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ABSTRACT

MEASURING SKILL IMPORTANCE IN WOMEN’S SOCCER AND

VOLLEYBALL

Michelle L. Allan

Department of Statistics

Master of Science

The purpose of this study is to demonstrate how to measure skill importance for

two sports: soccer and volleyball. A division I women’s soccer team filmed each home

game during a competitive season. Every defensive, dribbling, first touch, and pass-

ing skill was rated and recorded for each team. It was noted whether each sequence

of plays led to a successful shot. A hierarchical Bayesian logistic regression model is

implemented to determine how the performance of the skill affects the probability of

a successful shot. A Division I women’s volleyball team rated each skill (serve, pass,

set, etc.) and recorded rally outcomes during home games in a competitive season.

The skills were only rated when the ball was on the home team’s side of the net.

Events followed one of these three patterns: serve-outcome, pass-set-attack-outcome,

or dig-set-attack-outcome. We analyze the volleyball data using two different tech-

niques, Markov chains and Bayesian logistic regression. These sequences of events are

assumed to be first-order Markov chains. This means the quality of the current skill

only depends on the quality of the previous skill. The count matrix is assumed to fol-

low a multinomial distribution, so a Dirichlet prior is used to estimate each row of





the count matrix. Bayesian simulation is used to produce the unconditional posterior

probability (e.g., a perfect serve results in a point). The volleyball logistic regression

model uses a Bayesian approach to determine how the performance of the skill af-

fects the probability of a successful outcome. The posterior distributions produced

from each of the models are used to calculate importance scores. The soccer data

importance scores revealed that passing, first touch, and dribbling skills are the most

important to the primary team. The Markov chain model for the volleyball data

indicates setting 3–5 feet off the net increases the probability of a successful outcome.

The logistic regression model for the volleyball data reveals that serves have a high

importance score because of their steep slope. Importance scores can be used to as-

sist coaches in allocating practice time, developing new strategies, and analyzing each

player’s skill performance.
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1. INTRODUCTION

A sports team is ranked according to how well they perform during a game. The

ultimate reflection of a team’s performance is based on the number of points the team

scores during a game or the number of games the team wins during a season. The

number of points that a team scores during a game is ultimately based on how well

the team performs key skills. During a game, the coach evaluates the performance

of the players and determines how well the team performs key skills. Understanding

how the performance of skills relates to the scoring of points would be useful for

athletes and coaches in all sports. If a team can quantitatively understand how their

performance of skills relates to the number of points scored, the coach could then

adjust the team’s practice time to focus on improving the performance of these key

skills.

A division I university women’s soccer team used a notational analysis system

to analyze their skill performance and the skill performance of ten of their opponents

during the 2005 competitive season. Each game was filmed and all defensive, drib-

bling, first touch, and passing skills were evaluated and recorded for each team. Each

of the skills was evaluated using a grading rubric in order to evaluate how well the

skill was performed. The grading rubric for each skill varied according to the number

of distinct ways to classify the performance of a skill.

A division I university women’s volleyball team used a similar notational anal-

ysis system to evaluate their skill performance during the 2006 competitive season.

Each serve, pass, attack, and dig was evaluated and recorded as the skill was per-

formed. Sets were evaluated and recorded after viewing the game film. Each skill was

evaluated using a grading rubric in order to quantify how well the skill was performed.

To determine the impact of each skill in scoring a point, importance scores are

used. Fellingham and Reese (2004) suggest that by analyzing posterior distributions, a
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measure could be created that accounts for the impact and the amount of uncertainty

in performing a skill. Importance scores could be useful to coaches since they would

indicate how the impact of a particular skill relates to the probability of a successful

outcome. Importance scores would also be useful because they would allow coaches

to compare skill performance across teams.

In this paper we explore two different methods of measuring skill importance

using data from two sports: soccer and volleyball. For the volleyball data, we use a

Markov chain transition matrix and Gibbs sampling to arrive at posterior distribu-

tions. For the soccer data, we use Bayesian hierarchical methods in conjunction with

logistic regression to compute the posterior distributions. The two methods of com-

puting importance scores are used to quantify how the performance of skills relates

to the scoring of points. A more precise way to quantify skill importance would allow

coaches to allocate practice time more efficiently so the team could work on skills

that increase the probability of scoring points.
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2. LITERATURE REVIEW

The literature review is divided into eight parts. Section 2.1 discusses Bayesian

models and two techniques used to draw samples from the posterior distribution.

Section 2.2 reviews previous research in soccer. Section 2.3 discusses hierarchical

Bayesian logistic regression. Section 2.4 reviews previous research in volleyball. Sec-

tion 2.5 explains properties of Markov chains and methods used to estimate transition

probabilities. Section 2.6 explores Bayesian estimates to Markov chains. Section 2.7

discusses how to use importance scores to calculate skill importance.

2.1 Bayesian Models

2.1.1 Theory of Bayesian Models

Bayes theorem was presented by Thomas Bayes in the Essay Towards Solving

a Problem in the Doctrine of Chances in 1764. Bayesian models incorporate Bayes

theorem, which states

π(θ|y) =
f(y|θ)π(θ)∫
f(y|θ)π(θ)dθ

, (2.1)

where π(θ|y) is the posterior distribution, f(y|θ) is the likelihood, π(θ) is the prior

distribution, y is the data vector, and θ is the vector of parameters (Gelman et al.

2004). The parameters of the prior distribution are based on an individual’s a priori

knowledge, or belief before the data are collected. The denominator of Equation 2.1

is referred to as the normalizing constant. Often the normalizing constant is difficult

to find because the integral is so complicated.

Conjugacy is defined as follows. If F is a class of sampling distributions from

f(y|θ) and P is a class of sampling distributions from π(θ), then P is conjugate for

F if
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π(θ|y) ∈ P for all f(·|θ) ∈ F and f(·) ∈ P . (2.2)

Of most interest are natural conjugate prior families. Natural conjugate families occur

when the prior distribution has the same functional form as the likelihood. Conjugate

priors are useful because draws can be obtained directly from the posterior distribu-

tion using Gibbs sampling, a simple case of Markov chain Monte Carlo (Gelman et

al. 2004).

2.1.2 Methods to Sample from the Posterior Distribution

In some simple Bayesian models, it is possible to draw directly from the pos-

terior distribution. This often happens when the prior distributions are conjugate.

Usually, however, Bayesian models yield complex posteriors which cannot be sampled

from directly. Thus, a different approach is needed to make draws from the poste-

rior distribution. Markov chain simulation, also known as Markov chain Monte Carlo

(MCMC), is the most common posterior simulation method. The goal of MCMC sim-

ulation is to draw values of θ from approximate distributions and then correct those

draws to model the target posterior distribution. The samples are drawn sequentially,

so the distribution of the sampled draws depends on the previous value drawn. Thus,

the sequence of draws forms a Markov chain. There are different ways to draw from

the posterior distribution using Markov chains. Two posterior simulation techniques

that are commonly used are Gibbs sampling and Metropolis-Hastings (Gelman et al.

2004).

Gibbs Sampling

Each iteration of the Gibbs sampler (also called alternating conditional sampling) is

dependent on the value of the previous iterations. The Gibbs sampler updates each

of the k parameters. The Gibbs sampler algorithm is as follows (Gelman et al. 2004):
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(1) Start by assigning initial values θ(0) = (θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
k ), where θ(0) can be

any value that is located inside the parameter space.

(2) Let i = 1.

(3) Generate a θ
(i)
1 from the complete conditional distribution

[θ1|θ(i−1)
2 , θ

(i−1)
3 , . . . , θ

(i−1)
k , y], which is the conditional distribution of θ1 given

the most recent values of all the other parameters.

(4) Generate a θ
(i)
2 from the complete conditional distribution,

[θ2|θ(i)
1 , θ

(i−1)
3 , . . . , θ

(i−1)
k , y].

(5) Continue this process until a value for θ
(i)
k has been generated from the com-

plete conditional distribution, [θk|θ(i)
1 , θ

(i)
2 , . . . , θ

(i)
k−1, y].

(6) These draws form the vector θ(i) = (θ
(i)
1 , θ

(i)
2 , . . . , θ

(i)
k ).

(7) Repeat steps three through six for i = 2, . . . ,M .

As the limit of M goes to infinity, θ(M) converges to the joint posterior distribu-

tion π(θ|y), provided that the Markov chain is aperiodic and irreducible (Ross 1996).

Metropolis-Hastings

The Metropolis-Hastings algorithm uses an acceptance/rejection rule to draw sam-

ples from the appropriate distribution. The algorithm that implements Metropolis-

Hastings is as follows (Gelman et al. 2004):

(1) Start by assigning an initial value to θ0, where θ0 can be any value that is

located inside the parameter space.

(2) Let i = 1.
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(3) Generate a candidate value θ∗ from a candidate density, p(θ∗|θi−1). p(θ
∗|θi−1)

needs to be a distribution from which one can sample. p(θ∗|θi−1) is often

chosen to be a symmetric distribution so some of the computations can be

simplified.

(4) Let α(θi−1, θ
∗) = g(θ∗)p(θ∗|θi−1)

g(θi−1)p(θi−1|θ∗) , where α(θi−1, θ
∗) is the probability of accept-

ing a move from θi−1 to θ∗, and g(·) is the unnormalized posterior distribution.

(5) Generate a value ui ∼ Uniform(0, 1) .

(6) If ui < α(θi−1, θ
∗) then θi = θ∗, else let θi = θi−1.

(7) Repeat steps three through six for i = 2, . . . ,M .

As the limit of M goes to infinity, θ1, θ2, . . . , θM converges to the target distri-

bution. The convergence occurs if the Markov chain is irreducible, aperiodic, and not

transient (Gelman et al. 2004).

The Metropolis-Hastings algorithm is used most often in conjunction with

the Gibbs sampler. If the complete conditionals cannot be directly sampled, the

Metropolis-Hastings algorithm is then used.

2.2 Previous Research in Soccer

Pollard and Reep (1997) state that because of the importance of winning, any-

thing that gives a soccer coach a slight advantage over other teams is worthy of

investigation. Performance analysis allows coaches to quantify the performance of

skills to see how they influence the outcome of the game. Various performance indi-

cators have been developed to assess the impact of the performance of a skill in soccer

(Reep and Benjamin 1968; Ali 1988; Bate 1988; Pollard and Reep 1997; Hughes and

Bartlett 2002). Hughes and Bartlett (2002) report that analysts and coaches use
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performance indicators to assess the performance of a team. Performance indicators

are usually related to an outcome, and they can be used to compare two teams.

Thomas (2005) develops a notational analysis system for women’s college soccer

and uses a Bayesian regression approach to model the outcome as a function of the

standardized performance score. Her technique calculates standardized performance

scores for four skills: defense, passing, first touch, and dribbling. The study looks

at a particular team’s home games and analyzes their performance against their op-

ponents’ performance. Thus, she is interested in the difference between performance

scores of the home team and the away teams. She looks at the overall importance

scores for the four skills to determine which skills were most important to the outcome.

Hughes and Franks (2005) use a negative binomial approach to relate the length

of a passing sequence to the number of goals scored by the team. This study uses

the databases from the 1990 and 1994 FIFA world cup finals. They define a passing

sequence as the number of passes that are performed before a shot is taken. In the

1990 world cup finals, they found that 84% of the goals came from passing sequences

that are four passes or less. The 1994 world cup finals revealed that 80% of the goals

came from passing sequences that were four passes or less. They note that this might

be a facet of the data because more short passes are performed than long passes.

This study also shows that if the teams have the skill to sustain possession for longer

periods of time, the probability of scoring a goal increases, but the conversion ratio

of shots to goals for longer possessions decreases.

McHale and Scarf (2007) use negative binomial and bivariate Poisson copulas

to show the relationship between skills and shots. They analyze 1,048 soccer matches

and record how many key skills are performed for the home and away teams. Some

of the skills they recorded are the number of goals, shots, crosses, dribbles, passes

made, and interceptions. Their study shows that passes and crosses characterize a

successful team. In particular, they show that away teams are more likely to convert
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crosses to shots than home teams.

Van Calster and Van Huffel (2008) analyze teams from fifty domestic leagues

for three seasons from 2003 to 2006. They record the number of goals scored (offen-

sive ability) and the number of goals allowed (defensive ability) per game . A team’s

overall ability is measured by the mean number of points scored per game. A team’s

entertainment ability is measured by the mean number of goals scored during a game;

this includes the number of goals scored and the number of goals allowed. A team’s

overall, defensive, offensive, and entertainment ability are used to predict the per-

centage of scoreless draws for the team. Using two different methods, least squared

support vector machines for regression and the hybrid Monte Carlo algorithm, this

study indicates that a team’s overall ability is related to the percentage of scoreless

draws, with average teams having more scoreless draws. They also note that the

defensive and offensive ability of a team affects the percentage of scoreless draws.

The project that we propose builds on the previous work in performance anal-

ysis of women’s soccer and adds an extra dimension. Most research uses quantified

offensive, defensive, and passing skills as an overall metric. Van Calster and Van Huf-

fel (2008) incorporate offensive and defensive skills by counting the number of goals

scored and the number of goals allowed. Hughes and Franks (2005) look at how the

number of passes before a shot affects the probability of a goal.

Thomas (2005) actually looks at rating each individual skill as it is performed

during the game to see how the performance of an individual skill can affect the

probability of a shot or goal for a team or the opponent. This project adds an extra

dimension to Thomas (2005) as it uses Bayesian logistic regression and hierarchical

modeling to incorporate how the performance of a skill relates to the probability of

taking a successful shot. A shot is considered successful if it is on target or a goal is

made. A shot is on target if the shot is blocked by the goalie. The data set used for

this analysis is provided by a division I women’s soccer team and includes a rating

8



for every skill performed during ten home game soccer matches. The skill importance

for the primary team and its ten opponents will be calculated to compare how each

of the teams performed key skills relative to each other.

2.3 Hierarchical Logistic Regression

Gelman et al. (2004) state that hierarchical models can be used when an appli-

cation involves many parameters that are thought to be related in some way by the

nature of the problem. This means that the joint probability model for these param-

eters should reflect this dependence. A natural way to model this dependence is to

allow the prior distribution for each of the dependent parameters to be a sample from

a common population distribution. Each team has their own coefficient for recording

how a particular skill affects the probability of a successful shot. Using hierarchical

modeling, we will allow each parameter associated with the performance of a specific

skill to come from a common population distribution. Each team’s parameter is a

draw from that distribution. Note that this still allows some teams to perform the

skills better than others.

With soccer, we are concerned with whether or not a shot is successful. Whether

or not a shot is successful depends on the performance of the skills leading up to a

shot. Thus, logistic regression is used to relate the quality of the skills leading up to

a shot to the probability of a successful shot. Logistic regression uses the log odds

ratio to relate the quality of skills performed to whether or not those skills resulted

in a successful shot.

A binary regression model can be created using logistic regression. One of the

most common transformations used in logistic regression is the logit link. The logit

link, which is in terms of the log odds ratio, is defined as

log

(
pi

1− pi

)
= α + βxi, (2.3)
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where pi is the probability of a successful outcome for observation i, α is the overall

intercept, β is the effect associated with covariate x, and xi is the ith observation of

covariate x (Gelman et al. 2004).

We will expand the simple logistic regression model, shown in Equation 2.3,

to incorporate the hierarchical modeling associated with the four skills, and we will

allow α to change with each team.

2.4 Previous Research in Volleyball

Zetou et al. (2007) explain how the statistical evaluation of a team’s skill per-

formance helps considerably with the development of the game of volleyball. Un-

derstanding how the performance of skills relates to the scoring of points is useful

for athletes and coaches. Hughes and Daniel (2003) state that volleyball has not

benefited from in-depth performance analyses. Considerable research has been done

on developing notational analysis in volleyball. The notational analysis that is most

commonly used was developed by Coleman (1975). Florence and Fellingham (2008)

use a notational analysis that not only grades the performance of skills but bases the

performance of skills on the outcome of the rally or the opponent’s performance.

Hughes and Daniel (2003) focus on understanding the playing patterns of elite

and non-elite volleyball teams by using a notational analysis system. They filmed

twenty sets to analyze the technical, tactical, and court utilization of elite and non-

elite volleyball teams. They use Chi-square tests to show that there is a significant

difference between the playing patterns of elite and non-elite volleyball. This analysis

shows that elite teams are significantly better at serving and receiving than the non-

elite teams. This study also shows that the quality of the attack is dependent on the

quality of the set, and that the quality of the set is dependent on the quality of the

defense or the reception of the serve.

Yiannis and Panagiotis (2005) compare the effectiveness of five key skills in
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men’s volleyball between the Sydney 2000 and the Athens 2004 Olympic Games.

This study uses Chi-square tests to compare the results for each of the elite teams

across Olympic Games, and t-tests are used to compare the effectiveness of each team

to the overall mean. They show that from the 2000 to 2004 Olympic Games there was

a general trend of decreasing the proportion of mistakes performed on all the skills.

In particular, this study shows that during the 2004 Olympic Games, Brazil, the gold

medalist, performed their reception and attack skills far better than the teams they

competed against.

Zetou et al. (2007) analyze the playing characteristics of teams to determine

which characteristics led to a win and contributed to the final ranking of the teams.

Discriminant analysis is used to determine which characteristics significantly con-

tribute to a win or loss for Olympic volleyball teams. To determine which skills are

most important for a win or a loss, stepwise selection is used. The jackknife (leave-

one-out) method is used to determine the accuracy of the classifications. The study

shows that for a serve-reception skill, the best predictor of a win is the receiver’s

ability to make the best reception possible so the setter can set for a first tempo

attack or to set a high set to the outside hitter in zone four or two. For the attack

from reception skill, the analysis shows that an “ace-point” is the most significant

predictor in determining a winning team.

Florence and Fellingham (2008) use Bayesian models to estimate the proba-

bility of transitioning from one skill to another skill. Markov chain Monte Carlo

methods are used to produce draws from the posterior distribution. This study cal-

culates unconditional probabilities of moving from one skill to a specific outcome.

The unconditional probabilities indicate ways to improve notational analysis and the

performance of volleyball skills. They note that rating a passer according to pass-

ing average is not appropriate because the difference between a one-point pass and

a two-point pass is not equivalent to the difference between a two-point pass and
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a three-point pass. They also show that to increase the probability of a successful

outcome, the passers should target their pass further off the net. The analysis also

shows that if back sets that are high and inside are avoided, the attack has a higher

probability of being successful.

This project builds on previous research but adds an extra dimension by clas-

sifying the importance of performing an individual skill on a specific outcome. We

use the same approach discussed by Florence and Fellingham (2008) to calculate the

unconditional probabilities of moving from one skill to a specific outcome, produced

by Gibbs sampling. The data set used for this analysis was provided by a division

I volleyball team, and includes a rating for every skill that was performed during

the 2006 competitive season. We use the posterior distributions produced from the

unconditional probabilities to calculate the importance scores for each skill. This en-

ables us to see which skills are considered the most important when trying to perform

skills with a successful outcome.

