<td>16</td>
<td>2</td>
<td>6</td>
<td>8.1</td>
<td>6.6</td>
<td>3.2</td>
</tr>
<tr>
<td>433-6553</td>
<td>18”-24” Level of E14</td>
<td>3083</td>
<td>OB</td>
<td>DE</td>
<td>18.1</td>
<td>18.1</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>3.5</td>
</tr>
<tr>
<td>433-2795</td>
<td>30”-36” Level of D16</td>
<td>3084</td>
<td>OB</td>
<td>DZ</td>
<td>14.7</td>
<td>14.7</td>
<td></td>
<td></td>
<td></td>
<td>4.1</td>
<td>1.2</td>
</tr>
<tr>
<td>433-6579</td>
<td>18”-24” Level of E14</td>
<td>3085</td>
<td>OB</td>
<td>DC</td>
<td>28.9</td>
<td>28.9</td>
<td></td>
<td></td>
<td></td>
<td>6.4</td>
<td>2.9</td>
</tr>
<tr>
<td>433-6548</td>
<td>18”-24” Level of E14</td>
<td>3086</td>
<td>CR</td>
<td>DZ</td>
<td>23.8</td>
<td>23.8</td>
<td></td>
<td></td>
<td></td>
<td>3.8</td>
<td>1.3</td>
</tr>
<tr>
<td>433-3419</td>
<td>6”-18” Level of D15</td>
<td>3087</td>
<td>CR</td>
<td>DE</td>
<td>18.3</td>
<td>18.3</td>
<td>2</td>
<td>5</td>
<td>4.6</td>
<td>3.2</td>
<td>1.2</td>
</tr>
<tr>
<td>433-3236</td>
<td>6”-18” Level of D15</td>
<td>3088</td>
<td>CR</td>
<td>DE</td>
<td>18.3</td>
<td>18.3</td>
<td>2</td>
<td>5</td>
<td>4.6</td>
<td>3.2</td>
<td>1.2</td>
</tr>
<tr>
<td>433-2688</td>
<td>6”-18” Level of D15</td>
<td>3089</td>
<td>OB</td>
<td>DC</td>
<td>18</td>
<td>18</td>
<td>3</td>
<td>5</td>
<td>7.3</td>
<td>9.7</td>
<td>4.1</td>
</tr>
<tr>
<td>433-5898</td>
<td>12”-18” Level of D14</td>
<td>3090</td>
<td>OB</td>
<td>DE</td>
<td>18.1</td>
<td>18.1</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Table B.4. Continued
<table>
<thead>
<tr>
<th>Accession</th>
<th>Provenience</th>
<th>Feature #</th>
<th>mtrl</th>
<th>Point Type</th>
<th>Length</th>
<th>Width</th>
<th>Neck Length</th>
<th>Distal Neck Width</th>
<th>Proximal Neck Width</th>
<th>Thickness</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>433-5700</td>
<td>12”-18” Level of D14</td>
<td>3115</td>
<td>OB</td>
<td>DE</td>
<td>17.5</td>
<td>6.2</td>
<td>3.4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-5918</td>
<td>18”-24” Level of D14</td>
<td>3116</td>
<td>CC</td>
<td>DE</td>
<td>16.1</td>
<td>6.9</td>
<td>2.9</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-5916</td>
<td>18”-24” Level of D14</td>
<td>3116</td>
<td>CC</td>
<td>DE</td>
<td>17.7</td>
<td>1.7</td>
<td>8.8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-5920</td>
<td>18”-24” Level of D14</td>
<td>3116</td>
<td>OB</td>
<td>DE</td>
<td>15.1</td>
<td>5</td>
<td>3.8</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-5967</td>
<td>18”-24” Level of D14</td>
<td>3116</td>
<td>OB</td>
<td>DZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-5951</td>
<td>18”-24” Level of D14</td>
<td>3116</td>
<td>OB</td>
<td>DZ</td>
<td>25.9</td>
<td>13.1</td>
<td>4.3</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-5843</td>
<td>30”-36” Level of D14</td>
<td>3118</td>
<td>OB</td>
<td>DE</td>
<td>17.3</td>
<td>6.1</td>
<td>3.5</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-5739</td>
<td>36”-42” Level of D14</td>
<td>3119</td>
<td>OB</td>
<td>DE</td>
<td>15.2</td>
<td>1.8</td>
<td>5.8</td>
<td>4.8</td>
<td>3.5</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>433-5988</td>
<td>42”-48” Level of D14</td>
<td>3120</td>
<td>CC</td>
<td>DE</td>
<td>19.6</td>
<td>6.4</td>
<td>6.2</td>
<td>3.9</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-5995</td>
<td>42”-48” Level of D14</td>
<td>3120</td>
<td>OB</td>
<td>CA</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-7722</td>
<td>48”-54” Level of D14</td>
<td>3121</td>
<td>CC</td>
<td>DZ</td>
<td>10.2</td>
<td></td>
<td></td>
<td>4.9</td>
<td>2.9</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>433-9265</td>
<td>48”-54” Level of D14</td>
<td>3121</td>
<td>CC</td>
<td>DE</td>
<td>17.4</td>
<td>2.3</td>
<td>8.7</td>
<td>3.3</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-9269</td>
<td>48”-54” Level of D14</td>
<td>3121</td>
<td>OB</td>
<td>DC</td>
<td>14.8</td>
<td>3.3</td>
<td></td>
<td>5.4</td>
<td>3.9</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>433-4268</td>
<td>48”-54” Level of D14</td>
<td>3121</td>
<td>OB</td>
<td>DC</td>
<td>13.9</td>
<td>5.1</td>
<td>3.1</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-2263</td>
<td>5”-6” Level of F15</td>
<td>3124</td>
<td>CC</td>
<td>DZ</td>
<td>15.8</td>
<td>5.4</td>
<td>3.7</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-2262</td>
<td>5”-6” Level of F15</td>
<td>3124</td>
<td>CD</td>
<td>EC</td>
<td>13.4</td>
<td></td>
<td></td>
<td>1.7</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-2584</td>
<td>6”-12” Level of F15</td>
<td>3125</td>
<td>OB</td>
<td>DE</td>
<td>18.9</td>
<td>15.2</td>
<td>5</td>
<td>3.1</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-2581</td>
<td>6”-12” Level of F15</td>
<td>3125</td>
<td>CR</td>
<td>DE</td>
<td>23.3</td>
<td>12.2</td>
<td>1.9</td>
<td>7.7</td>
<td>6.5</td>
<td>2.9</td>
<td>1</td>
</tr>
<tr>
<td>433-2585</td>
<td>6”-12” Level of F15</td>
<td>3125</td>
<td>OB</td>
<td>DZ</td>
<td>14.5</td>
<td></td>
<td></td>
<td>3.7</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-2579</td>
<td>6”-12” Level of F15</td>
<td>3125</td>
<td>CC</td>
<td>DJ</td>
<td>13.4</td>
<td></td>
<td></td>
<td>3.3</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-3022</td>
<td>18”-24” Level of F15</td>
<td>3127</td>
<td>OB</td>
<td>DE</td>
<td></td>
<td></td>
<td></td>
<td>3.6</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-3024</td>
<td>18”-24” Level of F15</td>
<td>3127</td>
<td>CR/CC</td>
<td>DE</td>
<td>16.6</td>
<td>2.7</td>
<td>6.3</td>
<td>3.6</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-3027</td>
<td>18”-24” Level of F15</td>
<td>3127</td>
<td>CC</td>
<td>DE</td>
<td>17.4</td>
<td></td>
<td></td>
<td>2.9</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-3025</td>
<td>18”-24” Level of F15</td>
<td>3127</td>
<td>CC</td>
<td>DG</td>
<td>17.2</td>
<td>3</td>
<td>6.5</td>
<td>6.7</td>
<td>2.8</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>433-3370</td>
<td>24”-30” Level of F15</td>
<td>3128</td>
<td>OB</td>
<td>DE</td>
<td>17.3</td>
<td>7.8</td>
<td>3.7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-2889</td>
<td>24”-30” Level of F15</td>
<td>3128</td>
<td>CC</td>
<td>DE</td>
<td>17.6</td>
<td>7</td>
<td>3.9</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-7243</td>
<td>30”-36” Level of F15</td>
<td>3129</td>
<td>OB</td>
<td>DE</td>
<td>17.8</td>
<td>7.4</td>
<td>4.4</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-7246</td>
<td>30”-36” Level of F15</td>
<td>3129</td>
<td>CC</td>
<td>DE</td>
<td>16.8</td>
<td>7.3</td>
<td>3.6</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-7244</td>
<td>30”-36” Level of F15</td>
<td>3129</td>
<td>OB</td>
<td>DG</td>
<td>17.2</td>
<td>6.1</td>
<td>4.2</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-4453</td>
<td>36”-42” Level of F15</td>
<td>3130</td>
<td>OB</td>
<td>DE</td>
<td>17.3</td>
<td></td>
<td></td>
<td>3.4</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-4452</td>
<td>36”-42” Level of F15</td>
<td>3130</td>
<td>CR</td>
<td>DG</td>
<td>17.1</td>
<td>5.2</td>
<td>3.3</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-4451</td>
<td>36”-42” Level of F15</td>
<td>3130</td>
<td>CC</td>
<td>DD</td>
<td>12.9</td>
<td>2.5</td>
<td>9.2</td>
<td>3</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-7387</td>
<td>42”-48” Level of F15</td>
<td>3131</td>
<td>OB</td>
<td>DZ</td>
<td>14</td>
<td></td>
<td>2.8</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-10,068</td>
<td>54”-60” Level of F15</td>
<td>3133</td>
<td>CD</td>
<td>DE</td>
<td>16.7</td>
<td>9</td>
<td>7.7</td>
<td>2.4</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-10,211</td>
<td>54”-60” Level of F15</td>
<td>3133</td>
<td>OB</td>
<td>DC</td>
<td>26.7</td>
<td>14.3</td>
<td>2</td>
<td>6</td>
<td>6.8</td>
<td>2.8</td>
<td>1</td>
</tr>
<tr>
<td>433-2406</td>
<td>0”-6” Level of E15</td>
<td>3136</td>
<td>OB</td>
<td>DC/DG</td>
<td>30.9</td>
<td>16.2</td>
<td>2.9</td>
<td>8</td>
<td>2.2</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Feature #</td>
<td>Mtrl</td>
<td>Point Type</td>
<td>Length</td>
<td>Width</td>
<td>Neck Length</td>
<td>Distal Neck Width</td>
<td>Proximal Neck Width</td>
<td>Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>-----------</td>
<td>------</td>
<td>------------</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>433-2198</td>
<td>0"-6" Level of E15</td>
<td>3136</td>
<td>OB</td>
<td>DC/ DG</td>
<td>16.7</td>
<td>7.1</td>
<td>4.2</td>
<td>2.9</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-2197</td>
<td>0"-6" Level of E15</td>
<td>3136</td>
<td>OB</td>
<td>DZ</td>
<td>13.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.9</td>
<td>0.6</td>
</tr>
<tr>
<td>433-2457</td>
<td>6"-12" Level of E15</td>
<td>3137</td>
<td>CC</td>
<td>DE</td>
<td>15.6</td>
<td>7.6</td>
<td>6.7</td>
<td>3.1</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-2475</td>
<td>6"-12" Level of E15</td>
<td>3137</td>
<td>OB</td>
<td>DE</td>
<td>17.8</td>
<td>6.5</td>
<td>4.8</td>
<td>3.8</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-2463</td>
<td>6"-12" Level of E15</td>
<td>3137</td>
<td>CC</td>
<td>DE</td>
<td>17.8</td>
<td>6.2</td>
<td>5.3</td>
<td>3.3</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-2457</td>
<td>6"-12" Level of E15</td>
<td>3137</td>
<td>CC</td>
<td>DE</td>
<td>20.5</td>
<td>2.2</td>
<td></td>
<td>7.6</td>
<td>3.4</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>433-2463</td>
<td>6"-12" Level of E15</td>
<td>3137</td>
<td>CC</td>
<td>DC</td>
<td>16.3</td>
<td></td>
<td></td>
<td>3.8</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-2464</td>
<td>6"-12" Level of E15</td>
<td>3137</td>
<td>CC</td>
<td>DE</td>
<td>15.7</td>
<td></td>
<td></td>
<td>5.4</td>
<td>4.4</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>433-2460</td>
<td>6"-12" Level of E15</td>
<td>3137</td>
<td>CR</td>
<td>EC</td>
<td>12.8</td>
<td></td>
<td></td>
<td>3.1</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-10,731</td>
<td>12"-18" Level of E15</td>
<td>3138</td>
<td>CC</td>
<td>DE</td>
<td>15.5</td>
<td></td>
<td></td>
<td>4.7</td>
<td>3.7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>433-2830</td>
<td>12"-18" Level of E15</td>
<td>3138</td>
<td>OB</td>
<td>DC</td>
<td>25.3</td>
<td>11.9</td>
<td>3.4</td>
<td>5.3</td>
<td>3</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>433-2824</td>
<td>12"-18" Level of E15</td>
<td>3138</td>
<td>CC</td>
<td>DZ</td>
<td>15.5</td>
<td></td>
<td></td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-3423</td>
<td>18"-24" Level of E15</td>
<td>3139</td>
<td>CR</td>
<td>DE</td>
<td>19.8</td>
<td>15.1</td>
<td>2.7</td>
<td>5.8</td>
<td>4.3</td>
<td>3.6</td>
<td>0.9</td>
</tr>
<tr>
<td>433-3102</td>
<td>18"-24" Level of E15</td>
<td>3139</td>
<td>OB</td>
<td>DE</td>
<td>14.5</td>
<td>2.9</td>
<td></td>
<td>6.5</td>
<td>3.3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>433-3100</td>
<td>18"-24" Level of E15</td>
<td>3139</td>
<td>CC</td>
<td>DG</td>
<td>21.5</td>
<td>14.6</td>
<td>4.1</td>
<td>6.8</td>
<td>5.3</td>
<td>2.9</td>
<td>0.8</td>
</tr>
<tr>
<td>433-3104</td>
<td>18"-24" Level of E15</td>
<td>3139</td>
<td>CR</td>
<td>DG</td>
<td>23.2</td>
<td>20</td>
<td>3.3</td>
<td>8.1</td>
<td>7</td>
<td>3.8</td>
<td>1</td>
</tr>
<tr>
<td>433-7071</td>
<td>24"-30" Level of E15</td>
<td>3140</td>
<td>CC</td>
<td>DC</td>
<td>14.4</td>
<td></td>
<td></td>
<td>6.5</td>
<td>4.9</td>
<td>3.2</td>
<td>0.9</td>
</tr>
<tr>
<td>433-4901</td>
<td>30"-36" Level of E15</td>
<td>3141</td>
<td>CC</td>
<td>DZ</td>
<td>16.4</td>
<td></td>
<td></td>
<td>3.3</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-6616</td>
<td>36"-42" Level of E15</td>
<td>3142</td>
<td>OB</td>
<td>DE</td>
<td>17.9</td>
<td>2.8</td>
<td></td>
<td>7.9</td>
<td>3.5</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>433-4414</td>
<td>36"-42" Level of E15</td>
<td>3142</td>
<td>OB</td>
<td>DC</td>
<td>13.6</td>
<td></td>
<td></td>
<td>6</td>
<td>4.1</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>433-4418</td>
<td>36"-42" Level of E15</td>
<td>3142</td>
<td>CC</td>
<td>DG</td>
<td>14.2</td>
<td>2.5</td>
<td>7</td>
<td>6.1</td>
<td>3</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>433-4415</td>
<td>36"-42" Level of E15</td>
<td>3142</td>
<td>OB</td>
<td>DE</td>
<td>14.2</td>
<td></td>
<td></td>
<td>5.8</td>
<td>2.6</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>433-6622</td>
<td>36"-42" Level of E15</td>
<td>3142</td>
<td>OB</td>
<td>DZ</td>
<td>12.6</td>
<td></td>
<td></td>
<td>2.1</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-4281</td>
<td>42"-48" Level of E15</td>
<td>3143</td>
<td>OB</td>
<td>DZ</td>
<td>14.7</td>
<td></td>
<td></td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-6808</td>
<td>42"-48" Level of E15</td>
<td>3143</td>
<td>CC</td>
<td>DE</td>
<td>15.2</td>
<td></td>
<td></td>
<td>6</td>
<td>2.7</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>433-6809</td>
<td>42"-48" Level of E15</td>
<td>3143</td>
<td>CC</td>
<td>DE</td>
<td>17.7</td>
<td></td>
<td></td>
<td>9.3</td>
<td>2.8</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>433-6806</td>
<td>42"-48" Level of E15</td>
<td>3143</td>
<td>OB</td>
<td>DE</td>
<td>25.4</td>
<td>17.1</td>
<td>1.8</td>
<td>5.8</td>
<td>3</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>433-6816</td>
<td>42"-48" Level of E15</td>
<td>3143</td>
<td>OB</td>
<td>DE</td>
<td>17.1</td>
<td></td>
<td></td>
<td>6.7</td>
<td>3.2</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>433-9128</td>
<td>54"-60" Level of E15</td>
<td>3145</td>
<td>OB</td>
<td>DE</td>
<td>16.3</td>
<td></td>
<td></td>
<td>7.9</td>
<td>2.7</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>433-10,688</td>
<td>54"-60" Level of E15</td>
<td>3145</td>
<td>CC</td>
<td>DE</td>
<td>17.5</td>
<td></td>
<td></td>
<td>5.9</td>
<td>4.1</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>433-9782</td>
<td>54"-60" Level of E15</td>
<td>3145</td>
<td>OB</td>
<td>DZ</td>
<td>2.6</td>
<td></td>
<td></td>
<td>2.6</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-11,018</td>
<td>66"-72" Level of E15</td>
<td>3147</td>
<td>OB</td>
<td>DE</td>
<td>16.5</td>
<td></td>
<td></td>
<td>6.5</td>
<td>4.2</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>433-8560</td>
<td>6"-12" Level of E16</td>
<td>3150</td>
<td>OB</td>
<td>DE</td>
<td>27.4</td>
<td>16.2</td>
<td>3.6</td>
<td>6.6</td>
<td>5.5</td>
<td>3.5</td>
<td>1.2</td>
</tr>
<tr>
<td>433-3658</td>
<td>12"-18" Level of E16</td>
<td>3151</td>
<td>CC</td>
<td>DG</td>
<td>19.5</td>
<td></td>
<td></td>
<td>5</td>
<td>4.3</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>433-3759</td>
<td>18"-24" Level of E16</td>
<td>3152</td>
<td>OB</td>
<td>DE</td>
<td>24.3</td>
<td></td>
<td></td>
<td>2.9</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-3829</td>
<td>24"-30" Level of E16</td>
<td>3153</td>
<td>OB</td>
<td>DE</td>
<td>17.7</td>
<td>2.6</td>
<td>7.6</td>
<td>6.5</td>
<td>2.9</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Feature #</td>
<td>ml</td>
<td>Point Type</td>
<td>Length</td>
<td>Width</td>
<td>Neck Length</td>
<td>Distal Neck Width</td>
<td>Proximal Neck Width</td>
<td>Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>-----------</td>
<td>----</td>
<td>------------</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td>--------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>433-9326</td>
<td>30”-36” Level of E16</td>
<td>3154</td>
<td>OB</td>
<td>DE</td>
<td>18.6</td>
<td>8.5</td>
<td>4.4</td>
<td></td>
<td></td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>433-8559</td>
<td>36”-42” Level of E16</td>
<td>3155</td>
<td>OB</td>
<td>DE</td>
<td>15.1</td>
<td>6.9</td>
<td>3.7</td>
<td></td>
<td></td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>433-8563</td>
<td>36”-42” Level of E16</td>
<td>3155</td>
<td>CC</td>
<td>DE</td>
<td>16.7</td>
<td>8.2</td>
<td>3.7</td>
<td></td>
<td></td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>433-8788</td>
<td>42”-48” Level of E16</td>
<td>3156</td>
<td>OB</td>
<td>DE</td>
<td>16.1</td>
<td>4.9</td>
<td>3.9</td>
<td></td>
<td></td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>433-8789</td>
<td>42”-48” Level of E16</td>
<td>3156</td>
<td>OB</td>
<td>DE</td>
<td>17.6</td>
<td>8.8</td>
<td>3.7</td>
<td></td>
<td></td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>433-8787</td>
<td>42”-48” Level of E16</td>
<td>3156</td>
<td>OB</td>
<td>DE</td>
<td>16.2</td>
<td>7.8</td>
<td>4</td>
<td></td>
<td></td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>433-10,254</td>
<td>42”-48” Level of E16</td>
<td>3156</td>
<td>CR</td>
<td>CD</td>
<td>21.5</td>
<td>6.4</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-3308</td>
<td>0”-6” Level of F16</td>
<td>3160</td>
<td>OB</td>
<td>DC/DG</td>
<td>16.5</td>
<td>7.7</td>
<td>3.3</td>
<td></td>
<td></td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>433-2310</td>
<td>0”-6” Level of F16</td>
<td>3160</td>
<td>CC</td>
<td>DI</td>
<td>16.5</td>
<td>2.8</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-3858</td>
<td>6”-12” Level of F16</td>
<td>3161</td>
<td>CC</td>
<td>DZ</td>
<td>15.4</td>
<td>3.8</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-3917</td>
<td>12”-18” Level of F16</td>
<td>3162</td>
<td>CC</td>
<td>DC/DG</td>
<td>13.9</td>
<td>2.3</td>
<td>5.6</td>
<td></td>
<td></td>
<td>4.8</td>
<td>2.8</td>
</tr>
<tr>
<td>433-5335</td>
<td>18”-24” Level of F16</td>
<td>3164</td>
<td>OB</td>
<td>DE</td>
<td>18.2</td>
<td>6.6</td>
<td>3.7</td>
<td></td>
<td></td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>433-5334</td>
<td>18”-24” Level of F16</td>
<td>3164</td>
<td>OB</td>
<td>DE</td>
<td>15.9</td>
<td>6</td>
<td>3.5</td>
<td></td>
<td></td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>433-5212</td>
<td>18”-24” Level of F16</td>
<td>3164</td>
<td>OB</td>
<td>CZ</td>
<td>19</td>
<td>4.2</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-5338</td>
<td>18”-24” Level of F16</td>
<td>3164</td>
<td>CC</td>
<td>DZ</td>
<td>15.6</td>
<td>2.9</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-5211</td>
<td>18”-24” Level of F16</td>
<td>3164</td>
<td>OB</td>
<td>CC</td>
<td>30</td>
<td>16.2</td>
<td>4.7</td>
<td></td>
<td></td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>433-4854</td>
<td>24”-30” Level of F16</td>
<td>3165</td>
<td>OB</td>
<td>DE</td>
<td>18.8</td>
<td>2</td>
<td>8</td>
<td></td>
<td></td>
<td>7.2</td>
<td>3.1</td>
</tr>
<tr>
<td>433-4875</td>
<td>24”-30” Level of F16</td>
<td>3165</td>
<td>OB</td>
<td>DE</td>
<td>31.5</td>
<td>14.3</td>
<td>2.4</td>
<td></td>
<td></td>
<td>9.1</td>
<td>6.9</td>
</tr>
<tr>
<td>433-4861</td>
<td>24”-30” Level of F16</td>
<td>3165</td>
<td>CC</td>
<td>DC/DG</td>
<td>14.9</td>
<td>1.9</td>
<td>7</td>
<td></td>
<td></td>
<td>3.6</td>
<td>1.2</td>
</tr>
<tr>
<td>433-4855</td>
<td>24”-30” Level of F16</td>
<td>3165</td>
<td>OB</td>
<td>DC</td>
<td>13.2</td>
<td>2.2</td>
<td>5.5</td>
<td></td>
<td></td>
<td>3.8</td>
<td>0.9</td>
</tr>
<tr>
<td>433-4856</td>
<td>24”-30” Level of F16</td>
<td>3165</td>
<td>OB</td>
<td>DG</td>
<td>22.2</td>
<td>6.4</td>
<td>4.1</td>
<td></td>
<td></td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>433-4859</td>
<td>24”-30” Level of F16</td>
<td>3165</td>
<td>CC</td>
<td>DC</td>
<td>16.7</td>
<td>7.1</td>
<td>3.1</td>
<td></td>
<td></td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>433-8939</td>
<td>30”-36” Level of F16</td>
<td>3166</td>
<td>CC</td>
<td>DE</td>
<td>21.1</td>
<td>6.5</td>
<td>4.5</td>
<td></td>
<td></td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>433-9861</td>
<td>36”-42” Level of F16</td>
<td>3167</td>
<td>OB</td>
<td>DE</td>
<td>18.6</td>
<td>6.8</td>
<td>5.4</td>
<td></td>
<td></td>
<td>3.4</td>
<td>0.9</td>
</tr>
<tr>
<td>433-9860</td>
<td>36”-42” Level of F16</td>
<td>3167</td>
<td>OB</td>
<td>DZ</td>
<td>15.2</td>
<td>4.4</td>
<td>3.2</td>
<td></td>
<td></td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>433-10,402</td>
<td>42”-48” Level of F16</td>
<td>3168</td>
<td>OB</td>
<td>DE</td>
<td>15.7</td>
<td>5.1</td>
<td>3.6</td>
<td></td>
<td></td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>433-10,348</td>
<td>42”-48” Level of F16</td>
<td>3168</td>
<td>CR</td>
<td>DE</td>
<td>16.5</td>
<td>2.1</td>
<td>8.5</td>
<td>7.5</td>
<td>4</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>433-10,401</td>
<td>42”-48” Level of F16</td>
<td>3168</td>
<td>OB</td>
<td>DE</td>
<td>12</td>
<td>1.2</td>
<td>5.9</td>
<td></td>
<td></td>
<td>3.2</td>
<td>0.7</td>
</tr>
<tr>
<td>433-10,345</td>
<td>42”-48” Level of F16</td>
<td>3168</td>
<td>CC</td>
<td>DE</td>
<td>17.4</td>
<td>6</td>
<td>3.1</td>
<td></td>
<td></td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>433-10,350</td>
<td>42”-48” Level of F16</td>
<td>3168</td>
<td>OB</td>
<td>DC/DG</td>
<td>19.1</td>
<td>2.3</td>
<td>9.2</td>
<td></td>
<td></td>
<td>8.2</td>
<td>3.7</td>
</tr>
<tr>
<td>433-10,348</td>
<td>42”-48” Level of F16</td>
<td>3168</td>
<td>OB</td>
<td>DG</td>
<td>15.2</td>
<td>4.3</td>
<td>2.8</td>
<td></td>
<td></td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>433-11,136</td>
<td>12”-18” Level of E10</td>
<td>3178</td>
<td>OB</td>
<td>DE</td>
<td>16.1</td>
<td>8.3</td>
<td>3.2</td>
<td></td>
<td></td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>433-3166</td>
<td>0”-6” Level of E11</td>
<td>3179</td>
<td>OB</td>
<td>DE</td>
<td>16.2</td>
<td>4.1</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-2910</td>
<td>0”-6” Level of E11</td>
<td>3179</td>
<td>CR</td>
<td>DC/DG</td>
<td>16.9</td>
<td>7.5</td>
<td>4.1</td>
<td></td>
<td></td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Feature #</td>
<td>mtrl</td>
<td>Point Type</td>
<td>Length</td>
<td>Width</td>
<td>Neck Length</td>
<td>Distal Neck Width</td>
<td>Proximal Neck Width</td>
<td>Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------------</td>
<td>-----------</td>
<td>------</td>
<td>------------</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>433-10,436</td>
<td>12"-18" Level of E11</td>
<td>3181</td>
<td>OB</td>
<td>DE</td>
<td>17.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.5</td>
<td>1.5</td>
</tr>
<tr>
<td>433-6230</td>
<td>12"-18" Level of E12</td>
<td>3184</td>
<td>OB</td>
<td>DD</td>
<td>26.4</td>
<td>14.9</td>
<td>2.5</td>
<td>6.2</td>
<td>2.5</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>433-7417</td>
<td>0"-12" Level of F10</td>
<td>3185</td>
<td>CC</td>
<td>DC</td>
<td>13.5</td>
<td>2.3</td>
<td>5.6</td>
<td>2.5</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-4387</td>
<td>18"-24" Level of F10</td>
<td>3187</td>
<td>OB</td>
<td>DG</td>
<td>13.9</td>
<td></td>
<td></td>
<td>4.9</td>
<td>3.3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>433-11,101</td>
<td>18"-24" Level of F10</td>
<td>3187</td>
<td>OB</td>
<td>DE</td>
<td>18.6</td>
<td></td>
<td></td>
<td>6.7</td>
<td>3.9</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>433-7515</td>
<td>0"-6" Level of F11</td>
<td>3188</td>
<td>CR</td>
<td>DZ</td>
<td>15.5</td>
<td></td>
<td></td>
<td></td>
<td>2.8</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>433-5746</td>
<td>6"-12" Level of F11</td>
<td>3189</td>
<td>OB</td>
<td>DE</td>
<td>16.7</td>
<td></td>
<td></td>
<td>6.8</td>
<td>2.3</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>433-5147</td>
<td>6"-12" Level of F11</td>
<td>3189</td>
<td>OB</td>
<td>DZ</td>
<td>17.8</td>
<td></td>
<td></td>
<td>3.9</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-9292</td>
<td>12"-18" Level of F11</td>
<td>3190</td>
<td>OB</td>
<td>DC</td>
<td>38.8</td>
<td>11</td>
<td></td>
<td>5.2</td>
<td>2.6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>433-10,553</td>
<td>30"-36" Level of F11</td>
<td>3193</td>
<td>OB</td>
<td>DC</td>
<td>20.7</td>
<td>12.8</td>
<td>2.4</td>
<td>4</td>
<td>3</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>433-10,546</td>
<td>30"-36" Level of F11</td>
<td>3193</td>
<td>OB</td>
<td>CA</td>
<td>21.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-10,545</td>
<td>30"-36" Level of F11</td>
<td>3193</td>
<td>OB</td>
<td>DC</td>
<td>29.6</td>
<td>14.3</td>
<td></td>
<td>5.9</td>
<td>2.9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>433-2683</td>
<td>6"-12" Level of F12</td>
<td>3195</td>
<td>OB</td>
<td>DZ</td>
<td>26.5</td>
<td>13.6</td>
<td>2.4</td>
<td>6.1</td>
<td>3</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>433-8440</td>
<td>12"-18" Level of F12</td>
<td>3196</td>
<td>OB</td>
<td>DC</td>
<td>12.4</td>
<td></td>
<td></td>
<td>3.3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-5469</td>
<td>0"-6" Level of C12</td>
<td>3200</td>
<td>OB</td>
<td>DZ</td>
<td>31</td>
<td>15.3</td>
<td></td>
<td>4</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-5375</td>
<td>6"-12" Level of C12</td>
<td>3201</td>
<td>OB</td>
<td>DE</td>
<td>31</td>
<td>15.3</td>
<td></td>
<td>4</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-5426</td>
<td>6"-12" Level of C12</td>
<td>3201</td>
<td>OB</td>
<td>DC</td>
<td>13.7</td>
<td>2.8</td>
<td>5</td>
<td>4.6</td>
<td>3.2</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>433-5558</td>
<td>18"-24" Level of C12</td>
<td>3203</td>
<td>OB</td>
<td>DE</td>
<td>28.8</td>
<td>24.4</td>
<td>14.3</td>
<td>6.4</td>
<td>2.3</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>433-4435</td>
<td>18"-24" Level of C12</td>
<td>3203</td>
<td>OB</td>
<td>DC/ DG</td>
<td>25.6</td>
<td>13.9</td>
<td>2.5</td>
<td>6</td>
<td>2.3</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>433-554</td>
<td>18"-24" Level of C12</td>
<td>3203</td>
<td>OB</td>
<td>DZ</td>
<td>15.9</td>
<td></td>
<td></td>
<td>7.3</td>
<td>3.7</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>433-5385</td>
<td>18"-24" Level of C12</td>
<td>3203</td>
<td>CC</td>
<td>DC</td>
<td>12.7</td>
<td></td>
<td></td>
<td>5.3</td>
<td>3</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>433-5562</td>
<td>18"-24" Level of C12</td>
<td>3203</td>
<td>CC</td>
<td>DZ</td>
<td>19.2</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-6007</td>
<td>24"-30" Level of C12</td>
<td>3204</td>
<td>OB</td>
<td>DC</td>
<td>31</td>
<td>16.7</td>
<td>3.7</td>
<td>7.6</td>
<td>7</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>433-5644</td>
<td>30"-36" Level of C12</td>
<td>3205</td>
<td>CC</td>
<td>DE</td>
<td>15.7</td>
<td></td>
<td></td>
<td>7.7</td>
<td>4.2</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>433-4435</td>
<td>30"-36" Level of C12</td>
<td>3205</td>
<td>OB</td>
<td>DZ</td>
<td>23.9</td>
<td>13.5</td>
<td></td>
<td>4.2</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-11,063</td>
<td>48"-54" Level of C12</td>
<td>3208</td>
<td>OB</td>
<td>DE</td>
<td>23.1</td>
<td>3.6</td>
<td>12.1</td>
<td>11.4</td>
<td>3</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>433-3458</td>
<td>12"-18" Level of D12</td>
<td>3216</td>
<td>CR</td>
<td>DZ</td>
<td>12.4</td>
<td></td>
<td></td>
<td>3.3</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-5565</td>
<td>18"-24" Level of D12</td>
<td>3217</td>
<td>CC</td>
<td>CA</td>
<td>33.3</td>
<td></td>
<td></td>
<td>6</td>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-5722</td>
<td>24"-30" Level of D12</td>
<td>3218</td>
<td>CD</td>
<td>DE</td>
<td>15.1</td>
<td></td>
<td></td>
<td>8.3</td>
<td>2.8</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>433-4787</td>
<td>30"-36" Level of D12</td>
<td>3219</td>
<td>CC</td>
<td>DG</td>
<td>18.9</td>
<td>2.5</td>
<td></td>
<td>7</td>
<td>3.6</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>433-4713</td>
<td>30"-36" Level of D12</td>
<td>3219</td>
<td>OB</td>
<td>DE</td>
<td>14</td>
<td></td>
<td></td>
<td>5</td>
<td>3.7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>433-4785</td>
<td>30"-36" Level of D12</td>
<td>3219</td>
<td>CC</td>
<td>DG</td>
<td>18.9</td>
<td>2.5</td>
<td></td>
<td>7</td>
<td>3.6</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>433-4716</td>
<td>30"-36" Level of D12</td>
<td>3219</td>
<td>OB</td>
<td>DZ</td>
<td>13.3</td>
<td></td>
<td></td>
<td>4.2</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Feature #</td>
<td>mtl</td>
<td>Point Type</td>
<td>Length</td>
<td>Width</td>
<td>Neck Length</td>
<td>Distal Neck Width</td>
<td>Proximal Neck Width</td>
<td>Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----</td>
<td>------------</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>433-7812</td>
<td>36”-42” Level of D12</td>
<td>3220</td>
<td>CC</td>
<td>DE</td>
<td>30.6</td>
<td>17.8</td>
<td>2.5</td>
<td>7.4</td>
<td>5.7</td>
<td>3.9</td>
<td>1.8</td>
</tr>
<tr>
<td>433-7915</td>
<td>36”-42” Level of D12</td>
<td>3220</td>
<td>OB</td>
<td>DE</td>
<td>30.6</td>
<td>17.8</td>
<td>2.5</td>
<td>7.4</td>
<td>5.7</td>
<td>3.9</td>
<td>1.8</td>
</tr>
<tr>
<td>433-10,868</td>
<td>42”-48” Level of D12</td>
<td>3221</td>
<td>QC</td>
<td>CZ</td>
<td>56.7</td>
<td>32.3</td>
<td>7.3</td>
<td>11.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-4883</td>
<td>0”-6” Level of C11</td>
<td>3225</td>
<td>CR</td>
<td>DC</td>
<td>15.4</td>
<td>2.8</td>
<td>6.1</td>
<td>2.9</td>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-9890</td>
<td>0”-6” Level of C11</td>
<td>3225</td>
<td>OB</td>
<td>DC/ DG</td>
<td>13.8</td>
<td></td>
<td>2.9</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-3752</td>
<td>0”-6” Level of C11</td>
<td>3225</td>
<td>OB</td>
<td>DZ</td>
<td>21.7</td>
<td>11</td>
<td>3.9</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-4370</td>
<td>12”-18” Level of C11</td>
<td>3227</td>
<td>OB</td>
<td>DE</td>
<td>22.5</td>
<td>15.3</td>
<td>4.5</td>
<td>3.8</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-4370</td>
<td>12”-18” Level of C11</td>
<td>3227</td>
<td>OB</td>
<td>DE</td>
<td>27.3</td>
<td>18.8</td>
<td>2.4</td>
<td>8.6</td>
<td>3.3</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>433-8341</td>
<td>24”-30” Level of C11</td>
<td>3229</td>
<td>OB</td>
<td>DE</td>
<td>7.4</td>
<td>7.2</td>
<td>2.3</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-8341</td>
<td>24”-30” Level of C11</td>
<td>3229</td>
<td>OB</td>
<td>DC</td>
<td>12.7</td>
<td>4.4</td>
<td>3.6</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-9515</td>
<td>30”-36” Level of C11</td>
<td>3230</td>
<td>OB</td>
<td>DE</td>
<td>18.9</td>
<td>2.5</td>
<td>9.1</td>
<td>4.2</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-7660</td>
<td>30”-36” Level of C11</td>
<td>3230</td>
<td>OB</td>
<td>DC</td>
<td>31.1</td>
<td>15.7</td>
<td>1.4</td>
<td>6.9</td>
<td>3.1</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>433-7672</td>
<td>30”-36” Level of C11</td>
<td>3230</td>
<td>CC</td>
<td>DE</td>
<td>16</td>
<td>2.7</td>
<td>5.8</td>
<td>4.3</td>
<td>4.4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>433-4370</td>
<td>48”-54” Level of C11</td>
<td>3233</td>
<td>OB</td>
<td>DE</td>
<td>23.1</td>
<td>15.1</td>
<td>2.4</td>
<td>6.9</td>
<td>5.6</td>
<td>2.8</td>
<td>0.9</td>
</tr>
<tr>
<td>433-7672</td>
<td>48”-54” Level of C11</td>
<td>3233</td>
<td>CC</td>
<td>DE</td>
<td>16.5</td>
<td></td>
<td>8.2</td>
<td>2.6</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-4370</td>
<td>48”-54” Level of C11</td>
<td>3233</td>
<td>OB</td>
<td>DG</td>
<td>14.9</td>
<td>1.9</td>
<td>5.2</td>
<td>3.1</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-7670</td>
<td>48”-54” Level of C11</td>
<td>3238</td>
<td>OB</td>
<td>DC</td>
<td>11.9</td>
<td></td>
<td>3.8</td>
<td>3.8</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-7672</td>
<td>48”-54” Level of C11</td>
<td>3238</td>
<td>OB</td>
<td>DZ</td>
<td>13.5</td>
<td></td>
<td>6.5</td>
<td>2.3</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-3752</td>
<td>6”-12” Level of C11</td>
<td>3240</td>
<td>CD</td>
<td>DE</td>
<td>15.9</td>
<td></td>
<td>8.6</td>
<td>3.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-8341</td>
<td>6”-12” Level of C11</td>
<td>3240</td>
<td>CC</td>
<td>DC</td>
<td>10.4</td>
<td>2.3</td>
<td>5</td>
<td>2.7</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-7670</td>
<td>6”-12” Level of C11</td>
<td>3240</td>
<td>CC</td>
<td>DE</td>
<td>14.2</td>
<td></td>
<td>5.4</td>
<td>2.5</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-7672</td>
<td>6”-12” Level of C11</td>
<td>3240</td>
<td>CC</td>
<td>DE</td>
<td>17.2</td>
<td></td>
<td>8.4</td>
<td>3.4</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-7672</td>
<td>6”-12” Level of C11</td>
<td>3240</td>
<td>OB</td>
<td>CA</td>
<td>23.8</td>
<td></td>
<td>4.6</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-4534</td>
<td>6”-12” Level of C11</td>
<td>3245</td>
<td>OB</td>
<td>DZ</td>
<td>13.5</td>
<td></td>
<td>6.5</td>
<td>2.3</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-7670</td>
<td>C10,C11</td>
<td>3253</td>
<td>CC</td>
<td>DZ</td>
<td>30.5</td>
<td></td>
<td>4</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Feature #</td>
<td>mtrl</td>
<td>Point Type</td>
<td>Length</td>
<td>Width</td>
<td>Neck Length</td>
<td>Distal Neck Width</td>
<td>Proximal Neck Width</td>
<td>Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>-----------</td>
<td>------</td>
<td>------------</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td>--------------------</td>
<td>----------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>433-4447</td>
<td>12''-18'' Level of C10</td>
<td>3262</td>
<td>OB</td>
<td>DZ</td>
<td>13.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.6</td>
</tr>
<tr>
<td>433-8053</td>
<td>18''-24'' Level of C10</td>
<td>3263</td>
<td>OB</td>
<td>DZ</td>
<td>15.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.6</td>
</tr>
<tr>
<td>433-5127</td>
<td>18''-24'' Level of C10</td>
<td>3263</td>
<td>CC</td>
<td>DZ</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.6</td>
</tr>
<tr>
<td>433-7542</td>
<td>24''-30'' Level of C10</td>
<td>3264</td>
<td>OB</td>
<td>DE</td>
<td>20.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.9</td>
</tr>
<tr>
<td>433-9607</td>
<td>30''-36'' Level of C10</td>
<td>3265</td>
<td>OB</td>
<td>DG</td>
<td>18.9</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.3</td>
</tr>
<tr>
<td>433-9606</td>
<td>30''-36'' Level of C10</td>
<td>3265</td>
<td>CC</td>
<td>DZ</td>
<td>15.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.3</td>
</tr>
<tr>
<td>433-9757</td>
<td>42''-48'' Level of C10</td>
<td>3267</td>
<td>CC</td>
<td>DC</td>
<td>15.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.6</td>
</tr>
<tr>
<td>433-3386</td>
<td>0''-6'' Level of D10</td>
<td>3270</td>
<td>OB</td>
<td>DG</td>
<td>31.8</td>
<td>2.7</td>
<td>18.1</td>
<td></td>
<td></td>
<td></td>
<td>6.7</td>
</tr>
<tr>
<td>433-9207</td>
<td>18''-24'' Level of D10</td>
<td>3273</td>
<td>OB</td>
<td>DZ</td>
<td>16.2</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.7</td>
</tr>
<tr>
<td>433-9826</td>
<td>30''-36'' Level of D10</td>
<td>3275</td>
<td>OB</td>
<td>DE</td>
<td>16.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.5</td>
</tr>
<tr>
<td>433-7595</td>
<td>48''-54'' Level of D16</td>
<td>3294</td>
<td>CR</td>
<td>DE</td>
<td>19.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.2</td>
</tr>
<tr>
<td>433-5228</td>
<td>6''-12'' Level of E10</td>
<td>3315</td>
<td>OB</td>
<td>DC</td>
<td>14.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.8</td>
</tr>
<tr>
<td>433-3641</td>
<td>6''-12'' Level of E10</td>
<td>3315</td>
<td>OB</td>
<td>DZ</td>
<td>24.3</td>
<td>15.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.6</td>
</tr>
<tr>
<td>433-5084</td>
<td>6''-12'' Level of E10</td>
<td>3315</td>
<td>CR</td>
<td>DJ</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.1</td>
</tr>
<tr>
<td>433-2798</td>
<td>18''-24'' Level of E12</td>
<td>3337</td>
<td>CC</td>
<td>DJ</td>
<td>11.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.7</td>
</tr>
<tr>
<td>433-8259</td>
<td>18''-24'' Level of F18</td>
<td>3413</td>
<td>OB</td>
<td>DE</td>
<td>15.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.8</td>
</tr>
<tr>
<td>433-7293</td>
<td>12''-30'' Level of F20</td>
<td>3064</td>
<td>CC</td>
<td>DE</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.7</td>
</tr>
<tr>
<td>433-10,652</td>
<td>42''-54'' Level of F10</td>
<td>3277</td>
<td>OB</td>
<td>DE</td>
<td>14.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.8</td>
</tr>
<tr>
<td>433-3684</td>
<td>6''-12'' Level of F12</td>
<td>3195</td>
<td>CD</td>
<td>EC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.3</td>
</tr>
<tr>
<td>433-10,392</td>
<td>48''-54'' Structure 10</td>
<td>1051</td>
<td>CR</td>
<td>DZ</td>
<td>22.1</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.6</td>
</tr>
<tr>
<td>433-3030</td>
<td>18''-24'' Level of F15</td>
<td>3127</td>
<td>OB</td>
<td>DE</td>
<td>30.1</td>
<td>16.1</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td>5.2</td>
</tr>
<tr>
<td>433-7420</td>
<td>0''-12'' Level of F16</td>
<td>3185</td>
<td>CC</td>
<td>DE</td>
<td>16.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.7</td>
</tr>
<tr>
<td>433-10,342</td>
<td>42''-48'' Level of F16</td>
<td>3168</td>
<td>OB</td>
<td>DZ</td>
<td>18.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.9</td>
</tr>
<tr>
<td>433-249</td>
<td>6''-12'' Level of C10</td>
<td>3261</td>
<td>CR</td>
<td>DE</td>
<td>16.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.7</td>
</tr>
<tr>
<td>433-4105</td>
<td>24''-30'' Level of C16</td>
<td>3073</td>
<td>CC</td>
<td>DE</td>
<td>18.2</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.5</td>
</tr>
<tr>
<td>433-10,113</td>
<td>48''-54'' Level of F15</td>
<td>3132</td>
<td>OB</td>
<td>DE</td>
<td>13.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.8</td>
</tr>
<tr>
<td>433-4715</td>
<td>30''-36'' Level of C12</td>
<td>3219</td>
<td>OB</td>
<td>DZ</td>
<td>16.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.5</td>
</tr>
<tr>
<td>433-10,712</td>
<td>48''-54'' Level of C11</td>
<td>3233</td>
<td>OB</td>
<td>DZ</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.1</td>
</tr>
<tr>
<td>433-11,122</td>
<td>60''-66'' Level of F15</td>
<td>3134</td>
<td>OB</td>
<td>DZ</td>
<td>17.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.7</td>
</tr>
<tr>
<td>433-2582</td>
<td>6''-12'' Level of F15</td>
<td>3125</td>
<td>OB</td>
<td>DZ</td>
<td>15.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.3</td>
</tr>
<tr>
<td>433-3330</td>
<td>12''-18'' Level of F19</td>
<td>3040</td>
<td>CC</td>
<td>DZ</td>
<td>16.5</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.2</td>
</tr>
<tr>
<td>433-2232</td>
<td>0''-6'' Level of E20</td>
<td>3060</td>
<td>CC/</td>
<td>CD/</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.8</td>
</tr>
<tr>
<td>433-3686</td>
<td>6''-12'' Level of E14</td>
<td>3090</td>
<td>OB</td>
<td>DZ</td>
<td>12.7</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.6</td>
</tr>
<tr>
<td>433-7567</td>
<td>30''-36'' Level of F19</td>
<td>3044</td>
<td>OB</td>
<td>DZ</td>
<td>14.3</td>
<td>3.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.6</td>
</tr>
<tr>
<td>433-3331</td>
<td>12''-18'' Level of F19</td>
<td>3040</td>
<td>CC</td>
<td>DZ</td>
<td>15.8</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.9</td>
</tr>
<tr>
<td>433-5523</td>
<td>6''-12'' Level of D11</td>
<td>3240</td>
<td>OB</td>
<td>DC</td>
<td>26.6</td>
<td>13.2</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td>5.6</td>
</tr>
<tr>
<td>433-5555</td>
<td>18''-24'' Level of C12</td>
<td>3203</td>
<td>OB</td>
<td>DZ</td>
<td>26</td>
<td>13.3</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Feature #</td>
<td>mdl</td>
<td>Point Type</td>
<td>Length</td>
<td>Width</td>
<td>Neck Length</td>
<td>Distal Neck Width</td>
<td>Proximal Neck Width</td>
<td>Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>-----------</td>
<td>-----</td>
<td>------------</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td>------------------</td>
<td>--------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>433-6271</td>
<td>24"-30" Level of D17</td>
<td>3004</td>
<td>CC</td>
<td>DZ</td>
<td>21.8</td>
<td>2.5</td>
<td>8.2</td>
<td>3.5</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-7464</td>
<td>30"-36" Level of F19</td>
<td>3044</td>
<td>OB</td>
<td>DC</td>
<td>11.6</td>
<td>5.5</td>
<td>3.5</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-8207</td>
<td>12"-18" Level of F17</td>
<td>3401</td>
<td>OB</td>
<td>DZ</td>
<td>14.9</td>
<td>2.9</td>
<td>5.5</td>
<td>3.6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-8361</td>
<td>24"-30" Level of C10</td>
<td>3264</td>
<td>OB</td>
<td>DZ</td>
<td>25.5</td>
<td>15</td>
<td>3.2</td>
<td>3.3</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-521</td>
<td>42"-48" Level of Unit A</td>
<td>2508</td>
<td>CC</td>
<td>DE</td>
<td>30.3</td>
<td>15.7</td>
<td>2.8</td>
<td>4</td>
<td>3.2</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>434-54</td>
<td>6"-12" Level of Unit B</td>
<td>2513</td>
<td>CR</td>
<td>DE</td>
<td>17</td>
<td>2.5</td>
<td>6.3</td>
<td>4.9</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>434-497</td>
<td>36"-42" Level of Unit B</td>
<td>2520</td>
<td>OB</td>
<td>DZ</td>
<td>11.9</td>
<td>2.9</td>
<td>11.1</td>
<td>3.2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>434-556</td>
<td>42"-48" Level of Unit B</td>
<td>2521</td>
<td>CC</td>
<td>DZ</td>
<td>13.6</td>
<td>16</td>
<td>8.5</td>
<td>5.2</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>434-560</td>
<td>42"-48" Level of Unit B</td>
<td>2521</td>
<td>OB</td>
<td>DE</td>
<td>16</td>
<td>6.4</td>
<td>3.8</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>434-19</td>
<td>0"-6" Level of Unit A</td>
<td>2500</td>
<td>CC</td>
<td>DE</td>
<td>15.9</td>
<td>7.6</td>
<td>3.7</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>434-41</td>
<td>6"-12" Level of Unit A</td>
<td>2501</td>
<td>CR</td>
<td>DE</td>
<td>17.6</td>
<td>3.4</td>
<td>7.2</td>
<td>6.5</td>
<td>2.7</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>434-136</td>
<td>12"-18" Level of Unit B</td>
<td>2514</td>
<td>OB</td>
<td>DE</td>
<td>17</td>
<td>5</td>
<td>3.6</td>
<td>3.4</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>434-137</td>
<td>12"-18" Level of Unit B</td>
<td>2514</td>
<td>OB</td>
<td>DZ</td>
<td>14.2</td>
<td>6.6</td>
<td>3.8</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>434-204</td>
<td>18"-24" Level of Unit B</td>
<td>2515</td>
<td>CC</td>
<td>DZ</td>
<td>15.5</td>
<td>5</td>
<td>4.9</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>434-252</td>
<td>24"-30" Level of Unit A</td>
<td>2504</td>
<td>OB</td>
<td>DE</td>
<td>29.9</td>
<td>18.5</td>
<td>9.9</td>
<td>3.9</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>434-254</td>
<td>24"-30" Level of Unit A</td>
<td>2504</td>
<td>OB</td>
<td>DZ</td>
<td>12.7</td>
<td>3.6</td>
<td>1.5</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>434-336</td>
<td>24"-30" Level of Unit B</td>
<td>2516</td>
<td>OB</td>
<td>DC</td>
<td>16.2</td>
<td>6.9</td>
<td>3.3</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>434-337</td>
<td>24"-30" Level of Unit B</td>
<td>2516</td>
<td>OB</td>
<td>DZ</td>
<td>23.1</td>
<td>17.5</td>
<td>10.2</td>
<td>3.9</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>434-338</td>
<td>24"-30" Level of Unit B</td>
<td>2516</td>
<td>CC</td>
<td>DZ</td>
<td>13.8</td>
<td>7.1</td>
<td>3.1</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>434-403</td>
<td>30"-36" Level of Unit A</td>
<td>2506</td>
<td>CR</td>
<td>DE</td>
<td>18.7</td>
<td>7.1</td>
<td>4.4</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>434-561</td>
<td>42"-48" Level of Unit B</td>
<td>2521</td>
<td>CR</td>
<td>DC</td>
<td>38.3</td>
<td>13.2</td>
<td>3.2</td>
<td>7.1</td>
<td>3.2</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>434-495</td>
<td>36"-42" Level of Unit B</td>
<td>2520</td>
<td>OB</td>
<td>DE</td>
<td>16.4</td>
<td>7.3</td>
<td>3.3</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>434-55</td>
<td>6"-12" Level of Unit B</td>
<td>2513</td>
<td>OB</td>
<td>DE</td>
<td>21.9</td>
<td>8.5</td>
<td>2.5</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>434-496</td>
<td>36"-42" Level of Unit B</td>
<td>2520</td>
<td>OB</td>
<td>DE</td>
<td>17.2</td>
<td>4.6</td>
<td>3.5</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>434-168</td>
<td>18"-24" Level of Unit A</td>
<td>2503</td>
<td>OB</td>
<td>DE</td>
<td>35.8</td>
<td>16.7</td>
<td>2.9</td>
<td>6.6</td>
<td>5.6</td>
<td>3.6</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Table B.4. Continued
<table>
<thead>
<tr>
<th>Accession</th>
<th>Provenience</th>
<th>Feature #</th>
<th>mtrl</th>
<th>Point Type</th>
<th>Length</th>
<th>Width</th>
<th>Neck Length</th>
<th>Distal Neck Width</th>
<th>Proximal Neck Width</th>
<th>Thickness</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>434-57</td>
<td>6”-12” Level of Unit B</td>
<td>2513</td>
<td>OB</td>
<td>DE</td>
<td>16.2</td>
<td>4.9</td>
<td>3.5</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>434-404</td>
<td>30”-36” Level of Unit A</td>
<td>2506</td>
<td>CC</td>
<td>DE</td>
<td>16.3</td>
<td>8.1</td>
<td>3.3</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>434-402</td>
<td>30”-36” Level of Unit A</td>
<td>2506</td>
<td>OB</td>
<td>DC</td>
<td>13.9</td>
<td>7.1</td>
<td>4</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>434-198</td>
<td>18”-24” Level of Unit B</td>
<td>2515</td>
<td>OB</td>
<td>DE</td>
<td>15.9</td>
<td>6</td>
<td>3.1</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>434-335</td>
<td>24”-30” Level of Unit B</td>
<td>2516</td>
<td>OB</td>
<td>DE</td>
<td>18</td>
<td>2.6</td>
<td>7.8</td>
<td>2.8</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-4712</td>
<td>24”-30” Level of D12</td>
<td>3219</td>
<td>CR</td>
<td>DE</td>
<td>17.1</td>
<td>3.9</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-10,528</td>
<td>54”-60” Structure 4</td>
<td>454</td>
<td>OB</td>
<td>DE</td>
<td>15.5</td>
<td>5</td>
<td>2.5</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-10,529</td>
<td>54”-60” Structure 4</td>
<td>454</td>
<td>OB</td>
<td>DE</td>
<td>16.4</td>
<td>4.5</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-10,530</td>
<td>54”-60” Structure 4</td>
<td>454</td>
<td>CC</td>
<td>DE</td>
<td>24.1</td>
<td>17.5</td>
<td>5.3</td>
<td>2.6</td>
<td>3.2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>433-10,531</td>
<td>60”-66” Structure 4</td>
<td>455</td>
<td>CC</td>
<td>DC</td>
<td>35.5</td>
<td>13.1</td>
<td>5.8</td>
<td>4.5</td>
<td>5</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>433-9151</td>
<td>No Provenience</td>
<td>No</td>
<td>CC</td>
<td>DE</td>
<td>18.2</td>
<td>5.7</td>
<td>3.2</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-7990</td>
<td>No Provenience</td>
<td>No</td>
<td>CR</td>
<td>DC</td>
<td>13.6</td>
<td>2.7</td>
<td>7.2</td>
<td>6</td>
<td>4</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>433-2871</td>
<td>No Provenience</td>
<td>No</td>
<td>CD</td>
<td>DZ</td>
<td>16.7</td>
<td>3.8</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-Y756</td>
<td>No Provenience</td>
<td>No</td>
<td>OB</td>
<td>DC</td>
<td>14.5</td>
<td>5</td>
<td>3.2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-Y760</td>
<td>No Provenience</td>
<td>No</td>
<td>OB</td>
<td>DZ</td>
<td>27.5</td>
<td>13.7</td>
<td>4.2</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-Y759</td>
<td>No Provenience</td>
<td>No</td>
<td>OB</td>
<td>DC</td>
<td>15.8</td>
<td>5.1</td>
<td>2.8</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-Y758</td>
<td>No Provenience</td>
<td>No</td>
<td>OB</td>
<td>DC</td>
<td>13.1</td>
<td>5.8</td>
<td>3.5</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-Y757</td>
<td>No Provenience</td>
<td>No</td>
<td>OB</td>
<td>DC</td>
<td>13.9</td>
<td>8.4</td>
<td>4</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-Y743</td>
<td>No Provenience</td>
<td>No</td>
<td>OB</td>
<td>DZ</td>
<td>16</td>
<td>5.5</td>
<td>3.4</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-Y742</td>
<td>No Provenience</td>
<td>No</td>
<td>OB</td>
<td>DZ</td>
<td>17.6</td>
<td>5.6</td>
<td>3.9</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table B.4. Continued