2.5 Markov Chains

2.5.1 Properties of Markov Chains

Volleyball skills are performed in a fairly rigid pattern (e.g., pass-set-attack).

Thus, it makes sense to treat these volleyball patterns as Markov chains. Therefore,

we approach the problem by treating the skills performed by the division I women’s

volleyball team as states and estimating the probability of transitioning from one

state to another state. A Markov chain is a sequence of random variables in which

the value of the current random variable depends only on the value of the previous

random variable. More formally, a Markov chain is defined as

P [Xn+1 = xn+1|X0 = x0, X1 = x1, . . . , Xn = xn] = P [Xn+1 = xn+1|Xn = xn], (2.4)

where X is a random variable and xn is the state in the Markov chain sequence that
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occurred at time n (Stewart 1994). The transition probability matrix contains all the

probabilities of transitioning from one state to another state.

Properties of Markov chains allow every state to be included in the transition

probability matrix. A state is recurrent if the probability of ever returning to the

state is one. This means that the Markov chain will return to this state in the future.

A transient state means the probability of ever returning to that state is less than

one. When state j is recurrent, the mean recurrence time, Mjj, of state j is defined

as

Mjj =
∞∑
n=1

nf
(n)
jj , (2.5)

where n is the number of steps and f
(n)
jj is the probability of transitioning from state

j to state j in n steps. If state j is recurrent and Mjj is finite, then state j is called a

positive-recurrent state (Stewart 1994, Ross 1996). If every state can be transitioned

to from every other state, then the Markov chain is irreducible (Ross 1996). If it is

only possible to return to a given state in a number of transitions that is a multiple of

p, then the given state is said to be periodic with period p, where p > 1. When p = 1,

the state is said to be aperiodic (Stewart 1994). This means the state can transition

to itself in one step. The invariant (stationary) distribution exists if the Markov

chain is irreducible, aperiodic, and the states are positive recurrent. The invariant

distribution can also be defined in another way. A probability distribution z, where z

is the vector of elements containing the probabilities of transitioning from state i to

any other state, is defined as the invariant distribution if and only if z = zP, where

P is the transition probability matrix (Stewart 1994). It is important for Markov

chains to converge to the invariant distribution, especially when using Markov chain

Monte Carlo simulation (see section 2.5).
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2.5.2 Estimating Transition Probabilities

Many different methods have been used to estimate transition probabilities.

Miller (1952) and Tesler (1966) use the least squares method to estimate the transi-

tion probabilities when only sample proportions are available from time series data.

A problem with this method is that sometimes the least squares method results in

negative estimates of the transition probabilities. Thus, new techniques are devel-

oped in order to allow for restrictions to be placed on the estimates of the transition

probabilities. Restricted least squares is based on a quadratic programming itera-

tion method that is proposed by Lee et al. (1965) and Theil and Rey (1964). This

estimation method does not account for heteroscedasticity and is not asymptotically

efficient, as noted by Mandansky (1959). Mandansky (1959) suggests using weighted

least squares to help correct the problem of heteroscedastic errors.

Lee et al. (1968) conduct a study to compare classical least squares, weighted

least squares, maximum likelihood, and Bayesian estimates of the transition prob-

abilities. The Bayesian estimator of the transition probability matrix is computed

using a multinomial likelihood and a Dirichlet prior. A first-order stationary Markov

chain with four states is used to generate 50 samples of size 25, 50, and 100. To eval-

uate the performance of each of the transition probability estimators, the root mean

square error is calculated for each transition probability matrix. The study also uses

an overall root mean square error, Wilcoxon matched-pair signed-rank test, Kendall’s

coefficient of concordance, and Kolmogorov-Smirnov’s goodness-of-fit test to evaluate

the performance of each of the estimators. The study finds that the Bayesian estima-

tor performs better than the classical least squares, weighted least squares, and the

maximum likelihood estimators using the above criterion.
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2.6 Bayesian Estimation of Markov Processes

When estimating transition probabilities using a Bayesian approach, many re-

searchers use a multinomial likelihood with a Dirichlet prior distribution (Lee et

al. 1968; Meshkani and Billard 1992; Assoudou and Essebbar 2003; Zhao et al.

2005). Other Bayesian methods of estimating transition probabilities include Jef-

frey’s prior distribution or a normal prior distribution (Assoudou and Essebbar 2003

and Cargnoni et al. 1997).

Assoudou and Essebbar (2003) conducted a simulation study comparing the

maximum likelihood estimator of the transition probabilities to the Bayesian estima-

tors using Jeffrey’s prior distribution and a Dirichlet prior distribution. This study

simulated 20 two-state Markov chains with a sample size of 21. The study also sim-

ulated 10 three-state Markov chains with a sample size of 61. For the two-state and

three-state Markov chains, the study showed that both the Jeffrey’s and Dirichlet

prior Bayesian estimators of the transition probabilities have a smaller mean square

error than the maximum likelihood estimator. Thus, the Bayesian estimators perform

better than the maximum likelihood estimator.

To calculate Bayesian estimates of the transition probabilities, the posterior

mean or mode is often used (Lee et al. 1968; McKeigue et al. 2000; Ozekici and

Soyer 2003). Degroot (1970) illustrated that the expected value of the posterior dis-

tribution is the best performing Bayesian estimator when compared to the quadratic

loss function.

2.7 Importance Scores

Fellingham and Reese (2004) suggest that in order to measure the impact and

uncertainty in performing a specific skill, importance scores should be calculated.

Thus, for a specific team, they define the coefficient of skill importance as the ratio

15



Ii =
E(βi|Y )√
V (βi|Y )

,

where i corresponds to the skill and βi indicates the coefficient associated with skill i.

This provides the ability to obtain an importance score for each skill for every team.

The importance scores within a team are ordered from largest to smallest. The

larger importance scores indicate that these skills are more important in performing

a successful outcome. An advantage of importance scores is the ability to incorporate

not only the impact in performing specific skills, but also the uncertainty. Since

uncertainty is associated with sample size, the skills that are performed the most

often receive larger importance scores. Thus, when comparing importance scores

across teams, the magnitude of the importance scores should not be compared. Only

the ordering of importance scores between teams should be compared.

Fellingham and Reese (2004) were interested in determining skill importance

for the United States Men’s National Volleyball Team. To determine which of the

skills the United States Men’s National Volleyball Team needed to improve, they

analyzed the skill performance of the following teams: the United States, Brazil,

France, Yugoslavia, Italy, Argentina, Cuba, Russia, Greece, and the Netherlands.

They created two models. One model separated attack by position and attack by

front or back row. Another model combined all the attacks into one category and

created a new category called defend. Using importance scores, this study found that

attacking is the most important skill. In particular, for the model that separated

attacks by position and front and back row, five out of the seven top skills are related

to kills. Using the attack/defend model, the most important skill was the attack kill.
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3. PAPER FOR THE JOURNAL OF QUANTITATIVE ANALYSIS IN SPORTS

3.1 Introduction

A sports team’s success is determined by the number of contests won during a

season. Winning a contest generally means scoring more points than the opponent.

The number of points that a team scores during a game is primarily based on how well

the team performs key skills. Understanding how the performance of skills relates to

the scoring of points is useful for athletes and coaches in all sports. If a coach can

quantitatively understand how the performance of various skills relates to the number

of points scored, the coach could then adjust the team’s practice schedule to focus on

improving the performance of key skills that are more closely tied to point scoring.

To determine the impact of each skill in scoring a point, Fellingham and Reese

(2004) suggest the use of importance scores. An importance score would be a measure

that could account for both the impact and the amount of uncertainty associated with

the performance of a skill relative to the probability of scoring a point. Importance

scores would be useful to coaches since they indicate how the impact of a particular

skill relates to the probability of a successful outcome. Importance scores would also

allow coaches to compare skill performance across teams.

A division I women’s volleyball team used a notational analysis system to eval-

uate their skill performance during the 2006 competitive season. Each serve, pass,

attack, and dig was evaluated and recorded as the skill was performed. Sets were

evaluated and recorded after viewing the game film. Each skill was evaluated using

a grading rubric in order to quantify how well the skill was performed.

We explore two different methods of measuring skill importance using this data

from women’s volleyball. One method uses a Markov chain transition matrix and

Gibbs sampling to arrive at posterior distributions for parameters associated with
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skill performance. The second method uses Bayesian logistic regression to compute

the posterior distributions. These posterior distributions are then used to compute

importance scores. The two methods of computing importance scores are then com-

pared relative to the importance associated with various skills.

Section 3.2 examines previous research in skill importance and volleyball. Sec-

tion 3.3 discusses the data. Section 3.4 explains the methodology used to calcu-

late posterior distributions using logistic regression and Markov chains. Section 3.5

presents the importance scores. Lastly, section 3.6 compares the results from the two

methods.

3.2 Literature Review

3.2.1 Measuring Skill Importance

In order to measure skill importance, we use the importance score, a metric

suggested by Fellingham and Reese (2004). For a specific team, they define the

coefficient of skill importance as the ratio

Ii =
E(βi|Y )√
V (βi|Y )

,

where i corresponds to the skill and βi indicates the posterior distribution associated

with skill i given the data, Y . This provides the ability to obtain an importance score

for each skill. The importance score incorporates not only the impact of a specific

skill (E(βi|Y )), but also the uncertainty associated with the performance (V (βi|Y )).

Thus, a skill whose association with scoring a point is less certain will be penalized

when using this metric when compared to a skill where performance at a given level

is more closely associated with a positive outcome.
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3.2.2 Previous Research

Considerable research has been done on developing notational analysis in vol-

leyball (Zetou et al. 2007). The notational analysis that is most commonly used

was developed by Coleman (1975). Florence and Fellingham (2008) used a notational

system to evaluate skills in women’s volleyball. They concluded the target area for a

pass should be further from the net.

Hughes and Daniel (2003) focused on understanding the playing patterns of

elite and non-elite volleyball teams. Their analysis showed that elite teams were

significantly better at serving and receiving than non-elite teams. The study also

showed that the quality of the attack was dependent on the quality of the set, and

that the quality of the set was dependent on the quality of the defense or the reception

of the serve.

Yiannis and Panagiotis (2005) compared the effectiveness of five key skills in 10

men’s volleyball matches that occurred between the Sydney 2000 and the Athens 2004

Olympic Games. They showed that from the 2000 to 2004 Olympic Games there was

a general trend of decreasing the proportion of mistakes performed on all the skills.

In particular, the study showed that during the 2004 Olympic Games, Brazil, the

gold medalist, performed their reception and attack skills far better than the teams

they competed against.

Zetou et al. (2007) explained how the statistical evaluation of a team’s skill

performance helped considerably with the development of the game of volleyball.

Their study showed that for a serve-reception skill, the best predictor of a win was

the receiver’s ability to make the best reception possible so the setter could set for

a first tempo attack or set a high set to the outside hitter in zone four or two. For

the attack from reception skill, the analysis showed that an “ace-point” is the most

significant predictor in determining a winning team.
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3.3 The Data

The data were collected during the 2006 competitive season of a women’s di-

vision I volleyball team. During each home game, the game was recorded, and the

skills were analyzed when the ball was on the home team’s side of the net. Thus,

these data come from a single team. Using the performance scoring system developed

by Coleman (1975) as a guide and consulting the expertise of volleyball coaches and

researchers, each technique was rated. The women’s volleyball data were recorded

into a system called Data Volley (Data Project, Salerno, Italy, release 2.1.9). The

grading system of the skills was created based on the number of codes Data Volley

could handle.

Serves were rated on a five-point (0–4) scale, passes on a six-point (0–5) scale,

and digs on a six-point (0–5) scale. Attacks were noted by position on the court (back

row, left side, right side, middle, etc.). Sets were rated according to distance from the

net (0–3 feet, 3–5 feet, etc.). A detailed breakdown of all the skill ratings are shown

in Table 3.1. There were three possible outcomes: (1) point for the home team, (2)

rally continuation, or (3) point for the visiting team.

During a game, a trained member of the volleyball team’s coaching staff rated

and recorded every serve, pass, dig, and attack performed by the team during the 13

home games in the 2006 season. When a set occurred, a default code was inserted

into the system so that the set could be rated later while looking at the film of the

game. Only serves and attacks for the opposing team were recorded. This was done

to determine when the ball crossed the net. The score of the game was determined

at the end of the rally by noting which team was the next to serve. Since the data

set only consisted of touches on the primary team’s side of the net, a continuation

of a rally was determined by seeing if the ball came back to the primary team’s side

during a rally.
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Table 3.1: Performance ratings for all the skills.

Skill Performance Rating

Serves
Ace Serve 4

3-point Serve 3
2-point Serve 2
1-point Serve 1
Service error 0

Passes
4-point Pass 5
3-point Pass 4
2-point Pass 3
1-point Pass 2

Overpass 1
Passing error 0

Digs
5-point Dig 5
4-point Dig 4
3-point Dig 3
2-point Dig 2
1-point Dig 1

Digging error 0
Set Distances

3–5 feet 3
0–3 feet 2
5–8 feet 1

8–10 feet 0
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3.4 Methods for the Volleyball Analyses

Since importance scores were defined in terms of Bayesian techniques, Bayesian

methods were used for the analyses. The framework presented by Lindley (1964) and

Leonard (1972) were used to construct the Bayesian logistic regression models. The

work of Lee et al. (1968) and Assoudou and Essebbar (2003) was used as a guide to

construct the first-order Markov chain model.

3.4.1 Markov Chain Approach

Whenever the ball was on the primary team’s side of the net, one of the following

sequences of events occurred: serve-outcome, pass-set-attack-outcome, or dig-set-

attack-outcome. There were three possible outcomes: a point for the primary team,

a point for the opponent, or a continuation of the rally.

We assumed that these sequences of events (serve-outcome, pass-set-attack-

outcome, and dig-set-attack-outcome) were first-order Markov chains. We represented

these sequences in a transition matrix where the elements of the matrix comprise the

probability of moving from one state to another state (e.g., a four-point pass to a set

3–5 feet off the net).

The 36 × 36 transition matrix contained the transitions for float serves, jump

serves, passes, set distances off the net, attacks, digs, and possible outcomes. There

were five different ratings for both float and jump serves, six ratings for passes, four

ratings for sets, seven places for attacks (left, right, middle, back row, set dump, out

of system, and over pass attack), six ratings for digs, and three outcomes of a rally

(continuation, point for home team, point for visiting team). Thus, the transition

matrix had 5 + 5 + 6 + 4 + 7 + 6 + 3 = 36 rows and columns.

Sequences that were impossible (e.g., a four-point pass to an ace serve) were

constrained to have zero probability. Sequences that always occurred (e.g., an ace

serve to a point) were constrained to have a probability of one. Data were organized
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in a count matrix. Thus, yij is the (i, j)th element of the count matrix and is the

number of times play moved from state i to state j during the season.

We used Bayesian methods to estimate the transition probabilities. We assumed

a multinomial likelihood

f(yi1, . . . , yik|πi1, . . . , πik) ∝ πyi1i1 π
yi2
i2 . . . πyikik , (3.1)

for each row, i = 1, . . . ,m, of the count matrix, where k is the number of possible

states that could occur in the next sequence of touches, and m is the number of

states. πij represents the probability of moving from state i to state j in the transition

probability matrix, and
∑k

j=1 πij = 1, for each i.

We assumed the prior probability densities of each row were distributed as

Dirichlet random variables

f(πi1, . . . , πik|αi1, . . . , αik) ∝ παi1−1
i1 παi2−1

i2 . . . παik−1
ik , (3.2)

where αij represents the expectation of how often we think the women’s team moves

from state i to state j relative to moving to a different state in the transition probabil-

ity matrix. Since we are interested in what the data indicates about the association

between the different states, we assumed weak prior information. Thus, the prior

counts, αij, were all assumed to be equal to one (except those that were constrained

to be zero).

Because of the conjugacy that exists between the multinomial distribution and

the Dirichlet prior, Gibbs sampling can be used to produce draws from the posterior

distribution

f(πi1, . . . , πik|yi1, . . . , yik, αi1, . . . , αik) ∝ πyi1+αi1−1
i1 πyi2+αi2−1

i2 . . . πyik+αik−1
ik , (3.3)

for each row of the transition probability matrix. To make draws from the poste-

rior distribution slightly more efficient, we drew x1, . . . , xk from independent gamma

distributions with a shape parameter of yi1 + αi1, . . . , yik + αik and a common scale
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parameter of one. We used the independent draws from the gamma distributions to

calculate a πij = xj/
∑k

j=1 xj (Gelman et al. 2004). The posterior distributions of

each πij were based on 100,000 draws.

In order to compute importance scores in this setting, we also calculated the

unconditional probabilities of moving from one state (e.g., a four-point pass) to an

outcome (e.g., a point for the primary team) and called this β. In order to obtain an

estimate for the unconditional probability for every skill rating (i.e., βi, i = 1, . . . , 25),

we used all possible sequences of touches that could occur between the state and

the outcome in the transition probability matrix. For each sequence, we used the

associated probabilities in the transition probability matrix. To obtain the overall

unconditional probability, we summed the probabilities associated with each sequence.

Thus, at each step, we computed a draw of the unconditional probability using

the current state of the transition probability matrix. Therefore, posterior distribu-

tions of the βi are also based on 100,000 draws. Using the 100,000 draws associated

with the posterior distribution for each βi, the mean of the draws was used as an

estimate of E(βi|Y ) and the standard deviation of the draws was used as an estimate

of
√
V (βi|Y ). E(βi|Y ) and

√
V (βi|Y ) were used to calculate the importance score

for the associated skill.

The appropriateness of the model was determined by constructing a Bayesian

χ2 goodness-of-fit test. The Bayesian χ2 test was computed for each row and column

combination of the transition matrix. To summarize all the Bayesian χ2 tests, we

calculated the average number of times the Bayesian χ2 test resulted in a significant

p-value. The Bayesian χ2 test resulted in a significant p-value only 5.2% of the time.

Thus, the first-order Markov chain does a reasonable job of modeling the association

between the skill-rating combinations and a point for the primary team.
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3.4.2 Bayesian Logistic Regression Approach

A Bayesian logistic regression model was also implemented to determine how

the performance of individual skills affects the probability of scoring a point. The

following skills were analyzed in this setting: jump serve, float serve, pass, dig, and

set. Implementation of this model required that skills be scored in some fashion.

Attacks were not analyzed this way because the grading of the attack was dependent

on the outcome of the attack. Thus, the data set does not have an independent

mechanism to grade the performance of the attack. Since sets were only noted in

the data by distance off the net, the scoring of sets was determined by one of the

investigators, a former volleyball coach. The ratings used for sets are shown in Table

3.2.

Table 3.2: Performance Ratings for Set Distance off the Net

Set Distance Performance Rating

3–5 feet 3
0–3 feet 2
5–8 feet 1

8–10 feet 0

We modeled the response variable as a Bernoulli random variable. The response

was given a zero if a point was not scored (opponent score or rally continued), and

a one if a point was scored. Four separate models were constructed, one for each of

the four skills. For each skill, we constructed a logistic regression model, where the

log odds ratio was defined as

log

(
Pr[Yik = 1|skill=i]

Pr[Yik = 0|skill=i]

)
= β0 + βiRik, (3.4)

where i is associated with a specific skill, k = 1, . . . , ni corresponds to the number of

times skill i is performed, β0 is the primary team’s overall ability, βi is the effect of the

ith skill, and Rik is the rating associated with the kth time the ith skill is performed.
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Thus, Yik ∼ Bernoulli
(

exp(β0+βiRik)
1+exp(β0+βiRik)

)
. The logistic regression model assumed that

each skill was linearly related to the outcome. The linearity condition assumed that

skill progression was linearly related to a positive outcome. A priori, we believed

this assumption to be reasonable because we believed a skill performed with a higher

rating would imply a higher probability of scoring a point.

The following prior distribution was chosen for each βi parameter and the overall

team effect (β0)

f(βi|mi, s
2
i ) ∼ Normal(mi, s

2
i ).

The normal distribution was chosen because we expected the effect of a skill on

the probability of scoring a point could be either positive or negative. Similar to the

Markov chain model, weak prior information was assumed. We let each mi = 0 and

each s2
i = 1000.

The resulting posterior distributions for the βi are not available in closed form.

Thus, the Metropolis-Hastings algorithm was used to obtain draws from the posterior

distributions. Mixing plots were used to ensure that sampling occurred from all parts

of the distribution. Posterior distributions were estimated with 100,000 draws after a

burn-in period of 500. Using the 100,000 draws associated with each skill, the mean

of the draws for βi was used as an estimate for E(βi|Y ) and the standard deviation

of the draws for βi was used as an estimate for
√
V (βi|Y ). E(βi|Y ) and

√
V (βi|Y )

were used to calculate the importance score for the associated skill.

To determine the appropriateness of each model, a Bayesian χ2 goodness-of-fit

test was calculated for each of the four models. For each model, to summarize all the

Bayesian χ2 tests, we calculated the average number of times the Bayesian χ2 test

resulted in a significant p-value. The Bayesian χ2 test resulted in a significant p-value

only 5.2% of the time. For serves, the Bayesian χ2 goodness-of-fit test resulted in a

significant p-value only 1.6% of the time. For passing, the Bayesian χ2 goodness-of-fit

test resulted in a significant p-value only 2.4% of the time. For setting, the Bayesian
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χ2 goodness-of-fit test resulted in a significant p-value only 4.6% of the time. For

digging, the Bayesian χ2 goodness-of-fit test resulted in a significant p-value only

2.0% of the time. These goodness-of-fit tests indicate that the proposed Bayesian

logistic regression model does reasonably well modeling the probability of scoring a

point.

3.5 Results

We developed the importance scores using two different methods. Thus, the

importance scores themselves are not comparable across models. However, the relative

rankings are comparable. Table 3.3 shows the importance scores using the Markov

chain model. The importance scores for the logistic regression model are shown in

Table 3.4.

3.6 Discussion

First, we need to again emphasize that it is possible for skills to have higher

expected outcomes but lower importance scores if the variance associated with the

parameter estimate is high. For example, a four-point pass has a higher probability of

leading to a point than a three-point pass, but with a higher variance, the importance

score is lower (Table 3.3). This is also true of left attack relative to both middle and

right attack for this team. Left attack has a lower expected outcome, but a much

higher importance score because it occurs more often than either a middle or right

attack for this team. Nonetheless, the data would lead us to encourage the team to

try to set to the middle and right sides more often.

The results seem, in general, to be fairly consistent. It is important to re-

member, however, that the methodologies lead to different interpretations. Using

the Markov chain analysis, each skill-rating combination has an importance score at-

tached. Using the logistic regression analysis, the importance score is for the entire
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Table 3.3: Importance scores for the volleyball Markov chain analysis.

Skill E(β|Y ) V (β|Y ) Importance Score
3 point Pass 0.50551 0.00017 38.32173
Set 3–5 feet off the net 0.51304 0.00018 37.88245
4 point Pass 0.51001 0.00020 36.51091
2 point Pass 0.48935 0.00019 35.78412
4 point Dig 0.43787 0.00016 34.67090
Set 5–8 feet off the net 0.49893 0.00025 31.60894
5 point Dig 0.50061 0.00025 31.58385
Left Attack 0.49665 0.00033 27.46854
Set 0–3 feet off the net 0.50669 0.00044 24.27541
Middle Attack 0.53806 0.00070 20.30614
Right Attack 0.55130 0.00101 17.35607
Set 8–10 feet off the net 0.42340 0.00066 16.50323
1 point Pass 0.36451 0.00054 15.67747
Overpass Attack 0.65062 0.00270 12.52568
3 point Float Serve 0.26774 0.00054 11.56483
3 point Jump Serve 0.18633 0.00040 9.35556
Back Attack 0.38659 0.00197 8.71921
2 point Dig 0.38268 0.00211 8.33366
Set Dump Attack 0.54814 0.00776 6.22122
3 point Dig 0.48367 0.00665 5.93223
2 point Float Serve 0.24707 0.00216 5.31146
1 point Float Serve 0.21983 0.00188 5.07389
2 point Jump Serve 0.16202 0.00122 4.64685
1 point Jump Serve 0.16242 0.00168 3.96645
Out of System Attack 0.26291 0.00974 2.66430

Table 3.4: Importance scores for the volleyball logistic regression analysis.

Skill E(β|Y ) V (β|Y ) Importance Score
Pass 0.51946 0.00375 8.48683
Float Serve 0.81906 0.00992 8.22162
Jump Serve 0.74160 0.00949 7.61225
Set Distance 0.33156 0.00271 6.36639
Digs 0.51379 0.00951 5.26835
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skill, and thus is related to the slope of the line being used to compute the importance

score. Thus, serving importance is higher in the logistic regression analysis than it

seems generally to be in the Markov chain analysis. Since a four-point serve is an

ace, it cannot be included in the Markov analysis as the rating is exactly the same as

the outcome. However, the four-point serve can be included in the logistic analysis,

and this raises the importance score for serving. This points to the necessity of an

appropriate rating system if importance scores are going to be compared across skills.

For this team, float serves are more important than jump serves using both

methods. Float serves have better expected outcomes for all ratings, and higher

importance despite occurring less often.

It is interesting that digging tends to mirror passing but at a lower importance

level. This would indicate that it is more difficult to convert after a dig than after

a pass. This outcome seems reasonable when one considers that after a pass, the

offense is set up, while after a dig, the offense is usually scrambling to set up a play.

When this approach was used on data from the Men’s National Volleyball Team,

serving and attacking were the most important skills (Fellingham and Reese 2004).

Setting was not measured in that data set, while digging had virtually no importance.

The results from this division I women’s team indicates that passing, setting, and

digging all have relatively high importance. We believe this is a fundamental difference

in the men’s and women’s games. The men hit the ball harder, meaning that rallies

terminate sooner, and serving and attacking have greater importance. In the women’s

game, rallies are longer, so passing and digging increase in importance.

Based on these analyses, we would give the following recommendations to this

team.

(1) Only serve a jump serve if the individual’s float serve is clearly inferior.

(2) Keep sets and passes away from the net.
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(3) Force the attack to the middle and right side if at all possible.

(4) Work on setting up a more diverse attack scheme off a dig.

We have shown two different methodologies to develop skill importance scores.

These importance scores can be used by coaches to change team tactics, change skill

performance goals, and focus practice time to increase the probability of scoring

points.
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A. METHODS AND RESULTS FOR THE SOCCER ANALYSIS

A.1 Introduction

This portion of the project explores skill importance in women’s soccer. For

a particular season, four skills (passing, dribbling, defensive, and first touch) are

individually analyzed. The skills are evaluated in order to determine which skills

have the greatest effect on producing a successful outcome. The methodology used

by Fellingham and Reese (2004) is used to calculate skill importance. The data set

and methods used to calculate the posterior distributions are described below.

A.2 The Data

The data were collected during the 2005 competitive season of a women’s di-

vision I soccer team. During each home game, the game was recorded, and the four

skills (passing, dribbling, first touch, and defensive) were analyzed for the home and

the opposing team. Using the performance scoring system developed by Coleman

(1975) as a guide and the expertise of soccer coaches and researchers, each technique

and tactic was rated. The panel of soccer coaches and researchers also noted if the

tactic was part of a sequence of plays that led to a shot on goal or a goal. Defensive

skills are rated on a nine-point (0–8) scale, passes on an eight-point (0–7) scale, drib-

bling skills on a five-point (0–4) scale, and first touch skills are rated on a six-point

(0–5) scale.

Using the data collected from the women’s soccer team during the competitive

season, we determine how the performance ratings of each of the four techniques

(passing, dribbling, first touch, and defensive) affect the probability of a successful

shot for 11 different division I women’s soccer teams. The 11 teams consist of the

primary team plus the 10 opponents they played at home during the 2005 competitive
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season. We refer to the 10 teams that the primary team played during the 2005 season

as Opponent 1 through Opponent 10.

A.2.1 Bayesian Modeling

A Bayesian logistic regression model is implemented to determine how the per-

formance of defensive, first touch, passing, and dribbling skills affects the probability

of a successful shot. For skills related to a specific team, we model the response

variable as

Yi =

{
0 if a shot was off target.

1 if a shot was on target or a goal was made.

A shot is considered successful if it is on target—meaning the shot is attempted

and blocked by the goalie—or if the shot results in a goal. Logistic regression is used

to relate the quality of the skills leading up to a shot to the probability of a successful

shot. Logistic regression uses the log odds ratio to relate the quality of skills being

performed to the probability of a successful shot. For the jth team, the log odds ratio

is defined as

log

(
Pr[Yk = 1|skill=i]

Pr[Yk = 0|skill=i]

)
= β0j + βijRijk, (A.1)

where i = 1, . . . , 4 is associated with a specific skill, j = 1, . . . , 11 corresponds to a

specific team, k = 1, . . . , nj corresponds to the kth touch for the jth team, β0j is team

j’s overall ability, βij is the effect of the ith skill for the jth team, and Rijk is the

rating associated with the kth touch that corresponds to the ith skill for the jth team.

Therefore, Yijk ∼ Bernoulli
(

exp(β0j+βijRijk)

1+exp(β0j+βijRijk)

)
.

A.2.2 Prior Specification

βij is the effect of performing skill i on the log odds ratio of taking a successful

shot. For team j, β1j is the effect of performing a defensive skill, β2j is the effect of
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performing a passing skill, β3j is the effect of performing a first touch skill, and β4j is

the effect of performing a dribbling skill.

We expect that the β parameters associated with a specific skill are related

to each other. For any team, we expect that the effect of performing a specific skill

should come from the same overall distribution. Hierarchical modeling is used so each

team’s parameter associated with skill i comes from the same common population

distribution. The following prior distribution is chosen for all 55 βij parameters:

f(βij|µβi , σ2
βi

) ∼ Normal(µβi , σ
2
βi

) i = 0, . . . , 4 j = 1, . . . , 11,

where i corresponds to the overall team ability (i = 0) or the skill being performed

(i = 1, . . . , 4), and j corresponds to the team.

The normal distribution is chosen as the prior for each of the β parameters

because the effect of performing specific skills can be positive or negative and a

team’s overall ability can have a positive or negative effect on the probability of a

successful shot. The priors of the hyperparameters are chosen as

f(µβi) ∼ Normal(mµβi
, s2
µβi

) f(σ2
βi

) ∼ Inverse Gamma(aβi , bβi).

These prior distributions are chosen because they match the parameter space of

µβi and σ2
βi

. The normal distribution is often used to model the mean of a distribution,

and it is common to use the inverse gamma distribution to model the variance of a

distribution. The normal and inverse gamma distributions are convenient priors when

the parent distribution follows a normal distribution. This choice of prior distributions

allows conjugacy to occur in some of the complete conditionals.

In order to determine the prior values for each of the hyperparameters, elic-

itation was conducted. Gilbert Fellingham, a statistics professor at BYU who has

previously worked with the women’s soccer team data, was consulted to determine

the appropriate values for the hyperparameters. He recommended putting diffuse

priors on all the parameters. The values for each of the means are centered about
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zero because, for any team, performing a specific skill might not affect the probabil-

ity of a successful shot. The hyperparameter values are shown in Table A.1, where

i = 0, . . . , 4 corresponds to each of the appropriate β parameters.

Table A.1: Hyperparameter value specification for the prior distributions.

Parameter Hyperparameters

µβi mµβi
= 0 s2

µβi
= 1000

σ2
βi

aβi = 2.01 bβi = 0.001

Because the posterior distribution cannot be written in closed form, Gibbs

sampling, in conjunction with Metropolis-Hastings, is used to obtain draws from the

posterior distribution. The convenient priors chosen previously are useful because

they allow conjugacy to occur in some of the complete conditionals. When Metropolis-

Hastings is used, mixing plots are used to ensure that sampling has occurred from

all parts of the distribution. Using Gibbs sampling in conjunction with Metropolis-

Hastings, 100,000 observations are drawn from the posterior distribution. Mixing

plots are used to determine the appropriate burn-in period. The mixing plots indicate

that a burn-in period of 200 observations is sufficient.

To determine how well the model fits the data, a Bayesian χ2 goodness-of-fit

test is constructed. To summarize all the Bayesian χ2 tests, we calculated the average

number of times the Bayesian χ2 test resulted in a significant p-value. The Bayesian

χ2 test resulted in a significant p-value only 4.2% of the time. This implies that only

4.2% of the time is the model inappropriate. Since this value is relatively small, we

will continue exploring the resulting posterior distribution.

A.3 Results

The draws from the posterior distribution are used to calculate importance

scores for each team for all of the skills. Thus, for a specific team, the coefficient of
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skill importance is defined as the ratio

Ii =
E(βi|Y )√
V (βi|Y )

,

where i corresponds to the skill and βi indicates the posterior distribution associated

with skill i when modeling a successful shot, as specified by Fellingham and Reese

(2004). For a given team, the importance scores for the soccer data are calculated

by using the posterior distributions associated with the skills. The importance scores

for the primary team and two of their opponents are shown in Table A.2.

Table A.2: Importance scores for the soccer data for the primary team and two of
their opponents.

Primary Team Opponent 1 Opponent 7
Defensive 2.24 0.42 0.94
Dribbling 6.13 1.99 0.72
First Touch 6.45 1.40 0.73
Passing 7.10 0.90 1.36

A.4 Discussion

Table A.2 shows which skills are the most important to different teams. The

skills that are the most important to the primary team in performing a successful shot

are ranked in the following order: passing, first touch, dribbling, and defense. Passing

and first touch skills for the primary team appear to have near equal importance, with

dribbling skills following closely behind. Opponent 1’s importance scores suggest

that dribbling is the most important skill followed by first touch, passing, and lastly

defensive skills. Opponent 7’s important scores indicate that passing is slightly more

important than the other skills, but the remainder of the skills have equal importance.

Importance scores can help coaches to allocate practice time more efficiently

in order to maximize team performance. Coaches can then practice the skills that

contribute the most to a successful outcome. The primary team should focus on
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practicing passing, first touch, and then dribbling skills whereas Opponent 7’s coach

should focus more on passing and then equally on all the other skills.

Importance scores can also be used to compare a team’s performance to another

team. During the 2005 season, the primary team only lost two games. It would make

sense to compare other opponents to the primary team to see how their importance

scores rank in comparison to the primary team. Thus, if Opponent 7 wanted to mimic

the primary team’s strategy, Opponent 7 should focus on improving their passing and

first touch skills during their next practice.

This project shows how importance scores can be used to help a coach allocate

practice time. It shows that skill importance in soccer can be determined through

the use of importance scores. Importance scores enable a coach to see how the per-

formance of skills affects the probability of a successful shot. Importance scores also

allow a coach to directly compare the performance of their team to another team in

order to identify which skills their team needs to practice.
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B. COMPUTER CODE

The following is the computer code written for this project. Section B.1 displays

the R code to compute the posterior distributions for the volleyball Markov chain

model. Section B.2 gives the C Code used to compute the posterior distributions for

the volleyball logistic regression model. Lastly, section B.3 shows the C code used

to compute the posterior distributions for the soccer hierarchical logistic regression

model.