<table>
<thead>
<tr>
<th>Accession</th>
<th>Provenience</th>
<th>Feature #</th>
<th>mtrl</th>
<th>Point Type</th>
<th>Length</th>
<th>Width</th>
<th>Neck Length</th>
<th>Distal Neck Width</th>
<th>Proximal Neck Width</th>
<th>Thickness</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>433-Y741</td>
<td>No Provenience</td>
<td>No Catalog Number</td>
<td>OB</td>
<td>DE</td>
<td>15.7</td>
<td>5</td>
<td>2.8</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-Y740</td>
<td>No Provenience</td>
<td>No Catalog Number</td>
<td>OB</td>
<td>DZ</td>
<td>14.7</td>
<td></td>
<td>4.6</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-Y739</td>
<td>No Provenience</td>
<td>No Catalog Number</td>
<td>CC</td>
<td>DZ</td>
<td>15.5</td>
<td></td>
<td>5.2</td>
<td>3.1</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-Y738</td>
<td>No Provenience</td>
<td>No Catalog Number</td>
<td>OB</td>
<td>DG</td>
<td>15.9</td>
<td></td>
<td>5.5</td>
<td>3.7</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-Y737</td>
<td>No Provenience</td>
<td>No Catalog Number</td>
<td>OB</td>
<td>DE</td>
<td>15.5</td>
<td></td>
<td>4</td>
<td>3.2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-Y736</td>
<td>No Provenience</td>
<td>No Catalog Number</td>
<td>OB</td>
<td>DC</td>
<td>15.5</td>
<td></td>
<td>5.8</td>
<td>3.5</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-Y735</td>
<td>No Provenience</td>
<td>No Catalog Number</td>
<td>OB</td>
<td>DZ</td>
<td>14.1</td>
<td></td>
<td>5.4</td>
<td>3.4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-Y734</td>
<td>No Provenience</td>
<td>No Catalog Number</td>
<td>OB</td>
<td>DZ</td>
<td>20.1</td>
<td>13</td>
<td>5</td>
<td>2.6</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-Y733</td>
<td>No Provenience</td>
<td>No Catalog Number</td>
<td>OB</td>
<td>DE</td>
<td>18.6</td>
<td></td>
<td>6.5</td>
<td>3.3</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-Y732</td>
<td>No Provenience</td>
<td>No Catalog Number</td>
<td>OB</td>
<td>DE</td>
<td>16.7</td>
<td></td>
<td>8.7</td>
<td>3.6</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-Y731</td>
<td>No Provenience</td>
<td>No Catalog Number</td>
<td>OB</td>
<td>DZ</td>
<td></td>
<td></td>
<td>2.8</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-Y730</td>
<td>No Provenience</td>
<td>No Catalog Number</td>
<td>OB</td>
<td>DE</td>
<td>16.7</td>
<td></td>
<td>4.3</td>
<td>3.5</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-Y729</td>
<td>No Provenience</td>
<td>No Catalog Number</td>
<td>OB</td>
<td>DE</td>
<td>19.1</td>
<td></td>
<td>6.2</td>
<td>3</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-Y728</td>
<td>No Provenience</td>
<td>No Catalog Number</td>
<td>OB</td>
<td>DE</td>
<td>23.3</td>
<td>16.6</td>
<td>5</td>
<td>3.2</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>433-Y727</td>
<td>No Provenience</td>
<td>No Catalog Number</td>
<td>CC</td>
<td>DZ</td>
<td>13</td>
<td></td>
<td>5.3</td>
<td>3.6</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Feature #</td>
<td>mtrl</td>
<td>Point Type</td>
<td>Length</td>
<td>Width</td>
<td>Neck Length</td>
<td>Distal Neck Width</td>
<td>Proximal Neck Width</td>
<td>Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>--------------------</td>
<td>------</td>
<td>------------</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>433-Y726</td>
<td>No Provenience</td>
<td>No Catalog Number</td>
<td>OB</td>
<td>DC</td>
<td>14.8</td>
<td></td>
<td>14.8</td>
<td>14.2</td>
<td>11.2</td>
<td>4</td>
<td>1.7</td>
</tr>
<tr>
<td>433-Y725</td>
<td>No Provenience</td>
<td>No Catalog Number</td>
<td>OB</td>
<td>DZ</td>
<td>14.2</td>
<td></td>
<td>14.2</td>
<td>11.2</td>
<td>4</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>433-Y724</td>
<td>No Provenience</td>
<td>No Catalog Number</td>
<td>OB</td>
<td>DE</td>
<td>23.4</td>
<td>18.2</td>
<td>23.4</td>
<td>5.2</td>
<td>2.5</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Max. Width</td>
<td>Neck Length</td>
<td>Length</td>
<td>Neck Width</td>
<td>Neck Length</td>
<td>Max. Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>283-3006</td>
<td>26“-36” Test Unit, Structure 1</td>
<td>CC</td>
<td>DE</td>
<td>16.7</td>
<td>7.5</td>
<td>2.1</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6887</td>
<td>24“-30” Level of Structure 11</td>
<td>CR</td>
<td>DE</td>
<td>16.9</td>
<td>4</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-2501</td>
<td>24“-30” Level of Structure 12</td>
<td>CC</td>
<td>DE</td>
<td>26.4</td>
<td>17.3</td>
<td>3.4</td>
<td>8.3</td>
<td>3.1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2471</td>
<td>24“-30” Level of Structure 13</td>
<td>OB</td>
<td>DE</td>
<td>17.8</td>
<td>6</td>
<td>3.2</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4374</td>
<td>14“-26” Level of Structure 13</td>
<td>OB</td>
<td>DE</td>
<td>15.7</td>
<td>7</td>
<td>3.9</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4520</td>
<td>14“-26” Level of Structure 13</td>
<td>OB</td>
<td>DE</td>
<td>16.8</td>
<td>6.5</td>
<td>3.1</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5306</td>
<td>14“-26” Level of Structure 13</td>
<td>CC</td>
<td>DE</td>
<td>15.9</td>
<td>7.8</td>
<td>3.8</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4120</td>
<td>27“-53” Level of Structure 14</td>
<td>OB</td>
<td>DE</td>
<td>16.8</td>
<td>6.8</td>
<td>3.8</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2667</td>
<td>24“-30” Level of Structure 16</td>
<td>OB</td>
<td>DE</td>
<td>32.3</td>
<td>15.2</td>
<td>3.4</td>
<td>6.3</td>
<td>3.8</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-6541</td>
<td>Upper Floor of Structure 28</td>
<td>OB</td>
<td>DE</td>
<td>15.7</td>
<td>7</td>
<td>3.9</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3525</td>
<td>30“-36” Level of 18A23</td>
<td>OB</td>
<td>DE</td>
<td>15.4</td>
<td>3.3</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-3374</td>
<td>30“-39” Level of Structure 21</td>
<td>OB</td>
<td>DC</td>
<td>11.5</td>
<td>3.8</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2850</td>
<td>12“-36” Level of Structure 9</td>
<td>CR</td>
<td>DE</td>
<td>16</td>
<td>3.5</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7736</td>
<td>24“-30” Level of Structure 10</td>
<td>CC</td>
<td>DE</td>
<td>33.8</td>
<td>15.5</td>
<td>2.7</td>
<td>8</td>
<td>3.5</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6360</td>
<td>36“-42” Level of Structure 10</td>
<td>OB</td>
<td>DE</td>
<td>16.2</td>
<td>8.2</td>
<td>3.2</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6408</td>
<td>42“-48” Level of Structure 10</td>
<td>OB</td>
<td>CZ</td>
<td>17.6</td>
<td>4</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-8142</td>
<td>54“-60” Level of Structure 10</td>
<td>CR</td>
<td>DE</td>
<td>48.3</td>
<td>14.2</td>
<td>4.3</td>
<td>9</td>
<td>3.4</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-8494</td>
<td>54“-60” Level of Structure 10</td>
<td>OB</td>
<td>CA</td>
<td>31.3</td>
<td>19.6</td>
<td>4.1</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6446</td>
<td>36“-42” Level of Structure 11</td>
<td>CD</td>
<td>DE</td>
<td>12.7</td>
<td>3.4</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table B.5. Analysis data from Summit
<table>
<thead>
<tr>
<th>Accession</th>
<th>Provenience</th>
<th>Material</th>
<th>Projectile Point Type</th>
<th>Length</th>
<th>Max. Width</th>
<th>Neck Length</th>
<th>Proximal Neck Width</th>
<th>Distal Neck Width</th>
<th>Max. Thickness</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>333-6889</td>
<td>42”-48” Level of Structure 11</td>
<td>OB</td>
<td>DC/ DG</td>
<td>14.5</td>
<td>2.1</td>
<td>7.7</td>
<td>6.2</td>
<td>3.1</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>333-6888</td>
<td>42”-48” Level of Structure 11</td>
<td>OB</td>
<td>DZ</td>
<td>17.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4282</td>
<td>Ventilator of Structure 12</td>
<td>OB</td>
<td>DE</td>
<td>18</td>
<td></td>
<td>8.3</td>
<td>3.7</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-3150</td>
<td>Test Trench 0”-66”</td>
<td>CC</td>
<td>CZ</td>
<td>17.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>509-2753</td>
<td>0”-54” Level of Structure 16</td>
<td>CC</td>
<td>DE</td>
<td>15.9</td>
<td></td>
<td>8.2</td>
<td>2.9</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-2661</td>
<td>0”-6” Level of Structure 16</td>
<td>OB</td>
<td>DG</td>
<td>24</td>
<td>17.1</td>
<td>3.4</td>
<td>5</td>
<td>3.2</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>509-2250</td>
<td>12”-18” Level of Structure 16</td>
<td>OB</td>
<td>DE</td>
<td>29.7</td>
<td>16.2</td>
<td>1.9</td>
<td>6.8</td>
<td>3.2</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>509-2301</td>
<td>12”-18” Level of Structure 16</td>
<td>OB</td>
<td>DE</td>
<td>13.3</td>
<td></td>
<td></td>
<td>4.2</td>
<td>3.1</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>509-2247</td>
<td>12”-18” Level of Structure 16</td>
<td>CR</td>
<td>DE</td>
<td>35.2</td>
<td>17.8</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-2820</td>
<td>24”-30” Level of Structure 16</td>
<td>CR</td>
<td>DE</td>
<td>31.3</td>
<td>19.7</td>
<td>3</td>
<td>6.4</td>
<td>5.6</td>
<td>2.7</td>
<td>1.1</td>
</tr>
<tr>
<td>509-2807</td>
<td>36”-42” Level of Structure 16</td>
<td>CC</td>
<td>DE</td>
<td>29.9</td>
<td>14.9</td>
<td>2.4</td>
<td>7.4</td>
<td>6.7</td>
<td>3.3</td>
<td>1.1</td>
</tr>
<tr>
<td>509-2810</td>
<td>36”-42” Level of Structure 16</td>
<td>OB</td>
<td>DE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.6</td>
<td>3.9</td>
</tr>
<tr>
<td>509-2812</td>
<td>36”-42” Level of Structure 16</td>
<td>OB</td>
<td>DE</td>
<td>33.4</td>
<td>18.1</td>
<td>3.3</td>
<td>8.4</td>
<td>7</td>
<td>3.1</td>
<td>1.4</td>
</tr>
<tr>
<td>509-2809</td>
<td>36”-42” Level of Structure 16</td>
<td>CC</td>
<td>DC</td>
<td>30.6</td>
<td>16.1</td>
<td>3.2</td>
<td>8</td>
<td>6.9</td>
<td>3.7</td>
<td>1.3</td>
</tr>
<tr>
<td>509-2204</td>
<td>30”-36” Level of Structure 17</td>
<td>CC</td>
<td>DE</td>
<td>17.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>4.7</td>
</tr>
<tr>
<td>509-2367</td>
<td>24”-30” Level of Structure 18</td>
<td>CC</td>
<td>DE</td>
<td>18.2</td>
<td>1.4</td>
<td></td>
<td>7</td>
<td>3.6</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>509-2309</td>
<td>30”-36” Level of Structure 18</td>
<td>CC</td>
<td>DE</td>
<td>19.8</td>
<td>3.1</td>
<td></td>
<td>10.3</td>
<td>4.1</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>509-2476</td>
<td>30”-36” Level of Structure 18</td>
<td>CR</td>
<td>DE</td>
<td>23</td>
<td>19.2</td>
<td>2</td>
<td>8</td>
<td>3.9</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>509-2593</td>
<td>36”-42” Level of Structure 18</td>
<td>OB</td>
<td>DE</td>
<td>18.6</td>
<td></td>
<td></td>
<td>8.4</td>
<td>2.5</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>509-2024</td>
<td>0”-24” Level of Structure 19</td>
<td>OB</td>
<td>DE</td>
<td>28.5</td>
<td>13.4</td>
<td>3.1</td>
<td>4.7</td>
<td>2.6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>509-2055</td>
<td>0”-24” Level of Structure 19</td>
<td>OB</td>
<td>DE</td>
<td>34.1</td>
<td>17.1</td>
<td>2.4</td>
<td>8.5</td>
<td>7.5</td>
<td>3.6</td>
<td>1.4</td>
</tr>
<tr>
<td>509-3482</td>
<td>0”-19” Level of Structure 30</td>
<td>CC</td>
<td>DE</td>
<td>14.8</td>
<td>5.2</td>
<td>5</td>
<td>4.2</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-3180</td>
<td>30”-36” Level of Structure 21</td>
<td>CD</td>
<td>DE</td>
<td>13.5</td>
<td>3.3</td>
<td>6.6</td>
<td>5.6</td>
<td>3.5</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>509-3527</td>
<td>36”-42” Level of Structure 23</td>
<td>CC</td>
<td>DE</td>
<td>18</td>
<td>2.4</td>
<td>7.1</td>
<td>6.5</td>
<td>3.1</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>509-3465</td>
<td>36”-42” Level of Structure 23</td>
<td>OB</td>
<td>DC</td>
<td>15.8</td>
<td>3.2</td>
<td></td>
<td>7.3</td>
<td>3.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>283-2136</td>
<td>6”-30” Level of Structure 26</td>
<td>CC</td>
<td>DC</td>
<td>28.9</td>
<td>15.8</td>
<td>3.5</td>
<td>5.3</td>
<td>6.3</td>
<td>3.3</td>
<td>1.2</td>
</tr>
<tr>
<td>283-2759</td>
<td>Floor of Structure 25</td>
<td>CR</td>
<td>DC</td>
<td></td>
<td></td>
<td></td>
<td>14.1</td>
<td></td>
<td>6.4</td>
<td>4.6</td>
</tr>
<tr>
<td>283-2663</td>
<td>30”-36” Level of Structure 26</td>
<td>OB</td>
<td>DE</td>
<td>14.3</td>
<td>6.3</td>
<td>7.2</td>
<td>3.4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-6558</td>
<td>66”-90” Level of Structure 27</td>
<td>OB</td>
<td>DC</td>
<td>14.3</td>
<td></td>
<td></td>
<td>4</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-6557</td>
<td>66”-90” Level of Structure 27</td>
<td>CR</td>
<td>DE</td>
<td>18.1</td>
<td></td>
<td></td>
<td>6.6</td>
<td>4.6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>395-6352</td>
<td>66”-90” Level of Structure 27</td>
<td>CC</td>
<td>DZ</td>
<td>14.4</td>
<td></td>
<td></td>
<td>3.3</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-6371</td>
<td>60”-90” Level of Structure 28</td>
<td>OB</td>
<td>DC</td>
<td>15.9</td>
<td></td>
<td>6.4</td>
<td>4.7</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-6335</td>
<td>60”-90” Level of Structure 28</td>
<td>OB</td>
<td>DC</td>
<td>15.8</td>
<td></td>
<td>5.7</td>
<td>3.5</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-6230</td>
<td>60”-90” Level of Structure 28</td>
<td>OB</td>
<td>DE</td>
<td>15.7</td>
<td></td>
<td>7</td>
<td>3.5</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-6312</td>
<td>60”-90” Level of Structure 28</td>
<td>OB</td>
<td>DZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.2</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>395-6455</td>
<td>60”-90” Level of Structure 28</td>
<td>CC</td>
<td>DE</td>
<td>15.5</td>
<td>2.9</td>
<td>6.6</td>
<td>4.3</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Max. Width</td>
<td>Neck Length</td>
<td>Proximal Neck Width</td>
<td>Distal Neck Width</td>
<td>Max. Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>395-6579</td>
<td>60”-90” Level of Structure 28</td>
<td>CC</td>
<td>DE</td>
<td>17.7</td>
<td>8.1</td>
<td>3.6</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-6423</td>
<td>60”-90” Level of Structure 28</td>
<td>OB</td>
<td>DC</td>
<td>17.8</td>
<td>7.1</td>
<td>3.7</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-6335</td>
<td>60”-90” Level of Structure 28</td>
<td>OB</td>
<td>DE</td>
<td>24.2</td>
<td>9.3</td>
<td>3.5</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-6409</td>
<td>60”-90” Level of Structure 28</td>
<td>OB</td>
<td>DZ</td>
<td>18.5</td>
<td>3.2</td>
<td>1.5</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-6408</td>
<td>60”-90” Level of Structure 28</td>
<td>OB</td>
<td>DZ</td>
<td>16.2</td>
<td>3.5</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-192</td>
<td>12”-18” Level of Unit 4L4</td>
<td>CC</td>
<td>DE</td>
<td>20.6</td>
<td>7.3</td>
<td>4.4</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-484</td>
<td>18”-24” Level of Unit 2L4</td>
<td>CC</td>
<td>DE</td>
<td>20.9</td>
<td>7.7</td>
<td>3.5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-483</td>
<td>18”-24” Level of Unit 2L4</td>
<td>OB</td>
<td>DC</td>
<td>29.9</td>
<td>4.5</td>
<td>3.8</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-927</td>
<td>18”-24” Level of Unit 4L2</td>
<td>CC</td>
<td>CA</td>
<td>20.4</td>
<td></td>
<td>4.5</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-329</td>
<td>18”-24” Level of Unit 5L4</td>
<td>OB</td>
<td>DE</td>
<td>22.9</td>
<td>6.1</td>
<td>4.4</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-467</td>
<td>18”-24” Level of Unit 5L3</td>
<td>OB</td>
<td>DE</td>
<td>15.6</td>
<td>7.1</td>
<td>2.7</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-480</td>
<td>24”-30” Level of Unit 5L3</td>
<td>CD</td>
<td>DE</td>
<td>18.3</td>
<td>7.5</td>
<td>3.5</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-479</td>
<td>24”-30” Level of Unit 5L3</td>
<td>CR</td>
<td>DC</td>
<td>13.7</td>
<td>6.1</td>
<td>2.6</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-624</td>
<td>0”-6” Level of Unit A2</td>
<td>CC</td>
<td>DZ</td>
<td>14.3</td>
<td>2.9</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-2064</td>
<td>12”-18” Level of A2</td>
<td>CR</td>
<td>DC</td>
<td>16.3</td>
<td>6.5</td>
<td>3.7</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-2591</td>
<td>12”-18” Level of Unit A3</td>
<td>CC</td>
<td>DC</td>
<td>17.4</td>
<td>7.3</td>
<td>4</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-2664</td>
<td>12”-18” Level of Unit A3</td>
<td>OB</td>
<td>DZ</td>
<td>9.8</td>
<td>4.6</td>
<td>2.9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-604</td>
<td>0”-6” Level of Unit A4</td>
<td>CC</td>
<td>DC</td>
<td>14.2</td>
<td>6.2</td>
<td>3</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-66</td>
<td>0”-6” Level of Unit A5</td>
<td>CR</td>
<td>DE</td>
<td>18.5</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-83</td>
<td>0”-6” Level of Unit A9</td>
<td>OB</td>
<td>DC</td>
<td>16.1</td>
<td>6.4</td>
<td>3.5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-1411</td>
<td>0”-6” Level of Unit B3</td>
<td>OB</td>
<td>DE</td>
<td>18.7</td>
<td>7.7</td>
<td>3.2</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-1234</td>
<td>0”-6” Mound G</td>
<td>OB</td>
<td>DG</td>
<td>20</td>
<td>3.3</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-123</td>
<td>6”-12” Mound G</td>
<td>CC</td>
<td>DE</td>
<td>2.1</td>
<td>6.5</td>
<td>3.3</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-859</td>
<td>6”-12” Mound G</td>
<td>CR</td>
<td>DE</td>
<td>18.3</td>
<td>5.2</td>
<td>3.1</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-446</td>
<td>6”-12” Mound G</td>
<td>CR</td>
<td>DC</td>
<td>29.7</td>
<td>5.4</td>
<td>3.7</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-492</td>
<td>6”-12” Mound G</td>
<td>CR</td>
<td>DC</td>
<td>23.1</td>
<td>6.3</td>
<td>3.1</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-416</td>
<td>12”-18” Mound G</td>
<td>OB</td>
<td>DE</td>
<td>15.8</td>
<td>5.1</td>
<td>2.8</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-754</td>
<td>12”-18” Mound G</td>
<td>CC</td>
<td>DE</td>
<td>14.6</td>
<td>5.4</td>
<td>4.6</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-124</td>
<td>12”-18” Mound G</td>
<td>CC</td>
<td>DE</td>
<td>14.3</td>
<td>7.9</td>
<td>4.3</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-2798</td>
<td>12”-18” Mound G</td>
<td>CR</td>
<td>DE</td>
<td>15</td>
<td>7.4</td>
<td>2.8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-424</td>
<td>12”-18” Mound G</td>
<td>CR</td>
<td>DC</td>
<td>17.8</td>
<td>6.3</td>
<td>3.9</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-461</td>
<td>18”-24” Mound G</td>
<td>OB</td>
<td>DE</td>
<td>19.1</td>
<td>7</td>
<td>0.6</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-2156</td>
<td>18”-24” Mound G</td>
<td>CC</td>
<td>DE</td>
<td>13.5</td>
<td>3.4</td>
<td>2</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-858</td>
<td>18”-24” Mound G</td>
<td>CR</td>
<td>DE</td>
<td>19.2</td>
<td>9.5</td>
<td>3.2</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-656</td>
<td>18”-24” Mound G</td>
<td>CC</td>
<td>DZ</td>
<td>16</td>
<td>3.6</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-1717</td>
<td>18”-24” Mound G</td>
<td>OB</td>
<td>DZ</td>
<td>23.2</td>
<td>2.9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-1780</td>
<td>30”-36” Mound G</td>
<td>CR</td>
<td>DE</td>
<td>17.5</td>
<td>6.9</td>
<td>4.4</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Max. Width</td>
<td>Neck Length</td>
<td>Proximal Neck Width</td>
<td>Distal Neck Width</td>
<td>Max. Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>283-1249</td>
<td>30"-36" Mound G</td>
<td>OB</td>
<td>DC</td>
<td>12.1</td>
<td>2.4</td>
<td>8</td>
<td>3.3</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-373</td>
<td>36"-42" Mound G</td>
<td>OB</td>
<td>DC</td>
<td>16.4</td>
<td>4.3</td>
<td>6.3</td>
<td>6.5</td>
<td>3.4</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>333-1288</td>
<td>12"-18" Level of E-9E</td>
<td>OB</td>
<td>DC</td>
<td>13</td>
<td>6.1</td>
<td>6.8</td>
<td>3.5</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2037</td>
<td>30"-36" Level of E-9E</td>
<td>OB</td>
<td>DC</td>
<td>14.7</td>
<td>5.6</td>
<td>5</td>
<td>3.3</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-685</td>
<td>24"-30" Level of E-9W</td>
<td>CR</td>
<td>DE</td>
<td>18.1</td>
<td>8.9</td>
<td>3.7</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-1356</td>
<td>36"-42" Level of E-9W</td>
<td>OB</td>
<td>DE</td>
<td>15.9</td>
<td>6</td>
<td>5</td>
<td>4.2</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-558</td>
<td>12"-18" Level of F-9E</td>
<td>OB</td>
<td>DE</td>
<td>18.8</td>
<td>7.8</td>
<td>3.8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-1963</td>
<td>24"-30" Level of F-9E</td>
<td>OB</td>
<td>DE</td>
<td>20</td>
<td>16.9</td>
<td>2.2</td>
<td>7.6</td>
<td>3.6</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>333-38</td>
<td>0"-6" Level of G-9E</td>
<td>OB</td>
<td>DE</td>
<td>15.9</td>
<td>8.4</td>
<td>3.2</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-1350</td>
<td>12"-18" Level of H-9E</td>
<td>OB</td>
<td>DE</td>
<td>18.9</td>
<td>8.4</td>
<td>3.2</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-1368</td>
<td>24"-30" Level of G-9E</td>
<td>OB</td>
<td>DE</td>
<td>14.7</td>
<td>3.9</td>
<td>6.3</td>
<td>3.1</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-1150</td>
<td>12"-18" Level of H-9E</td>
<td>OB</td>
<td>DE</td>
<td>18.9</td>
<td>3.4</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-5797</td>
<td>12"-18" Level of H-9S</td>
<td>CC</td>
<td>DE</td>
<td>16.4</td>
<td>7.2</td>
<td>2.9</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2555</td>
<td>12"-18" Level of I-9E</td>
<td>OB</td>
<td>DE</td>
<td>15.9</td>
<td>7.9</td>
<td>3.4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6331</td>
<td>24"-30" Level of I-9E, I-8N</td>
<td>OB</td>
<td>DE</td>
<td>15.8</td>
<td>5.6</td>
<td>3.4</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2344</td>
<td>18"-24" Level of F-4</td>
<td>OB</td>
<td>DE</td>
<td>30.2</td>
<td>15.4</td>
<td>2.2</td>
<td>9</td>
<td>3.7</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>333-4663</td>
<td>24"-30" Level of F-4</td>
<td>OB</td>
<td>DD</td>
<td>14.2</td>
<td>6.8</td>
<td>2.5</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-3000</td>
<td>30"-36" Level of F-4</td>
<td>CC</td>
<td>DE</td>
<td>38</td>
<td>18.1</td>
<td>2.5</td>
<td>7.7</td>
<td>4.1</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>333-4288</td>
<td>36"-42" Level of F-4</td>
<td>OB</td>
<td>DC</td>
<td>16.4</td>
<td>7.5</td>
<td>4</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-4148</td>
<td>42"-48" Level of F-4</td>
<td>CC</td>
<td>DE</td>
<td>13.2</td>
<td>3.4</td>
<td>5.1</td>
<td>2.9</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-4411</td>
<td>42"-48" Level of F-4</td>
<td>OB</td>
<td>DD</td>
<td>28.6</td>
<td>12.6</td>
<td>2.3</td>
<td>8.5</td>
<td>3.8</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>333-4310</td>
<td>48"-54" Level of F-4</td>
<td>OB</td>
<td>DE</td>
<td>16.8</td>
<td>6.4</td>
<td>3.3</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-119</td>
<td>18"-24" Level of F-5</td>
<td>OB</td>
<td>DC</td>
<td>14.9</td>
<td>2.6</td>
<td>9</td>
<td>3.1</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-1984</td>
<td>24"-30" Level of F-5</td>
<td>OB</td>
<td>DE</td>
<td>27.3</td>
<td>16.4</td>
<td></td>
<td>3.4</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-1788</td>
<td>24"-30" Level of F-5</td>
<td>OB</td>
<td>DE</td>
<td>17</td>
<td>8.5</td>
<td>2.6</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7202</td>
<td>24"-30" Level of F-5</td>
<td>OB</td>
<td>DE</td>
<td>15</td>
<td>6.1</td>
<td>2.2</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2819</td>
<td>30"-36" Level of F-5</td>
<td>OB</td>
<td>DC</td>
<td>11.3</td>
<td>6</td>
<td>3.1</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-3819</td>
<td>36"-42" Level of F-5</td>
<td>CR</td>
<td>DE</td>
<td>14.6</td>
<td>4.6</td>
<td>2.9</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-4704</td>
<td>36"-42" Level of F-5</td>
<td>CC</td>
<td>DC</td>
<td>27.9</td>
<td>14.3</td>
<td>4.9</td>
<td>6</td>
<td>6.4</td>
<td>2.9</td>
<td>0.9</td>
</tr>
<tr>
<td>333-3820</td>
<td>36"-42" Level of F-5</td>
<td>OB</td>
<td>DZ</td>
<td>21.7</td>
<td>3.2</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-5419</td>
<td>42"-48" Level of F-5</td>
<td>CR</td>
<td>DE</td>
<td>15.1</td>
<td>7.7</td>
<td>3.8</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-129</td>
<td>0"-12" Level of G-4</td>
<td>OB</td>
<td>DC/ DG</td>
<td>15.8</td>
<td>5.7</td>
<td>1.9</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-808</td>
<td>12"-18" Level of G-4</td>
<td>OB</td>
<td>DE</td>
<td>14.6</td>
<td>3.4</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-807</td>
<td>12"-18" Level of G-4</td>
<td>OB</td>
<td>DE</td>
<td>16.6</td>
<td>5.7</td>
<td>3.6</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-1169</td>
<td>12"-18" Level of G-4</td>
<td>CR</td>
<td>DE</td>
<td>14.3</td>
<td>8</td>
<td>3.3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-1171</td>
<td>12"-18" Level of G-4</td>
<td>OB</td>
<td>DC</td>
<td>14.5</td>
<td>6.2</td>
<td>3.2</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-3199</td>
<td>18"-24" Level of G-4</td>
<td>OB</td>
<td>DE</td>
<td>13.4</td>
<td>7.6</td>
<td>2.6</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Max. Width</td>
<td>Neck Length</td>
<td>Proximal Neck Width</td>
<td>Distal Neck Width</td>
<td>Max. Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>333-2745</td>
<td>18"-24" Level of G4</td>
<td>CD DE</td>
<td>16.4</td>
<td>5.3</td>
<td>3.7</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-3353</td>
<td>18"-24" Level of G4</td>
<td>CC DE</td>
<td>15.1</td>
<td>8.7</td>
<td>3.6</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-3200</td>
<td>18"-24" Level of G4</td>
<td>OB DE</td>
<td>17</td>
<td>7.2</td>
<td>2.9</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2790</td>
<td>24"-30" Level of G4</td>
<td>CC DE</td>
<td>35.5</td>
<td>18.2</td>
<td>2.6</td>
<td>6.9</td>
<td>3.6</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2792</td>
<td>24"-30" Level of G4</td>
<td>OB DE</td>
<td>32.9</td>
<td>19</td>
<td>4.3</td>
<td>6.4</td>
<td>3.9</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-3607</td>
<td>24"-30" Level of G4</td>
<td>OB DE</td>
<td>15</td>
<td>6.2</td>
<td>3.6</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-32886</td>
<td>24"-30" Level of G4</td>
<td>CC DE</td>
<td>18.5</td>
<td>3.6</td>
<td>8.3</td>
<td>2.7</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2793</td>
<td>24"-30" Level of G4</td>
<td>CC DC</td>
<td>12.6</td>
<td>1.7</td>
<td>6.7</td>
<td>3.5</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-4211</td>
<td>30"-36" Level of G4</td>
<td>CR DE</td>
<td>21.2</td>
<td>4.4</td>
<td>8.1</td>
<td>3.6</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7941</td>
<td>42"-54" Level of G4</td>
<td>OB DC</td>
<td>15.5</td>
<td>8.2</td>
<td>3.4</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2136</td>
<td>30"-36" Level of G5</td>
<td>CR DE</td>
<td>31.1</td>
<td>18.7</td>
<td>2.6</td>
<td>7</td>
<td>2.8</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-3522</td>
<td>30"-36" Level of G5</td>
<td>OB DC</td>
<td>16.7</td>
<td>4.1</td>
<td>7.3</td>
<td>3.5</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-5193</td>
<td>42"-48" Level of G5</td>
<td>CR DE</td>
<td>15.4</td>
<td>5</td>
<td>3.7</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-5192</td>
<td>42"-48" Level of G5</td>
<td>CC DZ</td>
<td>14.7</td>
<td>4.1</td>
<td>4.1</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7075</td>
<td>42"-48" Level of G5</td>
<td>OB DZ</td>
<td>15.9</td>
<td>5.9</td>
<td>3.5</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6247</td>
<td>54"-60" Level of G5</td>
<td>CR DE</td>
<td>33.6</td>
<td>16.3</td>
<td>4.2</td>
<td>7.3</td>
<td>3.8</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6241</td>
<td>54"-60" Level of G5</td>
<td>CC DE</td>
<td>18</td>
<td>7.2</td>
<td>4</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6468</td>
<td>60"-66" Level of G5</td>
<td>OB DE</td>
<td>32.1</td>
<td>16</td>
<td>4.8</td>
<td>3.3</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-5933</td>
<td>Surface of F0</td>
<td>CC CA</td>
<td>29.9</td>
<td>5.5</td>
<td>7.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-248</td>
<td>Surface of F0</td>
<td>OB DE</td>
<td>15.3</td>
<td>5.3</td>
<td>3.9</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-1382</td>
<td>0"-6" Level of F0</td>
<td>CR DE</td>
<td>17.9</td>
<td>9.2</td>
<td>3.6</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Max. Width</td>
<td>Neck Length</td>
<td>Proximal Neck Width</td>
<td>Distal Neck Width</td>
<td>Max. Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>--------</td>
</tr>
<tr>
<td>333-1368</td>
<td>0"-6" Level of F0</td>
<td>OB</td>
<td>DE</td>
<td>15.6</td>
<td>7.1</td>
<td>3.5</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-5639</td>
<td>0"-6" Level of F0</td>
<td>CC</td>
<td>DE</td>
<td>16.8</td>
<td>3.7</td>
<td>7.6</td>
<td>3.2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-531</td>
<td>0"-6" Level of F0</td>
<td>CR</td>
<td>DG</td>
<td>17.9</td>
<td>2.7</td>
<td>5.7</td>
<td>6</td>
<td>2.8</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>333-3250</td>
<td>6"-12" Level of F0</td>
<td>CC</td>
<td>DE</td>
<td>17</td>
<td>6.8</td>
<td>6.9</td>
<td>5.6</td>
<td>2.8</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>333-3304</td>
<td>6"-12" Level of F0</td>
<td>CC</td>
<td>DZ</td>
<td>17.4</td>
<td>3</td>
<td>6.9</td>
<td>5.6</td>
<td>2.8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>333-4680</td>
<td>18"-24" Level of F0</td>
<td>CC</td>
<td>DE</td>
<td>21.4</td>
<td>18.1</td>
<td>3.5</td>
<td>6</td>
<td>3.3</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>333-7022</td>
<td>24"-30" Level of F0</td>
<td>OB</td>
<td>DE</td>
<td>18.3</td>
<td>3.3</td>
<td>6</td>
<td>3.3</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-4113</td>
<td>24"-30" Level of F0</td>
<td>CC</td>
<td>DE</td>
<td>31.2</td>
<td>18.6</td>
<td>3.3</td>
<td>6</td>
<td>3.3</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>333-4107</td>
<td>24"-30" Level of F0</td>
<td>OB</td>
<td>DE</td>
<td>38.9</td>
<td>15.2</td>
<td>4.3</td>
<td>7.7</td>
<td>3</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>333-4109</td>
<td>24"-30" Level of F0</td>
<td>CD</td>
<td>DE</td>
<td>26.9</td>
<td>18.6</td>
<td>4.1</td>
<td>5.6</td>
<td>5.4</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>333-4111</td>
<td>24"-30" Level of F0</td>
<td>OB</td>
<td>DG</td>
<td>19</td>
<td>6</td>
<td>3.3</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-5683</td>
<td>24"-30" Level of F0</td>
<td>CC</td>
<td>CA</td>
<td>20.6</td>
<td>4.3</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-4148</td>
<td>24"-30" Level of F0</td>
<td>OB</td>
<td>CA</td>
<td>18.7</td>
<td>3.2</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-5767</td>
<td>30"-36" Level of F0</td>
<td>CR</td>
<td>DE</td>
<td>13.9</td>
<td>3</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7033</td>
<td>30"-36" Level of F0</td>
<td>CC</td>
<td>DC</td>
<td>12.9</td>
<td>2.6</td>
<td>6</td>
<td>4.1</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-4590</td>
<td>30"-36" Level of F0</td>
<td>OB</td>
<td>DG</td>
<td>16.1</td>
<td>2.6</td>
<td>6</td>
<td>3.3</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-5683</td>
<td>36"-42" Level of F0</td>
<td>OB</td>
<td>DE</td>
<td>16.1</td>
<td>6.4</td>
<td>3.3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6189</td>
<td>36"-42" Level of F0</td>
<td>CR</td>
<td>DE</td>
<td>15.6</td>
<td>6</td>
<td>3.1</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7894</td>
<td>42"-48" Level of F0</td>
<td>OB</td>
<td>DZ</td>
<td>30.2</td>
<td>12.6</td>
<td>3.5</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-993</td>
<td>48"-54" Level of F0</td>
<td>CC</td>
<td>DE</td>
<td>17.4</td>
<td>2.8</td>
<td>7.1</td>
<td>2.5</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-695</td>
<td>48"-54" Level of F0</td>
<td>OB</td>
<td>DG</td>
<td>18.6</td>
<td>5.7</td>
<td>1.6</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7943</td>
<td>54"-60" Level of F0</td>
<td>CC</td>
<td>DE</td>
<td>16.1</td>
<td>3.5</td>
<td>8.4</td>
<td>3.6</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-8123</td>
<td>54"-60" Level of F0</td>
<td>CC</td>
<td>DE</td>
<td>19</td>
<td>7.7</td>
<td>3.6</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-9167</td>
<td>66"-72" Level of F0</td>
<td>OB</td>
<td>DE</td>
<td>37.3</td>
<td>16.8</td>
<td>4</td>
<td>8.3</td>
<td>4</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>333-9209</td>
<td>66"-72" Level of F0</td>
<td>CC</td>
<td>DC</td>
<td>12.6</td>
<td>5.7</td>
<td>3.4</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-9125</td>
<td>72"-78" Level of F0</td>
<td>OB</td>
<td>DG</td>
<td>14.5</td>
<td>6.4</td>
<td>2.8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2276</td>
<td>6"-12" Level of F0</td>
<td>OB</td>
<td>DE</td>
<td>16.4</td>
<td>6.1</td>
<td>3.4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2280</td>
<td>6"-12" Level of F0</td>
<td>CC</td>
<td>DE</td>
<td>16.8</td>
<td>3.2</td>
<td>8.3</td>
<td>4.3</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2279</td>
<td>6"-12" Level of F0</td>
<td>CR</td>
<td>DC</td>
<td>16.7</td>
<td>6.6</td>
<td>6.9</td>
<td>3.7</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2281</td>
<td>6"-12" Level of F0</td>
<td>CC</td>
<td>CZ</td>
<td>17.2</td>
<td>4.6</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2278</td>
<td>6"-12" Level of F0</td>
<td>CR</td>
<td>DZ</td>
<td>18.2</td>
<td>4.3</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-3427</td>
<td>12"-18" Level of F1</td>
<td>CC</td>
<td>DE</td>
<td>14.5</td>
<td>7.2</td>
<td>3.3</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2312</td>
<td>12"-18" Level of F1</td>
<td>CC</td>
<td>DE</td>
<td>19.2</td>
<td>6.4</td>
<td>3</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2449</td>
<td>12"-18" Level of F1</td>
<td>CC</td>
<td>DZ</td>
<td>14.8</td>
<td>3.6</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-4719</td>
<td>18"-24" Level of F1</td>
<td>CC</td>
<td>DE</td>
<td>18.5</td>
<td>7.4</td>
<td>4.2</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-5648</td>
<td>18"-24" Level of F1</td>
<td>CC</td>
<td>DE</td>
<td>16.1</td>
<td>6.5</td>
<td>3</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-4494</td>
<td>18"-24" Level of F1</td>
<td>CC</td>
<td>DZ</td>
<td>17.5</td>
<td>4.5</td>
<td>7</td>
<td>4.2</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table B.5. Continued.