B.1 Volleyball Markov Chain

################################################################

## Clean Data for BYU Women’s Volleyball Team Analysis ##

################################################################

# Read in the current file with all 13 games combined into one file

vb <- read.table("Data/Combined New Data.txt",sep=";",

comment.char="@")

#Gives names to the first three columns in the data frame

names(vb) <- c("play", "opponent", "rotation")

#Disregard computer code

vb <-vb[substr(as.character(vb$play),3,3)!="&",]

#Disregard home setters and home scores

vb <-vb[substr(as.character(vb$play),2,2)!="P",]

#Disregard opponent setters and opponent scores

vb <-vb[substr(as.character(vb$play),2,2)!="z",]

#Separates out the player #’s (Will have NAs for scores)

vb$players <- as.numeric(substr(as.character(vb$play),1,2))

vb$skill <- substr(as.character(vb$play),3,4) #Separate out skill

vb$score <- substr(as.character(vb$play),5,5) #Separate out score

skillscore <- substr(as.character(vb$play),3,5)

# Loop through the data and look for when each game is over

# (**1set, **2set,**3set,**4set)

team <- rep(NA,length(vb$players))
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outcome <- rep(NA,length(vb$players))

for(i in 1:length(vb$play)){

if(substr(as.character(vb$play[i]),1,2)=="**"){

outcome[i] <- "GAMEOVER"

if(substr(as.character(vb$play[i-1]),1,2)=="*p"){

j<-2

while(1){

if(vb$players[i-j]<50 ||

substr(as.character(vb$skill[i-j]),1,1)=="S")

{break}

j <- j+1}

outcome[i-j] <- "Good"

}

else if(substr(as.character(vb$play[i-1]),1,2)=="ap"){

j<-2

while(1){

if(vb$players[i-j]<50 ||

substr(as.character(vb$skill[i-j]),1,1)=="S")

{break}

j <- j+1}

outcome[i-j] <- "Bad"

}

}

}

vb$outcome <- outcome

#Disregard opponent scores

vb <-vb[substr(as.character(vb$play),1,2)!="ap",]

#Disregard home scores

vb <-vb[substr(as.character(vb$play),1,2)!="*p",]

### Goes through a loop and indicates when there is a new serve

# and which hits are by the BYU/opp team

for(i in 1:length(vb$players)){

if(substr(as.character(vb$play[i]),1,2)=="**"){

vb$team[i] <- "GAMEOVER"}

else if(vb$players[i] > 50){

#Signifies when opponent serves

if(substr(vb$skill[i],1,1)=="S") vb$team[i] <- "OPPSERVE"

else vb$team[i] <- "OPP" #Signifies when opponent hits

}

else if(vb$players[i] < 50 && substr(vb$skill[i],1,1)=="S"){

vb$team[i] <- "HOMESERVE"} #Signifies when home serves

else {vb$team[i] <- "HOME"} #Signifies when home hits
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}

##

###Identify the outcomes (Good, Bad, Continue)

##

for(i in 1:length(vb$team)){

if(is.na(vb$outcome[i])){

if(vb$team[i]=="HOME"){

if(vb$team[i+1]=="HOME" && substr(vb$skill[i],1,1)=="A"){

vb$outcome[i] <- "Continue"}

else if(vb$team[i+1]=="HOMESERVE") vb$outcome[i] <- "Good"

else if(vb$team[i+1]=="OPPSERVE") vb$outcome[i] <- "Bad"

else if(vb$team[i+1]=="OPP"){

### Determines if the ball ever returns to BYU team.

# If not, then outcome is recorded

j <- 0

while(1) {

if(vb$team[i+2+j]=="HOME") {

#If the play goes back to Home team,

# then it was a continued rally

vb$outcome[i]<-"Continue"

break } #Break gets out of the loop

else if(vb$team[i+2+j]=="HOMESERVE") {

#Ball never came back to Home side of net.

vb$outcome[i] <- "Good"

break }

else if(vb$team[i+2+j]=="OPPSERVE") {

vb$outcome[i] <- "Bad"

break }

else {j <- j+1}

}

}

else {vb$outcome[i] <- "NA"}

}

else if(vb$team[i]=="HOMESERVE"){

if(vb$team[i+1]=="HOMESERVE") vb$outcome[i] <- "Good"

else if(vb$team[i+1]=="OPPSERVE") vb$outcome[i] <- "Bad"

else if(vb$team[i+1]=="OPP"){

### Determines if the ball ever returns to BYU team.

## If not, then outcome is recorded

j <- 0

while(1) {

if(vb$team[i+2+j]=="HOME") {

# If the play goes back to Home team,

# then it was a continued rally
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vb$outcome[i]<-"Continue"

break } #Break gets out of the loop

else if(vb$team[i+2+j]=="HOMESERVE") {

#Ball never came back to Home side of net.

vb$outcome[i] <- "Good"

break }

else if(vb$team[i+2+j]=="OPPSERVE") {

vb$outcome[i] <- "Bad"

break }

else {j <- j+1}

}

}

else {vb$outcome[i] <- "NA"}

}

#If Opponent Serves

else if(vb$team[i]=="OPPSERVE"){

if(vb$team[i+1]=="HOMESERVE") vb$outcome[i] <- "Good"

else if(vb$team[i+1]=="OPPSERVE") vb$outcome[i] <- "Bad"

else {vb$outcome[i] <- "NA"}

}

else {vb$outcome[i] <- "NA"}

}

}

##

### Change the opponent Serve from "SQ" and "SH" to "OQ" and "OH" ###

### This allows us to distinguish between Home and Opponent Serves

##

for (i in 1:length(vb$players)){

if(vb$players[i] > 50 && substr(vb$skill[i],1,1)=="S")

vb$skill[i] <- paste("O",substr(vb$skill[i],2,2),sep="")

}

#We only care about opponents as "float" and "jump" serves

vb$score[substr(vb$skill,1,1)=="O"] <- "#"

##

###Replaces the skill "Attack" with the actual attacking codes:

##

vb$skill[substr(vb$skill,1,1)=="A"] <-

substr(as.character(vb$play),6,7)[substr(as.character(vb$skill),

1,1)=="A"]

vb <-vb[vb$team!="OPP",] #Disregard opponent hits

# Combine the skill and score together
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vb$skillscore <- paste(vb$skill,vb$score,sep="")

#This makes it so I don’t have to keep running the previous code if

# I just want to look at something in the dataset

save(vb,file="volleyclean.txt")

load("R Code Cleaned Up/volleyclean.txt")

# This creates one long sequence of hits and outcomes ready to analyze

transitions <- NA

for(i in 1:length(vb$play)){

if(vb$outcome[i]=="GAMEOVER"){transitions <-

rbind(transitions, "GAMEOVER")}

else if(vb$outcome[i]=="NA")

#If no outcome, just put in the skill/score

{transitions <- rbind(transitions, vb$skillscore[i])}

else #This is anything that has an outcome

#Have skill/score first, then the outcome

transitions <- rbind(transitions,vb$skillscore[i],vb$outcome[i])

}

#Write the game to a file

write(t(transitions[-1]), "transitions.txt",ncol=1,sep = "\t")

B.1.1 Create a Count Matrix

transitions <- as.matrix(read.table("R Code Cleaned Up/transitions.txt",

comment.char="")) #Read in the game

## Defines the names of all the different hits possible

## Will be used in the transition matrix

hits <- c("OH#","OQ#",

"SH#","SH/","SH+","SH!","SH-","SH=","SQ#","SQ/","SQ+","SQ!","SQ-",

"SQ=","RH#","RH+","RH!","RH-","RH=","RH/","RQ#","RQ+","RQ!","RQ-",

"RQ=","RQ/","EQ#","EQ+","EQ!","EH#","EH+","EH!","EH-","EH/","EH=",

"ET#","ET+","ET!","ET-","ET/","ET=","EM#","EM+","EM!","EM-","EM/",

"EM=","EL#","EL+","EL!","EL-","EL/","EL=","E","P2#","P2+","P2=",

"P2/","P3#","P3+","P3=","P3/","P5#","P5+","P6#","P6+","P6/","P8#",

"P8+","P8=","P8/","PA#","PA+","PA=","PB#","PB+","PB=","PB/","PD#",

"PD+","PD=","PD/","PG#","PG+","PG=","PG/","PH#","PH+","PH=","PH/",

"PK#","PK+","PK=","PK/","PM#","PM+","PM=","PM/","PO#","PO+","PO=",

"PP#","PP+","PP=","PR#","PR+","PS#","PS+","PS=","PS/","PW#","PW+",

"PW=","PW/","PX#","PX+","PX=","PX/","DH#","DH+","DH!","DH-","DH/",

"DH=","Good","Continue","Bad")

#To do the same thing do
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unique(transitions) #Take out GAMEOVER and you get the same results

####################################################################

#Create the count matrix from from the list of touches and outcomes#

####################################################################

# Function to calculate the actual counts from the data

# for every transition in the matrix

#Row is where it started

#Column is where it transitioned to

counts <- function(transitions){

c.mat <- as.data.frame(matrix(0,length(hits),length(hits)),

row.names=hits)

names(c.mat) <- hits #Name the columns of the data frame

for(i in 1:(length(transitions)-1) ){

if(transitions[i]=="GAMEOVER" ||

transitions[i+1]=="GAMEOVER"){temp<-NA}

else c.mat[transitions[i], transitions[i+1]] <-

c.mat[transitions[i], transitions[i+1]] + 1

}

return(c.mat)

}

c.mat <- counts(transitions)

# Constrain some of the counts to be zero (data typos):

c.mat["RH#","Continue"] <- 0 #Perfect Pass

c.mat["RQ#","Good"] <- 0

c.mat["RH+","Good"] <- 0 #3 Pt Pass

c.mat["RQ+","Good"] <- 0

c.mat["RQ+","Continue"] <- 0

c.mat["RH!","Good"] <- 0 #2 Pt Pass

c.mat["RH!","Bad"] <- 0

c.mat["RQ!","Continue"] <- 0

c.mat["RQ!","Bad"] <- 0

c.mat["RH/","Good"] <- 0

c.mat["RQ-","DH-"] <- 0

# Write the game to a file:

write(t(c.mat), "cmat.txt",ncol=ncol(c.mat),sep = "\t")

#Need to constrain the same counts in the prior transition

# count matrix to be zero:

#Prior Non-Informative
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a.mat<-matrix(1,nrow=nrow(c.mat),ncol=ncol(c.mat))

a.mat <- as.data.frame(a.mat,row.names=hits)

names(a.mat) <- hits #Names the columns of the data frame

a.mat["RH#","Continue"] <- 0 #Perfect Pass

a.mat["RQ#","Good"] <- 0

a.mat["RH+","Good"] <- 0 #3 Pt Pass

a.mat["RQ+","Good"] <- 0

a.mat["RQ+","Continue"] <- 0

a.mat["RH!","Good"] <- 0 #2 Pt Pass

a.mat["RH!","Bad"] <- 0

a.mat["RQ!","Continue"] <- 0

a.mat["RQ!","Bad"] <- 0

a.mat["RH/","Good"] <- 0

a.mat["RQ-","DH-"] <- 0

write(t(a.mat), "amat.txt",ncol=ncol(a.mat),sep = "\t")

B.1.2 Collapsing Count Matrix by Set Distance

## Defines the names of all the different hits possible -

#Will be used in the transition matrix

hits <- c("OH#","OQ#",

"SH#","SH/","SH+","SH!","SH-","SH=","SQ#","SQ/","SQ+","SQ!","SQ-",

"SQ=","RH#","RH+","RH!","RH-","RH=","RH/","RQ#","RQ+","RQ!","RQ-",

"RQ=","RQ/","EQ#","EQ+","EQ!","EH#","EH+","EH!","EH-","EH/","EH=",

"ET#","ET+","ET!","ET-","ET/","ET=","EM#","EM+","EM!","EM-","EM/",

"EM=","EL#","EL+","EL!","EL-","EL/","EL=","E","P2#","P2+","P2=",

"P2/","P3#","P3+","P3=","P3/","P5#","P5+","P6#","P6+","P6/","P8#",

"P8+","P8=","P8/","PA#","PA+","PA=","PB#","PB+","PB=","PB/","PD#",

"PD+","PD=","PD/","PG#","PG+","PG=","PG/","PH#","PH+","PH=","PH/",

"PK#","PK+","PK=","PK/","PM#","PM+","PM=","PM/","PO#","PO+","PO=",

"PP#","PP+","PP=","PR#","PR+","PS#","PS+","PS=","PS/","PW#","PW+",

"PW=","PW/","PX#","PX+","PX=","PX/","DH#","DH+","DH!","DH-","DH/",

"DH=","Good","Continue","Bad")

##############################################################

## Read in the counts matrix

c.mat <- read.table("Full Matrix/cmat.txt", comment.char="")

#Read in the prior counts

c.mat <- as.data.frame(c.mat,row.names=hits)

names(c.mat) <- hits #Names the columns of the data frame

### Collapse the count matrix:

newcmat <- c.mat["OQ#",] + c.mat["OH#",]
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#Move over the Float Serves for the Primary Team

newcmat["Float 5-pt",] <- c.mat["SH#",]

newcmat["Float 4-pt",] <- c.mat["SH/",]

newcmat["Float 3-pt",] <- c.mat["SH+",]

newcmat["Float 2-pt",] <-c.mat["SH!",]

newcmat["Float 1-pt",] <-c.mat["SH-",]

newcmat["Float 0-pt",] <- c.mat["SH=",]

newcmat["Jump 5-pt",] <- c.mat["SQ#",]

newcmat["Jump 4-pt",] <- c.mat["SQ/",]

newcmat["Jump 3-pt",] <- c.mat["SQ+",]

newcmat["Jump 2-pt",] <-c.mat["SQ!",]

newcmat["Jump 1-pt",] <-c.mat["SQ-",]

newcmat["Jump 0-pt",] <- c.mat["SQ=",]

#This combines the passes received from float and jump serves

newcmat["4pt",] <- c.mat["RQ#",] + c.mat["RH#",]

newcmat["3pt",] <- c.mat["RQ+",] + c.mat["RH+",]

newcmat["2pt",] <- c.mat["RQ!",] + c.mat["RH!",]

newcmat["1pt",] <- c.mat["RQ-",] + c.mat["RH-",]

newcmat["0pt",] <- c.mat["RQ=",] + c.mat["RH=",]

newcmat["PassOverpass",] <- c.mat["RQ/",] + c.mat["RH/",]

#Identifying Set Distance0

#Combining 0-1 feet from net and 1-3 feet from net

#There were only 4 hits total 0-1 feet from net

newcmat["0to3ft",] <- c.mat["EQ#",] + c.mat["EQ+",] + c.mat["EQ!",] +

c.mat["EH#",] + c.mat["EH+",] + c.mat["EH!",] +

c.mat["EH-",] + c.mat["EH/",] + c.mat["EH=",]

newcmat["3to5ft",] <- c.mat["ET#",] + c.mat["ET+",] + c.mat["ET!",] +

c.mat["ET-",] + c.mat["ET/",] + c.mat["ET=",]

newcmat["5to8ft",] <- c.mat["EM#",] + c.mat["EM+",] + c.mat["EM!",] +

c.mat["EM-",] + c.mat["EM/",] + c.mat["EM=",]

newcmat["8to10ft",] <- c.mat["EL#",] + c.mat["EL+",] + c.mat["EL!",] +

c.mat["EL-",] + c.mat["EL/",] + c.mat["EL=",]

newcmat["NotSetter",] <- c.mat["E",]

#> P2 Front 2 - middle

#> P3 Gap Set - middle

#> P5 High set to RS - right

#> P6 Back 1 -- middle

#> P8 Fast Slide -- middle

#> PA Out of system front row attack - Separate Category

#> PB Back row B set -- back row
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#> PD Back row right side "D" - - back

#> PG Go -- left

#> PH Hut -- left

#> PK Right Side "Red" -- right

#> PM Highball "4" -- left

#> PO Overpass Attack -- Separate Category

#> PP Pipe or BIC -- back

#> PR Inside left side set "Rip" -- left

#> PS Setter Dump -- Separate Category

#> PW Slide -- middle

#> PX "X-series" or Combo -- right

#Identify the attacks:

newcmat["Middle",] <-

c.mat["P2#",] + c.mat["P2+",] + c.mat["P2=",] + c.mat["P2/",] +

c.mat["P3#",] + c.mat["P3+",] + c.mat["P3=",] + c.mat["P3/",] +

c.mat["P6#",] + c.mat["P6+",] + c.mat["P6/",] +

c.mat["P8#",] + c.mat["P8+",] + c.mat["P8=",] + c.mat["P8/",] +

c.mat["PW#",] + c.mat["PW+",] + c.mat["PW=",] + c.mat["PW/",]

newcmat["Right",] <- c.mat["P5#",] + c.mat["P5+",] +

c.mat["PK#",] + c.mat["PK+",] + c.mat["PK=",] + c.mat["PK/",] +

c.mat["PX#",] + c.mat["PX+",] + c.mat["PX=",] + c.mat["PX/",]

newcmat["Left",] <-

c.mat["PG#",] + c.mat["PG+",] + c.mat["PG=",] + c.mat["PG/",] +

c.mat["PH#",] + c.mat["PH+",] + c.mat["PH=",] + c.mat["PH/",] +

c.mat["PM#",] + c.mat["PM+",] + c.mat["PM=",] + c.mat["PM/",] +

c.mat["PR#",] + c.mat["PR+",]

newcmat["Back",] <-

c.mat["PB#",] + c.mat["PB+",] + c.mat["PB=",] + c.mat["PB/",] +

c.mat["PD#",] + c.mat["PD+",] + c.mat["PD=",] + c.mat["PD/",] +

c.mat["PP#",] + c.mat["PP+",] + c.mat["PP=",]

newcmat["SetDump",]<-

c.mat["PS#",] + c.mat["PS+",] + c.mat["PS=",] + c.mat["PS/",]

newcmat["OutSystem",]<-c.mat["PA#",] + c.mat["PA+",] + c.mat["PA=",]

newcmat["Overpass",]<-c.mat["PO#",] + c.mat["PO+",] + c.mat["PO=",]

#Dig Scores

newcmat["Dig #",] <- c.mat["DH#",]

newcmat["Dig +",] <- c.mat["DH+",]

newcmat["Dig !",] <- c.mat["DH!",]

newcmat["Dig -",] <- c.mat["DH-",]
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newcmat["Dig /",] <- c.mat["DH/",]

newcmat["Dig =",] <- c.mat["DH=",]

#Move over the outcome for the primary team

newcmat["Good",] <- c.mat["Good",]

newcmat["Continue",] <- c.mat["Continue",]

newcmat["Bad",] <- c.mat["Bad",]

####################################################

### Do the column collapsing

###################################################

newhits <- c("O", "Float 5-pt", "Float 4-pt", "Float 3-pt", "Float

2-pt","Float 1-pt", "Float 0-pt", "Jump 5-pt", "Jump 4-pt", "Jump

3-pt", "Jump 2-pt","Jump 1-pt", "Jump 0-pt","4pt", "3pt", "2pt",

"1pt", "0pt", "PassOverpass","0to3ft", "3to5ft", "5to8ft",

"8to10ft", "NotSetter", "Middle", "Right", "Left", "Back", "SetDump",

"OutSystem", "Overpass","Dig #","Dig +","Dig !","Dig -","Dig /","Dig

=", "Good", "Continue", "Bad")

cmat2 <- as.data.frame(newcmat[,"OQ#"] + newcmat[,"OH#"],

row.names=newhits)

names(cmat2) <- "O"

cmat2[,"Float 5-pt"] <- newcmat[,"SH#"]

cmat2[,"Float 4-pt"] <- newcmat[,"SH/"]

cmat2[,"Float 3-pt"] <- newcmat[,"SH+"]

cmat2[,"Float 2-pt"]<-newcmat[,"SH!"]

cmat2[,"Float 1-pt"]<-newcmat[,"SH-"]

cmat2[,"Float 0-pt"] <- newcmat[,"SH="]

cmat2[,"Jump 5-pt"] <- newcmat[,"SQ#"]

cmat2[,"Jump 4-pt"] <- newcmat[,"SQ/"]

cmat2[,"Jump 3-pt"] <- newcmat[,"SQ+"]

cmat2[,"Jump 2-pt"]<-newcmat[,"SQ!"]

cmat2[,"Jump 1-pt"]<-newcmat[,"SQ-"]

cmat2[,"Jump 0-pt"] <- newcmat[,"SQ="]

cmat2[,"4pt"] <- newcmat[,"RQ#"] + newcmat[,"RH#"]

cmat2[,"3pt"] <- newcmat[,"RQ+"] + newcmat[,"RH+"]

cmat2[,"2pt"] <- newcmat[,"RQ!"] + newcmat[,"RH!"]