<table>
<thead>
<tr>
<th>Accession</th>
<th>Provenience</th>
<th>Material</th>
<th>Projectile Point Type</th>
<th>Length</th>
<th>Max. Width</th>
<th>Neck Length</th>
<th>Proximal Neck Width</th>
<th>Distal Neck Width</th>
<th>Max. Thickness</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>333-4720</td>
<td>18”-24” Level of F1</td>
<td>OB</td>
<td>DZ</td>
<td>13.7</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>333-4863</td>
<td>24”-30” Level of F1</td>
<td>CC</td>
<td>DE</td>
<td>19.5</td>
<td>3.5</td>
<td>6</td>
<td>4.2</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-5406</td>
<td>24”-30” Level of F1</td>
<td>OB</td>
<td>DC</td>
<td>13.8</td>
<td>7.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>333-6668</td>
<td>30”-36” Level of F1</td>
<td>OB</td>
<td>DE</td>
<td>17.2</td>
<td>7.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td>333-6666</td>
<td>30”-36” Level of F1</td>
<td>CC</td>
<td>DC</td>
<td>30.8</td>
<td>16.1</td>
<td>5.7</td>
<td>5.7</td>
<td>2.4</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>333-6042</td>
<td>36”-42” Level of F1</td>
<td>OB</td>
<td>DE</td>
<td>20.2</td>
<td>8.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>333-6483</td>
<td>36”-42” Level of F1</td>
<td>OB</td>
<td>DE</td>
<td>16.5</td>
<td>6.7</td>
<td></td>
<td>3.1</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6482</td>
<td>36”-42” Level of F1</td>
<td>OB</td>
<td>DC</td>
<td>15.3</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>333-6045</td>
<td>36”-42” Level of F1</td>
<td>CC</td>
<td>DC</td>
<td>25.2</td>
<td>8.4</td>
<td></td>
<td></td>
<td>4</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>333-7655</td>
<td>42”-48” Level of F1</td>
<td>CR</td>
<td>DG</td>
<td>18.6</td>
<td>5.1</td>
<td>2.5</td>
<td></td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-8288</td>
<td>48”-54” Level of F1</td>
<td>OB</td>
<td>DC</td>
<td>4.5</td>
<td>4.6</td>
<td>3</td>
<td>3.9</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-8267</td>
<td>48”-54” Level of F1</td>
<td>OB</td>
<td>DE</td>
<td>17.6</td>
<td>8.4</td>
<td></td>
<td></td>
<td>3.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>333-8270</td>
<td>48”-54” Level of F1</td>
<td>OB</td>
<td>DE</td>
<td>21.1</td>
<td>6.8</td>
<td></td>
<td></td>
<td>3.8</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>333-8273</td>
<td>48”-54” Level of F1</td>
<td>OB</td>
<td>DC</td>
<td>16.2</td>
<td>7.2</td>
<td>2.6</td>
<td></td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-8286</td>
<td>48”-54” Level of F1</td>
<td>OB</td>
<td>DE</td>
<td>12.5</td>
<td>5.3</td>
<td></td>
<td></td>
<td>3.7</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>333-8936</td>
<td>48”-54” Level of F1</td>
<td>OB</td>
<td>DE</td>
<td>12.8</td>
<td>4.3</td>
<td></td>
<td></td>
<td>3</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>333-8775</td>
<td>54”-60” Level of F1</td>
<td>CR</td>
<td>DE</td>
<td>16.5</td>
<td>6.2</td>
<td></td>
<td></td>
<td>3.5</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>333-8378</td>
<td>54”-60” Level of F1</td>
<td>CC</td>
<td>DE</td>
<td>16.1</td>
<td>7</td>
<td>4.3</td>
<td></td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-8643</td>
<td>54”-60” Level of F1</td>
<td>CD</td>
<td>DD</td>
<td>12.9</td>
<td>8.5</td>
<td></td>
<td></td>
<td>3.5</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>333-8732</td>
<td>54”-60” Level of F1</td>
<td>OB</td>
<td>DE</td>
<td>29.8</td>
<td>8.2</td>
<td></td>
<td></td>
<td>3.8</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>333-9168</td>
<td>60”-66” Level of F1</td>
<td>OB</td>
<td>DC</td>
<td>16.7</td>
<td>7.3</td>
<td></td>
<td></td>
<td>2.8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>333-4097</td>
<td>0”-6” Level of F2</td>
<td>CC</td>
<td>DE</td>
<td>15.8</td>
<td>6.4</td>
<td></td>
<td></td>
<td>3.1</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>333-4096</td>
<td>0”-6” Level of F2</td>
<td>CC</td>
<td>DC</td>
<td>13.9</td>
<td>5.7</td>
<td></td>
<td></td>
<td>3.3</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>333-5386</td>
<td>18”-24” Level of F2</td>
<td>OB</td>
<td>DE</td>
<td>18.9</td>
<td>7.8</td>
<td></td>
<td></td>
<td>4.3</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>333-5338</td>
<td>18”-24” Level of F2</td>
<td>CC</td>
<td>DE</td>
<td>17.6</td>
<td>3</td>
<td></td>
<td></td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-5389</td>
<td>18”-24” Level of F2</td>
<td>CC</td>
<td>DC</td>
<td>16.1</td>
<td>7.2</td>
<td></td>
<td></td>
<td>3.2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>333-5377</td>
<td>18”-24” Level of F2</td>
<td>OB</td>
<td>CA</td>
<td>28.5</td>
<td>7.8</td>
<td></td>
<td></td>
<td>4.1</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>333-5385</td>
<td>18”-24” Level of F2</td>
<td>OB</td>
<td>DE</td>
<td>14.9</td>
<td>7.3</td>
<td></td>
<td></td>
<td>3.4</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>333-5078</td>
<td>24”-30” Level of F2</td>
<td>CC</td>
<td>DE</td>
<td>20.3</td>
<td>6.3</td>
<td></td>
<td></td>
<td>2.7</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>333-5056</td>
<td>24”-30” Level of F2</td>
<td>CC</td>
<td>DE</td>
<td>16.2</td>
<td>9</td>
<td></td>
<td></td>
<td>3.1</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>333-5079</td>
<td>24”-30” Level of F2</td>
<td>CC</td>
<td>DC</td>
<td>21</td>
<td>7.1</td>
<td></td>
<td></td>
<td>3.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>333-5031</td>
<td>24”-30” Level of F2</td>
<td>OB</td>
<td>DC</td>
<td>17.6</td>
<td>6.8</td>
<td></td>
<td></td>
<td>4.3</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>333-5076</td>
<td>24”-30” Level of F2</td>
<td>CC</td>
<td>DZ</td>
<td>19.2</td>
<td>8.5</td>
<td></td>
<td></td>
<td>4</td>
<td>30.6</td>
<td></td>
</tr>
<tr>
<td>333-6107</td>
<td>30”-36” Level of F2</td>
<td>OB</td>
<td>DE</td>
<td>21</td>
<td>7.9</td>
<td></td>
<td></td>
<td>3</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>333-6101</td>
<td>30”-36” Level of F2</td>
<td>OB</td>
<td>DE</td>
<td>15.6</td>
<td>7.6</td>
<td></td>
<td></td>
<td>3.8</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>333-6099</td>
<td>30”-36” Level of F2</td>
<td>OB</td>
<td>DE</td>
<td>30.8</td>
<td>6.9</td>
<td></td>
<td></td>
<td>2.8</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