cmat2[,"1pt"] <- newcmat[,"RQ-"] + newcmat[,"RH-"]

cmat2[,"0pt"] <- newcmat[,"RQ="] + newcmat[,"RH="]

cmat2[,"PassOverpass"] <- newcmat[,"RQ/"] + newcmat[,"RH/"]

cmat2[,"0to3ft"] <-
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newcmat[,"EQ#"] + newcmat[,"EQ+"] + newcmat[,"EQ!"] +

newcmat[,"EH#"] + newcmat[,"EH+"] + newcmat[,"EH!"] +

newcmat[,"EH-"] + newcmat[,"EH/"] + newcmat[,"EH="]

cmat2[,"3to5ft"] <-

newcmat[,"ET#"] + newcmat[,"ET+"] + newcmat[,"ET!"] +

newcmat[,"ET-"] + newcmat[,"ET/"] + newcmat[,"ET="]

cmat2[,"5to8ft"] <-

newcmat[,"EM#"] + newcmat[,"EM+"] + newcmat[,"EM!"] +

newcmat[,"EM-"] + newcmat[,"EM/"] + newcmat[,"EM="]

cmat2[,"8to10ft"] <-

newcmat[,"EL#"] + newcmat[,"EL+"] + newcmat[,"EL!"] +

newcmat[,"EL-"] + newcmat[,"EL/"] + newcmat[,"EL="]

cmat2[,"NotSetter"] <- newcmat[,"E"]

#Identify the attacks:

cmat2[,"Middle"] <-

newcmat[,"P2#"] + newcmat[,"P2+"] + newcmat[,"P2="] +

newcmat[,"P2/"] +

newcmat[,"P3#"] + newcmat[,"P3+"] + newcmat[,"P3="] +

newcmat[,"P3/"] +

newcmat[,"P6#"] + newcmat[,"P6+"] + newcmat[,"P6/"] +

newcmat[,"P8#"] + newcmat[,"P8+"] + newcmat[,"P8="] +

newcmat[,"P8/"] +

newcmat[,"PW#"] + newcmat[,"PW+"] + newcmat[,"PW="] +

newcmat[,"PW/"]

cmat2[,"Right"] <-

newcmat[,"P5#"] + newcmat[,"P5+"] +

newcmat[,"PK#"] + newcmat[,"PK+"] + newcmat[,"PK="] +

newcmat[,"PK/"] +

newcmat[,"PX#"] + newcmat[,"PX+"] + newcmat[,"PX="] +

newcmat[,"PX/"]

cmat2[,"Left"] <-

newcmat[,"PG#"] + newcmat[,"PG+"] + newcmat[,"PG="] +

newcmat[,"PG/"] +

newcmat[,"PH#"] + newcmat[,"PH+"] + newcmat[,"PH="] +

newcmat[,"PH/"] +

newcmat[,"PM#"] + newcmat[,"PM+"] + newcmat[,"PM="] +

newcmat[,"PM/"] +

newcmat[,"PR#"] + newcmat[,"PR+"]

cmat2[,"Back"] <-

newcmat[,"PB#"] + newcmat[,"PB+"] + newcmat[,"PB="] +

newcmat[,"PB/"] +
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newcmat[,"PD#"] + newcmat[,"PD+"] + newcmat[,"PD="] +

newcmat[,"PD/"] +

newcmat[,"PP#"] + newcmat[,"PP+"] + newcmat[,"PP="]

cmat2[,"SetDump"]<-newcmat[,"PS#"] +

newcmat[,"PS+"] + newcmat[,"PS="] + newcmat[,"PS/"]

cmat2[,"OutSystem"]<-newcmat[,"PA#"] + newcmat[,"PA+"] +

newcmat[,"PA="]

cmat2[,"Overpass"]<-newcmat[,"PO#"] + newcmat[,"PO+"] +

newcmat[,"PO="]

cmat2[,"Dig #"] <- newcmat[,"DH#"]

cmat2[,"Dig +"] <- newcmat[,"DH+"]

cmat2[,"Dig !"] <- newcmat[,"DH!"]

cmat2[,"Dig -"] <- newcmat[,"DH-"]

cmat2[,"Dig /"] <- newcmat[,"DH/"]

cmat2[,"Dig ="] <- newcmat[,"DH="]

cmat2[,"Good"] <- newcmat[,"Good"]

cmat2[,"Continue"] <- newcmat[,"Continue"]

cmat2[,"Bad"] <- newcmat[,"Bad"]

c.mat <- cmat2

#write(t(cmat2), "collapsedcmat.txt",ncol=ncol(cmat2),sep = "\t")

#Write the game to a file

save(c.mat, file="collapsedcmatR.txt")

################################################################

### Collapse A matrix of prior counts

############################################################

##

### Read prior counts into "a.mat" matrix

##

a.mat <- read.table("Full Matrix/amat.txt", comment.char="")

#Read in the prior counts

a.mat <- as.data.frame(a.mat,row.names=hits)

names(a.mat) <- hits #Names the columns of the data frame

### Collapse the count matrix:

newamat["Float 5-pt",] <- a.mat["SH#",]

newamat["Float 4-pt",] <- a.mat["SH/",]
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newamat["Float 3-pt",] <- a.mat["SH+",]

newamat["Float 2-pt",] <-a.mat["SH!",]

newamat["Float 1-pt",] <-a.mat["SH-",]

newamat["Float 0-pt",] <- a.mat["SH=",]

newamat["Jump 5-pt",] <- a.mat["SQ#",]

newamat["Jump 4-pt",] <- a.mat["SQ/",]

newamat["Jump 3-pt",] <- a.mat["SQ+",]

newamat["Jump 2-pt",] <-a.mat["SQ!",]

newamat["Jump 1-pt",] <-a.mat["SQ-",]

newamat["Jump 0-pt",] <- a.mat["SQ=",]

newamat["4pt",] <- a.mat["RQ#",] + a.mat["RH#",]

newamat["3pt",] <- a.mat["RQ+",] + a.mat["RH+",]

newamat["2pt",] <- a.mat["RQ!",] + a.mat["RH!",]

newamat["1pt",] <- a.mat["RQ-",] + a.mat["RH-",]

newamat["0pt",] <- a.mat["RQ=",] + a.mat["RH=",]

newamat["PassOverpass",] <- a.mat["RQ/",] + a.mat["RH/",]

newamat["0to3ft",] <-

a.mat["EQ#",] + a.mat["EQ+",] + a.mat["EQ!",] +

a.mat["EH#",] + a.mat["EH+",] + a.mat["EH!",] +

a.mat["EH-",] + a.mat["EH/",] + a.mat["EH=",]

newamat["3to5ft",] <-

a.mat["ET#",] + a.mat["ET+",] + a.mat["ET!",] +

a.mat["ET-",] + a.mat["ET/",] + a.mat["ET=",]

newamat["5to8ft",] <-

a.mat["EM#",] + a.mat["EM+",] + a.mat["EM!",] +

a.mat["EM-",] + a.mat["EM/",] + a.mat["EM=",]

newamat["8to10ft",] <-

a.mat["EL#",] + a.mat["EL+",] + a.mat["EL!",] +

a.mat["EL-",] + a.mat["EL/",] + a.mat["EL=",]

newamat["NotSetter",] <- a.mat["E",]

newamat["Middle",] <-

a.mat["P2#",] + a.mat["P2+",] + a.mat["P2=",] + a.mat["P2/",] +

a.mat["P3#",] + a.mat["P3+",] + a.mat["P3=",] + a.mat["P3/",] +

a.mat["P6#",] + a.mat["P6+",] + a.mat["P6/",] +

a.mat["P8#",] + a.mat["P8+",] + a.mat["P8=",] + a.mat["P8/",] +

a.mat["PW#",] + a.mat["PW+",] + a.mat["PW=",] + a.mat["PW/",]

newamat["Right",] <- a.mat["P5#",] + a.mat["P5+",] +
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a.mat["PK#",] + a.mat["PK+",] + a.mat["PK=",] + a.mat["PK/",] +

a.mat["PX#",] + a.mat["PX+",] + a.mat["PX=",] + a.mat["PX/",]

newamat["Left",] <-

a.mat["PG#",] + a.mat["PG+",] + a.mat["PG=",] + a.mat["PG/",] +

a.mat["PH#",] + a.mat["PH+",] + a.mat["PH=",] + a.mat["PH/",] +

a.mat["PM#",] + a.mat["PM+",] + a.mat["PM=",] + a.mat["PM/",] +

a.mat["PR#",] + a.mat["PR+",]

newamat["Back",] <-

a.mat["PB#",] + a.mat["PB+",] + a.mat["PB=",] + a.mat["PB/",] +

a.mat["PD#",] + a.mat["PD+",] + a.mat["PD=",] + a.mat["PD/",] +

a.mat["PP#",] + a.mat["PP+",] + a.mat["PP=",]

newamat["SetDump",]<-

a.mat["PS#",] + a.mat["PS+",] + a.mat["PS=",] + a.mat["PS/",]

newamat["OutSystem",]<-a.mat["PA#",] + a.mat["PA+",] + a.mat["PA=",]

newamat["Overpass",]<-a.mat["PO#",] + a.mat["PO+",] + a.mat["PO=",]

newamat["Dig #",] <- a.mat["DH#",]

newamat["Dig +",] <- a.mat["DH+",]

newamat["Dig !",] <- a.mat["DH!",]

newamat["Dig -",] <- a.mat["DH-",]

newamat["Dig /",] <- a.mat["DH/",]

newamat["Dig =",] <- a.mat["DH=",]

newamat["Good",] <- a.mat["Good",]

newamat["Continue",] <- a.mat["Continue",]

newamat["Bad",] <- a.mat["Bad",]

####################################################

### Do the column collapsing

###################################################

amat2 <- as.data.frame(newamat[,"OQ#"] + newamat[,"OH#"],

row.names=newhits)

names(amat2) <- "O"

amat2[,"Float 5-pt"] <- newamat[,"SH#"]

amat2[,"Float 4-pt"] <- newamat[,"SH/"]

amat2[,"Float 3-pt"] <- newamat[,"SH+"]

amat2[,"Float 2-pt"]<-newamat[,"SH!"]

amat2[,"Float 1-pt"]<-newamat[,"SH-"]

amat2[,"Float 0-pt"] <- newamat[,"SH="]

amat2[,"Jump 5-pt"] <- newamat[,"SQ#"]
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amat2[,"Jump 4-pt"] <- newamat[,"SQ/"]

amat2[,"Jump 3-pt"] <- newamat[,"SQ+"]

amat2[,"Jump 2-pt"]<-newamat[,"SQ!"]

amat2[,"Jump 1-pt"]<-newamat[,"SQ-"]

amat2[,"Jump 0-pt"] <- newamat[,"SQ="]

amat2[,"4pt"] <- newamat[,"RQ#"] + newamat[,"RH#"]

amat2[,"3pt"] <- newamat[,"RQ+"] + newamat[,"RH+"]

amat2[,"2pt"] <- newamat[,"RQ!"] + newamat[,"RH!"]

amat2[,"1pt"] <- newamat[,"RQ-"] + newamat[,"RH-"]

amat2[,"0pt"] <- newamat[,"RQ="] + newamat[,"RH="]

amat2[,"PassOverpass"] <- newamat[,"RQ/"] + newamat[,"RH/"]

amat2[,"0to3ft"] <-

newamat[,"EQ#"] + newamat[,"EQ+"] + newamat[,"EQ!"] +

newamat[,"EH#"] + newamat[,"EH+"] + newamat[,"EH!"] +

newamat[,"EH-"] + newamat[,"EH/"] + newamat[,"EH="]

amat2[,"3to5ft"] <-

newamat[,"ET#"] + newamat[,"ET+"] + newamat[,"ET!"] +

newamat[,"ET-"] + newamat[,"ET/"] + newamat[,"ET="]

amat2[,"5to8ft"] <-

newamat[,"EM#"] + newamat[,"EM+"] + newamat[,"EM!"] +

newamat[,"EM-"] + newamat[,"EM/"] + newamat[,"EM="]

amat2[,"8to10ft"] <-

newamat[,"EL#"] + newamat[,"EL+"] + newamat[,"EL!"] +

newamat[,"EL-"] + newamat[,"EL/"] + newamat[,"EL="]

amat2[,"NotSetter"] <- newamat[,"E"]

amat2[,"Middle"] <-

newamat[,"P2#"] + newamat[,"P2+"] + newamat[,"P2="] +

newamat[,"P2/"] + newamat[,"P3#"] + newamat[,"P3+"] +

newamat[,"P3="] + newamat[,"P3/"] + newamat[,"P6#"] +

newamat[,"P6+"] + newamat[,"P6/"] + newamat[,"P8#"] +

newamat[,"P8+"] + newamat[,"P8="] + newamat[,"P8/"] +

newamat[,"PW#"] + newamat[,"PW+"] + newamat[,"PW="] +

newamat[,"PW/"]

amat2[,"Right"] <-newamat[,"P5#"] + newamat[,"P5+"] +

newamat[,"PK#"] + newamat[,"PK+"] + newamat[,"PK="] +

newamat[,"PK/"] + newamat[,"PX#"] + newamat[,"PX+"] +

newamat[,"PX="] + newamat[,"PX/"]
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amat2[,"Left"] <-newamat[,"PG#"] + newamat[,"PG+"] +

newamat[,"PG="] + newamat[,"PG/"] + newamat[,"PH#"] +

newamat[,"PH+"] + newamat[,"PH="] + newamat[,"PH/"] +

newamat[,"PM#"] + newamat[,"PM+"] + newamat[,"PM="] +

newamat[,"PM/"] +newamat[,"PR#"] + newamat[,"PR+"]

amat2[,"Back"] <-newamat[,"PB#"] + newamat[,"PB+"] +

newamat[,"PB="] + newamat[,"PB/"] + newamat[,"PD#"] +

newamat[,"PD+"] + newamat[,"PD="] + newamat[,"PD/"] +

newamat[,"PP#"] + newamat[,"PP+"] + newamat[,"PP="]

amat2[,"SetDump"]<-newamat[,"PS#"] + newamat[,"PS+"] +

newamat[,"PS="] + newamat[,"PS/"]

amat2[,"OutSystem"]<-newamat[,"PA#"] + newamat[,"PA+"] +

newamat[,"PA="]

amat2[,"Overpass"]<-newamat[,"PO#"] + newamat[,"PO+"] +

newamat[,"PO="]

amat2[,"Dig #"] <- newamat[,"DH#"]

amat2[,"Dig +"] <- newamat[,"DH+"]

amat2[,"Dig !"] <- newamat[,"DH!"]

amat2[,"Dig -"] <- newamat[,"DH-"]

amat2[,"Dig /"] <- newamat[,"DH/"]

amat2[,"Dig ="] <- newamat[,"DH="]

amat2[,"Good"] <- newamat[,"Good"]

amat2[,"Continue"] <- newamat[,"Continue"]

amat2[,"Bad"] <- newamat[,"Bad"]

amat3 <- amat2

# Make sure that each state in the transition matrix has at least 1

prior count:

for(row in 1:nrow(amat2)){

for(col in 1:ncol(amat2)){

if(cmat2[row,col]>0 && amat2[row,col]==0) amat3[row,col] <- 1

}

}

apply(amat3,1,sum)

a.mat <- amat3

save(a.mat,file="collapsedamatR.txt")

#write(t(amat3), "collapsedamat.txt",ncol=ncol(amat2),sep = "\t")

#Write the game to a file
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B.1.3 Calculating Unconditional Probabilities

##################################################################

### Calculating the unconditional probability distributions

## for passing, set distance, attack

##################################################################

setwd("/Users/gradstudent/Documents/Master’s Project/Women’s VB Code

and Data")

## NOTE: Be sure to install the package "abind" otherwise

## this code will NOT work #####

library(abind)

# This loads c.mat and a.mat from the Collapsed Trans. matrix file

load("Collapsed Transition Matrices/By Set Distance/

collapsedcmatR-Final.txt")

load("Collapsed Transition Matrices/By Set Distance/

collapsedamatR-Final.txt")

c.matcol <- ncol(c.mat)

c.matrow <- nrow(c.mat)

###

## Assuming prior counts all equal to one

###

a.matweak <- a.mat

for(row in 1:c.matrow){

for(col in 1:c.matcol){

if(c.mat[row,col]>0) a.matweak[row,col] <- 1

else a.matweak[row,col] <- 0

}

}

a.mat <- a.matweak

#This just indicates what columns of c.mat are greater than zero

#and then it stores the column indexes in a matrix for each row.

indmat <- matrix(-1, nrow=c.matrow, ncol=c.matcol)

for(row in 1:c.matrow){

index <- 1

for(col in 1:c.matcol){

if(c.mat[row,col]>0){

indmat[row,index] <- col

index <- index + 1

}

}

}

newhits <- c("O","Float 5-pt","Float 4-pt","Float 3-pt","Float 2-pt",
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"Float 1-pt","Float 0-pt","Jump 5-pt","Jump 4-pt","Jump 3-pt",

"Jump 2-pt","Jump 1-pt","Jump 0-pt","4pt","3pt","2pt","1pt","0pt",

"PassOverpass","0to3ft","3to5ft","5to8ft","8to10ft","NotSetter","Middle",

"Right","Left","Back","SetDump","OutSystem","Overpass","Dig #","Dig

+","Dig !","Dig -","Dig /","Dig =","Good","Continue","Bad" )

#Specify what you want to look at:

serve<-c("Float 5-pt","Float 4-pt","Float 3-pt","Float 2-pt","Float

1-pt","Float 0-pt","Jump 5-pt","Jump 4-pt","Jump 3-pt",

"Jump 2-pt","Jump 1-pt","Jump 0-pt")

pass <- c("4pt", "3pt", "2pt", "1pt", "0pt", "PassOverpass","Dig

#","Dig +","Dig !","Dig -","Dig /","Dig =")

set <- c("0to3ft", "3to5ft", "5to8ft", "8to10ft", "NotSetter")

attack <- c("Middle", "Right", "Left", "Back",

"SetDump", "OutSystem", "Overpass")

outcome <- c("Good")

#Total number of draws from posterior distribution

timestamp()

nloops <- 100000

post <- matrix(NA, nrow=c.matrow, ncol=c.matcol,

dimnames=list(newhits,newhits))

#This will store the all the simulated transition matrices:

#allsetplacemat <- matrix(0, nrow=c.matrow, ncol=c.matcol,

# dimnames=list(newhits,newhits))

name.col<-NULL

for(i in 1:length(newhits)){

for(j in 1:length(newhits)){

name.col<-c(name.col,paste(newhits[i],newhits[j],sep="/"))

}

}

allsetplacemat<-matrix(NA,nrow=nloops,ncol=length(name.col),

dimnames=list(c(1:nloops),name.col))

lserve<-length(serve)

lset <- length(set)

lpass <- length(pass)

loutcome <- length(outcome)

lattack <- length(attack)

#Create a matrix to store the unconditional probabilities for serving

serveoverall <- matrix(NA, nrow=lserve, ncol=loutcome,

dimnames=list(serve, outcome))
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serveposts<-matrix(NA,nrow=100000,ncol= lserve,

dimnames=list(c(1:100000),serve))

# Create a matrix to store the unconditional probabilities for passing

passoverall <- matrix(NA, nrow=lpass, ncol=loutcome,

dimnames=list(pass, outcome))

passposts<-matrix(NA,nrow=100000,ncol=lpass,dimnames=list(c(1:100000)

,pass))

# Matrix to store unconditional probabilities for set placement

setplaceoverall <- matrix(NA, nrow=lset, ncol=loutcome,

dimnames=list(set, outcome))

setplaceposts

<-matrix(NA,nrow=100000,ncol=lset,dimnames=list(c(1:100000)

,set))

# Matrix to store the unconditional probabilities for attack

attackoverall <- matrix(NA, nrow=lattack, ncol=loutcome,

dimnames=list(attack,outcome))

attackposts<-matrix(NA,nrow=100000,ncol=lattack,

dimnames=list(c(1:100000), attack))

timestamp()

for(loop in 1:nloops){

# Generate a whole new matrix

# Generate values from a gamma distribution -

# Convert to Dirichlet distribution

for(row in 1:c.matrow){

draws <- matrix(0, nrow=1, ncol=c.matcol)

for(col in 1:c.matcol){

index <- indmat[row,col]

if(index == -1) {break}

draws[index] <- rgamma(1, c.mat[row,index] +

a.mat[row,index], 1)

}

# Convert to a dirichlet distribution

post[row,] <- draws/sum(draws)

}

# Save the generated transition matrix

allsettemp<-NULL

for(i in 1:length(newhits)){

allsettemp<-c(allsettemp,post[i,])

}
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allsetplacemat[loop,] <- allsettemp

##Calculate the unconditional probabilities for Serving types

for(i in 1:lserve){

for(j in 1:loutcome){

prob <- 0

prob <- prob + post[serve[i],outcome[j]]

serveoverall[i,j] <- prob

}

}

serveposts[loop,]<-serveoverall

###

#Calculates the unconditional probabilities for passing types

# based on the simulated transition matrix

###

for(p in 1:lpass){

passp <- pass[p]

for(j in 1:loutcome){

outcomej <- outcome[j]

prob <- 0

for(i in 1:lattack){

attacki <- attack[i]

for(k in 1:lset){

setk <- set[k]

prob <- prob

+ post[passp,setk]*post[setk,attacki]

*post[attacki,outcomej]+post[passp,setk]

*post[setk,"NotSetter"]*post["NotSetter",attacki]

*post[attacki,outcomej]

}

prob <- prob + post[passp,attacki]*

post[attacki,outcomej]

}

for(k in 1:lset){

setk <- set[k]

prob <- prob +

post[passp,setk]*post[setk,"NotSetter"]

*post["NotSetter",outcomej] + post[passp,setk]*

post[setk,outcomej]

}

prob <- prob + post[passp,outcomej]

passoverall[p,j] <- prob

}

}
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passposts[loop,]<-passoverall

}

###

## Compute unconditionals for set placement:

###

for(k in 1:lset){

setk <- set[k]

for(j in 1:loutcome){

outcomej <- outcome[j]

prob <- 0

for(i in 1:lattack){

attacki <- attack[i]

prob<-prob+post[setk,attacki]*post[attacki,outcomej] +

post[setk,"NotSetter"]*post["NotSetter",attacki]*

post[attacki, outcomej]

}

# Include the probability of going directly to an outcome

# from the set

prob <- prob + post[setk,"NotSetter"]*

post["NotSetter",outcomej] + post[setk,outcomej]

setplaceoverall[k,j] <- prob

}

}

setplaceposts[loop,]<-setplaceoverall

###

## Compute the unconditionals for attacks:

###

for(i in 1:lattack){

for(j in 1:loutcome){

prob <- 0

prob <- prob + post[attack[i],outcome[j]]

attackoverall[i,j] <- prob

}

}

attackposts[loop,]<-attackoverall

}

timestamp() #About 2.5 hours to run

write.table(allsetplacemat,"allsetplacemat.txt",sep=",")
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write.table(passposts,"passposts.txt",sep=",")

write.table(setplaceposts,"setplaceposts.txt",sep=",")

write.table(attackposts,"attackposts.txt",sep=",")

write.table(serveposts,"serveposts.txt",sep=",")

B.1.4 Calculating Goodness of Fit and Importance Scores

#Computes the Bayesian Chi-square for each cell of the transition

probability

#matrix. The reason it does it for each cell is because the Bayesian

#Chi-square is not a multivariate test.

for(k in 0:34){

row<-length(which(allsetplacemat[1,(1+k*31):(31+k*31)]>0))

B.X2<-matrix(NA,nrow=n,ncol=row)

prob<-allsetplacemat[i,(1+k*31):(31+k*31)]

if(row==1){

for(i in 1:n){

prob<-allsetplacemat[i,(1+k*31):(31+k*31)]

nonZero<-which(prob>0)

prob.nonZero<-prob[nonZero]

exp<-prob.nonZero*counts[k+1]

actProb<-prob.nonZero

for(j in 1:row){

obs<-rbinom(counts[k+1],1,p=actProb[j])

tab.obs<-table(obs)

int.cell<-exp[j]

B.X2[i,j]<-sum((tab.obs-int.cell)^2/int.cell)

}

}

}else{

for(i in 1:n){

prob<-allsetplacemat[i,(1+k*31):(31+k*31)]

nonZero<-which(prob>0)

prob.nonZero<-prob[nonZero]

exp<-prob.nonZero*counts[k+1]

actProb<-prob.nonZero

for(j in 1:row){

obs<-rbinom(counts[k+1],1,p=actProb[j])

tab.obs<-table(obs)

int.cell<-exp[j]

other.cell<-sum(exp[-j])

tab.exp<-c(other.cell,int.cell)

B.X2[i,j]<-sum((tab.obs-tab.exp)^2/tab.exp)

}
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}

}

write.table(B.X2,file=paste("File",k,".txt",sep=""))

print(k)

}

B.X2<-read.table("/Users/gradstudent/Documents/Master’s Project

/Women’s VB Code and Data/Bayes Chi-squared Values/File0.txt"

,header=TRUE)

pchis<-NULL

for(i in 1:ncol(B.X2)){

pchis<-c(pchis,mean(pchisq(B.X2[,i],1,lower=TRUE)<0.05))

}

B.X2<-read.table("/Users/gradstudent/Documents/Master’s Project/

Women’s VB Code and Data/Bayes Chi-squared Values/File1.txt",

header=TRUE)

for(i in 1:ncol(B.X2)){

pchis<-c(pchis,mean(pchisq(B.X2[,i],1,lower=TRUE)<0.05))

}

B.X2<-read.table("/Users/gradstudent/Documents/Master’s Project

/Women’s VB Code and Data/Bayes Chi-squared Values/File2.txt",

header=TRUE)

for(i in 1:ncol(B.X2)){

pchis<-c(pchis,mean(pchisq(B.X2[,i],1,lower=TRUE)<0.05))

}

#Repeat process for all files

#Get the names for each chi-square thing I computed

i<-1

lab<-NULL

for(k in 0:30){

prob<-allsetplacemat[i,(1+k*31):(31+k*31)]

nonZero<-which(prob>0)

lab<-c(lab,names(prob[nonZero]))

}

res<-cbind(lab,pchis)

t(res)

#Computes the Importance Scores
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attack<-read.csv("/Users/gradstudent/Documents/Master’s Project

/Women’s VB Code and Data/Results MCMC Good

Unconditional/attackposts.txt",

header=TRUE)

pass<-read.csv("/Users/gradstudent/Documents/Master’s Project/

Women’s VB Code and Data/Results MCMC Good

Unconditional/passposts.txt",

header=TRUE)

set<-read.csv("/Users/gradstudent/Documents/Master’s Project/

Women’s VB Code and Data/Results MCMC Good

Unconditional/setplaceposts.txt",

header=TRUE)

serve<-read.csv("/Users/gradstudent/Documents/Master’s Project/

Women’s VB Code and Data/Results MCMC Good

Unconditional/serveposts.txt",

header=TRUE)

IS.attack<-apply(attack,2,mean)/sqrt(apply(attack,2,var))

IS.pass<-apply(pass,2,mean)/sqrt(apply(pass,2,var))

IS.set<-apply(set,2,mean)/sqrt(apply(set,2,var))

IS.serve<-apply(serve,2,mean)/sqrt(apply(serve,2,var))

IS.all<-c(IS.attack,IS.pass,IS.set,IS.serve)

mean.all<-c(apply(attack,2,mean),apply(pass,2,mean),apply(set,2,mean),

apply(serve,2,mean))

var.all<-c(apply(attack,2,var),apply(pass,2,var),apply(set,2,var),

apply(serve,2,var))

vals<-cbind(mean.all,var.all,IS.all)

s.vals<-vals[order(vals[,3],decreasing=TRUE),]

round(s.vals,5)

B.2 Volleyball Logistic Regression

This section contains the code for the passing logistic regression model that we
constructed. The code for the other models follows a similar format to this.

B.2.1 Coding for Data Matrices

#Need to create and X and a Y matrix for the volleyball data

####Scan in the data

team1<-read.csv("/Users/gradstudent/Documents/Master’s Project/

VolleyballData Logistic/vbFinalLog.txt",header=TRUE)

#Creating an X just with the serves
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#Just want to use the serve data

serve<-which(team1$skill=="Home Jump Serve"|

team1$skill=="Home Float Serve")

serve.data<-team1[serve,]

Skills.TF.Serve<-function(data){

data$HomeJump<-ifelse(data$skill=="Home Jump Serve",TRUE,FALSE)

data$HomeFloat<-ifelse(data$skill=="Home Float Serve",TRUE,FALSE)

return(data)

}

team1.serve<-Skills.TF.Serve(serve.data)

make.XServe<-function(data){

n<-nrow(data)

X.matrix<-matrix(0,nrow=n,ncol=3)

X.matrix[,1]<-1

X.matrix[data$HomeJump,2]<-data$score[data$HomeJump]

X.matrix[data$HomeFloat,3]<-data$score[data$HomeFloat]

return(X.matrix)

}

write.table(make.XServe(team1.serve),"xServe.txt",sep=" ",

col.names=FALSE,row.names=FALSE)

write.table(as.numeric(as.character(team1.serve$outcome)),

"yServe.txt",sep=" ",col.names=FALSE,row.names=FALSE)

#Passing X

pass<-which(team1$skill=="Pass")

pass.data<-team1[pass,]

Skills.TF.pass<-function(data){

data$Pass<-ifelse(data$skill=="Pass",TRUE,FALSE)

return(data)

}

team1.pass<-Skills.TF.pass(pass.data)

make.XPass<-function(data){

n<-nrow(data)

X.matrix<-matrix(0,nrow=n,ncol=2)

X.matrix[,1]<-1

X.matrix[data$Pass,2]<-data$score[data$Pass]

return(X.matrix)

}
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write.table(make.XPass(team1.pass),"xPass.txt",sep=" ",

col.names=FALSE,row.names=FALSE)

write.table(as.numeric(as.character(team1.pass$outcome)),

"yPass.txt",sep=" ",col.names=FALSE,row.names=FALSE)

#Set X

team1<-read.csv("/Users/gradstudent/Documents/Master’s Project

/VolleyballData Logistic/vbFinalLog2.txt",header=TRUE)

set<-which(team1$skill=="Set")

set.data<-team1[set,]

Skills.TF.set<-function(data){

data$Set<-ifelse(data$skill=="Set",TRUE,FALSE)

return(data)

}

team1.set<-Skills.TF.set(set.data)

make.XSet<-function(data){

n<-nrow(data)

X.matrix<-matrix(0,nrow=n,ncol=2)

X.matrix[,1]<-1

X.matrix[data$Set,2]<-data$score[data$Set]

return(X.matrix)

}

write.table(make.XSet(team1.set),"xSet.txt",sep=" ",

col.names=FALSE,row.names=FALSE)

write.table(as.numeric(as.character(team1.set$outcome)),

"ySet.txt",sep=" ",col.names=FALSE,row.names=FALSE)

#Dig X

dig<-which(team1$skill=="Dig")

dig.data<-team1[dig,]

Skills.TF.dig<-function(data){

data$Dig<-ifelse(data$skill=="Dig",TRUE,FALSE)

return(data)

}

team1.dig<-Skills.TF.dig(dig.data)

make.XSet<-function(data){

n<-nrow(data)

X.matrix<-matrix(0,nrow=n,ncol=2)

X.matrix[,1]<-1

X.matrix[data$Dig,2]<-data$score[data$Dig]
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return(X.matrix)

}

write.table(make.XSet(team1.dig),"xDig.txt",sep=" ",

col.names=FALSE,row.names=FALSE)

write.table(as.numeric(as.character(team1.dig$outcome)),

"yDig.txt",sep=" ",col.names=FALSE,row.names=FALSE)

B.2.2 Logistic Regression Model

#include<math.h>

#include<gsl/gsl_math.h>

#include<gsl/gsl_statistics.h>

#include<gsl/gsl_sort.h>

#include<gsl/gsl_rng.h>

#include<gsl/gsl_randist.h>

#include<time.h>

/*Where M is the number of simulations*/

const int M=10000;

const int burn=1000;

const int NSIM=100300;

/*Don’t need team variable any more*/

const double mu=0.0;

const double sig2=1000;

const int Nbetas=2;

const int NROW1=921; /*Number of rows in the x matrix*/

double Y1[921],One_min_Y1[921];

double x1[921][2];

double sumdot(double x[],double y[],int length);

double likelihood(double y[], double OneMinusY[],double x[][2],

double beta[],int N);

double sum(double x[],int n);

/*a is the needs to match the dim of your x matrix*/

void mvmult(double a[][2],double b[], double res[],int ar,

int ac);

void exponentiate(double x[], double final[], int N);

void logme(double x[], double final[], int N);

void addconst(double y,double x[], double final[],int N);

double g(double x, int beta_int,double betaAll[],double mu,

double sig2);

void getval (double betaAll[],int beta_int, double beta_ar,

double csig,double mu, double sigma2, double betaMat_int[]);
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int main()

{

gsl_rng *r, *s;

r=gsl_rng_alloc(gsl_rng_mt19937);

s=gsl_rng_alloc(gsl_rng_mt19937);

int i,j,k,l,m,N;

FILE *fi2,*fi3,*fi4;

FILE *betas;

double beta0[2],beta1[2],betaAll[Nbetas];

/*Initializing variables*/

double beta_temp[Nbetas];

double Lik, t;

double csig_0=0.15;

double csig_1=0.04;

double beta0_ar=0;

double beta1_ar=0;

double old0,old1;

double accept,cand,g_cand,g_old,u;

beta0[0]=0;

beta1[0]=0;

fi2=fopen("yPass.txt","r");

fi3=fopen("xPass.txt","r");

/*Reading in my data files*/

for(i=0; i<NROW1; i++) {

fscanf(fi2, "%lf", &Y1[i]);

One_min_Y1[i]=1-Y1[i];

fscanf(fi3,"%lf %lf", &x1[i][0],&x1[i][1]);

}

fclose(fi2);

fclose(fi3);

/*Reading initial values for betas into a file*/

betas=fopen("betasPass.txt","w");

fprintf(betas,"%lf ",beta0[0]);

fprintf(betas,"%lf ",beta1[0]);

fprintf(betas,"\n");

/*Starting the Simulation*/
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time_t t1=time(NULL);

for(N=0;N<NSIM;N++){

/*Notifies me where I am in my simulation*/

if (N % 100 == 0 ){

printf("%d\n",N);}

/*Puts the current beta into a betaAll matrix*/

betaAll[0]=beta0[0];

betaAll[1]=beta1[0];

/*Gets new starting values Random Num Gen*/

gsl_rng_set(r,gsl_rng_get(r));

gsl_rng_set(s,gsl_rng_get(s));

/*Beta 0*/

old0=betaAll[0];

cand=gsl_ran_gaussian(r, csig_0)+old0;

g_cand=g(cand,0,betaAll,mu,sig2);

g_old=g(old0,0,betaAll,mu,sig2);

accept=g_cand-g_old;

/*Tests to see if we generated an acceptable value*/

u=gsl_ran_flat (s, 0.0, 1.0);

if(log(u)<accept){beta0[1]=cand;

beta0_ar+=1;} /*if the candidate value looks reasonable

we accept it*/

else{beta0[1]=old0;}

betaAll[0]=beta0[1];

/*Beta 1*/

old1=betaAll[1];

gsl_rng_set(r,gsl_rng_get(r));

cand=gsl_ran_gaussian(r, csig_1)+old1;

g_cand=g(cand,1,betaAll,mu,sig2);

g_old=g(old1,1,betaAll,mu,sig2);

accept=g_cand-g_old;

gsl_rng_set(s,gsl_rng_get(s));

/*See if value generated is an acceptable value*/

u=gsl_ran_flat (s, 0.0, 1.0);

if(log(u)<accept){beta1[1]=cand;beta1_ar+=1;}

else{beta1[1]=old1;}

betaAll[1]=beta1[1];

/*Print out New Parameters to File*/

fprintf(betas,"%lf ",beta0[1]);
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fprintf(betas,"%lf ",beta1[1]);

fprintf(betas,"\n");

/*Updating parameters so new values will be in the zero slot of

the matrix*/

beta0[0]=beta0[1];

beta1[0]=beta1[1];

}

time_t t2=time(NULL);

/*Tells me how long it took to run it*/

printf("%d seconds elapsed\n", t2-t1);

fclose(betas);

/*Gives Acceptance rates for Metropolis Hastings part...want these

to be between .40-.50. Alter corresponding c_sig values to get

appropriate acceptance rates*/

printf("Beta0 AR: %lf \n ",beta0_ar/NSIM);

printf("Beta1 AR: %lf \n ",beta1_ar/NSIM);

return 0;

}

/*This is the unnormalized posterior distribution*/

/*x is your candidate value you are testing, beta_int tells you what

beta you are looking at, betaAll is a matrix of all the current

betas for that iteration, mu is the mean for that beta, and sig2

is the variance for that beta*/

double g(double x, int beta_int,double betaAll[],double mu,

double sig2){

int i,j;

double beta_temp[Nbetas];

double final;

double Lik=0;

betaAll[beta_int]=x;

Lik=likelihood(Y1,One_min_Y1,x1,betaAll,NROW1);

final=Lik-((x-mu)*(x-mu))/(2*sig2);

return final;