122
<table>
<thead>
<tr>
<th>Accession</th>
<th>Provenience</th>
<th>Material</th>
<th>Projectile Point Type</th>
<th>Length</th>
<th>Max. Width</th>
<th>Neck Length</th>
<th>Proximal Neck Width</th>
<th>Distal Neck Width</th>
<th>Max. Thickness</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>333-6106</td>
<td>30"-36" Level of F2</td>
<td>CC</td>
<td>DG</td>
<td>19.5</td>
<td>5.9</td>
<td>2.6</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6110</td>
<td>30"-36" Level of F2</td>
<td>OB</td>
<td>CA</td>
<td>12.9</td>
<td>1.4</td>
<td>8.1</td>
<td>4</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-5876</td>
<td>36"-42" Level of F2</td>
<td>CC</td>
<td>DE</td>
<td>30.2</td>
<td>14.9</td>
<td>3.1</td>
<td>8.9</td>
<td>3</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>333-5825</td>
<td>36"-42" Level of F2</td>
<td>OB</td>
<td>DE</td>
<td>31</td>
<td>14.1</td>
<td>3.1</td>
<td>3.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6716</td>
<td>36"-42" Level of F2</td>
<td>OB</td>
<td>DE</td>
<td>19.5</td>
<td>7.2</td>
<td>3.7</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-5823</td>
<td>36"-42" Level of F2</td>
<td>OB</td>
<td>DE</td>
<td>22.2</td>
<td>16.5</td>
<td>2.9</td>
<td>5.2</td>
<td>3.3</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>333-5824</td>
<td>36"-42" Level of F2</td>
<td>OB</td>
<td>DE</td>
<td>27</td>
<td>16.2</td>
<td>4.3</td>
<td>3</td>
<td>3.6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>333-5826</td>
<td>36"-42" Level of F2</td>
<td>OB</td>
<td>DC</td>
<td>31.5</td>
<td>17.1</td>
<td>3.9</td>
<td>8.5</td>
<td>9.2</td>
<td>3.3</td>
<td>1.4</td>
</tr>
<tr>
<td>333-6715</td>
<td>36"-42" Level of F2</td>
<td>OB</td>
<td>DC</td>
<td>13.8</td>
<td>4.6</td>
<td>3.2</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6700</td>
<td>42"-48" Level of F2</td>
<td>CC</td>
<td>DE</td>
<td>39.1</td>
<td>18.3</td>
<td>4</td>
<td>7.7</td>
<td>3.1</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>333-6644</td>
<td>42"-48" Level of F2</td>
<td>CC</td>
<td>DE</td>
<td>33.3</td>
<td>19.2</td>
<td>3.1</td>
<td>6</td>
<td>3.9</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>333-6642</td>
<td>42"-48" Level of F2</td>
<td>OB</td>
<td>DE</td>
<td>22</td>
<td>13.7</td>
<td>5.7</td>
<td>3.7</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6739</td>
<td>42"-48" Level of F2</td>
<td>CD</td>
<td>DE</td>
<td>16.3</td>
<td>5.9</td>
<td>3.2</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6740</td>
<td>42"-48" Level of F2</td>
<td>CR</td>
<td>DE</td>
<td>11.9</td>
<td>2.6</td>
<td>5.7</td>
<td>3</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6738</td>
<td>42"-48" Level of F2</td>
<td>OB</td>
<td>DC</td>
<td>12.7</td>
<td>5.8</td>
<td>9</td>
<td>3.3</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6737</td>
<td>42"-48" Level of F2</td>
<td>OB</td>
<td>DZ</td>
<td>17.8</td>
<td>3.1</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6313</td>
<td>48"-54" Level of F2</td>
<td>CR</td>
<td>DE</td>
<td>27.1</td>
<td>19.3</td>
<td>2.9</td>
<td>8.1</td>
<td>2.9</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>333-6314</td>
<td>48"-54" Level of F2</td>
<td>CC</td>
<td>DE</td>
<td>16.7</td>
<td>9.3</td>
<td>2.8</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6315</td>
<td>48"-54" Level of F2</td>
<td>OB</td>
<td>DZ</td>
<td>18.2</td>
<td>3.6</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7171</td>
<td>54"-60" Level of F2</td>
<td>OB</td>
<td>DE</td>
<td>17.5</td>
<td>4</td>
<td>7.9</td>
<td>3.7</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6947</td>
<td>54"-60" Level of F2</td>
<td>OB</td>
<td>DE</td>
<td>22.7</td>
<td>16.7</td>
<td>3.1</td>
<td>5.2</td>
<td>3.6</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>333-6947</td>
<td>54"-60" Level of F2</td>
<td>OB</td>
<td>DE</td>
<td>16.5</td>
<td>7</td>
<td>3.3</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7899</td>
<td>54"-60" Level of F2</td>
<td>CC</td>
<td>DC</td>
<td>25.8</td>
<td>14.7</td>
<td>3.9</td>
<td>6.2</td>
<td>6.4</td>
<td>3.8</td>
<td>0.9</td>
</tr>
<tr>
<td>333-7806</td>
<td>54"-60" Level of F2</td>
<td>CC</td>
<td>DC</td>
<td>14.3</td>
<td>6.8</td>
<td>6</td>
<td>3.9</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7710</td>
<td>54"-60" Level of F2</td>
<td>OB</td>
<td>DZ</td>
<td>12.4</td>
<td>3.1</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-8108</td>
<td>66"-72" Level of F2</td>
<td>CC</td>
<td>DE</td>
<td>15.5</td>
<td>1.9</td>
<td>5.9</td>
<td>3.3</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-8686</td>
<td>66"-72" Level of F2</td>
<td>CD</td>
<td>DC</td>
<td>11.1</td>
<td>4.8</td>
<td>2.6</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-8156</td>
<td>66"-72" Level of F2</td>
<td>OB</td>
<td>CA</td>
<td>29.2</td>
<td>5.4</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-8164</td>
<td>66"-72" Level of F2</td>
<td>OB</td>
<td>CZ</td>
<td>17.3</td>
<td>3.4</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7958</td>
<td>72"-84" Level of F2</td>
<td>CR</td>
<td>DE</td>
<td>16.1</td>
<td>3.7</td>
<td>6.4</td>
<td>3.3</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6927</td>
<td>0"-6" Level of F3</td>
<td>CC</td>
<td>DZ</td>
<td>18.4</td>
<td>9.1</td>
<td>2.9</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6794</td>
<td>6"-12" Level of F3</td>
<td>OB</td>
<td>DE</td>
<td>33.6</td>
<td>20.7</td>
<td>3</td>
<td>6.5</td>
<td>2.9</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>333-6803</td>
<td>6"-12" Level of F3</td>
<td>OB</td>
<td>DE</td>
<td>15.7</td>
<td>4.3</td>
<td>6.4</td>
<td>4.4</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6807</td>
<td>6"-12" Level of F3</td>
<td>CD</td>
<td>DG</td>
<td>17.5</td>
<td>1.7</td>
<td>7.3</td>
<td>6.5</td>
<td>2.3</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>333-5866</td>
<td>6"-12" Level of F3</td>
<td>OB</td>
<td>DG</td>
<td>16.5</td>
<td>6.8</td>
<td>2.2</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6797</td>
<td>6"-12" Level of F3</td>
<td>OB</td>
<td>DD</td>
<td>29.7</td>
<td>11.3</td>
<td>2.5</td>
<td>8.6</td>
<td>4.1</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>333-6801</td>
<td>6"-12" Level of F3</td>
<td>OB</td>
<td>DE</td>
<td>15.4</td>
<td>5.3</td>
<td>3.5</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Max. Width</td>
<td>Neck Length</td>
<td>Proximal Neck Width</td>
<td>Distal Neck Width</td>
<td>Max. Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>333-5585</td>
<td>6"-12" Level of F3</td>
<td>OB DE</td>
<td>24.8</td>
<td>14.2</td>
<td>2.6</td>
<td>5.1</td>
<td>3.6</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6202</td>
<td>12"-18" Level of F3</td>
<td>OB DE</td>
<td>19.2</td>
<td>12.6</td>
<td>2.2</td>
<td>7.1</td>
<td>3.9</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6509</td>
<td>12"-18" Level of F3</td>
<td>CC DG</td>
<td>21.4</td>
<td>20</td>
<td>2.2</td>
<td>7.3</td>
<td>3.2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6201</td>
<td>12"-18" Level of F3</td>
<td>OB DE</td>
<td>27.2</td>
<td>15.2</td>
<td>2.2</td>
<td>7.3</td>
<td>3.2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6924</td>
<td>12"-18" Level of F3</td>
<td>OB DZ</td>
<td>15.1</td>
<td>10.2</td>
<td>2.6</td>
<td>7.3</td>
<td>3.2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6939</td>
<td>12"-18" Level of F3</td>
<td>OB DE</td>
<td>27.2</td>
<td>15.2</td>
<td>2.2</td>
<td>7.3</td>
<td>3.2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7063</td>
<td>12"-18" Level of F3</td>
<td>OB DE</td>
<td>27.2</td>
<td>15.2</td>
<td>2.2</td>
<td>7.3</td>
<td>3.2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7309</td>
<td>12"-18" Level of F3</td>
<td>CC DC</td>
<td>13.9</td>
<td>10.2</td>
<td>2.6</td>
<td>7.3</td>
<td>3.2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7340</td>
<td>12"-18" Level of F3</td>
<td>OB DE</td>
<td>18.3</td>
<td>12.6</td>
<td>2.6</td>
<td>7.3</td>
<td>3.2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7621</td>
<td>18"-24" Level of F3</td>
<td>CR DE</td>
<td>26.9</td>
<td>16.9</td>
<td>2.6</td>
<td>5</td>
<td>3.4</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7498</td>
<td>18"-24" Level of F3</td>
<td>OB DC</td>
<td>33.2</td>
<td>15.4</td>
<td>1.3</td>
<td>6.9</td>
<td>3.9</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7760</td>
<td>18"-24" Level of F3</td>
<td>OB DC</td>
<td>15.1</td>
<td>12.6</td>
<td>2.6</td>
<td>5</td>
<td>3.4</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6987</td>
<td>18"-24" Level of F3</td>
<td>CC DG</td>
<td>27.4</td>
<td>16.1</td>
<td>1.6</td>
<td>5</td>
<td>2.8</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7498</td>
<td>18"-24" Level of F3</td>
<td>OB DC</td>
<td>15.1</td>
<td>12.6</td>
<td>2.6</td>
<td>5</td>
<td>3.4</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-8082</td>
<td>30"-36" Level of F3</td>
<td>OB DE</td>
<td>18</td>
<td>12.6</td>
<td>2.6</td>
<td>5</td>
<td>3.4</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-8081</td>
<td>30"-36" Level of F3</td>
<td>OB DZ</td>
<td>24</td>
<td>18.5</td>
<td>2.6</td>
<td>5.5</td>
<td>4.4</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-3168</td>
<td>30"-36" Level of F3</td>
<td>OB DE</td>
<td>25</td>
<td>16</td>
<td>1.7</td>
<td>7.6</td>
<td>4.4</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-3853</td>
<td>30"-36" Level of F3</td>
<td>OB DC</td>
<td>17</td>
<td>7.8</td>
<td>6.6</td>
<td>3.9</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-3855</td>
<td>18"-24" Level of G3</td>
<td>CR DC</td>
<td>32</td>
<td>12.3</td>
<td>3</td>
<td>4.2</td>
<td>3.4</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-3855</td>
<td>18"-24" Level of G3</td>
<td>CC CA</td>
<td>21.4</td>
<td>12.3</td>
<td>3</td>
<td>4.2</td>
<td>3.4</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2203</td>
<td>12"-18" Level of G3</td>
<td>CC DE</td>
<td>19</td>
<td>3</td>
<td>7.9</td>
<td>2.7</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2174</td>
<td>12"-18" Level of G3</td>
<td>CC DE</td>
<td>14.9</td>
<td>12.6</td>
<td>2.6</td>
<td>6.3</td>
<td>2.9</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2207</td>
<td>12"-18" Level of G3</td>
<td>OB DC</td>
<td>13.4</td>
<td>12.6</td>
<td>2.6</td>
<td>5.2</td>
<td>3</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-3022</td>
<td>12"-18" Level of G3</td>
<td>OB DC</td>
<td>15.2</td>
<td>12.6</td>
<td>2.6</td>
<td>5.8</td>
<td>3.3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-3752</td>
<td>18"-24" Level of G3</td>
<td>CC DE</td>
<td>15.9</td>
<td>12.6</td>
<td>2.6</td>
<td>6.5</td>
<td>4.2</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-3853</td>
<td>18"-24" Level of G3</td>
<td>CR DC</td>
<td>32</td>
<td>12.3</td>
<td>3</td>
<td>4.2</td>
<td>3.4</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-3855</td>
<td>18"-24" Level of G3</td>
<td>CR DC</td>
<td>21.7</td>
<td>18.9</td>
<td>2.2</td>
<td>7.3</td>
<td>3.4</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6941</td>
<td>24"-30" Level of G3</td>
<td>CC DE</td>
<td>43.1</td>
<td>16.3</td>
<td>2.3</td>
<td>6.1</td>
<td>4.1</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-4107</td>
<td>24"-30" Level of G3</td>
<td>OB DC</td>
<td>14</td>
<td>12.6</td>
<td>2.6</td>
<td>7</td>
<td>4.3</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2392</td>
<td>6"-12" Level of G0</td>
<td>CC DE</td>
<td>17.3</td>
<td>12.6</td>
<td>2.6</td>
<td>8.3</td>
<td>3.2</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-1906</td>
<td>6"-12" Level of G0</td>
<td>CC DE</td>
<td>15.3</td>
<td>12.6</td>
<td>2.6</td>
<td>8.3</td>
<td>3.2</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-1905</td>
<td>6"-12" Level of G0</td>
<td>CR DC</td>
<td>15.2</td>
<td>12.6</td>
<td>2.6</td>
<td>8.3</td>
<td>3.2</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-1922</td>
<td>6"-12" Level of G0</td>
<td>CR DC</td>
<td>12.2</td>
<td>12.6</td>
<td>2.6</td>
<td>8.3</td>
<td>3.2</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2399</td>
<td>12"-18" Level of G0</td>
<td>CD DE</td>
<td>24.1</td>
<td>4.4</td>
<td>6.1</td>
<td>4.2</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2162</td>
<td>12"-18" Level of G0</td>
<td>CR DE</td>
<td>25.7</td>
<td>21.7</td>
<td>2.5</td>
<td>6.7</td>
<td>3.7</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2623</td>
<td>12"-18" Level of G0</td>
<td>CC DE</td>
<td>20.9</td>
<td>2.6</td>
<td>7.4</td>
<td>3.2</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table B.5. Continued.

<table>
<thead>
<tr>
<th>Accession</th>
<th>Provenience</th>
<th>Material</th>
<th>Projectile Point Type</th>
<th>Length</th>
<th>Max. Width</th>
<th>Neck Length</th>
<th>Proximal Neck Width</th>
<th>Distal Neck Width</th>
<th>Max. Thickness</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>333-2415</td>
<td>12”-18” Level of G0</td>
<td>CD</td>
<td>DC</td>
<td>18.8</td>
<td>2.3</td>
<td>6.3</td>
<td>5.3</td>
<td>3.7</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>333-3090</td>
<td>18”-24” Level of G0</td>
<td>CC</td>
<td>DE</td>
<td>18.2</td>
<td>3.5</td>
<td>6.7</td>
<td>3.2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-3567</td>
<td>24”-30” Level of G0</td>
<td>OB</td>
<td>DZ</td>
<td>25.6</td>
<td>15.4</td>
<td></td>
<td></td>
<td>3</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>333-3864</td>
<td>30”-36” Level of G0</td>
<td>CC</td>
<td>DE</td>
<td>18.4</td>
<td>7.3</td>
<td>2.8</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-5934</td>
<td>30”-36” Level of G0</td>
<td>CC</td>
<td>DE</td>
<td>19.6</td>
<td>3.9</td>
<td>6.3</td>
<td>3.7</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-3863</td>
<td>30”-36” Level of G0</td>
<td>CC</td>
<td>DZ</td>
<td>8.7</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6010</td>
<td>36”-42” Level of G0</td>
<td>CC</td>
<td>DE</td>
<td>16.1</td>
<td>3.7</td>
<td>7.8</td>
<td>2.6</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6012</td>
<td>36”-42” Level of G0</td>
<td>CC</td>
<td>DZ</td>
<td>16.6</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6868</td>
<td>48”-54” Level of G0</td>
<td>OB</td>
<td>DE</td>
<td>16.3</td>
<td>7.6</td>
<td>3</td>
<td></td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7431</td>
<td>60”-66” Level of G0</td>
<td>OB</td>
<td>CA</td>
<td>14.4</td>
<td>3.9</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-1185</td>
<td>0”-6” Level of G1</td>
<td>OB</td>
<td>CA</td>
<td>21.6</td>
<td>6.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2850</td>
<td>6”-12” Level of G1</td>
<td>CC</td>
<td>DE</td>
<td>16.1</td>
<td>5.9</td>
<td>4.1</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-1317</td>
<td>6”-12” Level of G1</td>
<td>CC</td>
<td>DC</td>
<td>14.8</td>
<td>2.6</td>
<td>6.7</td>
<td>3.6</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2152</td>
<td>6”-12” Level of G1</td>
<td>OB</td>
<td>DG</td>
<td>19.3</td>
<td>2.6</td>
<td>4.7</td>
<td>3.4</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2293</td>
<td>6”-12” Level of G1</td>
<td>OB</td>
<td>DG</td>
<td>14.8</td>
<td>1.8</td>
<td>4.8</td>
<td>1.7</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-1235</td>
<td>12”-18” Level of G1</td>
<td>CR</td>
<td>CA</td>
<td>24.3</td>
<td>24.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6514</td>
<td>18”-24” Level of G1</td>
<td>OB</td>
<td>DE</td>
<td>15.2</td>
<td>5.9</td>
<td></td>
<td></td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-5330</td>
<td>30”-36” Level of G1</td>
<td>CR</td>
<td>DE</td>
<td>18.8</td>
<td>7.3</td>
<td></td>
<td></td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-4827</td>
<td>36”-42” Level of G1</td>
<td>CC</td>
<td>DC</td>
<td>14.6</td>
<td>2.6</td>
<td></td>
<td></td>
<td>6.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6529</td>
<td>36”-42” Level of G1</td>
<td>CR</td>
<td>DG</td>
<td>14.3</td>
<td>1.7</td>
<td></td>
<td></td>
<td>7.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6126</td>
<td>48”-54” Level of G1</td>
<td>OB</td>
<td>DE</td>
<td>27.2</td>
<td>16.7</td>
<td>3.5</td>
<td></td>
<td>7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6132</td>
<td>48”-54” Level of G1</td>
<td>CC</td>
<td>DC</td>
<td>17.3</td>
<td>5.7</td>
<td></td>
<td></td>
<td>6.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6138</td>
<td>48”-54” Level of G1</td>
<td>CD</td>
<td>DG</td>
<td>12.4</td>
<td>7.1</td>
<td></td>
<td></td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7234</td>
<td>48”-54” Level of G1</td>
<td>OB</td>
<td>DC</td>
<td>14.6</td>
<td>6.6</td>
<td></td>
<td></td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6756</td>
<td>54”-60” Level of G1</td>
<td>CD</td>
<td>DE</td>
<td>17.7</td>
<td>4</td>
<td></td>
<td></td>
<td>9.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7748</td>
<td>60”-66” Level of G1</td>
<td>OB</td>
<td>DE</td>
<td>16.6</td>
<td>7.5</td>
<td></td>
<td></td>
<td>4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7845</td>
<td>60”-66” Level of G1</td>
<td>OB</td>
<td>DE</td>
<td>14.7</td>
<td>5.4</td>
<td></td>
<td></td>
<td>3.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-5552</td>
<td>6”-12” Level of G2</td>
<td>CC</td>
<td>DC</td>
<td>12.9</td>
<td>3.2</td>
<td></td>
<td></td>
<td>6.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2870</td>
<td>18”-24” Level of G2</td>
<td>OB</td>
<td>DC</td>
<td>14.6</td>
<td>8.6</td>
<td></td>
<td></td>
<td>7.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2292</td>
<td>24”-30” Level of G2</td>
<td>CR</td>
<td>DC</td>
<td>14.1</td>
<td>7</td>
<td></td>
<td></td>
<td>5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-2293</td>
<td>24”-30” Level of G2</td>
<td>CC</td>
<td>DE</td>
<td>18.4</td>
<td>9.7</td>
<td></td>
<td></td>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-5678</td>
<td>24”-30” Level of G0</td>
<td>OB</td>
<td>DE</td>
<td>20.2</td>
<td>6.9</td>
<td></td>
<td></td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-478</td>
<td>0”-6” Level of 21A22</td>
<td>OB</td>
<td>DC</td>
<td>27.4</td>
<td>12.5</td>
<td></td>
<td></td>
<td>4.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