}

/*Calculates the log likelihood of the Bernoulli distribution*/

/*y is the response, oneMinus Y is a vector of 1-y, X is your x

matrix, beta is your beta matrix, N indicates the number of rows

in X*/
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double likelihood(double y[], double OneMinusY[],double x[][Nbetas],

double beta[],int N){

double Xbeta[N],yXbeta[N],expXBeta[N],L1expXB[N];

double res;

int i;

double a,b,c,negY[N],OnePlusXBeta[N];

mvmult(x,beta,Xbeta,N,Nbetas);

exponentiate(Xbeta,expXBeta,N);

addconst(1.0,expXBeta,OnePlusXBeta,N);

logme(OnePlusXBeta,L1expXB,N);

b=sumdot(y,L1expXB,N);

a=sumdot(y,Xbeta,N);

c=sumdot(OneMinusY,L1expXB,N);

res=a-b-c;

return res;

}

/*Calculates the sum of a vector*/

double sum(double x[],int n){

int i;

double res=0;

for (i=0;i<n; i++){

res+=x[i];

}

return res;

}

/*exponentiates a vector*/

void exponentiate(double x[], double final[], int N){

int i;

for(i=0;i<N;i++){

final[i]=exp(x[i]);

}

}

/*takes the log of a vector*/

void logme(double x[], double final[], int N){

int i;

for(i=0;i<N;i++){

final[i]=log(x[i]);

}

}

/*Does Vector Vector Multiplication...returns a single value*/
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double sumdot(double x[],double y[],int length){

int i;

double res=0.0;

for(i=0;i<length;i++){

res+=x[i]*y[i];

}

return(res);

}

/*Does Matrix vector multiplication*/

/*ar is the dimension of rows in a, k is the number of columns*/

void mvmult(double a[][Nbetas],double b[], double res[],int ar,

int ac){

int i, j,k;

for(i=0; i<ar;i++){

res[i]=0.0;

for(k=0;k<ac;k++){

res[i]+=a[i][k]*b[k];

}

}

}

/*Adds a constant to a vector*/

void addconst(double y,double x[], double final[],int N){

int i;

for(i=0;i<N;i++){

final[i]=x[i]+y;

}

}

B.2.3 Calculating Goodness of Fit and Importance Scores

#Goodness of Fit

betas<-read.table("/Users/gradstudent/Documents/Master’s Project/

VolleyballData Logistic/betasServe.txt",header=FALSE)

names(betas)<-c("Intercept",’Jump’,’Float’)

betas<-betas[-c(1:301),]

x<-read.table("/Users/gradstudent/Documents/Master’s Project/

VolleyballData Logistic/xServe.txt",header=FALSE)

names(x)<-c("Intercept",’Jump’,’Float’)

y<-read.table("/Users/gradstudent/Documents/Master’s Project/

VolleyballData Logistic/yServe.txt",header=FALSE)
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tabY<-table(y)

n<-nrow(betas)

Beta<-betas

X<-as.matrix(x)

n<-nrow(y)

BX2<-rep(0,n)

for(i in 1:n){

tabs<-rep(0,2)

betas<-matrix(as.numeric(Beta[i,]),ncol=1)

prob<-exp(X%*%betas)/(1+exp(X%*%betas))

vals<-rbern(nrow(X),prob)

tabs<-tabs+table(vals)

BX2[i]<-sum(((tabs-tabY)^2/tabY))

}

mean(pchisq(BX2,1,lower=TRUE)<0.05)#0.01635514

#Volleyball Logistic Regression--Goodness of Fit Pass

betas<-read.table("/Users/gradstudent/Documents/Master’s Project

/VolleyballData Logistic/betasPass.txt",header=FALSE)

names(betas)<-c("Intercept",’Pass’)

betas<-betas[-c(1:301),]

x<-read.table("/Users/gradstudent/Documents/Master’s Project

/VolleyballData Logistic/xPass.txt",header=FALSE)

names(x)<-c("Intercept",’Pass’)

y<-read.table("/Users/gradstudent/Documents/Master’s Project/

VolleyballData Logistic/yPass.txt",header=FALSE)

tabY<-table(y)

n<-nrow(betas)

Beta<-betas

X<-as.matrix(x)

n<-nrow(y)

BX2<-rep(0,n)

for(i in 1:n){

tabs<-rep(0,2)

betas<-matrix(as.numeric(Beta[i,]),ncol=1)

prob<-exp(X%*%betas)/(1+exp(X%*%betas))

vals<-rbern(nrow(X),prob)

tabs<-tabs+table(vals)

BX2[i]<-sum(((tabs-tabY)^2/tabY))

75



}

mean(pchisq(BX2,1,lower=TRUE)<0.05) #0.02388708

#Sets

betas<-read.table("/Users/gradstudent/Documents/Master’s Project/

VolleyballData Logistic/betasSet.txt",header=FALSE)

names(betas)<-c("Intercept",’Set’)

betas<-betas[-c(1:301),]

x<-read.table("/Users/gradstudent/Documents/Master’s Project/

VolleyballData Logistic/xSet.txt",header=FALSE)

names(x)<-c("Intercept",’Set’)

y<-read.table("/Users/gradstudent/Documents/Master’s Project/

VolleyballData Logistic/ySet.txt",header=FALSE)

tabY<-table(y)

n<-nrow(betas)

Beta<-betas

X<-as.matrix(x)

n<-nrow(y)

BX2<-rep(0,n)

for(i in 1:n){

tabs<-rep(0,2)

betas<-matrix(as.numeric(Beta[i,]),ncol=1)

prob<-exp(X%*%betas)/(1+exp(X%*%betas))

vals<-rbern(nrow(X),prob)

tabs<-tabs+table(vals)

BX2[i]<-sum(((tabs-tabY)^2/tabY))

}

mean(pchisq(BX2,1,lower=TRUE)<0.05) #0.04582409

#Dig

betas<-read.table("/Users/gradstudent/Documents/Master’s Project

/VolleyballData Logistic/betasDig.txt",header=FALSE)

names(betas)<-c("Intercept",’Dig’)

betas<-betas[-c(1:301),]

x<-read.table("/Users/gradstudent/Documents/Master’s Project/

VolleyballData Logistic/xDig.txt",header=FALSE)

names(x)<-c("Intercept",’Dig’)

y<-read.table("/Users/gradstudent/Documents/Master’s Project/
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VolleyballData Logistic/yDig.txt",header=FALSE)

tabY<-table(y)

n<-nrow(betas)

Beta<-betas

X<-as.matrix(x)

n<-nrow(y)

BX2<-rep(0,n)

for(i in 1:n){

tabs<-rep(0,2)

betas<-matrix(as.numeric(Beta[i,]),ncol=1)

prob<-exp(X%*%betas)/(1+exp(X%*%betas))

vals<-rbern(nrow(X),prob)

tabs<-tabs+table(vals)

BX2[i]<-sum(((tabs-tabY)^2/tabY))

}

mean(pchisq(BX2,1,lower=TRUE)<0.05)

#MCMC

load("Results MCMC Good Unconditional/allsetplacemat.txt")

load("R Code Cleaned Up/volleyclean.txt")#file is called vb

load("Collapsed Transition Matrices/By Set Distance/

collapsedcmatR2.txt")

dims<-colnames(allsetplacemat)

counts<-apply(c.mat,1,sum)

n<-nrow(allsetplacemat)

#Lets try it for a specific row of my matrix

row1<-length(which(allsetplacemat[1,1:31]>0))

B.X2<-matrix(NA,nrow=n,ncol=7)

#Importance Scores

betas<-read.table("/Users/gradstudent/Documents/Master’s Project

/VolleyballData Logistic/betasServe.txt",header=FALSE)

plot(betas[1:1000,2],type="l")

betas<-betas[-c(1:301),]

plot(density(betas[,2]),col="red")

colnames(betas)<-c("Intercept","HomeJump","HomeFloat")

#Importance Scores

ImportanceScores<-apply(betas,2,mean)/sqrt(apply(betas,2,var))

sort(ImportanceScores,decreasing=TRUE)

#Pass
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betas<-read.table("/Users/gradstudent/Documents/Master’s Project

/VolleyballData Logistic/betasPass.txt",header=FALSE)

plot(betas[1:1000,2],type="l")

betas<-betas[-c(1:301),]

plot(density(betas[,2]),col="red")

colnames(betas)<-c("Intercept","Pass")

#Importance Scores

ImportanceScores<-apply(betas,2,mean)/sqrt(apply(betas,2,var))

sort(ImportanceScores,decreasing=TRUE)

#Set

betas<-read.table("/Users/gradstudent/Documents/Master’s Project

/VolleyballData Logistic/betasSet.txt",header=FALSE)

plot(betas[1:5000,2],type="l")

betas<-betas[-c(1:301),]

plot(density(betas[,2]),col="red")

colnames(betas)<-c("Intercept","Set")

#Calculating Importance Scores

ImportanceScores<-apply(betas,2,mean)/sqrt(apply(betas,2,var))

sort(ImportanceScores,decreasing=TRUE)

#Digs

betas<-read.table("/Users/gradstudent/Documents/Master’s Project

/VolleyballData Logistic/betasDig.txt",header=FALSE)

plot(betas[1:2000,2],type="l")

betas<-betas[-c(1:301),]

plot(density(betas[,2]),col="red")

colnames(betas)<-c("Intercept","Dig")

#Calculating Importance Scores

ImportanceScores<-apply(betas,2,mean)/sqrt(apply(betas,2,var))

sort(ImportanceScores,decreasing=TRUE)

B.3 Soccer Hierarchical Logistic Regression

#include<math.h>

#include<gsl/gsl_math.h>

#include<gsl/gsl_statistics.h>

#include<gsl/gsl_sort.h>

#include<gsl/gsl_rng.h>

#include<gsl/gsl_randist.h>

#include<time.h>

/*Where M is the number of simulations*/
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const int M=100000;

const int burn=1000;

const int NSIM=101000;

const int teams=11;

const double mu0_mean=0.0,mu1_mean=0.0,mu2_mean=0.0,mu3_mean=0.0,

mu4_mean=0.0;

const double mu0_sig2=1000,mu1_sig2=1000,mu2_sig2=1000,mu3_sig2=1000,

mu4_sig2=1000;

const double sig0_a=2.001,sig1_a=2.001,sig2_a=2.001,sig3_a=2.001,

sig4_a=2.001;

const double sig0_b=0.0002,sig1_b=0.0002,sig2_b=0.0002,sig3_b=0.0002,

sig4_b=0.0002;

const int Nbetas=5;

const int NROW1=15569;

const int NROW2=1298;

const int NROW3=1455;

const int NROW4=1231;

const int NROW5=1289;

const int NROW6=1383;

const int NROW7=1641;

const int NROW8=1335;

const int NROW9=1482;

const int NROW10=1345;

const int NROW11=1835;

double Y1[15569],One_min_Y1[15569];

double Y2[1298],One_min_Y2[1298];

double Y3[1455],One_min_Y3[1455];

double Y4[1231],One_min_Y4[1231];

double Y5[1289],One_min_Y5[1289];

double Y6[1383],One_min_Y6[1383];

double Y7[1641],One_min_Y7[1641];

double Y8[1335],One_min_Y8[1335];

double Y9[1482],One_min_Y9[1482];

double Y10[1345],One_min_Y10[1345];

double Y11[1835],One_min_Y11[1835];

double x1[15569][5],x2[1298][5],x3[1455][5],x4[1231][5],x5[1289][5],

x6[1383][5];

double x7[1641][5],x8[1335][5],x9[1482][5],x10[1345][5],x11[1835][5];

double sumdot(double x[],double y[],int length);

double likelihood(double y[], double OneMinusY[],double x[][Nbetas],

double beta[],int N);

double sum(double x[],int n);

void mvmult(double a[][5],double b[], double res[],int ar, int ac);

void exponentiate(double x[], double final[], int N);

void logme(double x[], double final[], int N);
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void addconst(double y,double x[], double final[],int N);

double g(double x, int jj, int beta_int,double betaAll[][teams],

double mu, double sig2);

void applymean(double BetaMat[][teams], double meanBeta[Nbetas],

int teams);

int main()

{

gsl_rng *r, *s;

r=gsl_rng_alloc(gsl_rng_mt19937);

s=gsl_rng_alloc(gsl_rng_mt19937);

int i,j,k,l,m,N;

FILE *fi2,*fi3,*fi4;

FILE *b0,*b1,*b2,*b3,*b4,*mu,*sig2;

/*I ony need to save the previous values...rewrite code to do this*/

double beta0[2][teams],beta1[2][teams],beta2[2][teams],

beta3[2][teams],beta4[2][teams],betaAll[Nbetas][teams];

double beta_temp[Nbetas];

double Lik, t;

double mu_0[2],mu_1[2],mu_2[2],mu_3[2],mu_4[2];

double sig2_0[2],sig2_1[2],sig2_2[2],sig2_3[2],sig2_4[2];

double csig_0[]={.05,0.16,0.5,0.25,0.12,0.2,0.3,

0.2,0.3,0.2,0.15};

double csig_1[]={0.015, 0.05,0.2,0.055,0.045,0.04, 0.07,

0.05, 0.055, 0.05, .035};

double csig_2[]={0.02, 0.075,0.37,0.1,0.07,0.06,0.12,0.09,

0.10, 0.1, .05};

double csig_3[]={0.04, 0.1,0.348,0.14,0.085,0.10, 0.18, 0.10,

0.12, 0.13, .07};

double csig_4[]={0.05, 0.16,.9,0.25,.15,.15,.25, 0.17,

.25, .3, .12};

double beta0_ar[]={0,0,0,0,0,0,0,0,0,0,0};

double beta1_ar[]={0,0,0,0,0,0,0,0,0,0,0};

double beta2_ar[]={0,0,0,0,0,0,0,0,0,0,0};

double beta3_ar[]={0,0,0,0,0,0,0,0,0,0,0};

double beta4_ar[]={0,0,0,0,0,0,0,0,0,0,0};

double old0,old1,old2,old3,old4;

double accept,cand,g_cand,g_old,u;

double meanBetas[Nbetas];

double mustar0,sigstar0,mustar1,sigstar1,mustar2,sigstar2,

mustar3,sigstar3,mustar4,sigstar4;

double astar_0, bstar_0,astar_1, bstar_1,astar_2, bstar_2,
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astar_3, bstar_3,astar_4, bstar_4;

double res=0.0,res1=0,res2=0,res3=0,res4=0;

/*initialize Betas0*/

for(i=0; i<teams; i++){

beta0[0][i]=0;

beta1[0][i]=0;

beta2[0][i]=0;

beta3[0][i]=0;

beta4[0][i]=0;

}

/*Initialize mu and sig*/

mu_0[0]=0;

mu_1[0]=0;

mu_2[0]=0;

mu_3[0]=0;

mu_4[0]=0;

sig2_0[0]=1;

sig2_1[0]=1;

sig2_2[0]=1;

sig2_3[0]=1;

sig2_4[0]=1;

fi2=fopen("y1.txt","r");

fi3=fopen("x1.txt","r");

for(i=0; i<NROW1; i++) {

fscanf(fi2, "%lf", &Y1[i]);

One_min_Y1[i]=1-Y1[i];

fscanf(fi3, "%lf %lf %lf %lf %lf", &x1[i][0],&x1[i][1],&x1[i][2],

&x1[i][3],&x1[i][4]);

}

fclose(fi2);

fclose(fi3);

fi2=fopen("y2.txt","r");

fi3=fopen("x2.txt","r");

for(i=0; i<NROW2; i++) {

fscanf(fi2, "%lf", &Y2[i]);

One_min_Y2[i]=1-Y2[i];

fscanf(fi3, "%lf %lf %lf %lf %lf", &x2[i][0],&x2[i][1],&x2[i][2],

&x2[i][3],&x2[i][4]);

}

fclose(fi2);

fclose(fi3);
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fi2=fopen("y3.txt","r");

fi3=fopen("x3.txt","r");

for(i=0; i<NROW3; i++) {

fscanf(fi2, "%lf", &Y3[i]);

One_min_Y3[i]=1-Y3[i];

fscanf(fi3, "%lf %lf %lf %lf %lf", &x3[i][0],&x3[i][1],&x3[i][2],

&x3[i][3],&x3[i][4]);

}

fclose(fi2);

fclose(fi3);

fi2=fopen("y4.txt","r");

fi3=fopen("x4.txt","r");

for(i=0; i<NROW4; i++) {

fscanf(fi2, "%lf", &Y4[i]);

One_min_Y4[i]=1-Y4[i];

fscanf(fi3, "%lf %lf %lf %lf %lf", &x4[i][0],&x4[i][1],&x4[i][2],

&x4[i][3],&x4[i][4]);

}

fclose(fi2);

fclose(fi3);

fi2=fopen("y5.txt","r");

fi3=fopen("x5.txt","r");

for(i=0; i<NROW5; i++) {

fscanf(fi2, "%lf", &Y5[i]);

One_min_Y5[i]=1-Y5[i];

fscanf(fi3, "%lf %lf %lf %lf %lf", &x5[i][0],&x5[i][1],

&x5[i][2],&x5[i][3],&x5[i][4]);

}

fclose(fi2);

fclose(fi3);

fi2=fopen("y6.txt","r");

fi3=fopen("x6.txt","r");

for(i=0; i<NROW6; i++) {

fscanf(fi2, "%lf", &Y6[i]);

One_min_Y6[i]=1-Y6[i];

fscanf(fi3, "%lf %lf %lf %lf %lf", &x6[i][0],&x6[i][1],

&x6[i][2],&x6[i][3],&x6[i][4]);

}

fclose(fi2);

fclose(fi3);

fi2=fopen("y7.txt","r");
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fi3=fopen("x7.txt","r");

for(i=0; i<NROW7; i++) {

fscanf(fi2, "%lf", &Y7[i]);

One_min_Y7[i]=1-Y7[i];

fscanf(fi3, "%lf %lf %lf %lf %lf", &x7[i][0],&x7[i][1],

&x7[i][2],&x7[i][3],&x7[i][4]);

}

fclose(fi2);

fclose(fi3);

fi2=fopen("y8.txt","r");

fi3=fopen("x8.txt","r");

for(i=0; i<NROW8; i++) {

fscanf(fi2, "%lf", &Y8[i]);

One_min_Y8[i]=1-Y8[i];

fscanf(fi3, "%lf %lf %lf %lf %lf", &x8[i][0],&x8[i][1],

&x8[i][2],&x8[i][3],&x8[i][4]);

}

fclose(fi2);

fclose(fi3);

fi2=fopen("y9.txt","r");

fi3=fopen("x9.txt","r");

for(i=0; i<NROW9; i++) {

fscanf(fi2, "%lf", &Y9[i]);

One_min_Y9[i]=1-Y9[i];

fscanf(fi3, "%lf %lf %lf %lf %lf", &x9[i][0],&x9[i][1],

&x9[i][2],&x9[i][3],&x9[i][4]);