125
Table B.5. Continued.

<table>
<thead>
<tr>
<th>Accession</th>
<th>Provenience</th>
<th>Material</th>
<th>Projectile Point Type</th>
<th>Length</th>
<th>Max. Width</th>
<th>Neck Length</th>
<th>Proximal Neck Width</th>
<th>Distal Neck Width</th>
<th>Max. Thickness</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>395-232</td>
<td>0"-6" Level of 21A22</td>
<td>OB DE</td>
<td></td>
<td>14.3</td>
<td>2.4</td>
<td>5.6</td>
<td>3.4</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-200</td>
<td>0"-6" Level of 21A22</td>
<td>CR DE</td>
<td></td>
<td>19.1</td>
<td>3.3</td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-478</td>
<td>0"-6" Level of 21A22</td>
<td>CC DZ</td>
<td></td>
<td>15.4</td>
<td>3.7</td>
<td>5.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1459</td>
<td>6"-12" Level of 21A22</td>
<td>CC DZ</td>
<td></td>
<td>16.3</td>
<td>4.5</td>
<td>5.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1307</td>
<td>6"-12" Level of 21A22</td>
<td>CC DZ</td>
<td></td>
<td>16.4</td>
<td>4.8</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1784</td>
<td>12"-18" Level of 21A22</td>
<td>OB DZ</td>
<td></td>
<td>14.9</td>
<td>3.6</td>
<td>5.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1428</td>
<td>12"-18" Level of 21A22</td>
<td>OB DC</td>
<td></td>
<td>12.4</td>
<td>4.3</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1197</td>
<td>12"-18" Level of 21A22</td>
<td>OB DC</td>
<td></td>
<td>19.4</td>
<td>3.6</td>
<td>10.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2161</td>
<td>18"-24" Level of 21A22</td>
<td>CR DE</td>
<td></td>
<td>17.8</td>
<td>4.2</td>
<td>8.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2095</td>
<td>18"-24" Level of 21A22</td>
<td>CC CM</td>
<td></td>
<td>19.9</td>
<td>4.3</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3514</td>
<td>30"-36" Level of 21A22</td>
<td>OB DE</td>
<td></td>
<td>28.8</td>
<td>18.4</td>
<td>6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3513</td>
<td>30"-36" Level of 21A22</td>
<td>OB DE</td>
<td></td>
<td>19.9</td>
<td>4.3</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3307</td>
<td>30"-36" Level of 21A22</td>
<td>OB DE</td>
<td></td>
<td>18.3</td>
<td>4.2</td>
<td>8.3</td>
<td></td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>395-3736</td>
<td>30"-36" Level of 21A22</td>
<td>OB DE</td>
<td></td>
<td>19.9</td>
<td>4.3</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>395-3512</td>
<td>30"-36" Level of 21A22</td>
<td>CC DC</td>
<td></td>
<td>22.6</td>
<td>14.3</td>
<td>6.7</td>
<td></td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>395-3737</td>
<td>30"-36" Level of 21A22</td>
<td>OB DZ</td>
<td></td>
<td>7.7</td>
<td>2.9</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4120</td>
<td>36"-42" Level of 21A22</td>
<td>OB DC</td>
<td></td>
<td>14.1</td>
<td>2.9</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td>1.6</td>
</tr>
<tr>
<td>395-4111</td>
<td>36"-42" Level of 21A22</td>
<td>CR DE</td>
<td></td>
<td>25.7</td>
<td>17.1</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>395-4120</td>
<td>36"-42" Level of 21A22</td>
<td>OB DE</td>
<td></td>
<td>17.8</td>
<td>5.9</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>395-3658</td>
<td>42"-48" Level of 21A22</td>
<td>OB DC</td>
<td></td>
<td>13.9</td>
<td>7.7</td>
<td>6.5</td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>395-3653</td>
<td>42"-48" Level of 21A22</td>
<td>CC DC</td>
<td></td>
<td>26.2</td>
<td>11.5</td>
<td>4.9</td>
<td></td>
<td></td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>395-3652</td>
<td>42"-48" Level of 21A22</td>
<td>CC DE</td>
<td></td>
<td>16.8</td>
<td>7.8</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>395-3651</td>
<td>42"-48" Level of 21A22</td>
<td>OB DE</td>
<td></td>
<td>28.2</td>
<td>17.1</td>
<td>7.6</td>
<td></td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>395-3659</td>
<td>42"-48" Level of 21A22</td>
<td>OB DZ</td>
<td></td>
<td>13.2</td>
<td>2.6</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>395-5463</td>
<td>54"-60" Level of 21A22</td>
<td>OB DD</td>
<td></td>
<td>35.8</td>
<td>14.6</td>
<td>8.9</td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>395-5464</td>
<td>54"-60" Level of 21A22</td>
<td>CC DE</td>
<td></td>
<td>19.1</td>
<td>4.1</td>
<td>7.7</td>
<td></td>
<td></td>
<td></td>
<td>1.4</td>
</tr>
<tr>
<td>395-5464</td>
<td>54"-60" Level of 21A22</td>
<td>OB DD</td>
<td></td>
<td>22.6</td>
<td>14.6</td>
<td>6.5</td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>395-3019</td>
<td>66"-70" Level of 21A22</td>
<td>OB DC</td>
<td></td>
<td>13.3</td>
<td>4.9</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>395-387</td>
<td>6"-12" Level of 21A23</td>
<td>CC DC</td>
<td></td>
<td>15.1</td>
<td>7.5</td>
<td>4.4</td>
<td></td>
<td></td>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>395-374</td>
<td>6"-12" Level of 21A23</td>
<td>CC DE</td>
<td></td>
<td>28.5</td>
<td>17.6</td>
<td>6.3</td>
<td></td>
<td></td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>395-387</td>
<td>6"-12" Level of 21A23</td>
<td>OB DC</td>
<td></td>
<td>12.4</td>
<td>5.2</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>395-374</td>
<td>6"-12" Level of 21A23</td>
<td>OB DC</td>
<td></td>
<td>26.1</td>
<td>5.6</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>395-771</td>
<td>12"-18" Level of 21A23</td>
<td>OB DE</td>
<td></td>
<td>19.4</td>
<td>12.8</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Max. Width</td>
<td>Neck Length</td>
<td>Distal Neck Width</td>
<td>Max. Thickness</td>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>------------------</td>
<td>---------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>395-1610</td>
<td>12"-18" Level of 21A23</td>
<td>OB</td>
<td>DC</td>
<td>16.2</td>
<td>6.8</td>
<td>3.4</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-769</td>
<td>12"-18" Level of 21A23</td>
<td>CC</td>
<td>DC</td>
<td>17.2</td>
<td>5.2</td>
<td>7.3</td>
<td>6</td>
<td>4.1</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>395-2109</td>
<td>12"-18" Level of 21A23</td>
<td>OB</td>
<td>DZ</td>
<td>14.9</td>
<td>7</td>
<td>2.7</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1640</td>
<td>12"-18" Level of 21A23</td>
<td>CR</td>
<td>DZ</td>
<td>15.3</td>
<td>3.4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1077</td>
<td>12"-18" Level of 21A23</td>
<td>CR</td>
<td>DZ</td>
<td>22.5</td>
<td>14.2</td>
<td>3.4</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1648</td>
<td>18"-24" Level of 21A23</td>
<td>OB</td>
<td>DC</td>
<td>12.6</td>
<td>5.2</td>
<td>3.3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1443</td>
<td>18"-24" Level of 21A23</td>
<td>OB</td>
<td>DE</td>
<td>33</td>
<td>17.9</td>
<td>4.9</td>
<td>6.7</td>
<td>3.4</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>395-1648</td>
<td>18"-24" Level of 21A23</td>
<td>CR</td>
<td>DE</td>
<td>17.8</td>
<td>7.5</td>
<td>3.3</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1648</td>
<td>18"-24" Level of 21A23</td>
<td>OB</td>
<td>DE</td>
<td>14.7</td>
<td>6.2</td>
<td>3.6</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2279</td>
<td>24"-30" Level of 21A23</td>
<td>OB</td>
<td>DC</td>
<td>18.5</td>
<td>4.8</td>
<td>6.5</td>
<td>3.3</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2279</td>
<td>24"-30" Level of 21A23</td>
<td>OB</td>
<td>DE</td>
<td>19.8</td>
<td>2.5</td>
<td>7</td>
<td>3.9</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2382</td>
<td>24"-30" Level of 21A23</td>
<td>OB</td>
<td>DE</td>
<td>18</td>
<td>7.9</td>
<td>3.5</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2277</td>
<td>24"-30" Level of 21A23</td>
<td>CC</td>
<td>DZ</td>
<td>19.5</td>
<td>11.1</td>
<td>2.5</td>
<td>5.2</td>
<td>3.1</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>395-2349</td>
<td>30"-36" Level of 21A23</td>
<td>OB</td>
<td>DE</td>
<td>18.5</td>
<td>4.7</td>
<td>7.1</td>
<td>6.5</td>
<td>3.3</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>395-2798</td>
<td>30"-36" Level of 21A23</td>
<td>CC</td>
<td>DE</td>
<td>19</td>
<td>8</td>
<td>3.6</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2795</td>
<td>30"-36" Level of 21A23</td>
<td>CC</td>
<td>DE</td>
<td>25.8</td>
<td>14.9</td>
<td>2.9</td>
<td>5.6</td>
<td>4.7</td>
<td>3.8</td>
<td>1.1</td>
</tr>
<tr>
<td>395-2349</td>
<td>30"-36" Level of 21A23</td>
<td>CD</td>
<td>DE</td>
<td>18.4</td>
<td>4.2</td>
<td>9.2</td>
<td>4</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2796</td>
<td>30"-36" Level of 21A23</td>
<td>CC</td>
<td>DE</td>
<td>16.2</td>
<td>2.7</td>
<td>7.3</td>
<td>5.8</td>
<td>3.5</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>395-2797</td>
<td>30"-36" Level of 21A23</td>
<td>OB</td>
<td>DC</td>
<td>24.8</td>
<td>16.3</td>
<td>4.9</td>
<td>7</td>
<td>7.9</td>
<td>3.7</td>
<td>1.1</td>
</tr>
<tr>
<td>395-2794</td>
<td>30"-36" Level of 21A23</td>
<td>CC</td>
<td>DZ</td>
<td>12.5</td>
<td>9.5</td>
<td>3.2</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2799</td>
<td>36"-42" Level of 21A23</td>
<td>CC</td>
<td>DE</td>
<td>23</td>
<td>18.9</td>
<td>4.3</td>
<td>7.8</td>
<td>7.1</td>
<td>3.3</td>
<td>1</td>
</tr>
<tr>
<td>395-2887</td>
<td>36"-42" Level of 21A23</td>
<td>OB</td>
<td>DZ</td>
<td>26.6</td>
<td>18</td>
<td>4.3</td>
<td>7.8</td>
<td>7.1</td>
<td>3.3</td>
<td>1</td>
</tr>
<tr>
<td>395-2979</td>
<td>36"-42" Level of 21A23</td>
<td>CC</td>
<td>DE</td>
<td>18.9</td>
<td>7.6</td>
<td>3.5</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2978</td>
<td>36"-42" Level of 21A23</td>
<td>OB</td>
<td>DE</td>
<td>29.6</td>
<td>17.5</td>
<td>4</td>
<td>6.9</td>
<td>3.5</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>395-4234</td>
<td>42"-48" Level of 21A23</td>
<td>OB</td>
<td>DE</td>
<td>18.8</td>
<td>7.1</td>
<td>2.3</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4234</td>
<td>42"-48" Level of 21A23</td>
<td>OB</td>
<td>DZ</td>
<td>13</td>
<td>7.7</td>
<td>3.1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4684</td>
<td>48"-54" Level of 21A23</td>
<td>OB</td>
<td>DC</td>
<td>13</td>
<td>2.1</td>
<td>5.4</td>
<td>6.8</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4684</td>
<td>48"-54" Level of 21A23</td>
<td>CR</td>
<td>DC</td>
<td>13.5</td>
<td>3.1</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4685</td>
<td>48"-54" Level of 21A23</td>
<td>OB</td>
<td>DZ</td>
<td>13.9</td>
<td>3.3</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4514</td>
<td>48"-54" Level of 21A23</td>
<td>OB</td>
<td>DC</td>
<td>14.2</td>
<td>7.4</td>
<td>2.7</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4513</td>
<td>48"-54" Level of 21A23</td>
<td>OB</td>
<td>DE</td>
<td>26.6</td>
<td>15.7</td>
<td>3.9</td>
<td>6.6</td>
<td>3</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>395-4681</td>
<td>48"-54" Level of 21A23</td>
<td>OB</td>
<td>DE</td>
<td>29.1</td>
<td>18</td>
<td>3.1</td>
<td>6.6</td>
<td>6.1</td>
<td>3.4</td>
<td>0.9</td>
</tr>
<tr>
<td>395-4513</td>
<td>48"-54" Level of 21A23</td>
<td>OB</td>
<td>DE</td>
<td>25.2</td>
<td>18.5</td>
<td>4.2</td>
<td>8.8</td>
<td>3.2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>395-4513</td>
<td>48"-54" Level of 21A23</td>
<td>OB</td>
<td>DE</td>
<td>26.6</td>
<td>16.8</td>
<td>6.5</td>
<td>3.1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4685</td>
<td>48"-54" Level of 21A23</td>
<td>CC</td>
<td>DZ</td>
<td>12.6</td>
<td>3.7</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4721</td>
<td>54"-60" Level of 21A23</td>
<td>OB</td>
<td>DE</td>
<td>29</td>
<td>17.2</td>
<td>3.7</td>
<td>7</td>
<td>3.2</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Max. Width</td>
<td>Neck Length</td>
<td>Proximal Neck Width</td>
<td>Distal Neck Width</td>
<td>Max. Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>------------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>395-6159</td>
<td>66"-72" Level of 21A23</td>
<td>CC DE</td>
<td>28</td>
<td>16</td>
<td>3.7</td>
<td>5.2</td>
<td>4.3</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-6158</td>
<td>66"-72" Level of 21A23</td>
<td>CC DE</td>
<td>19.3</td>
<td></td>
<td></td>
<td>10</td>
<td>3.5</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5845</td>
<td>66"-72" Level of 21A23</td>
<td>CR DE</td>
<td>31.8</td>
<td>16.7</td>
<td>3.1</td>
<td>7.4</td>
<td>5.9</td>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-6152</td>
<td>66"-72" Level of 21A23</td>
<td>OB DE</td>
<td>16.2</td>
<td>7.8</td>
<td>4.6</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-13</td>
<td>0"-6" Level of 20A22</td>
<td>OB DC</td>
<td>13.2</td>
<td>4.8</td>
<td>3.4</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1341</td>
<td>0"-6" Level of 20A22</td>
<td>CR DC</td>
<td>11.8</td>
<td>5.5</td>
<td>2.9</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-799</td>
<td>0"-6" Level of 20A22</td>
<td>CC DE</td>
<td>15.5</td>
<td>6.8</td>
<td>4</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-313</td>
<td>0"-6" Level of 20A22</td>
<td>CC DC</td>
<td>28.4</td>
<td>14.8</td>
<td>3.8</td>
<td>7.4</td>
<td>3.9</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-14</td>
<td>0"-6" Level of 20A22</td>
<td>OB DE</td>
<td>17.2</td>
<td>22.3</td>
<td>3.4</td>
<td>7.8</td>
<td>3.2</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1716</td>
<td>6"-12" Level of 20A22</td>
<td>OB DC</td>
<td>15.2</td>
<td>6.3</td>
<td>3.9</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1766</td>
<td>6"-12" Level of 20A22</td>
<td>CR DC</td>
<td>17</td>
<td>3.7</td>
<td>5.9</td>
<td>4.6</td>
<td>3.4</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1502</td>
<td>6"-12" Level of 20A22</td>
<td>OB DZ</td>
<td>10.9</td>
<td>15.4</td>
<td>3.6</td>
<td>7.3</td>
<td>5.9</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1717</td>
<td>6"-12" Level of 20A22</td>
<td>OB DE</td>
<td>29.2</td>
<td>11.4</td>
<td></td>
<td>2.1</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1502</td>
<td>6"-12" Level of 20A22</td>
<td>CD DE</td>
<td>17.5</td>
<td>4.7</td>
<td>7.8</td>
<td>3.6</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1505</td>
<td>6"-12" Level of 20A22</td>
<td>OB DZ</td>
<td>13.5</td>
<td>4</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1969</td>
<td>12"-18" Level of 20A22</td>
<td>OB DE</td>
<td>30.4</td>
<td>15.1</td>
<td>4.5</td>
<td>6.7</td>
<td>3.2</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1968</td>
<td>12"-18" Level of 20A22</td>
<td>OB CA</td>
<td>19</td>
<td>20.5</td>
<td></td>
<td>4.6</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1970</td>
<td>12"-18" Level of 20A22</td>
<td>OB DZ</td>
<td>13.4</td>
<td></td>
<td></td>
<td>3.1</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2164</td>
<td>18"-24" Level of 20A22</td>
<td>CR DZ</td>
<td>27.3</td>
<td>12.5</td>
<td></td>
<td>3.1</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2470</td>
<td>18"-24" Level of 20A22</td>
<td>CR DE</td>
<td>12.6</td>
<td></td>
<td></td>
<td>2.5</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2855</td>
<td>24"-30" Level of 20A22</td>
<td>CC DZ</td>
<td>15</td>
<td>2.4</td>
<td>6.3</td>
<td>4.5</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2942</td>
<td>24"-30" Level of 20A22</td>
<td>CC DZ</td>
<td>14.9</td>
<td></td>
<td></td>
<td>2.9</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3102</td>
<td>24"-30" Level of 20A22</td>
<td>OB DZ</td>
<td>20</td>
<td>9.6</td>
<td></td>
<td>2.2</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4341</td>
<td>24"-30" Level of 20A22</td>
<td>OB DE</td>
<td>32.4</td>
<td>17.3</td>
<td>4</td>
<td>5.5</td>
<td>4.1</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2855</td>
<td>24"-30" Level of 20A22</td>
<td>CC DE</td>
<td>16.1</td>
<td></td>
<td></td>
<td>6.3</td>
<td>3.2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2941</td>
<td>24"-30" Level of 20A22</td>
<td>CC DE</td>
<td>18.6</td>
<td>3.4</td>
<td>8.2</td>
<td>3</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2947</td>
<td>24"-30" Level of 20A22</td>
<td>OB DE</td>
<td>16.8</td>
<td></td>
<td></td>
<td>8</td>
<td>3.2</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3102</td>
<td>24"-30" Level of 20A22</td>
<td>OB DE</td>
<td>26.5</td>
<td>4.2</td>
<td>7.4</td>
<td>2.6</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3015</td>
<td>24"-30" Level of 20A22</td>
<td>CC DE</td>
<td>15.2</td>
<td>4.6</td>
<td>9.5</td>
<td>9</td>
<td>2.3</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2851</td>
<td>24"-30" Level of 20A22</td>
<td>CC DE</td>
<td>22.6</td>
<td>3.4</td>
<td>2.7</td>
<td>4</td>
<td>2.5</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2855</td>
<td>24"-30" Level of 20A22</td>
<td>QC CA</td>
<td>25.1</td>
<td></td>
<td></td>
<td>4.5</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3019</td>
<td>24"-30" Level of 20A22</td>
<td>OB DD</td>
<td>30.5</td>
<td>14.9</td>
<td>2.3</td>
<td>8.3</td>
<td>3.2</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3102</td>
<td>24"-30" Level of 20A22</td>
<td>CR DZ</td>
<td>16.1</td>
<td></td>
<td></td>
<td>4.6</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3370</td>
<td>30"-36" Level of 20A22</td>
<td>OB DE</td>
<td>23.1</td>
<td>15.4</td>
<td>3.6</td>
<td>6.4</td>
<td>5</td>
<td>3.3</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>395-3371</td>
<td>30"-36" Level of 20A22</td>
<td>OB CZ</td>
<td>13.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Max. Width</td>
<td>Neck Length</td>
<td>Proximal Neck Width</td>
<td>Distal Neck Width</td>
<td>Max. Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>------------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>395-3069</td>
<td>30”-36” Level of 20A22</td>
<td>CR</td>
<td>DZ</td>
<td>15.4</td>
<td>3.4</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4349</td>
<td>36”-42” Level of 20A22</td>
<td>CR</td>
<td>DE</td>
<td>31.1</td>
<td>17.1</td>
<td>3.5</td>
<td>6.7</td>
<td>2.4</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>395-4343</td>
<td>36”-42” Level of 20A22</td>
<td>OB</td>
<td>CA</td>
<td>32.8</td>
<td>23.6</td>
<td>4.4</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4341</td>
<td>36”-42” Level of 20A22</td>
<td>OB</td>
<td>DE</td>
<td>17</td>
<td>6.8</td>
<td>3.6</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3849</td>
<td>36”-42” Level of 20A22</td>
<td>CC</td>
<td>DE</td>
<td>14.8</td>
<td>4.2</td>
<td>5.8</td>
<td>3.2</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3827</td>
<td>36”-42” Level of 20A22</td>
<td>CC</td>
<td>DE</td>
<td>19.9</td>
<td>10.5</td>
<td>9.5</td>
<td>3.2</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4346</td>
<td>36”-42” Level of 20A22</td>
<td>CC</td>
<td>DE</td>
<td>17</td>
<td>6.8</td>
<td>3.6</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4344</td>
<td>36”-42” Level of 20A22</td>
<td>OB</td>
<td>DE</td>
<td>16.1</td>
<td>3</td>
<td>5.8</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4937</td>
<td>42”-48” Level of 20A22</td>
<td>OB</td>
<td>DE</td>
<td>19.9</td>
<td>9</td>
<td>3.4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4734</td>
<td>42”-48” Level of 20A22</td>
<td>OB</td>
<td>DC</td>
<td>29</td>
<td>13.1</td>
<td>3.6</td>
<td>5.6</td>
<td>3.3</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>395-4597</td>
<td>42”-48” Level of 20A22</td>
<td>OB</td>
<td>DC/ DG</td>
<td>19.5</td>
<td>13.3</td>
<td>3.5</td>
<td>6.1</td>
<td>3.1</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>395-4931</td>
<td>42”-48” Level of 20A22</td>
<td>CC</td>
<td>DE</td>
<td>17.5</td>
<td>1.8</td>
<td>6.3</td>
<td>3.6</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5170</td>
<td>42”-48” Level of 20A22</td>
<td>OB</td>
<td>DE</td>
<td>18.4</td>
<td>6.6</td>
<td>4.6</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5171</td>
<td>42”-48” Level of 20A22</td>
<td>CD</td>
<td>DE</td>
<td>21.6</td>
<td>16.3</td>
<td>4.1</td>
<td>7.2</td>
<td>3.1</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>395-4534</td>
<td>42”-48” Level of 20A22</td>
<td>CC</td>
<td>DE</td>
<td>19.4</td>
<td>16.4</td>
<td>2.2</td>
<td>5.4</td>
<td>3.7</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>395-4597</td>
<td>42”-48” Level of 20A22</td>
<td>OB</td>
<td>DE</td>
<td>17.5</td>
<td>3.8</td>
<td>6.8</td>
<td>3.6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4597</td>
<td>42”-48” Level of 20A22</td>
<td>OB</td>
<td>DE</td>
<td>24</td>
<td>14.9</td>
<td>3.7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5529</td>
<td>48”-54” Level of 20A22</td>
<td>CC</td>
<td>DC</td>
<td>14.3</td>
<td>6.6</td>
<td>3.1</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5091</td>
<td>48”-54” Level of 20A22</td>
<td>OB</td>
<td>DC</td>
<td>16.1</td>
<td>6.9</td>
<td>3.3</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5402</td>
<td>48”-54” Level of 20A22</td>
<td>CC</td>
<td>DC</td>
<td>15.7</td>
<td>3.9</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5441</td>
<td>48”-54” Level of 20A22</td>
<td>OB</td>
<td>DZ</td>
<td>14.4</td>
<td>3.1</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5442</td>
<td>48”-54” Level of 20A22</td>
<td>OB</td>
<td>DC</td>
<td>15.8</td>
<td>4</td>
<td>3.5</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-6345</td>
<td>60”-66” Level of 20A22</td>
<td>OB</td>
<td>DE</td>
<td>22.3</td>
<td>3.4</td>
<td>4.9</td>
<td>3.9</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-6345</td>
<td>60”-66” Level of 20A22</td>
<td>OB</td>
<td>DE</td>
<td>27.2</td>
<td>16.4</td>
<td>3.9</td>
<td>8</td>
<td>3.5</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>395-1691</td>
<td>6”-12” Level of 20A23</td>
<td>CC</td>
<td>DC</td>
<td>14.7</td>
<td>3.6</td>
<td>7.2</td>
<td>5.8</td>
<td>2.9</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>395-1109</td>
<td>6”-12” Level of 20A23</td>
<td>CC</td>
<td>DE</td>
<td>34.5</td>
<td>18.5</td>
<td>4.3</td>
<td>6.1</td>
<td>4.4</td>
<td>3.5</td>
<td>1.6</td>
</tr>
<tr>
<td>395-823</td>
<td>6”-12” Level of 20A23</td>
<td>CR</td>
<td>DE</td>
<td>16</td>
<td>2.5</td>
<td>8.9</td>
<td>3.7</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1691</td>
<td>6”-12” Level of 20A23</td>
<td>CC</td>
<td>DG</td>
<td>16</td>
<td>3.6</td>
<td>5.5</td>
<td>6.4</td>
<td>3.4</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>395-1691</td>
<td>6”-12” Level of 20A23</td>
<td>CR</td>
<td>DE</td>
<td>16.6</td>
<td>4.2</td>
<td>7.5</td>
<td>3</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-726</td>
<td>6”-12” Level of 20A23</td>
<td>CC</td>
<td>DE</td>
<td>14.7</td>
<td>5.5</td>
<td>2.3</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2066</td>
<td>12”-18” Level of 20A23</td>
<td>OB</td>
<td>DZ</td>
<td>20.8</td>
<td>13.5</td>
<td>4.4</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2567</td>
<td>18”-24” Level of 20A23</td>
<td>CR</td>
<td>DC</td>
<td>16</td>
<td>6.5</td>
<td>4</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2439</td>
<td>18”-24” Level of 20A23</td>
<td>CC</td>
<td>DE</td>
<td>19.9</td>
<td>3.5</td>
<td>9.6</td>
<td>9</td>
<td>3.2</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Max. Width</td>
<td>Neck Length</td>
<td>Proximal Neck Width</td>
<td>Distal Neck Width</td>
<td>Max. Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>395-2566</td>
<td>18"-24" Level of 20A23</td>
<td>OB</td>
<td>CZ</td>
<td>10.3</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>395-3150</td>
<td>24"-30" Level of 20A23</td>
<td>OB</td>
<td>DC</td>
<td>26.2</td>
<td>14.8</td>
<td>3.7</td>
<td></td>
<td>6.1</td>
<td>3.1</td>
<td>0.7</td>
</tr>
<tr>
<td>395-2719</td>
<td>24"-30" Level of 20A23</td>
<td>OB</td>
<td>DC</td>
<td>12.6</td>
<td>5.3</td>
<td>3.8</td>
<td></td>
<td>1.6</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>395-3321</td>
<td>24"-30" Level of 20A23</td>
<td>CR</td>
<td>DE</td>
<td>16.6</td>
<td>7.4</td>
<td>3.9</td>
<td></td>
<td>1.1</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>395-3385</td>
<td>24"-30" Level of 20A23</td>
<td>OB</td>
<td>DZ</td>
<td>14.7</td>
<td>2.9</td>
<td>0.8</td>
<td></td>
<td></td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>395-3582</td>
<td>30"-36" Level of 20A23</td>
<td>CR</td>
<td>DC</td>
<td>14.8</td>
<td>5.3</td>
<td>2.4</td>
<td></td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3647</td>
<td>30"-36" Level of 20A23</td>
<td>OB</td>
<td>DZ</td>
<td>12.7</td>
<td>2.7</td>
<td>0.7</td>
<td></td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4032</td>
<td>30"-36" Level of 20A23</td>
<td>OB</td>
<td>DE</td>
<td>16.4</td>
<td>4.4</td>
<td>7.2</td>
<td></td>
<td>3.1</td>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>395-4492</td>
<td>30"-36" Level of 20A23</td>
<td>OB</td>
<td>DG</td>
<td>30</td>
<td>6</td>
<td>3.4</td>
<td></td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4909</td>
<td>36"-42" Level of 20A23</td>
<td>OB</td>
<td>DE</td>
<td>29.9</td>
<td>18.6</td>
<td>3.3</td>
<td></td>
<td>8.4</td>
<td>4.5</td>
<td>1.8</td>
</tr>
<tr>
<td>395-5038</td>
<td>36"-42" Level of 20A23</td>
<td>OB</td>
<td>DE</td>
<td>19.5</td>
<td>4.6</td>
<td>6.9</td>
<td></td>
<td>5.6</td>
<td>3.9</td>
<td>1.5</td>
</tr>
<tr>
<td>395-5121</td>
<td>36"-42" Level of 20A23</td>
<td>CR</td>
<td>CZ</td>
<td>37.7</td>
<td>4.6</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4589</td>
<td>42"-48" Level of 20A23</td>
<td>OB</td>
<td>DE</td>
<td>16.6</td>
<td>4.2</td>
<td>4.1</td>
<td></td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4977</td>
<td>48"-54" Level of 20A23</td>
<td>OB</td>
<td>DE</td>
<td>18.7</td>
<td>7.5</td>
<td>3.4</td>
<td></td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5580</td>
<td>54"-60" Level of 20A23</td>
<td>OB</td>
<td>DC</td>
<td>16.8</td>
<td>6.9</td>
<td>3.4</td>
<td></td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5038</td>
<td>54"-60" Level of 20A23</td>
<td>OB</td>
<td>DC</td>
<td>13.8</td>
<td>5.5</td>
<td>3.2</td>
<td></td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5521</td>
<td>54"-60" Level of 20A23</td>
<td>CC</td>
<td>DE</td>
<td>17.5</td>
<td>8.2</td>
<td>3.4</td>
<td></td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-51</td>
<td>0"-6" Level of 19A22</td>
<td>OB</td>
<td>DE</td>
<td>19.6</td>
<td>6.9</td>
<td>3</td>
<td></td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5871</td>
<td>6"-12" Level of 19A22</td>
<td>OB</td>
<td>DE</td>
<td>30</td>
<td>16.5</td>
<td>4.8</td>
<td></td>
<td>6.1</td>
<td>4.4</td>
<td>1.6</td>
</tr>
<tr>
<td>395-5458</td>
<td>6"-12" Level of 19A22</td>
<td>OB</td>
<td>DE</td>
<td>29.5</td>
<td>16.2</td>
<td>4.1</td>
<td></td>
<td>6.4</td>
<td>2.9</td>
<td>1.1</td>
</tr>
<tr>
<td>395-1318</td>
<td>12"-18" Level of 19A22</td>
<td>OB</td>
<td>DZ</td>
<td>16.3</td>
<td>4</td>
<td>4.1</td>
<td></td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1295</td>
<td>12"-18" Level of 19A22</td>
<td>OB</td>
<td>DZ</td>
<td>33.1</td>
<td>14.9</td>
<td>3.8</td>
<td></td>
<td>6.2</td>
<td>5.7</td>
<td>3</td>
</tr>
<tr>
<td>395-1230</td>
<td>12"-18" Level of 19A22</td>
<td>OB</td>
<td>DC</td>
<td>12.6</td>
<td>6.7</td>
<td>4.1</td>
<td></td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1294</td>
<td>12"-18" Level of 19A22</td>
<td>OB</td>
<td>DE</td>
<td>19.9</td>
<td>8.5</td>
<td>2.9</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2035</td>
<td>18"-24" Level of 19A22</td>
<td>OB</td>
<td>DE</td>
<td>23.9</td>
<td>16.1</td>
<td>3.5</td>
<td></td>
<td>6.5</td>
<td>3.7</td>
<td>0.7</td>
</tr>
<tr>
<td>395-2032</td>
<td>18"-24" Level of 19A22</td>
<td>OB</td>
<td>DZ</td>
<td>27.7</td>
<td>5.9</td>
<td>6.6</td>
<td></td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2034</td>
<td>18"-24" Level of 19A22</td>
<td>OB</td>
<td>DG</td>
<td>15.7</td>
<td>2.6</td>
<td>4</td>
<td></td>
<td>3.4</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>395-2856</td>
<td>0"-12" Level of 4A21</td>
<td>CC</td>
<td>DC</td>
<td>15.6</td>
<td>5.7</td>
<td>3.9</td>
<td></td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1554</td>
<td>6"-12" Level of 5A20</td>
<td>CC</td>
<td>DE</td>
<td>17.6</td>
<td>8</td>
<td>3.7</td>
<td></td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2805</td>
<td>0"-8" Level of 5A22</td>
<td>CC</td>
<td>DE</td>
<td>17.6</td>
<td>5.9</td>
<td>3.6</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1103</td>
<td>6"-12" Level of 6A20</td>
<td>OB</td>
<td>DE</td>
<td>29.1</td>
<td>17.3</td>
<td>4.5</td>
<td></td>
<td>7.4</td>
<td>3.1</td>
<td>1.2</td>
</tr>
<tr>
<td>395-1490</td>
<td>6"-12" Level of 6A20</td>
<td>OB</td>
<td>DE</td>
<td>15.4</td>
<td>4</td>
<td>6.7</td>
<td></td>
<td>3.5</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>395-1490</td>
<td>6"-12" Level of 6A20</td>
<td>OB</td>
<td>DZ</td>
<td>11.6</td>
<td>3.2</td>
<td>0.7</td>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-592</td>
<td>6"-12" Level of 7A20</td>
<td>OB</td>
<td>DZ</td>
<td>14.8</td>
<td>3.1</td>
<td>1.2</td>
<td></td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-600</td>
<td>0"-6" Level of 7A21</td>
<td>OB</td>
<td>DE</td>
<td>17.5</td>
<td>6.7</td>
<td>3.1</td>
<td></td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Max. Width</td>
<td>Neck Length</td>
<td>Proximal Neck Width</td>
<td>Distal Neck Width</td>
<td>Max. Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>395-902</td>
<td>6”-12” Level of 7A21</td>
<td>CR DE</td>
<td>29.1</td>
<td>15.8</td>
<td>3.2</td>
<td>6.3</td>
<td>4.6</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-539</td>
<td>6”-12” Level of 7A21</td>
<td>OB DE</td>
<td>15.2</td>
<td>4.8</td>
<td>6.1</td>
<td>4.4</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-539</td>
<td>6”-12” Level of 7A21</td>
<td>OB DZ</td>
<td>16.3</td>
<td>2.6</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2190</td>
<td>12”-18” Level of 7A21</td>
<td>CC DE</td>
<td>17.1</td>
<td>4.4</td>
<td>6.6</td>
<td>4.6</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2631</td>
<td>24”-30” Level of 19A22</td>
<td>OB DC</td>
<td>15.6</td>
<td>6.8</td>
<td>2.8</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3531</td>
<td>30”-36” Level of 19A22</td>
<td>OB DE</td>
<td>19.7</td>
<td>9.5</td>
<td>3.3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3241</td>
<td>30”-36” Level of 19A22</td>
<td>OB DE</td>
<td>19.1</td>
<td>8.9</td>
<td>4.0</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3295</td>
<td>30”-36” Level of 19A22</td>
<td>OB DZ</td>
<td>18</td>
<td>2.9</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4048</td>
<td>36”-42” Level of 19A22</td>
<td>OB DE</td>
<td>18</td>
<td>7.4</td>
<td>3.8</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4637</td>
<td>36”-42” Level of 19A22</td>
<td>CR DE</td>
<td>30.4</td>
<td>19.8</td>
<td>4.5</td>
<td>8.4</td>
<td>6.9</td>
<td>4</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>395-4048</td>
<td>36”-42” Level of 19A22</td>
<td>OB DE</td>
<td>17.4</td>
<td>6.9</td>
<td>3.5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4025</td>
<td>42”-48” Level of 19A22</td>
<td>OB DC</td>
<td>14.3</td>
<td>6.5</td>
<td>3.5</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4387</td>
<td>42”-48” Level of 19A22</td>
<td>OB DC</td>
<td>15.7</td>
<td>6.3</td>
<td>3.9</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3809</td>
<td>42”-48” Level of 19A22</td>
<td>CR DC</td>
<td>17</td>
<td>5.9</td>
<td>5.3</td>
<td>4</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4393</td>
<td>42”-48” Level of 19A22</td>
<td>CD DE</td>
<td>19.3</td>
<td>4.8</td>
<td>9.9</td>
<td>3.5</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4025</td>
<td>42”-48” Level of 19A22</td>
<td>CC DE</td>
<td>33.7</td>
<td>12.8</td>
<td>4.5</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4390</td>
<td>42”-48” Level of 19A22</td>
<td>OB DE</td>
<td>16.5</td>
<td>7.1</td>
<td>3.7</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4025</td>
<td>42”-48” Level of 19A22</td>
<td>OB DD</td>
<td>12.8</td>
<td>3.1</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4024</td>
<td>42”-48” Level of 19A22</td>
<td>CC DE</td>
<td>23.8</td>
<td>15.7</td>
<td>2.8</td>
<td>5.8</td>
<td>3.6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4023</td>
<td>42”-48” Level of 19A22</td>
<td>OB DE</td>
<td>24.7</td>
<td>17</td>
<td>2.7</td>
<td>5.3</td>
<td>3.3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4385</td>
<td>42”-48” Level of 19A22</td>
<td>OB DZ</td>
<td>17.2</td>
<td>3.7</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4180</td>
<td>48”-54” Level of 19A22</td>
<td>OB DE</td>
<td>18.4</td>
<td>7.4</td>
<td>3.5</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4636</td>
<td>48”-54” Level of 19A22</td>
<td>OB DE</td>
<td>16.1</td>
<td>5.3</td>
<td>1.9</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4797</td>
<td>54”-60” Level of 19A22</td>
<td>OB DE</td>
<td>15.6</td>
<td>8</td>
<td>3.6</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5336</td>
<td>54”-60” Level of 19A22</td>
<td>OB DE</td>
<td>19.9</td>
<td>3.6</td>
<td>8.4</td>
<td>6.7</td>
<td>3.3</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5234</td>
<td>60”-66” Level of 19A22</td>
<td>CC DE</td>
<td>17.9</td>
<td>9.1</td>
<td>4.2</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5568</td>
<td>60”-66” Level of 19A22</td>
<td>CC DE</td>
<td>17.9</td>
<td>17.6</td>
<td>3.3</td>
<td>7.4</td>
<td>5.9</td>
<td>3</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>395-5721</td>
<td>66”-72” Level of 19A22</td>
<td>OB DC</td>
<td>13.3</td>
<td>5</td>
<td>3.5</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5721</td>
<td>66”-72” Level of 19A22</td>
<td>OB DZ</td>
<td>17.7</td>
<td>6.2</td>
<td>3.1</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-6118</td>
<td>66”-72” Level of 19A22</td>
<td>OB DE</td>
<td>30.5</td>
<td>15.2</td>
<td>8.4</td>
<td>3.3</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5721</td>
<td>66”-72” Level of 19A22</td>
<td>OB DE</td>
<td>16.2</td>
<td>6.7</td>
<td>3.6</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-6118</td>
<td>66”-72” Level of 19A22</td>
<td>CC DE</td>
<td>18.5</td>
<td>9.5</td>
<td>3.8</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5721</td>
<td>66”-72” Level of 19A22</td>
<td>OB DE</td>
<td>14.9</td>
<td>5.7</td>
<td>3.1</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-104</td>
<td>0”-6” Level of 18A22</td>
<td>OB DC</td>
<td>14.3</td>
<td>3.7</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-562</td>
<td>0”-6” Level of 18A22</td>
<td>OB DE</td>
<td>14.2</td>
<td>5.4</td>
<td>2.8</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Max. Width</td>
<td>Neck Length</td>
<td>Proximal Neck Width</td>
<td>Distal Neck Width</td>
<td>Max. Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>395-252</td>
<td>0”-6” Level of 18A22</td>
<td>CR</td>
<td>DE</td>
<td>30.8</td>
<td>16.4</td>
<td>5.9</td>
<td>9.1</td>
<td>4</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>395-319</td>
<td>0”-6” Level of 18A22</td>
<td>CC</td>
<td>DE</td>
<td>21.8</td>
<td>16.8</td>
<td>3.8</td>
<td>6.7</td>
<td>3.3</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>395-102</td>
<td>0”-6” Level of 18A22</td>
<td>CR</td>
<td>DG</td>
<td>17.6</td>
<td>4.9</td>
<td>6.1</td>
<td>5.6</td>
<td>3.3</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>395-105</td>
<td>0”-6” Level of 18A22</td>
<td>OB</td>
<td>DE</td>
<td>18</td>
<td>4.9</td>
<td>6.1</td>
<td>5.6</td>
<td>3.3</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>395-1280</td>
<td>0”-6” Level of 18A22</td>
<td>CR</td>
<td>DC</td>
<td>16.9</td>
<td></td>
<td></td>
<td>6.9</td>
<td>3.3</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>395-318</td>
<td>0”-6” Level of 18A22</td>
<td>OB</td>
<td>DZ</td>
<td>14</td>
<td></td>
<td></td>
<td>6.4</td>
<td>3</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>395-1518</td>
<td>6”-12” Level of 18A22</td>
<td>CR</td>
<td>DZ</td>
<td>12.8</td>
<td></td>
<td></td>
<td>3.3</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1523</td>
<td>6”-12” Level of 18A22</td>
<td>CR</td>
<td>DE</td>
<td>29.6</td>
<td>16</td>
<td>2.2</td>
<td>8.8</td>
<td>3.4</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>395-1389</td>
<td>6”-12” Level of 18A22</td>
<td>OB</td>
<td>DE</td>
<td>17.6</td>
<td></td>
<td></td>
<td>5.8</td>
<td>3</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>395-1389</td>
<td>6”-12” Level of 18A22</td>
<td>OB</td>
<td>DE</td>
<td>19.8</td>
<td></td>
<td></td>
<td>11.1</td>
<td>3.9</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>395-1388</td>
<td>6”-12” Level of 18A22</td>
<td>OB</td>
<td>DE</td>
<td>29.1</td>
<td>16.3</td>
<td>3.4</td>
<td>6.6</td>
<td>3.3</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>395-1523</td>
<td>6”-12” Level of 18A22</td>
<td>OB</td>
<td>DZ</td>
<td>11.8</td>
<td></td>
<td></td>
<td>3.1</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1883</td>
<td>6”-12” Level of 18A22</td>
<td>CC</td>
<td>DZ</td>
<td>17.1</td>
<td>3.9</td>
<td></td>
<td>8</td>
<td>2.8</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>395-1984</td>
<td>12”-18” Level of 18A22</td>
<td>OB</td>
<td>DC</td>
<td>24.1</td>
<td>12.7</td>
<td>4.3</td>
<td>3.8</td>
<td>3.2</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>395-2692</td>
<td>18”-24” Level of 18A22</td>
<td>OB</td>
<td>DC</td>
<td>16.8</td>
<td>4.5</td>
<td>8.1</td>
<td>7</td>
<td>2.7</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>395-2683</td>
<td>18”-24” Level of 18A22</td>
<td>OB</td>
<td>DE</td>
<td>15</td>
<td>3.1</td>
<td></td>
<td>7.8</td>
<td>2.8</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>395-2692</td>
<td>18”-24” Level of 18A22</td>
<td>CR</td>
<td>DE</td>
<td>13</td>
<td>3.4</td>
<td></td>
<td>6.9</td>
<td>3.7</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>395-2692</td>
<td>18”-24” Level of 18A22</td>
<td>OB</td>
<td>CA</td>
<td></td>
<td></td>
<td></td>
<td>21.1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2690</td>
<td>18”-24” Level of 18A22</td>
<td>OB</td>
<td>DZ</td>
<td>16.6</td>
<td></td>
<td></td>
<td>4.6</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3029</td>
<td>24”-30” Level of 18A22</td>
<td>CD</td>
<td>DE</td>
<td>16.2</td>
<td>3.8</td>
<td></td>
<td>6.3</td>
<td>4.1</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>395-4367</td>
<td>36”-42” Level of 18A22</td>
<td>CC</td>
<td>DE</td>
<td>25</td>
<td>17.5</td>
<td>3.3</td>
<td>6.4</td>
<td>5.8</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>395-4728</td>
<td>42”-48” Level of 18A22</td>
<td>OB</td>
<td>DE</td>
<td>33.5</td>
<td>18.5</td>
<td>4.1</td>
<td>6.7</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>395-5097</td>
<td>48”-54” Level of 18A22</td>
<td>OB</td>
<td>DE</td>
<td>16.5</td>
<td></td>
<td></td>
<td>10</td>
<td>3.8</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>395-5098</td>
<td>48”-54” Level of 18A22</td>
<td>CR</td>
<td>DE</td>
<td>20.1</td>
<td></td>
<td></td>
<td>7.5</td>
<td>3.5</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>395-5412</td>
<td>54”-60” Level of 18A22</td>
<td>CR</td>
<td>DC</td>
<td>39.5</td>
<td>13.3</td>
<td>3.9</td>
<td>7.4</td>
<td>6.6</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>395-5412</td>
<td>54”-60” Level of 18A22</td>
<td>CC</td>
<td>DE</td>
<td>17.9</td>
<td>4.4</td>
<td></td>
<td>6.3</td>
<td>4.9</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>395-5491</td>
<td>54”-60” Level of 18A22</td>
<td>CC</td>
<td>DG</td>
<td>20.3</td>
<td>12</td>
<td></td>
<td>4.6</td>
<td>7.3</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>395-5973</td>
<td>60”-66” Level of 18A22</td>
<td>OB</td>
<td>DE</td>
<td>15.2</td>
<td>2.9</td>
<td></td>
<td>6.3</td>
<td>3.9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>395-1100</td>
<td>0”-6” Level of 17A23</td>
<td>CC</td>
<td>DC</td>
<td>29.3</td>
<td>15.1</td>
<td>4.6</td>
<td>5.2</td>
<td>4.9</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>395-653</td>
<td>0”-6” Level of 17A23</td>
<td>CC</td>
<td>DC</td>
<td>15</td>
<td></td>
<td></td>
<td>7.3</td>
<td>3.8</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>395-883</td>
<td>0”-6” Level of 17A23</td>
<td>CC</td>
<td>DE</td>
<td>23.4</td>
<td>18</td>
<td>3.2</td>
<td>7.7</td>
<td>7</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>395-1100</td>
<td>0”-6” Level of 17A23</td>
<td>CC</td>
<td>DC</td>
<td>16.9</td>
<td>4.6</td>
<td>6.8</td>
<td>5.8</td>
<td>3.6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>395-1249</td>
<td>6”-12” Level of 17A23</td>
<td>OB</td>
<td>DE</td>
<td>34.6</td>
<td>14.7</td>
<td>4.7</td>
<td>6.7</td>
<td>2.9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>395-1392</td>
<td>6”-12” Level of 17A23</td>
<td>OB</td>
<td>DZ</td>
<td>15.4</td>
<td></td>
<td></td>
<td>5.4</td>
<td>2.7</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>395-2364</td>
<td>12”-18” Level of 17A23</td>
<td>OB</td>
<td>DC</td>
<td>13.9</td>
<td>4.8</td>
<td>5.2</td>
<td>5.8</td>
<td>3.9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>395-2018</td>
<td>12”-18” Level of 17A23</td>
<td>OB</td>
<td>DE</td>
<td>30.2</td>
<td>13.9</td>
<td>2.8</td>
<td>5.1</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>395-2364</td>
<td>12”-18” Level of 17A23</td>
<td>OB</td>
<td>DZ</td>
<td>13.8</td>
<td></td>
<td></td>
<td>3.1</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Max. Width</td>
<td>Neck Length</td>
<td>Proximal Neck Width</td>
<td>Distal Neck Width</td>
<td>Max. Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>395-2149</td>
<td>18”-24” Level of 17A23</td>
<td>CC DE</td>
<td></td>
<td>18.1</td>
<td>4.1</td>
<td>11.1</td>
<td>3.7</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3222</td>
<td>24”-30” Level of 17A23</td>
<td>OB DC</td>
<td></td>
<td>16.1</td>
<td>8.3</td>
<td>7.3</td>
<td>3.1</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3300</td>
<td>24”-30” Level of 17A23</td>
<td>CC DC</td>
<td></td>
<td>25.5</td>
<td>3</td>
<td>6.7</td>
<td>11.5</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3343</td>
<td>24”-30” Level of 17A23</td>
<td>CC DZ</td>
<td></td>
<td>14.2</td>
<td>3.4</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3618</td>
<td>30”-36” Level of 17A23</td>
<td>CC DE</td>
<td></td>
<td>15.8</td>
<td>4.5</td>
<td>6.2</td>
<td>3.6</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3618</td>
<td>30”-36” Level of 17A23</td>
<td>OB DE</td>
<td></td>
<td>15.5</td>
<td>6</td>
<td>3.2</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3618</td>
<td>30”-36” Level of 17A23</td>
<td>OB DZ</td>
<td></td>
<td>14.1</td>
<td>5.1</td>
<td>7.7</td>
<td>3.3</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4262</td>
<td>36”-42” Level of 17A23</td>
<td>CC CA</td>
<td></td>
<td>31.2</td>
<td>19.7</td>
<td></td>
<td>3.1</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3899</td>
<td>36”-42” Level of 17A23</td>
<td>OB DZ</td>
<td></td>
<td>19.2</td>
<td>5.1</td>
<td>7.7</td>
<td>3.3</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5111</td>
<td>48”-54” Level of 17A23</td>
<td>OB DE</td>
<td></td>
<td>16.5</td>
<td>8.2</td>
<td>2.8</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5387</td>
<td>48”-54” Level of 17A23</td>
<td>OB DZ</td>
<td></td>
<td>19.2</td>
<td>5.1</td>
<td>7.7</td>
<td>3.3</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5952</td>
<td>60”-66” Level of 17A23</td>
<td>CC DE</td>
<td></td>
<td>24.7</td>
<td>16.8</td>
<td>7.5</td>
<td>6.5</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-178</td>
<td>0”-6” Level of 17A22</td>
<td>CC DE</td>
<td></td>
<td>18</td>
<td>6.1</td>
<td>3</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-611</td>
<td>0”-6” Level of 17A22</td>
<td>CR DC</td>
<td></td>
<td>13.8</td>
<td>4.1</td>
<td>5.6</td>
<td>3.8</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-179</td>
<td>0”-6” Level of 17A22</td>
<td>CR DC</td>
<td></td>
<td>14.1</td>
<td>6.1</td>
<td>3.3</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-481</td>
<td>0”-6” Level of 17A22</td>
<td>CC DE</td>
<td></td>
<td>15.6</td>
<td>8.8</td>
<td>3.5</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-611</td>
<td>0”-6” Level of 17A22</td>
<td>CD DZ</td>
<td></td>
<td>17</td>
<td>3.5</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-481</td>
<td>0”-6” Level of 17A22</td>
<td>CR DZ</td>
<td></td>
<td>23.4</td>
<td>5.6</td>
<td>4.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-481</td>
<td>0”-6” Level of 17A22</td>
<td>CC DE</td>
<td></td>
<td>19.3</td>
<td>4.4</td>
<td>7.5</td>
<td>4</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5390</td>
<td>0”-6” Level of 17A22</td>
<td>OB DZ</td>
<td></td>
<td>14</td>
<td>3.1</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1532</td>
<td>6”-12” Level of 17A22</td>
<td>OB DE</td>
<td></td>
<td>16.9</td>
<td>6.9</td>
<td>3</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1532</td>
<td>6”-12” Level of 17A22</td>
<td>OB DZ</td>
<td></td>
<td>13.2</td>
<td>3.6</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1993</td>
<td>12”-18” Level of 17A22</td>
<td>CC DC</td>
<td></td>
<td>39.3</td>
<td>3.5</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1992</td>
<td>12”-18” Level of 17A22</td>
<td>CR DC</td>
<td></td>
<td>15</td>
<td>4.8</td>
<td>7.2</td>
<td>4.1</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1993</td>
<td>12”-18” Level of 17A22</td>
<td>OB DC</td>
<td></td>
<td>14</td>
<td>5.1</td>
<td>3.1</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1993</td>
<td>12”-18” Level of 17A22</td>
<td>OB DE</td>
<td></td>
<td>13.8</td>
<td>3.9</td>
<td>7.4</td>
<td>3.5</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1994</td>
<td>12”-18” Level of 17A22</td>
<td>OB DE</td>
<td></td>
<td>16.1</td>
<td>6.5</td>
<td>3.3</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1993</td>
<td>12”-18” Level of 17A22</td>
<td>OB DC</td>
<td></td>
<td>18.2</td>
<td>7.4</td>
<td>3.8</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2132</td>
<td>18”-24” Level of 17A22</td>
<td>OB DZ</td>
<td></td>
<td>13.1</td>
<td>3.4</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3555</td>
<td>24”-30” Level of 17A22</td>
<td>OB DD</td>
<td></td>
<td>25.5</td>
<td>15.9</td>
<td>4.5</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2427</td>
<td>24”-30” Level of 17A22</td>
<td>OB DZ</td>
<td></td>
<td>15.9</td>
<td>3.4</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4200</td>
<td>30”-36” Level of 17A22</td>
<td>OB DZ</td>
<td></td>
<td>15.2</td>
<td>2.7</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3621</td>
<td>30”-36” Level of 17A22</td>
<td>OB DE</td>
<td></td>
<td>23.9</td>
<td>17.5</td>
<td>2.9</td>
<td>6.9</td>
<td>5.9</td>
<td>4.1</td>
<td>1.2</td>
</tr>
<tr>
<td>395-3425</td>
<td>30”-36” Level of 17A22</td>
<td>OB DZ</td>
<td></td>
<td>15.5</td>
<td>4</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Max. Width</td>
<td>Neck Length</td>
<td>Proximal Neck Width</td>
<td>Distal Neck Width</td>
<td>Max. Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>395-4724</td>
<td>42"-48" Level of 17A22</td>
<td>CC</td>
<td>DE</td>
<td>15</td>
<td>3</td>
<td>8.9</td>
<td>3.4</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4694</td>
<td>42"-48" Level of 17A22</td>
<td>CC</td>
<td>DE</td>
<td>18</td>
<td>4.7</td>
<td>9.7</td>
<td>4.2</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5713</td>
<td>48"-54" Level of 17A22</td>
<td>OB</td>
<td>DE</td>
<td>17.9</td>
<td>3</td>
<td>8.4</td>
<td>3.1</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5886</td>
<td>54"-60" Level of 17A22</td>
<td>OB</td>
<td>DC</td>
<td>14.1</td>
<td>7.4</td>
<td>4.5</td>
<td>1.7</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5766</td>
<td>54"-60" Level of 17A22</td>
<td>OB</td>
<td>DE</td>
<td>15.9</td>
<td>2.9</td>
<td>5.8</td>
<td>4.1</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5886</td>
<td>54"-60" Level of 17A22</td>
<td>OB</td>
<td>DE</td>
<td>15.9</td>
<td>2.9</td>
<td>5.8</td>
<td>4.1</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1181</td>
<td>0"-6" Level of 18A23</td>
<td>OB</td>
<td>DE</td>
<td>11.8</td>
<td>17.4</td>
<td>7</td>
<td>3.2</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1180</td>
<td>0"-6" Level of 18A23</td>
<td>OB</td>
<td>DC</td>
<td>15</td>
<td>3</td>
<td>6.8</td>
<td>3.5</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1179</td>
<td>0"-6" Level of 18A23</td>
<td>OB</td>
<td>DC</td>
<td>14.1</td>
<td>5.2</td>
<td>9.9</td>
<td>4.2</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1038</td>
<td>0"-6" Level of 18A23</td>
<td>OB</td>
<td>DE</td>
<td>15</td>
<td>20.1</td>
<td>9.9</td>
<td>4.2</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1514</td>
<td>6"-12" Level of 18A23</td>
<td>CR</td>
<td>DC</td>
<td>17.6</td>
<td>5.9</td>
<td>7.5</td>
<td>6.9</td>
<td>3.1</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>395-1494</td>
<td>6"-12" Level of 18A23</td>
<td>CC</td>
<td>DE</td>
<td>31.1</td>
<td>2.9</td>
<td>7.9</td>
<td>7</td>
<td>3.1</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>395-1493</td>
<td>6"-12" Level of 18A23</td>
<td>CR</td>
<td>DE</td>
<td>17.7</td>
<td>17.4</td>
<td>7</td>
<td>3.2</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1407</td>
<td>6"-12" Level of 18A23</td>
<td>CR</td>
<td>DE</td>
<td>15.7</td>
<td>3.2</td>
<td>5.9</td>
<td>2.7</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2314</td>
<td>12"-18" Level of 18A23</td>
<td>CC</td>
<td>DC</td>
<td>14</td>
<td>2.9</td>
<td>6.8</td>
<td>3.4</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2313</td>
<td>12"-18" Level of 18A23</td>
<td>OB</td>
<td>DZ</td>
<td>19.7</td>
<td>4.8</td>
<td>3.5</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2314</td>
<td>12"-18" Level of 18A23</td>
<td>OB</td>
<td>DC</td>
<td>32.7</td>
<td>18.2</td>
<td>5.5</td>
<td>4.9</td>
<td>1.1</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>395-2315</td>
<td>12"-18" Level of 18A23</td>
<td>OB</td>
<td>DC</td>
<td>13.8</td>
<td>17.4</td>
<td>7</td>
<td>3.2</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2315</td>
<td>12"-18" Level of 18A23</td>
<td>OB</td>
<td>DZ</td>
<td>15.9</td>
<td>17.4</td>
<td>7</td>
<td>3.2</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2749</td>
<td>18"-24" Level of 18A23</td>
<td>OB</td>
<td>DC</td>
<td>15</td>
<td>19.3</td>
<td>4.9</td>
<td>8.4</td>
<td>3.7</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>395-2749</td>
<td>18"-24" Level of 18A23</td>
<td>CR</td>
<td>DC</td>
<td>14.1</td>
<td>19.3</td>
<td>4.9</td>
<td>8.4</td>
<td>3.7</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>395-2749</td>
<td>18"-24" Level of 18A23</td>
<td>CR</td>
<td>DZ</td>
<td>9.9</td>
<td>19.3</td>
<td>4.9</td>
<td>8.4</td>
<td>3.7</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>395-2780</td>
<td>18"-24" Level of 18A23</td>
<td>OB</td>
<td>DE</td>
<td>26.1</td>
<td>19.3</td>
<td>4.9</td>
<td>8.4</td>
<td>3.7</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>395-2412</td>
<td>18"-24" Level of 18A23</td>
<td>OB</td>
<td>DE</td>
<td>13</td>
<td>3.1</td>
<td>4.9</td>
<td>2.8</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2412</td>
<td>18"-24" Level of 18A23</td>
<td>CR</td>
<td>DE</td>
<td>18.3</td>
<td>7.8</td>
<td>3.5</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2781</td>
<td>18"-24" Level of 18A23</td>
<td>OB</td>
<td>DC</td>
<td>26.1</td>
<td>18.4</td>
<td>9.3</td>
<td>7.4</td>
<td>3.4</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>395-2749</td>
<td>18"-24" Level of 18A23</td>
<td>OB</td>
<td>DZ</td>
<td>11</td>
<td>19.3</td>
<td>4.9</td>
<td>8.4</td>
<td>3.7</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>395-2749</td>
<td>18"-24" Level of 18A23</td>
<td>CC</td>
<td>DZ</td>
<td>19.4</td>
<td>19.2</td>
<td>4.9</td>
<td>2.8</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2749</td>
<td>18"-24" Level of 18A23</td>
<td>OB</td>
<td>DZ</td>
<td>15.5</td>
<td>7.8</td>
<td>3.5</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2749</td>
<td>18"-24" Level of 18A23</td>
<td>OB</td>
<td>DZ</td>
<td>14.3</td>
<td>7.8</td>
<td>3.5</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2345</td>
<td>18"-24" Level of 18A23</td>
<td>OB</td>
<td>DE</td>
<td>23</td>
<td>17.7</td>
<td>7</td>
<td>2.4</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3245</td>
<td>24"-30" Level of 18A23</td>
<td>OB</td>
<td>DC</td>
<td>27</td>
<td>10.4</td>
<td>4.8</td>
<td>7.2</td>
<td>3.7</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>395-3136</td>
<td>24"-30" Level of 18A23</td>
<td>OB</td>
<td>DE</td>
<td>17</td>
<td>7.6</td>
<td>3.6</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3136</td>
<td>24"-30" Level of 18A23</td>
<td>OB</td>
<td>OZ</td>
<td>24.5</td>
<td>12.1</td>
<td>10.2</td>
<td>2.6</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3136</td>
<td>24"-30" Level of 18A23</td>
<td>OB</td>
<td>DZ</td>
<td>23.2</td>
<td>4</td>
<td>2.3</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3136</td>
<td>24"-30" Level of 18A23</td>
<td>OB</td>
<td>DE</td>
<td>20.9</td>
<td>7.6</td>
<td>3.6</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table B.5. Continued
<table>
<thead>
<tr>
<th>Accession</th>
<th>Provenience</th>
<th>Material</th>
<th>Projectile Point Type</th>
<th>Length</th>
<th>Max. Width</th>
<th>Neck Length</th>
<th>Distal Neck Width</th>
<th>Proximal Neck Width</th>
<th>Max. Thickness</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>395-3709</td>
<td>30"-36" Level of 18A23</td>
<td>OB</td>
<td>DC</td>
<td>18</td>
<td>5.7</td>
<td>7.6</td>
<td>3.5</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4089</td>
<td>30"-36" Level of 18A23</td>
<td>OB</td>
<td>DC</td>
<td>12.4</td>
<td>4.1</td>
<td>6.9</td>
<td>3.1</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3413</td>
<td>30"-36" Level of 18A23</td>
<td>OB</td>
<td>DE</td>
<td>14.8</td>
<td>2.8</td>
<td>7.8</td>
<td>3.1</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3413</td>
<td>30"-36" Level of 18A23</td>
<td>OB</td>
<td>DE</td>
<td>32.7</td>
<td>12.9</td>
<td>6</td>
<td>2.4</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3413</td>
<td>30"-36" Level of 18A23</td>
<td>OB</td>
<td>DE</td>
<td>19.5</td>
<td>7</td>
<td>2.8</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3413</td>
<td>30"-36" Level of 18A23</td>
<td>OB</td>
<td>DE</td>
<td>14.2</td>
<td>5.7</td>
<td>3.2</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3413</td>
<td>30"-36" Level of 18A23</td>
<td>OB</td>
<td>DE</td>
<td>30.2</td>
<td>19.7</td>
<td>3.5</td>
<td>7.7</td>
<td>2.9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>395-3707</td>
<td>30"-36" Level of 18A23</td>
<td>OB</td>
<td>DE</td>
<td>14.8</td>
<td>19.7</td>
<td>3.5</td>
<td>7.7</td>
<td>2.9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>395-3707</td>
<td>30"-36" Level of 18A23</td>
<td>OB</td>
<td>DE</td>
<td>15</td>
<td>7</td>
<td>3.7</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4646</td>
<td>36"-42" Level of 18A23</td>
<td>CR</td>
<td>DE</td>
<td>25.6</td>
<td>17.9</td>
<td>3.3</td>
<td>6</td>
<td>3.7</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>395-4644</td>
<td>36"-42" Level of 18A23</td>
<td>OB</td>
<td>DC</td>
<td>30.1</td>
<td>14.9</td>
<td>8</td>
<td>3.5</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4846</td>
<td>42"-48" Level of 18A23</td>
<td>OB</td>
<td>DE</td>
<td>18.4</td>
<td>9.6</td>
<td>2.4</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4849</td>
<td>42"-48" Level of 18A23</td>
<td>CC</td>
<td>CA</td>
<td>15.6</td>
<td>6.3</td>
<td>2.8</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4849</td>
<td>42"-48" Level of 18A23</td>
<td>OB</td>
<td>DG</td>
<td>29.7</td>
<td>18.7</td>
<td>3.7</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5033</td>
<td>42"-48" Level of 18A23</td>
<td>OB</td>
<td>DG</td>
<td>17.9</td>
<td>6.2</td>
<td>3.9</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4846</td>
<td>42"-48" Level of 18A23</td>
<td>OB</td>
<td>DG</td>
<td>15</td>
<td>6.3</td>
<td>3.7</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4849</td>
<td>42"-48" Level of 18A23</td>
<td>OB</td>
<td>DG</td>
<td>16.2</td>
<td>4.2</td>
<td>7.8</td>
<td>3.8</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4846</td>
<td>42"-48" Level of 18A23</td>
<td>OB</td>
<td>DG</td>
<td>37.2</td>
<td>19.9</td>
<td>3.7</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5378</td>
<td>48"-54" Level of 18A23</td>
<td>OB</td>
<td>DG</td>
<td>15</td>
<td>5.9</td>
<td>3.7</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5348</td>
<td>48"-54" Level of 18A23</td>
<td>CR</td>
<td>DE</td>
<td>18.3</td>
<td>3.4</td>
<td>7.7</td>
<td>3.4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5595</td>
<td>48"-54" Level of 18A23</td>
<td>CR</td>
<td>DZ</td>
<td>12.2</td>
<td>6.3</td>
<td>2.1</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5989</td>
<td>54"-60" Level of 18A23</td>
<td>OB</td>
<td>DE</td>
<td>15.7</td>
<td>18.3</td>
<td>2</td>
<td>6.3</td>
<td>5.1</td>
<td>3.5</td>
<td>1.6</td>
</tr>
<tr>
<td>395-5988</td>
<td>54"-60" Level of 18A23</td>
<td>OB</td>
<td>DE</td>
<td>32.6</td>
<td>17</td>
<td>3.5</td>
<td>7.2</td>
<td>6.5</td>
<td>3.2</td>
<td>0.8</td>
</tr>
<tr>
<td>395-5541</td>
<td>54"-60" Level of 18A23</td>
<td>OB</td>
<td>DE</td>
<td>23.1</td>
<td>16</td>
<td>3.7</td>
<td>6.9</td>
<td>2.8</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>395-5541</td>
<td>54"-60" Level of 18A23</td>
<td>OB</td>
<td>DE</td>
<td>15</td>
<td>15.8</td>
<td>3.5</td>
<td>7.7</td>
<td>3.8</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>395-5311</td>
<td>60"-66" Level of 18A23</td>
<td>CC</td>
<td>DE</td>
<td>15.7</td>
<td>15.7</td>
<td>4.7</td>
<td>7.6</td>
<td>7.8</td>
<td>2.1</td>
<td>0.9</td>
</tr>
<tr>
<td>395-3899</td>
<td>60"-66" Level of 18A23</td>
<td>OB</td>
<td>DE</td>
<td>20.2</td>
<td>20.2</td>
<td>3.3</td>
<td>8.5</td>
<td>3.5</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>395-3899</td>
<td>60"-66" Level of 18A23</td>
<td>CC</td>
<td>DE</td>
<td>24.1</td>
<td>24.1</td>
<td>3.5</td>
<td>5</td>
<td>3.4</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>395-5965</td>
<td>60"-66" Level of 18A23</td>
<td>OB</td>
<td>DE</td>
<td>14.5</td>
<td>14.5</td>
<td>6.1</td>
<td>3.7</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5965</td>
<td>60"-66" Level of 18A23</td>
<td>OB</td>
<td>DE</td>
<td>16.4</td>
<td>16.4</td>
<td>7.2</td>
<td>4.3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-1283</td>
<td>12"-18" Level of 19A23</td>
<td>CR</td>
<td>DC</td>
<td>28.6</td>
<td>16.3</td>
<td>4.8</td>
<td>7.8</td>
<td>6.9</td>
<td>3.3</td>
<td>1.3</td>
</tr>
<tr>
<td>395-1260</td>
<td>12"-18" Level of 19A23</td>
<td>OB</td>
<td>DE</td>
<td>15.8</td>
<td>15.8</td>
<td>6.5</td>
<td>3.8</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2466</td>
<td>18"-24" Level of 19A23</td>
<td>CR</td>
<td>DZ</td>
<td>32.6</td>
<td>21.4</td>
<td>4.8</td>
<td>2.7</td>
<td>4.8</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Max. Width</td>
<td>Neck Length</td>
<td>Proximal Neck Width</td>
<td>Distal Neck Width</td>
<td>Max. Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>395-2727</td>
<td>24"-30" Level of 19A23</td>
<td>OB</td>
<td>DC/ DG</td>
<td>13.4</td>
<td>1.1</td>
<td>5.2</td>
<td>2.7</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4884</td>
<td>24"-30" Level of 19A23</td>
<td>OB</td>
<td>DE</td>
<td></td>
<td></td>
<td>3.6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2727</td>
<td>24"-30" Level of 19A23</td>
<td>OB</td>
<td>DC</td>
<td>16.8</td>
<td></td>
<td>7.2</td>
<td>4.3</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3212</td>
<td>30"-36" Level of 19A23</td>
<td>CC</td>
<td>DE</td>
<td>23.9</td>
<td>18.5</td>
<td>8</td>
<td>7.2</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>395-2724</td>
<td>30"-36" Level of 19A23</td>
<td>CC</td>
<td>DC</td>
<td>16.9</td>
<td></td>
<td>7.5</td>
<td>3.9</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4064</td>
<td>36"-42" Level of 19A23</td>
<td>CC</td>
<td>DE</td>
<td>16.2</td>
<td>4.8</td>
<td>9.5</td>
<td>8.4</td>
<td>4.3</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>395-5178</td>
<td>36"-42" Level of 19A23</td>
<td>OB</td>
<td>DE</td>
<td>18.6</td>
<td></td>
<td>7.7</td>
<td>3.8</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3858</td>
<td>36"-42" Level of 19A23</td>
<td>CC</td>
<td>DE</td>
<td>26.1</td>
<td>19.8</td>
<td>3.6</td>
<td>7.7</td>
<td>3.2</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>395-3981</td>
<td>42"-48" Level of 19A23</td>
<td>CR</td>
<td>DE</td>
<td>34.1</td>
<td>17</td>
<td></td>
<td>3.6</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-4337</td>
<td>48"-54" Level of 19A23</td>
<td>CC</td>
<td>DE</td>
<td>27.6</td>
<td>17.5</td>
<td>2.4</td>
<td>6.3</td>
<td>3.3</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>395-220</td>
<td>54"-60" Level of 19A23</td>
<td>OB</td>
<td>DC</td>
<td>14.9</td>
<td></td>
<td></td>
<td>5.8</td>
<td>3.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>395-5661</td>
<td>54"-60" Level of 19A23</td>
<td>OB</td>
<td>DC</td>
<td>26.4</td>
<td>15.5</td>
<td>5.8</td>
<td>5.5</td>
<td>6.3</td>
<td>2.9</td>
<td>0.7</td>
</tr>
<tr>
<td>395-5257</td>
<td>54"-60" Level of 19A23</td>
<td>CC</td>
<td>DE</td>
<td>25.6</td>
<td>20.2</td>
<td></td>
<td>7.9</td>
<td>4.2</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>395-5258</td>
<td>54"-60" Level of 19A23</td>
<td>CC</td>
<td>DZ</td>
<td>13.8</td>
<td></td>
<td></td>
<td>4.1</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5945</td>
<td>60"-66" Level of 19A23</td>
<td>CR</td>
<td>DC</td>
<td>29.1</td>
<td>12.2</td>
<td>4.2</td>
<td>6.4</td>
<td>4.9</td>
<td>4.2</td>
<td>1.3</td>
</tr>
<tr>
<td>395-5816</td>
<td>60"-66" Level of 19A23</td>
<td>OB</td>
<td>DC</td>
<td>26.8</td>
<td>16</td>
<td>4.2</td>
<td>6.6</td>
<td>5.7</td>
<td>3.2</td>
<td>1</td>
</tr>
<tr>
<td>395-5946</td>
<td>60"-66" Level of 19A23</td>
<td>OB</td>
<td>DC</td>
<td>25</td>
<td>16.7</td>
<td>3.2</td>
<td>6.5</td>
<td>4.9</td>
<td>3.5</td>
<td>1</td>
</tr>
<tr>
<td>395-5685</td>
<td>66"-72" Level of 19A23</td>
<td>OB</td>
<td>DC</td>
<td>13.4</td>
<td>4.8</td>
<td></td>
<td>4.6</td>
<td>3.3</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>395-5685</td>
<td>66"-72" Level of 19A23</td>
<td>OB</td>
<td>DE</td>
<td>20.1</td>
<td></td>
<td></td>
<td>10.2</td>
<td>3.2</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>395-6285</td>
<td>66"-72" Level of 20A22</td>
<td>OB</td>
<td>DZ</td>
<td>21.3</td>
<td></td>
<td></td>
<td>3.8</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5622</td>
<td>66"-72" Level of 20A23</td>
<td>OB</td>
<td>DC</td>
<td>13.7</td>
<td></td>
<td></td>
<td>5.6</td>
<td>3.2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>395-5501</td>
<td>13"-19" Level of 4A21</td>
<td>OB</td>
<td>DE</td>
<td>17.4</td>
<td></td>
<td></td>
<td>4.6</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-2288</td>
<td>0"-24" Level of 5A17</td>
<td>CC</td>
<td>DC</td>
<td>13.2</td>
<td></td>
<td></td>
<td>5.3</td>
<td>3.6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>509-2832</td>
<td>24"-30" Level of 7A16</td>
<td>CC</td>
<td>DE</td>
<td>26.7</td>
<td>16.9</td>
<td>3.1</td>
<td>6.7</td>
<td>6.2</td>
<td>4</td>
<td>1.3</td>
</tr>
<tr>
<td>509-3124</td>
<td>12"-24" Level of 7A20</td>
<td>OB</td>
<td>DG</td>
<td>28.4</td>
<td>18.7</td>
<td>5.3</td>
<td>6.9</td>
<td>4.5</td>
<td>2.9</td>
<td>0.8</td>
</tr>
<tr>
<td>509-3123</td>
<td>12"-24" Level of 7A20</td>
<td>OB</td>
<td>CA</td>
<td>23</td>
<td>15</td>
<td></td>
<td>3.6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5542</td>
<td>54"-60" Level of 18A23</td>
<td>OB</td>
<td>DE</td>
<td>14.8</td>
<td></td>
<td></td>
<td>8.2</td>
<td>2.7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>509-2901</td>
<td>18"-24" Level of 8A17</td>
<td>OB</td>
<td>CA</td>
<td>36.9</td>
<td>19.9</td>
<td></td>
<td>3.7</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-2478</td>
<td>0"-24" Level of Test Trenches</td>
<td>OB</td>
<td>DE</td>
<td>33.8</td>
<td>6</td>
<td>4.2</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-3130</td>
<td>0"-24" Level of NE Trenches</td>
<td>CC</td>
<td>DE</td>
<td>18.4</td>
<td>17.3</td>
<td>2</td>
<td>7</td>
<td>2.6</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>509-3155</td>
<td>0"-24" Level of NE Trenches</td>
<td>OB</td>
<td>DE</td>
<td>15.8</td>
<td>6.8</td>
<td>3.5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-3387</td>
<td>Surface Feature</td>
<td>CC</td>
<td>DE</td>
<td>20.1</td>
<td>4.2</td>
<td>7.1</td>
<td>5.9</td>
<td>3.5</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>509-3437</td>
<td>18"-24" Level of feature</td>
<td>CC</td>
<td>DE</td>
<td>17.6</td>
<td></td>
<td></td>
<td>9.2</td>
<td>3</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>509-3215</td>
<td>18"-24" Level of feature</td>
<td>CC</td>
<td>DE</td>
<td>15.6</td>
<td>1.8</td>
<td></td>
<td>7.2</td>
<td>3.1</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>509-3414</td>
<td>18"-24" Level of feature</td>
<td>CR</td>
<td>DC</td>
<td>30</td>
<td>15.2</td>
<td>3.8</td>
<td>8.2</td>
<td>3.4</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>509-3416</td>
<td>18"-24" Level of feature</td>
<td>CC</td>
<td>DC</td>
<td>11.7</td>
<td></td>
<td></td>
<td>6.1</td>
<td>2.8</td>
<td>0.8</td>
<td></td>
</tr>
</tbody>
</table>
Table B.5. Continued

<table>
<thead>
<tr>
<th>Accession</th>
<th>Provenience</th>
<th>Material</th>
<th>Projectile Point Type</th>
<th>Length</th>
<th>Min. Width</th>
<th>Neck Length</th>
<th>Proximal Neck Width</th>
<th>Distal Neck Width</th>
<th>Max. Thickness</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>509-3219</td>
<td>24"-30" Level of feature</td>
<td>OB</td>
<td>DE</td>
<td>29.4</td>
<td>16.7</td>
<td>2.3</td>
<td>7.2</td>
<td>3.3</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>509-3331</td>
<td>24"-30" Level of feature</td>
<td>CC</td>
<td>DC</td>
<td>13.4</td>
<td>5.3</td>
<td>3</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-3454</td>
<td>36"-40" Level of feature</td>
<td>OB</td>
<td>DC</td>
<td>14.7</td>
<td>5.4</td>
<td>4</td>
<td>33.4</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-3544</td>
<td>36"-40" Level of feature</td>
<td>OB</td>
<td>DE</td>
<td>18.3</td>
<td>5.3</td>
<td>5.3</td>
<td>3.1</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-2699</td>
<td>12"-18" Level of Pit#2</td>
<td>OB</td>
<td>CA</td>
<td>15.4</td>
<td>5.3</td>
<td>3</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-2698</td>
<td>12"-18" Level of Pit#2</td>
<td>OB</td>
<td>CA</td>
<td>17.4</td>
<td>3.8</td>
<td>3.1</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-2377</td>
<td>6"-12" Level of 3A19</td>
<td>CR</td>
<td>DE</td>
<td>15.2</td>
<td>7.4</td>
<td>4</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-2400</td>
<td>6"-12" Level of 3A19</td>
<td>CR</td>
<td>DE</td>
<td>16.6</td>
<td>7.4</td>
<td>4</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-2332</td>
<td>6"-12" Level of 3A19</td>
<td>OB</td>
<td>DE</td>
<td>16.2</td>
<td>6.5</td>
<td>2.7</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-2635</td>
<td>12"-18" Level of 6A18</td>
<td>OB</td>
<td>DE</td>
<td>16.9</td>
<td>7.8</td>
<td>3.8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-2297</td>
<td>6"-12" Level of 4A20</td>
<td>CC</td>
<td>DE</td>
<td>13.5</td>
<td>2.4</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-2557</td>
<td>6"-12" Level of 4A20</td>
<td>OB</td>
<td>DE</td>
<td>17.1</td>
<td>8.1</td>
<td>3.4</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-2299</td>
<td>6"-12" Level of 4A20</td>
<td>OB</td>
<td>DC</td>
<td>13.2</td>
<td>6.3</td>
<td>9.3</td>
<td>3.1</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-2548</td>
<td>6"-12" Level of 4A20</td>
<td>OB</td>
<td>DC</td>
<td>30</td>
<td>14.2</td>
<td>4.8</td>
<td>4.2</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-2949</td>
<td>12"-18" 7A17</td>
<td>CR</td>
<td>DE</td>
<td>15.5</td>
<td>6.7</td>
<td>3.9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3108</td>
<td>0"-26" Level of 4A22</td>
<td>CR</td>
<td>DE</td>
<td>18</td>
<td>10.1</td>
<td>3.7</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-137</td>
<td>G0</td>
<td>OB</td>
<td>DG</td>
<td>12.5</td>
<td>5.1</td>
<td>3.5</td>
<td>1.2</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7120</td>
<td>36"-42" Level of F0/F1</td>
<td>CC</td>
<td>DE</td>
<td>39.4</td>
<td>4.3</td>
<td>9.7</td>
<td>4.3</td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7125</td>
<td>36"-42" Level of F0/F1</td>
<td>CR</td>
<td>DE</td>
<td>15.5</td>
<td>7.3</td>
<td>3.5</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7000</td>
<td>18"-24" Level of F4/F5</td>
<td>CR</td>
<td>DE</td>
<td>25.7</td>
<td>3.1</td>
<td>6</td>
<td>3.5</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7103</td>
<td>18"-24" Level of F4/F5</td>
<td>CC</td>
<td>DC</td>
<td>14.3</td>
<td>6.9</td>
<td>4</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7257</td>
<td>30"-36" Level of F4/F5</td>
<td>OB</td>
<td>DG</td>
<td>14.5</td>
<td>5.3</td>
<td>2.2</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-7137</td>
<td>30"-36" Level of G2/G3</td>
<td>OB</td>
<td>DC</td>
<td>14.5</td>
<td>7.1</td>
<td>3.2</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-5909</td>
<td>36"-42" Level of G2/G3</td>
<td>OB</td>
<td>DE</td>
<td>20.9</td>
<td>3.2</td>
<td>7.7</td>
<td>3</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-5905</td>
<td>36"-42" Level of G2/G3</td>
<td>OB</td>
<td>DE</td>
<td>20.7</td>
<td>4.9</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6970</td>
<td>24"-30" Level of G3/G4</td>
<td>CC</td>
<td>DE</td>
<td>34.9</td>
<td>2.8</td>
<td>6.8</td>
<td>4.7</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3765</td>
<td>8"-26" Level of 5A22</td>
<td>CR</td>
<td>DE</td>
<td>22.1</td>
<td>4.6</td>
<td>9</td>
<td>3.5</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-3698</td>
<td>8"-29" Level of 5A23</td>
<td>CC</td>
<td>DC</td>
<td>32.5</td>
<td>3.7</td>
<td>6.4</td>
<td>5</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-6496</td>
<td>0"-12" Level of 3A20</td>
<td>OB</td>
<td>DC</td>
<td>13.4</td>
<td>6.6</td>
<td>3.6</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-6496</td>
<td>0"-12" Level of 3A20</td>
<td>OB</td>
<td>DC</td>
<td>13.4</td>
<td>3.6</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-6596</td>
<td>72"-78" Level of 18A23</td>
<td>OB</td>
<td>DE</td>
<td>20.6</td>
<td>4.5</td>
<td>7.2</td>
<td>6.5</td>
<td>3.3</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>395-6532</td>
<td>78"-84" Level of 18A23</td>
<td>CR</td>
<td>DE</td>
<td>18.1</td>
<td>7.3</td>
<td>3.9</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-3296</td>
<td>36"-42" Level of Pit#2</td>
<td>CC</td>
<td>DC</td>
<td>13.7</td>
<td>7.8</td>
<td>2.5</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-507</td>
<td>66"-72" Level of G0/H0</td>
<td>OB</td>
<td>DC</td>
<td>16.5</td>
<td>7.8</td>
<td>3.8</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-3373</td>
<td>30"-39" Level of Structure 21</td>
<td>CC</td>
<td>DE</td>
<td>17.6</td>
<td>9.4</td>
<td>4.7</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-2681</td>
<td>24"-36" Level of Structure 26</td>
<td>CC</td>
<td>DC</td>
<td>16.1</td>
<td>6.4</td>
<td>3.5</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-1927</td>
<td>6"-18" Level of Structure 3</td>
<td>OB</td>
<td>DE</td>
<td>18.8</td>
<td>7.6</td>
<td>4</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Max. Width</td>
<td>Neck Length</td>
<td>Proximal Neck Width</td>
<td>Distal Neck Width</td>
<td>Max. Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>------------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>283-1973</td>
<td>18”-30” Level of Structure 3</td>
<td>OB DE</td>
<td>30.6</td>
<td>21.9</td>
<td>9</td>
<td>3.8</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-1974</td>
<td>18”-30” Level of Structure 3</td>
<td>OB DE</td>
<td>24.3</td>
<td>18.8</td>
<td>3.1</td>
<td>7.4</td>
<td>4.5</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-2024</td>
<td>18”-30” Level of Structure 3</td>
<td>CR DC</td>
<td>15.8</td>
<td>4.1</td>
<td>8.9</td>
<td>3.5</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-2085</td>
<td>24”-36” Level of Structure 3</td>
<td>OB DC</td>
<td>13.9</td>
<td>6.5</td>
<td>3.9</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-1316</td>
<td>0”-12” Level of A16</td>
<td>OB DE</td>
<td>22.6</td>
<td>14.4</td>
<td>5.7</td>
<td>3.8</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-959</td>
<td>6”-12” Level of Mound G</td>
<td>CR DC</td>
<td>17.6</td>
<td>3.3</td>
<td>5.9</td>
<td>3</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6609</td>
<td>18”-24” Level of F4</td>
<td>CR DZ</td>
<td>16.7</td>
<td>6.3</td>
<td>4</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-6606</td>
<td>18”-24” Level of F4</td>
<td>OB DE</td>
<td>17.8</td>
<td>6.3</td>
<td>4</td>
<td>38.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-2221</td>
<td>0”-24” Level of 7A18</td>
<td>OB CA</td>
<td>33.7</td>
<td>16.9</td>
<td>3.6</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-5975</td>
<td>66”-72” Level of 18A23</td>
<td>CC DC</td>
<td>17</td>
<td>3.5</td>
<td>6.7</td>
<td>6.3</td>
<td>5</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>509-3311</td>
<td>No Provenience</td>
<td>CC</td>
<td>35.5</td>
<td>19.9</td>
<td>7.9</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-4291</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>32.2</td>
<td>16.8</td>
<td>2.7</td>
<td>6.3</td>
<td>3.7</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-3975</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>18.6</td>
<td>4.3</td>
<td>7.6</td>
<td>6.1</td>
<td>3.9</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-104</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>13.4</td>
<td>3.6</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-2229</td>
<td>No Provenience</td>
<td>CR DE</td>
<td>18.6</td>
<td>6</td>
<td>5.2</td>
<td>4.1</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-5040</td>
<td>No Provenience</td>
<td>CR DE</td>
<td>30.6</td>
<td>18.5</td>
<td>7</td>
<td>3.7</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-4297</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>28.5</td>
<td>16</td>
<td>3.8</td>
<td>8.3</td>
<td>7.3</td>
<td>4.1</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>356-640</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>17.7</td>
<td>2.9</td>
<td>6.3</td>
<td>3.9</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-590</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>20.3</td>
<td>4.1</td>
<td>8.2</td>
<td>7.2</td>
<td>3.6</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-2681</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>28.9</td>
<td>16.1</td>
<td>3.4</td>
<td>7.2</td>
<td>4.2</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-4234</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>17.3</td>
<td>3.6</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-3688</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>36.2</td>
<td>7.9</td>
<td>6.7</td>
<td>4.1</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-2591</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>30</td>
<td>19</td>
<td>7.6</td>
<td>3.3</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-1398</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>30.6</td>
<td>21.9</td>
<td>9</td>
<td>3.8</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-4835</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>15</td>
<td>4.1</td>
<td>7.5</td>
<td>3.4</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-3897</td>
<td>No Provenience</td>
<td>CC DE</td>
<td>25.8</td>
<td>15.8</td>
<td>4.8</td>
<td>7.2</td>
<td>6.3</td>
<td>4.3</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>356-475</td>
<td>No Provenience</td>
<td>CC DE</td>
<td>16.3</td>
<td>4.7</td>
<td>8.2</td>
<td>3.7</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-2326</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>31.6</td>
<td>15.1</td>
<td>5.8</td>
<td>3.1</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-5038</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>30.7</td>
<td>18</td>
<td>4</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-3628</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>36.7</td>
<td>20.5</td>
<td>3.7</td>
<td>6.2</td>
<td>3.7</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-1273</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>16.9</td>
<td>3.5</td>
<td>7.3</td>
<td>4.3</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-3903</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>15.1</td>
<td>6.5</td>
<td>3.6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-4466</td>
<td>No Provenience</td>
<td>CC DE</td>
<td>15.1</td>
<td>3.5</td>
<td>5.4</td>
<td>3.5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-802</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>15.1</td>
<td>7</td>
<td>3.9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-1263</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>24.3</td>
<td>17.1</td>
<td>5.6</td>
<td>4.2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-4263</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>14.6</td>
<td>5.8</td>
<td>3.5</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-4224</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>32</td>
<td>16.8</td>
<td>4.1</td>
<td>6.3</td>
<td>7.3</td>
<td>2.9</td>
<td>1.3</td>
<td></td>
</tr>
</tbody>
</table>
Table B.5. Continued.

<table>
<thead>
<tr>
<th>Accession</th>
<th>Provenience</th>
<th>Material</th>
<th>Projectile Point Type</th>
<th>Length</th>
<th>Max. Width</th>
<th>Neck Length</th>
<th>Proximal Neck Width</th>
<th>Distal Neck Width</th>
<th>Max. Thickness</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>356-3522</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>17.6</td>
<td>4.3</td>
<td>9</td>
<td>8.1</td>
<td>3.7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>356-3987</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>14</td>
<td>5.6</td>
<td>3.1</td>
<td>6.8</td>
<td>4.4</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>356-1946</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>17.4</td>
<td>7.8</td>
<td>3</td>
<td>6.1</td>
<td>4.7</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>356-1231</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>14.3</td>
<td>5.1</td>
<td>4.1</td>
<td>6.1</td>
<td>4.1</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>356-3896</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>30.9</td>
<td>16.3</td>
<td>4.9</td>
<td>8.2</td>
<td>4.4</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>356-2372</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>28.5</td>
<td>13.7</td>
<td>3.1</td>
<td>9.9</td>
<td>3.2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>356-4664</td>
<td>No Provenience</td>
<td>CC</td>
<td>DE</td>
<td>26.6</td>
<td>14.4</td>
<td>3.4</td>
<td>6.1</td>
<td>4.7</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>356-195</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>13.2</td>
<td>3.3</td>
<td>3.3</td>
<td>4.1</td>
<td>3.3</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>356-4351</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>18.3</td>
<td>4.6</td>
<td>8.8</td>
<td>3.7</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-2917</td>
<td>No Provenience</td>
<td>CC</td>
<td>DE</td>
<td>29.1</td>
<td>17.2</td>
<td>4</td>
<td>8.4</td>
<td>7.1</td>
<td>3.3</td>
<td>1.3</td>
</tr>
<tr>
<td>356-5093</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>15.1</td>
<td>6</td>
<td>3.2</td>
<td>6.9</td>
<td>3.6</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>356-2543</td>
<td>No Provenience</td>
<td>CC</td>
<td>DE</td>
<td>26.1</td>
<td>14.3</td>
<td>3.7</td>
<td>5.3</td>
<td>2.5</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>356-2589</td>
<td>No Provenience</td>
<td>CR</td>
<td>DE</td>
<td>24.2</td>
<td>16.3</td>
<td>3.8</td>
<td>7.9</td>
<td>2.9</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>356-430</td>
<td>No Provenience</td>
<td>CC</td>
<td>DE</td>
<td>14.1</td>
<td>7</td>
<td>2.9</td>
<td>5.7</td>
<td>4.7</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>356-3560</td>
<td>No Provenience</td>
<td>CC</td>
<td>DE</td>
<td>27.9</td>
<td>14.7</td>
<td>4.1</td>
<td>5.7</td>
<td>4.7</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>356-1861</td>
<td>No Provenience</td>
<td>CR</td>
<td>DE</td>
<td>22.8</td>
<td>21.3</td>
<td>4.1</td>
<td>10</td>
<td>3.2</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>356-4577</td>
<td>No Provenience</td>
<td>OB</td>
<td>DC</td>
<td>15.3</td>
<td>3.7</td>
<td>6.4</td>
<td>8.1</td>
<td>3.3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>356-4571</td>
<td>No Provenience</td>
<td>OB</td>
<td>DC</td>
<td>32.4</td>
<td>12.4</td>
<td>4.2</td>
<td>5.3</td>
<td>2.9</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>356-2663</td>
<td>No Provenience</td>
<td>OB</td>
<td>DC</td>
<td>34.3</td>
<td>13.4</td>
<td>3.1</td>
<td>5.5</td>
<td>3.8</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>356-3958</td>
<td>No Provenience</td>
<td>CR</td>
<td>DC</td>
<td>31</td>
<td>15</td>
<td>3.3</td>
<td>5.7</td>
<td>3.4</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>356-6022</td>
<td>No Provenience</td>
<td>OB</td>
<td>DC</td>
<td>16.7</td>
<td>5.7</td>
<td>7</td>
<td>7.6</td>
<td>3.9</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>356-2841</td>
<td>No Provenience</td>
<td>OB</td>
<td>DC</td>
<td>29.3</td>
<td>3.7</td>
<td>7.5</td>
<td>7.8</td>
<td>3.2</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>356-642</td>
<td>No Provenience</td>
<td>OB</td>
<td>DC</td>
<td>30.3</td>
<td>11.4</td>
<td>6.2</td>
<td>3.7</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-2231</td>
<td>No Provenience</td>
<td>CC</td>
<td>DC</td>
<td>13.9</td>
<td>3.4</td>
<td>5.4</td>
<td>4.8</td>
<td>3.9</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>356-649</td>
<td>No Provenience</td>
<td>OB</td>
<td>DC</td>
<td>15.3</td>
<td>4.1</td>
<td>5.6</td>
<td>4.1</td>
<td>2.8</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>356-3788</td>
<td>No Provenience</td>
<td>CR</td>
<td>DC</td>
<td>26.5</td>
<td>16.2</td>
<td>5.6</td>
<td>6.4</td>
<td>8.6</td>
<td>3.4</td>
<td>1.1</td>
</tr>
<tr>
<td>356-2210</td>
<td>No Provenience</td>
<td>CC</td>
<td>DC</td>
<td>26.2</td>
<td>3.7</td>
<td>5.6</td>
<td>3.4</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-573</td>
<td>No Provenience</td>
<td>CR</td>
<td>DC</td>
<td>31.3</td>
<td>10.3</td>
<td>5.1</td>
<td>7</td>
<td>4.1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>356-5363</td>
<td>No Provenience</td>
<td>OB</td>
<td>DC</td>
<td>13.1</td>
<td>5.2</td>
<td>3.3</td>
<td>6.4</td>
<td>3.6</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>356-1009</td>
<td>No Provenience</td>
<td>CC</td>
<td>DC</td>
<td>14.6</td>
<td>3.5</td>
<td>6.9</td>
<td>6.4</td>
<td>3.6</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>356-535</td>
<td>No Provenience</td>
<td>CC</td>
<td>DC</td>
<td>18.2</td>
<td>4.3</td>
<td>8.1</td>
<td>6.5</td>
<td>3.9</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>356-4352</td>
<td>No Provenience</td>
<td>CC</td>
<td>DC</td>
<td>14.3</td>
<td>3.5</td>
<td>5.1</td>
<td>5.6</td>
<td>3.2</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>356-5094</td>
<td>No Provenience</td>
<td>OB</td>
<td>DC</td>
<td>31</td>
<td>12.2</td>
<td>4.9</td>
<td>2.9</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-2924</td>
<td>No Provenience</td>
<td>OB</td>
<td>DC</td>
<td>27.3</td>
<td>12.3</td>
<td>4.7</td>
<td>7.4</td>
<td>3.1</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>356-3960</td>
<td>No Provenience</td>
<td>OB</td>
<td>DC</td>
<td>16.6</td>
<td>3.5</td>
<td>5.1</td>
<td>4.4</td>
<td>2.7</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>356-4854</td>
<td>No Provenience</td>
<td>CC</td>
<td>DC</td>
<td>11.9</td>
<td>2.9</td>
<td>6.4</td>
<td>3.2</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-3139</td>
<td>No Provenience</td>
<td>OB</td>
<td>DC</td>
<td>13.6</td>
<td>3.6</td>
<td>5.6</td>
<td>3.2</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Max. Width</td>
<td>Neck Length</td>
<td>Proximal Neck Width</td>
<td>Distal Neck Width</td>
<td>Max. Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>--------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>356-3262</td>
<td>No Provenience</td>
<td>OB</td>
<td>DC/DG</td>
<td>22.8</td>
<td>13.1</td>
<td>4.1</td>
<td>5.9</td>
<td>4.9</td>
<td>3.1</td>
<td>0.6</td>
</tr>
<tr>
<td>356-2981</td>
<td>No Provenience</td>
<td>OB</td>
<td>DC/DG</td>
<td>25.6</td>
<td>15</td>
<td>5.3</td>
<td>9.3</td>
<td>10.4</td>
<td>3.5</td>
<td>1.2</td>
</tr>
<tr>
<td>356-3956</td>
<td>No Provenience</td>
<td>OB</td>
<td>DC/DG</td>
<td>28.2</td>
<td>13.9</td>
<td>4.7</td>
<td>8</td>
<td>3.2</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>356-2546</td>
<td>No Provenience</td>
<td>OB</td>
<td>DC/DG</td>
<td>14.5</td>
<td>4.9</td>
<td>9</td>
<td>9.4</td>
<td>3.5</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>356-979</td>
<td>No Provenience</td>
<td>OB</td>
<td>DC/DG</td>
<td>28.9</td>
<td>15.4</td>
<td>5</td>
<td>7.6</td>
<td>3.2</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>356-862</td>
<td>No Provenience</td>
<td>CR</td>
<td>DC/DG</td>
<td>17.4</td>
<td>4.4</td>
<td>5.3</td>
<td>6.6</td>
<td>3.6</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>356-811</td>
<td>No Provenience</td>
<td>CR</td>
<td>DC/DG</td>
<td>15.7</td>
<td>3.4</td>
<td>5.3</td>
<td>3.7</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-4220</td>
<td>No Provenience</td>
<td>CC</td>
<td>DC/DG</td>
<td>24.7</td>
<td>17.3</td>
<td>4.3</td>
<td>7.7</td>
<td>5</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>356-4333</td>
<td>No Provenience</td>
<td>OB</td>
<td>DC/DG</td>
<td>27.1</td>
<td>3.6</td>
<td>5.8</td>
<td>3.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-4819</td>
<td>No Provenience</td>
<td>OB</td>
<td>DC/DG</td>
<td>23.8</td>
<td>15.8</td>
<td>4.7</td>
<td>9.5</td>
<td>2.8</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>356-5582</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>17.8</td>
<td></td>
<td>6.8</td>
<td>3.4</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-423</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>18.5</td>
<td></td>
<td></td>
<td></td>
<td>2.9</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>356-1230</td>
<td>No Provenience</td>
<td>OB</td>
<td>DC</td>
<td>15.8</td>
<td>4.4</td>
<td>7.4</td>
<td>6.2</td>
<td>3.9</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>356-280</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>17.2</td>
<td></td>
<td></td>
<td></td>
<td>8.4</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>356-1801</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>28</td>
<td>16.2</td>
<td>3.6</td>
<td>6.8</td>
<td>4.7</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>356-3015</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>25.1</td>
<td>15.6</td>
<td>3.3</td>
<td></td>
<td>5.3</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>356-4913</td>
<td>No Provenience</td>
<td>CC</td>
<td>DE</td>
<td>21.4</td>
<td>16.5</td>
<td>3.6</td>
<td>6.2</td>
<td>5.7</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>356-1266</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>16.1</td>
<td></td>
<td></td>
<td></td>
<td>6.1</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>356-734</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>26</td>
<td>17.8</td>
<td>4.2</td>
<td></td>
<td>7.2</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>356-4387</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>21.9</td>
<td>16.6</td>
<td>3</td>
<td></td>
<td>4.5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>356-2525</td>
<td>No Provenience</td>
<td>CC</td>
<td>DE</td>
<td>23.8</td>
<td>18.2</td>
<td>4.5</td>
<td>7.9</td>
<td>6.9</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>356-2649</td>
<td>No Provenience</td>
<td>OB</td>
<td>DC/DG</td>
<td>25.2</td>
<td>20.4</td>
<td>4.9</td>
<td></td>
<td>8.9</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>356-418</td>
<td>No Provenience</td>
<td>CR</td>
<td>DC/DG</td>
<td>23.4</td>
<td>17.6</td>
<td>4.2</td>
<td></td>
<td>6.5</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>356-1757</td>
<td>No Provenience</td>
<td>OB</td>
<td>DC/DG</td>
<td>18.9</td>
<td>14.3</td>
<td>3.5</td>
<td></td>
<td>7.8</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>356-3798</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>17.2</td>
<td></td>
<td></td>
<td></td>
<td>7.3</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>356-1275</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>17.7</td>
<td></td>
<td></td>
<td></td>
<td>9.4</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>356-4221</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>23.9</td>
<td>15.6</td>
<td>3.6</td>
<td>5.1</td>
<td>4.4</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Max. Width</td>
<td>Neck Length</td>
<td>Proximal Neck Width</td>
<td>Distal Neck Width</td>
<td>Max. Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>--------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>356-2418</td>
<td>No Provenience</td>
<td>CC DE</td>
<td>19.3</td>
<td>16.8</td>
<td>1.1</td>
<td>5.8</td>
<td>3.8</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-5064</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>31.1</td>
<td>13.3</td>
<td>4.7</td>
<td>4.9</td>
<td>3.4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-1001</td>
<td>No Provenience</td>
<td>CC DE</td>
<td>26.9</td>
<td>15.4</td>
<td>4.1</td>
<td>5.8</td>
<td>3.9</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-4834</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>22.3</td>
<td>12</td>
<td>3.2</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-457</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>25.5</td>
<td>19.6</td>
<td>3.3</td>
<td>8.5</td>
<td>3.1</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-2637</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>30.5</td>
<td>20.8</td>
<td>4.9</td>
<td>8.9</td>
<td>4.4</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-4348</td>
<td>No Provenience</td>
<td>CR DE</td>
<td>21.1</td>
<td>3.7</td>
<td>10.6</td>
<td>3.4</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-1299</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>19</td>
<td>2.9</td>
<td>5.9</td>
<td>5.4</td>
<td>3.2</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-926</td>
<td>No Provenience</td>
<td>CC DE</td>
<td>33.9</td>
<td>18.6</td>
<td>4</td>
<td>6.4</td>
<td>5.5</td>
<td>3.9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>356-2066</td>
<td>No Provenience</td>
<td>OB DG</td>
<td>22.7</td>
<td>20.1</td>
<td>4.6</td>
<td>7.8</td>
<td>4.1</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-2918</td>
<td>No Provenience</td>
<td>CC CA</td>
<td>29</td>
<td>16.5</td>
<td>4.1</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-4262</td>
<td>No Provenience</td>
<td>OB DD</td>
<td>14.8</td>
<td>5.6</td>
<td>7.9</td>
<td>3.1</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-2590</td>
<td>No Provenience</td>
<td>OB DC</td>
<td>14.7</td>
<td>7</td>
<td>3</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-5641</td>
<td>No Provenience</td>
<td>OB DC</td>
<td>14.6</td>
<td>5.9</td>
<td>3.7</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-3829</td>
<td>No Provenience</td>
<td>CC DC</td>
<td>27.2</td>
<td>13.2</td>
<td>3.6</td>
<td>7.7</td>
<td>3.1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-5209</td>
<td>No Provenience</td>
<td>OB DD</td>
<td>33.4</td>
<td>12.9</td>
<td>4.4</td>
<td>10.6</td>
<td>3.2</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-1279</td>
<td>No Provenience</td>
<td>CC DG</td>
<td>38.6</td>
<td>11.3</td>
<td>3.2</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-2177</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>21</td>
<td>3</td>
<td>3.1</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-4922</td>
<td>No Provenience</td>
<td>OB DE</td>
<td>15.4</td>
<td>3</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-373</td>
<td>No Provenience</td>
<td>OB CA</td>
<td>15.4</td>
<td>3.1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Max. Width</td>
<td>Neck Length</td>
<td>Proximal Neck Width</td>
<td>Distal Neck Width</td>
<td>Max. Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>356-1066</td>
<td>No Provenience</td>
<td>OB</td>
<td>DZ</td>
<td>24.6</td>
<td>14.7</td>
<td>5.5</td>
<td>4.8</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>356-5063</td>
<td>No Provenience</td>
<td>OB</td>
<td>DZ</td>
<td>23.9</td>
<td>15.3</td>
<td>4.8</td>
<td>5.4</td>
<td>3.7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>356-1626</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>17.5</td>
<td>4.1</td>
<td>6.5</td>
<td>4.2</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-2549</td>
<td>No Provenience</td>
<td>OB</td>
<td>DZ</td>
<td>24.2</td>
<td>12.4</td>
<td></td>
<td>3.8</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-494</td>
<td>No Provenience</td>
<td>CC</td>
<td>DE</td>
<td>19.7</td>
<td>4.7</td>
<td>7.1</td>
<td>4.6</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-829</td>
<td>No Provenience</td>
<td>CR</td>
<td>DE</td>
<td>20</td>
<td>5.4</td>
<td>7.6</td>
<td>4.9</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-563</td>
<td>No Provenience</td>
<td>CR</td>
<td>DE</td>
<td>19</td>
<td>4.9</td>
<td>6.5</td>
<td>4.8</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-4836</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>15.4</td>
<td></td>
<td>8.2</td>
<td>4.2</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-3329</td>
<td>No Provenience</td>
<td>CC</td>
<td>DE</td>
<td>15.9</td>
<td>3.9</td>
<td>7.3</td>
<td>3.6</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-2942</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>14.2</td>
<td></td>
<td>6.7</td>
<td>3.9</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-5039</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>27.8</td>
<td>13.6</td>
<td>5.8</td>
<td>4.9</td>
<td>3.5</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>356-5360</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>29.9</td>
<td>18.5</td>
<td></td>
<td>7.5</td>
<td>14.5</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>356-8935</td>
<td>No Provenience</td>
<td>OB</td>
<td>CA</td>
<td>22.9</td>
<td>15.3</td>
<td>4.7</td>
<td>9.3</td>
<td>3.4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>356-4177</td>
<td>No Provenience</td>
<td>CC</td>
<td>DE</td>
<td>14.7</td>
<td>3</td>
<td>3</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-2741</td>
<td>No Provenience</td>
<td>CR</td>
<td>CZ</td>
<td>19.4</td>
<td>3</td>
<td>5</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-1235</td>
<td>No Provenience</td>
<td>CD</td>
<td>DZ</td>
<td>14.1</td>
<td>3.8</td>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-5092</td>
<td>No Provenience</td>
<td>OB</td>
<td>DZ</td>
<td>59.2</td>
<td>17.1</td>
<td>3</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-3959</td>
<td>No Provenience</td>
<td>OB</td>
<td>DZ</td>
<td>32.3</td>
<td>14.3</td>
<td>4.7</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-808</td>
<td>No Provenience</td>
<td>OB</td>
<td>DZ</td>
<td>29.9</td>
<td>18.5</td>
<td>5.8</td>
<td>4.8</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-3784</td>
<td>No Provenience</td>
<td>CC</td>
<td>DZ</td>
<td>27.2</td>
<td>17.8</td>
<td>2.4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-4833</td>
<td>No Provenience</td>
<td>CR</td>
<td>DZ</td>
<td>15.1</td>
<td>3.2</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-3274</td>
<td>No Provenience</td>
<td>CR</td>
<td>DZ</td>
<td>30.6</td>
<td>18.4</td>
<td>3.9</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-707</td>
<td>No Provenience</td>
<td>CC</td>
<td>DZ</td>
<td>15.7</td>
<td>3.6</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-4575</td>
<td>No Provenience</td>
<td>CC</td>
<td>DZ</td>
<td>14.4</td>
<td>4.2</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-5095</td>
<td>No Provenience</td>
<td>OB</td>
<td>DZ</td>
<td>13.6</td>
<td>3.1</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-944</td>
<td>No Provenience</td>
<td>CC</td>
<td>DZ</td>
<td>17.6</td>
<td>3.1</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-3065</td>
<td>No Provenience</td>
<td>OB</td>
<td>DZ</td>
<td>9.7</td>
<td>2.6</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-3720</td>
<td>No Provenience</td>
<td>CR</td>
<td>DZ</td>
<td>10</td>
<td>2.2</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-4561</td>
<td>No Provenience</td>
<td>CC</td>
<td>DZ</td>
<td>21.3</td>
<td>4.2</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-2664</td>
<td>No Provenience</td>
<td>CR</td>
<td>DZ</td>
<td>22.6</td>
<td>8.9</td>
<td>3.4</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-3955</td>
<td>No Provenience</td>
<td>CR</td>
<td>DZ</td>
<td>27.4</td>
<td>11.9</td>
<td>3.2</td>
<td>5.8</td>
<td>2.5</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>356-2587</td>
<td>No Provenience</td>
<td>CC</td>
<td>DG</td>
<td>22.3</td>
<td>22.1</td>
<td>3.6</td>
<td>6.7</td>
<td>4.7</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>356-278</td>
<td>No Provenience</td>
<td>CR</td>
<td>DZ</td>
<td>16.1</td>
<td>2.8</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-4009</td>
<td>No Provenience</td>
<td>CR</td>
<td>DE</td>
<td>25.2</td>
<td>18.3</td>
<td>3.7</td>
<td>4.8</td>
<td>4</td>
<td>3.7</td>
<td>1.1</td>
</tr>
<tr>
<td>356-112</td>
<td>No Provenience</td>
<td>CR</td>
<td>DZ</td>
<td></td>
<td>2.7</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-3769</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>25</td>
<td>15.5</td>
<td>10</td>
<td>2.8</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-1420</td>
<td>No Provenience</td>
<td>OB</td>
<td>DE</td>
<td>16.7</td>
<td>5.7</td>
<td>3.1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Max. Width</td>
<td>Neck Length</td>
<td>Proximal Neck Width</td>
<td>Distal Neck Width</td>
<td>Max. Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>283-1596</td>
<td>OB DE</td>
<td></td>
<td></td>
<td>20.1</td>
<td>3.4</td>
<td>6</td>
<td>3.5</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-1999</td>
<td>OB DE</td>
<td></td>
<td></td>
<td>32.2</td>
<td>15.8</td>
<td>5.9</td>
<td>2.2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-1998</td>
<td>OB DE</td>
<td></td>
<td></td>
<td>17.8</td>
<td>6.1</td>
<td>8.1</td>
<td>3.2</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>283-Y-718</td>
<td>OB DE</td>
<td></td>
<td></td>
<td>32.7</td>
<td>13.7</td>
<td>4</td>
<td>3.5</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-11705</td>
<td>CC DE</td>
<td></td>
<td></td>
<td>18</td>
<td>6.1</td>
<td>9.1</td>
<td>3.4</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-4643</td>
<td>CR DE</td>
<td></td>
<td></td>
<td>16.2</td>
<td>4.0</td>
<td>8</td>
<td>3.4</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-8927</td>
<td>CC DE</td>
<td></td>
<td></td>
<td>13.2</td>
<td>2.0</td>
<td>5.5</td>
<td>2.8</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-5817</td>
<td>OB DC</td>
<td></td>
<td></td>
<td>12.5</td>
<td>7.8</td>
<td>7.8</td>
<td>4.1</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-9074</td>
<td>OB DZ</td>
<td></td>
<td></td>
<td>18.5</td>
<td>4.5</td>
<td>4.5</td>
<td>3.5</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-Y7219</td>
<td>OB DC</td>
<td></td>
<td></td>
<td>11</td>
<td>5.0</td>
<td>4.5</td>
<td>3.4</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-128</td>
<td>CR DC</td>
<td></td>
<td></td>
<td>12.7</td>
<td>6.2</td>
<td>6.2</td>
<td>3.8</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-Y720</td>
<td>CR DE</td>
<td></td>
<td></td>
<td>16.4</td>
<td>6.5</td>
<td>6.5</td>
<td>4.1</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-Y721</td>
<td>OB DE</td>
<td></td>
<td></td>
<td>18.4</td>
<td>6.6</td>
<td>6.6</td>
<td>4.1</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-Y722</td>
<td>OB DE</td>
<td></td>
<td></td>
<td>16.5</td>
<td>5.6</td>
<td>5.6</td>
<td>3.8</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-Y723</td>
<td>OB DE</td>
<td></td>
<td></td>
<td>13.3</td>
<td>8.6</td>
<td>8.6</td>
<td>3.5</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>333-Y724</td>
<td>OB CA</td>
<td></td>
<td></td>
<td>28.2</td>
<td>16.5</td>
<td>16.5</td>
<td>2.9</td>
<td>12</td>
<td>4.9</td>
<td>2.1</td>
</tr>
<tr>
<td>509-3133</td>
<td>OB DE</td>
<td></td>
<td></td>
<td>17.3</td>
<td>2.6</td>
<td>8</td>
<td>6</td>
<td>4.2</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>509-3036</td>
<td>OB DC</td>
<td></td>
<td></td>
<td>13.6</td>
<td>5.0</td>
<td>6</td>
<td>3.1</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-6176</td>
<td>CC DE</td>
<td></td>
<td></td>
<td>18</td>
<td>7.6</td>
<td>6.1</td>
<td>3.1</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-2818</td>
<td>CC DE</td>
<td></td>
<td></td>
<td>17.4</td>
<td>8.6</td>
<td>8.6</td>
<td>4.2</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-Y697</td>
<td>OB DG</td>
<td></td>
<td></td>
<td>12.9</td>
<td>3.6</td>
<td>5.6</td>
<td>3.8</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-Y698</td>
<td>OB DE</td>
<td></td>
<td></td>
<td>30.4</td>
<td>15.1</td>
<td>6.7</td>
<td>3.1</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-Y699</td>
<td>OB DE</td>
<td></td>
<td></td>
<td>18.3</td>
<td>8.4</td>
<td>8.4</td>
<td>3.5</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-Y700</td>
<td>CC DE</td>
<td></td>
<td></td>
<td>31.4</td>
<td>14.6</td>
<td>14.6</td>
<td>3.4</td>
<td>7</td>
<td>3.6</td>
<td>1.3</td>
</tr>
<tr>
<td>395-Y701</td>
<td>OB DE</td>
<td></td>
<td></td>
<td>17</td>
<td>10.3</td>
<td>10.3</td>
<td>3.4</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-Y702</td>
<td>OB DE</td>
<td></td>
<td></td>
<td>13.7</td>
<td>5.8</td>
<td>5.8</td>
<td>3.2</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-Y703</td>
<td>OB DE</td>
<td></td>
<td></td>
<td>18.6</td>
<td>7.8</td>
<td>7.8</td>
<td>3.7</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-Y704</td>
<td>CC DE</td>
<td></td>
<td></td>
<td>18.9</td>
<td>9.0</td>
<td>9.0</td>
<td>3.9</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-Y705</td>
<td>CC DE</td>
<td></td>
<td></td>
<td>30.1</td>
<td>16.4</td>
<td>16.4</td>
<td>4.2</td>
<td>5.5</td>
<td>3.1</td>
<td>1</td>
</tr>
<tr>
<td>395-Y706</td>
<td>CR DE</td>
<td></td>
<td></td>
<td>15.1</td>
<td>6.1</td>
<td>6.1</td>
<td>2.7</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-Y707</td>
<td>CC DE</td>
<td></td>
<td></td>
<td>20.5</td>
<td>7.5</td>
<td>7.5</td>
<td>5.7</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-Y708</td>
<td>CC DE</td>
<td></td>
<td></td>
<td>18.1</td>
<td>7.6</td>
<td>7.6</td>
<td>4.4</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-Y709</td>
<td>OB DE</td>
<td></td>
<td></td>
<td>11.8</td>
<td>6.2</td>
<td>6.2</td>
<td>3.1</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-Y710</td>
<td>OB DE</td>
<td></td>
<td></td>
<td>15</td>
<td>7.2</td>
<td>7.2</td>
<td>3.8</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-Y711</td>
<td>OB DE</td>
<td></td>
<td></td>
<td>17.4</td>
<td>8.1</td>
<td>8.1</td>
<td>3.7</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-Y712</td>
<td>OB DE</td>
<td></td>
<td></td>
<td>20</td>
<td>9.3</td>
<td>9.3</td>
<td>4.3</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-Y713</td>
<td>OB DE</td>
<td></td>
<td></td>
<td>33.9</td>
<td>16.6</td>
<td>16.6</td>
<td>4.3</td>
<td>6.9</td>
<td>3.9</td>
<td>1.4</td>
</tr>
<tr>
<td>Accession</td>
<td>Provenience</td>
<td>Material</td>
<td>Projectile Point Type</td>
<td>Length</td>
<td>Max. Width</td>
<td>Neck Length</td>
<td>Proximal Neck Width</td>
<td>Distal Neck Width</td>
<td>Max. Thickness</td>
<td>Weight</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>------------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>395-Y-714</td>
<td>No Provenience</td>
<td>OB DE</td>
<td></td>
<td>18</td>
<td></td>
<td>9.9</td>
<td>3.6</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-Y-715</td>
<td>No Provenience</td>
<td>OB DE</td>
<td></td>
<td>28.7</td>
<td>16.3</td>
<td>5</td>
<td>9.1</td>
<td>3.7</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>395-Y-716</td>
<td>No Provenience</td>
<td>OB DE</td>
<td></td>
<td>16.2</td>
<td></td>
<td>7.2</td>
<td>3</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395-Y-717</td>
<td>No Provenience</td>
<td>OB DC</td>
<td></td>
<td>14.3</td>
<td>5.8</td>
<td>7.8</td>
<td>3.9</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>356-5448</td>
<td>No Provenience</td>
<td>CD CM</td>
<td></td>
<td>37.1</td>
<td>18.2</td>
<td></td>
<td></td>
<td>4.7</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>356-1802</td>
<td>No Provenience</td>
<td>CC DG</td>
<td></td>
<td>18.5</td>
<td>16.5</td>
<td>2.8</td>
<td>5.4</td>
<td>1.4</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>395 Y-661</td>
<td>No Provenience</td>
<td>OB DE</td>
<td></td>
<td>13.6</td>
<td></td>
<td></td>
<td></td>
<td>3.7</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>395 Y-662</td>
<td>No Provenience</td>
<td>OB DE</td>
<td></td>
<td>22.3</td>
<td>3</td>
<td>8</td>
<td>4.3</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395 Y-663</td>
<td>No Provenience</td>
<td>OB DE</td>
<td></td>
<td>19.3</td>
<td></td>
<td>7.8</td>
<td>2.6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395 Y-673</td>
<td>No Provenience</td>
<td>CC DE</td>
<td></td>
<td>21.5</td>
<td>17.3</td>
<td>2.8</td>
<td>8.4</td>
<td>3.3</td>
<td>0.9</td>
<td></td>
</tr>
</tbody>
</table>

Table B.5. Continued.
REFERENCES

Adovasio, J. M.

Andrefsky, Willam

Baumhoff, M., and J. Byrne

Berry, Michael S.
1972b The Evans Site. Special Report (limited distribution), Department of Anthropology,

Bettinger and Eerkens

Cozzens, D. Lynn.

Culin, Stewart.

Cushing, Frank H.

Dodd, Walter A.
Fowler, Don D.

Fowler, Don D., David B. Madsen, and Eugene M. Hattori

Geib, Phil R.

Geib, Phil R., Jim H. Collette, and Kimberly Spurr

Greaves, Russell D.

Hall, Molly A.

Hester and Heizer

Heizer R.F. and M.A. Baumhoff

Holmer, Richard N.

Holmer, Richard N. and D. G. Weder.

Janetski, Joel C.
1997 150 years of Utah Archaeology. *Utah Historical Quarterly* 65:100-133.

Janetski, Joel C. and Richard K. Talbot

Janetski, Joel C., Richard K. Talbot, Michael S. Berry, and Jack Broughton

Janetski, Joel, Ganaver Timican, Douglas Timican, Rena Pikyavit, and Rick Pikyavit

Jardine, Cady B.

Jennings, Jesse D.

Jones, Kevin T. and James F. O’Connel

Jones, George T., Charlotte Beck, Eric E. Jones, and Richard E. Hughes

Judd, Neil M.

Kardulias and Yerkes

Knecht, Heidi
Madsen, David B.

Madsen, David B. and La Mar W. Lindsay

Marwit, John P.

Marwit, John P.

Meighan, Clement C., Norman E. Coles, Frank D. Davis, Geraldine M. Greenwood, William M. Harrison, and E. Heath MacBain

Montgomery, Henry

Pecotte, Jera K.

Sammons-Lohse, Dorothy

Service, E.R

Steward, Julian H.

College of Southern Utah

Talbot, Richard K.
Talbot, Richard K., Lane D. Richens, James D. Wilde, Joel C. Janetski, and Deborah E. Newman

Talbot, Richard K., Shane A. Baker, and Lane D. Richens
2001 *The Right Place – Fremont and Early Pioneer Archaeology in Salt Lake City.* Museum of Peoples and Cultures Technical Series No. 03-07. Brigham Young University, Provo.

Thomas, David H
1981 How to Classify the Projectile Points from Monitor Valley, Nevada. *Journal of California and Great Basin Anthropology* 3:7-43

University of Utah, Salt Lake City.

Watkins, Christopher N.

Watkins, Christopher N. and Glen E. Rice

Whittaker, John C.

Wiessner, Polly

Wilde, James D. and Reed A. Soper

Wilmsen, L.A., and F.H.H Roberts

Woodburn, James M.