}

fclose(fi2);

fclose(fi3);

fi2=fopen("y10.txt","r");

fi3=fopen("x10.txt","r");

for(i=0; i<NROW10; i++) {

fscanf(fi2, "%lf", &Y10[i]);

One_min_Y10[i]=1-Y10[i];

fscanf(fi3, "%lf %lf %lf %lf %lf",

%&x10[i][0],&x10[i][1],&x10[i][2],

&x10[i][3],&x10[i][4]);

}

fclose(fi2);

fclose(fi3);

fi2=fopen("y11.txt","r");
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fi3=fopen("x11.txt","r");

for(i=0; i<NROW11; i++) {

fscanf(fi2, "%lf", &Y11[i]);

One_min_Y11[i]=1-Y11[i];

fscanf(fi3, "%lf %lf %lf %lf %lf",

%&x11[i][0],&x11[i][1],&x11[i][2],

&x11[i][3],&x11[i][4]);

}

fclose(fi2);

fclose(fi3);

/*Printing Inital Betas*/

b0=fopen("beta0.txt","w");

b1=fopen("beta1.txt","w");

b2=fopen("beta2.txt","w");

b3=fopen("beta3.txt","w");

b4=fopen("beta4.txt","w");

for(i=0; i<teams;i++){

fprintf(b0,"%lf ",beta0[0][i]);

fprintf(b1,"%lf ",beta1[0][i]);

fprintf(b2,"%lf ",beta2[0][i]);

fprintf(b3,"%lf ",beta3[0][i]);

fprintf(b4,"%lf ",beta4[0][i]);

}

fprintf(b0,"\n");

fprintf(b1,"\n");

fprintf(b2,"\n");

fprintf(b3,"\n");

fprintf(b4,"\n");

mu=fopen("allmu.txt","w");

fprintf(mu,"%lf %lf %lf %lf %lf \n",mu_0[0],mu_1[0],mu_2[0],

mu_3[0],mu_4[0]);

sig2=fopen("allsig2.txt","w");

fprintf(sig2,"%lf %lf %lf %lf %lf \n",sig2_0[0],sig2_1[0],

sig2_2[0],sig2_3[0],sig2_4[0]);

time_t t1=time(NULL);

int NSIM1;

for(N=0;N<NSIM;N++){

if (N % 100 == 0 ){

printf("%d\n",N);}
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/*Loops around all the teams*/

/*for(m=0;m<teams; m++){*/

for(k=0;k<teams;k++){

betaAll[0][k]=beta0[0][k];

betaAll[1][k]=beta1[0][k];

betaAll[2][k]=beta2[0][k];

betaAll[3][k]=beta3[0][k];

betaAll[4][k]=beta4[0][k];

}

for(m=0; m<teams; m++){

gsl_rng_set(r,gsl_rng_get(r));

gsl_rng_set(s,gsl_rng_get(s));

/*Beta 0 for team m*/

old0=betaAll[0][m];

cand=gsl_ran_gaussian(r, csig_0[m])+old0;

g_cand=g(cand,m,0,betaAll,mu_0[0],sig2_0[0]);

g_old=g(old0,m,0,betaAll,mu_0[0],sig2_0[0]);

accept=g_cand-g_old;

u=gsl_ran_flat (s, 0.0, 1.0);

if(log(u)<accept){beta0[1][m]=cand;

beta0_ar[m]+=1;

}

else{beta0[1][m]=old0;}

betaAll[0][m]=beta0[1][m];

/*Beta 1 for team m*/

old1=betaAll[1][m];

gsl_rng_set(r,gsl_rng_get(r));

cand=gsl_ran_gaussian(r, csig_1[m])+old1;

g_cand=g(cand,m,1,betaAll,mu_1[0],sig2_1[0]);

g_old=g(old1,m,1,betaAll,mu_1[0],sig2_1[0]);

accept=g_cand-g_old;

gsl_rng_set(s,gsl_rng_get(s));

u=gsl_ran_flat (s, 0.0, 1.0);

if(log(u)<accept){beta1[1][m]=cand;beta1_ar[m]+=1;}

else{beta1[1][m]=old1;}

betaAll[1][m]=beta1[1][m];

/*Beta 2 for team m*/

old2=betaAll[2][m];

gsl_rng_set(r,gsl_rng_get(r));

cand=gsl_ran_gaussian(r, csig_2[m])+old2;

g_cand=g(cand,m,2,betaAll,mu_2[0],sig2_2[0]);
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g_old=g(old2,m,2,betaAll,mu_2[0],sig2_2[0]);

accept=g_cand-g_old;

gsl_rng_set(s,gsl_rng_get(s));

u=gsl_ran_flat (s, 0.0, 1.0);

if(log(u)<accept){beta2[1][m]=cand;beta2_ar[m]+=1;}

else{beta2[1][m]=old2;}

betaAll[2][m]=beta2[1][m];

/*Beta 3 for team m*/

old3=betaAll[3][m];

gsl_rng_set(r,gsl_rng_get(r));

cand=gsl_ran_gaussian(r, csig_3[m])+old3;

g_cand=g(cand,m,3,betaAll,mu_3[0],sig2_3[0]);

g_old=g(old3,m,3,betaAll,mu_3[0],sig2_3[0]);

accept=g_cand-g_old;

gsl_rng_set(s,gsl_rng_get(s));

u=gsl_ran_flat (s, 0.0, 1.0);

if(log(u)<accept){beta3[1][m]=cand;beta3_ar[m]+=1;}

else{beta3[1][m]=old3;}

betaAll[3][m]=beta3[1][m];

/*Beta 4 for team m*/

old4=betaAll[4][m];

gsl_rng_set(r,gsl_rng_get(r));

cand=gsl_ran_gaussian(r, csig_4[m])+old4;

g_cand=g(cand,m,4,betaAll,mu_4[0],sig2_4[0]);

g_old=g(old4,m,4,betaAll,mu_4[0],sig2_4[0]);

accept=g_cand-g_old;

gsl_rng_set(s,gsl_rng_get(s));

u=gsl_ran_flat (s, 0.0, 1.0);

if(log(u)<accept){beta4[1][m]=cand;beta4_ar[m]+=1;}

else{beta4[1][m]=old4;}

betaAll[4][m]=beta4[1][m];

}

for(k=0;k<teams;k++){

betaAll[0][k]=beta0[1][k];

betaAll[1][k]=beta1[1][k];

betaAll[2][k]=beta2[1][k];

betaAll[3][k]=beta3[1][k];

betaAll[4][k]=beta4[1][k];

}

/* for(i=0;i<Nbetas;i++){

for(j=0;j<teams;j++){
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printf("%lf ",betaAll[i][j]);

}

printf("\n");

}

printf("\n");*/

/*Generating Data for the complete conditionals for mu*/

applymean(betaAll,meanBetas,teams);

/*Generating a value for Mu 0*/

double num0;

num0=(teams*meanBetas[0]*mu0_sig2+sig2_0[0]*mu0_mean);

mustar0=num0/(mu0_sig2*teams+sig2_0[0]);

sigstar0=(sig2_0[0]*mu0_sig2)/(teams*mu0_sig2+sig2_0[0]);

gsl_rng_set(r,gsl_rng_get(r));

mu_0[1]=gsl_ran_gaussian(r,sqrt(sigstar0))+mustar0;

/*Generating a value for Mu 1*/

mustar1=(teams*meanBetas[1]*mu1_sig2+sig2_1[0]*mu1_mean)/

(mu1_sig2*teams+sig2_1[0]);

sigstar1=(sig2_1[0]*mu1_sig2)/(teams*mu1_sig2+sig2_1[0]);

gsl_rng_set(r,gsl_rng_get(r));

mu_1[1]=gsl_ran_gaussian(r,sqrt(sigstar1))+mustar1;

/*Generating a value for Mu 2*/

mustar2=(teams*meanBetas[2]*mu2_sig2+sig2_2[0]*mu2_mean)/

(mu2_sig2*teams+sig2_2[0]);

sigstar2=(sig2_2[0]*mu2_sig2)/(teams*mu2_sig2+sig2_2[0]);

gsl_rng_set(r,gsl_rng_get(r));

mu_2[1]=gsl_ran_gaussian(r,sqrt(sigstar2))+mustar2;

/*Generating a value for Mu 3*/

mustar3=(teams*meanBetas[3]*mu3_sig2+sig2_3[0]*mu3_mean)/

(mu3_sig2*teams+sig2_3[0]);

sigstar3=(sig2_3[0]*mu3_sig2)/(teams*mu3_sig2+sig2_3[0]);

gsl_rng_set(r,gsl_rng_get(r));

mu_3[1]=gsl_ran_gaussian(r,sqrt(sigstar3))+mustar3;

/*Generating a value for Mu 4*/

mustar4=(teams*meanBetas[4]*mu4_sig2+sig2_4[0]*mu4_mean)/

(mu4_sig2*teams+sig2_4[0]);

sigstar4=(sig2_4[0]*mu4_sig2)/(teams*mu4_sig2+sig2_4[0]);

gsl_rng_set(r,gsl_rng_get(r));

mu_4[1]=gsl_ran_gaussian(r,sqrt(sigstar4))+mustar4;
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/*Generating Data for the complete conditional for Sigma 2*/

/*Sigma 2_0*/

res=0,res1=0,res2=0,res3=0,res4=0;

for(i=0; i<teams; i++){

res+=(beta0[1][i]-mu_0[1])*(beta0[1][i]-mu_0[1]);

res1+=(beta1[1][i]-mu_1[1])*(beta1[1][i]-mu_1[1]);

res2+=(beta2[1][i]-mu_2[1])*(beta2[1][i]-mu_2[1]);

res3+=(beta3[1][i]-mu_3[1])*(beta3[1][i]-mu_3[1]);

res4+=(beta4[1][i]-mu_4[1])*(beta4[1][i]-mu_4[1]);

}

astar_0=teams/2.0+sig0_a;

bstar_0=1.0/(res/2.0 + 1.0/sig0_b);

gsl_rng_set(r,gsl_rng_get(r));

sig2_0[1]=1.0/gsl_ran_gamma(r,astar_0,bstar_0);

/*Sigma 2_1*/

res=0;

astar_1=teams/2.0+sig1_a;

bstar_1=1.0/(res1/2.0 + 1.0/sig1_b);

gsl_rng_set(r,gsl_rng_get(r));

sig2_1[1]=1.0/gsl_ran_gamma(r,astar_1,bstar_1);

/*Sigma 2_2*/

res=0;

astar_2=teams/2.0+sig2_a;

bstar_2=1.0/(res2/2.0 + 1.0/sig2_b);

gsl_rng_set(r,gsl_rng_get(r));

sig2_2[1]=1.0/gsl_ran_gamma(r,astar_2,bstar_2);

/*Sigma 2_3*/

res=0;

astar_3=teams/2.0+sig3_a;

bstar_3=1.0/(res3/2.0 + 1.0/sig3_b);

gsl_rng_set(r,gsl_rng_get(r));

sig2_3[1]=1.0/gsl_ran_gamma(r,astar_3,bstar_3);

/*Sigma 2_4*/

res=0;

astar_4=teams/2.0+sig4_a;

bstar_4=1.0/(res4/2.0 + 1.0/sig4_b);

gsl_rng_set(r,gsl_rng_get(r));

sig2_4[1]=1.0/gsl_ran_gamma(r,astar_4,bstar_4);

/*Print out New Parameters to File*/
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for(i=0; i<teams;i++){

fprintf(b0,"%lf ",beta0[1][i]);

fprintf(b1,"%lf ",beta1[1][i]);

fprintf(b2,"%lf ",beta2[1][i]);

fprintf(b3,"%lf ",beta3[1][i]);

fprintf(b4,"%lf ",beta4[1][i]);

}

fprintf(b0,"\n");

fprintf(b1,"\n");

fprintf(b2,"\n");

fprintf(b3,"\n");

fprintf(b4,"\n");

fprintf(mu,"%lf %lf %lf %lf %lf

\n",mu_0[1],mu_1[1],mu_2[1],mu_3[1], mu_4[1]);

fprintf(sig2,"%lf %lf %lf %lf %lf

\n",sig2_0[1],sig2_1[1],sig2_2[1], sig2_3[1],

sig2_4[1]);

/*Updating parameters so new values will be in the zero slot

of the matrix*/

for(i=0;i<teams;i++){

beta0[0][i]=beta0[1][i];

beta1[0][i]=beta1[1][i];

beta2[0][i]=beta2[1][i];

beta3[0][i]=beta3[1][i];

beta4[0][i]=beta4[1][i];

}

mu_0[0]=mu_0[1];

mu_1[0]=mu_1[1];

mu_2[0]=mu_2[1];

mu_3[0]=mu_3[1];

mu_4[0]=mu_4[1];

sig2_0[0]=sig2_0[1];

sig2_1[0]=sig2_1[1];

sig2_2[0]=sig2_2[1];

sig2_3[0]=sig2_3[1];

sig2_4[0]=sig2_4[1];

}

time_t t2=time(NULL);

printf("%d seconds elapsed\n", t2-t1);
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fclose(b0);

fclose(b1);

fclose(b2);

fclose(b3);

fclose(b4);

fclose(mu);

fclose(sig2);

printf("Beta0 AR: ");

for(i=0; i<teams; i++){

printf("%lf ",beta0_ar[i]/NSIM);

}

printf("\n");

printf("Beta1 AR: ");

for(i=0; i<teams; i++){

printf("%lf ",beta1_ar[i]/NSIM);

}

printf("\n");

printf("Beta2 AR: ");

for(i=0; i<teams; i++){

printf("%lf ",beta2_ar[i]/NSIM);

}

printf("\n");

printf("Beta3 AR: ");

for(i=0; i<teams; i++){

printf("%lf ",beta3_ar[i]/NSIM);

}

printf("\n");

printf("Beta4 AR: ");

for(i=0; i<teams; i++){

printf("%lf ",beta4_ar[i]/NSIM);

}

printf("\n");

return 0;

}

double g(double x, int jj, int beta_int,double betaAll[][teams],

double mu, double sig2){

int i,j;

double beta_temp[Nbetas];

double final;
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double Lik=0;

for(j=0; j<teams; j++){

if(j==jj){

for(i=0; i<Nbetas; i++){

if(i==beta_int){

beta_temp[i]=x;}else{

beta_temp[i]=betaAll[i][j];}

}

}else{for(i=0; i<Nbetas; i++){

beta_temp[i]=betaAll[i][j];

}}

switch (j)

{

case 0 : Lik+=likelihood(Y1,One_min_Y1,x1,beta_temp,NROW1);

/*printf("%lf\n",Lik);*/

break;

case 1 : Lik+=likelihood(Y2,One_min_Y2,x2,beta_temp,NROW2);

/*printf("%lf\n",Lik);*/

break;

case 2 : Lik+=likelihood(Y3,One_min_Y3,x3,beta_temp,NROW3);

/*printf("%lf\n",Lik);*/

break;

case 3 : Lik+=likelihood(Y4,One_min_Y4,x4,beta_temp,NROW4);

/* printf("%lf\n",Lik);*/

break;

case 4 : Lik+=likelihood(Y5,One_min_Y5,x5,beta_temp,NROW5);

/*printf("%lf\n",Lik);*/

break;

case 5 : Lik+=likelihood(Y6,One_min_Y6,x6,beta_temp,NROW6);

/* printf("%lf\n",Lik);*/

break;

case 6 : Lik+=likelihood(Y7,One_min_Y7,x7,beta_temp,NROW7);

/*printf("%lf\n",Lik);*/

break;

case 7 : Lik+=likelihood(Y8,One_min_Y8,x8,beta_temp,NROW8);

/*printf("%lf\n",Lik);*/

break;

case 8 : Lik+=likelihood(Y9,One_min_Y9,x9,beta_temp,NROW9);

/*printf("%lf\n",Lik);*/

break;

case 9 : Lik+=likelihood(Y10,One_min_Y10,x10,beta_temp,NROW10);

/*printf("%lf\n",Lik);*/

break;

case 10 : Lik+=likelihood(Y11,One_min_Y11,x11,beta_temp,NROW11);

/*printf("%lf\n",Lik);*/
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break;

default : printf( "Not an available team \n");

break;

}

}

final=Lik-((x-mu)*(x-mu))/(2*sig2);

return final;

}

void applymean(double BetaMat[][teams], double meanBeta[Nbetas],

int teams){

double beta_temp[teams];

int i,j;

for(j=0; j<Nbetas; j++){

for(i=0; i<teams; i++){

beta_temp[i]=BetaMat[j][i];

}

meanBeta[j]=gsl_stats_mean(beta_temp,1,teams);

}

}

double sum(double x[],int n){

int i;

double res=0;

for (i=0;i<n; i++){

res+=x[i];

}

return res;

}

double likelihood(double y[], double OneMinusY[],double x[][Nbetas],

double beta[],int N){

double Xbeta[N],yXbeta[N],expXBeta[N],L1expXB[N];

double res;

int i;

double a,b,c,negY[N],OnePlusXBeta[N];

mvmult(x,beta,Xbeta,N,Nbetas);

exponentiate(Xbeta,expXBeta,N);

addconst(1.0,expXBeta,OnePlusXBeta,N);

logme(OnePlusXBeta,L1expXB,N);

b=sumdot(y,L1expXB,N);

a=sumdot(y,Xbeta,N);

c=sumdot(OneMinusY,L1expXB,N);

res=a-b-c;

return res;
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}

void exponentiate(double x[], double final[], int N){

int i;

for(i=0;i<N;i++){

final[i]=exp(x[i]);

}

}

void logme(double x[], double final[], int N){

int i;

for(i=0;i<N;i++){

final[i]=log(x[i]);

}

}

double sumdot(double x[],double y[],int length){

int i;

double res=0.0;

for(i=0;i<length;i++){

res+=x[i]*y[i];

}

return(res);

}

void mvmult(double a[][5],double b[], double res[],int ar, int ac){

int i, j,k;

for(i=0; i<ar;i++){

res[i]=0.0;

for(k=0;k<ac;k++){

res[i]+=a[i][k]*b[k];

}

}

}

void addconst(double y,double x[], double final[],int N){

int i;

for(i=0;i<N;i++){

final[i]=x[i]+y;

}

}

B.3.1 Calculating Goodness of Fit and Importance Scores

beta0<-read.table("/Users/gradstudent/Documents/Master’s Project/Bayes
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Project/Results/beta0.txt",header=FALSE)

beta1<-read.table("/Users/gradstudent/Documents/Master’s Project/Bayes

Project/Results/beta1.txt",header=FALSE)

beta2<-read.table("/Users/gradstudent/Documents/Master’s Project/Bayes

Project/Results/beta2.txt",header=FALSE)

beta3<-read.table("/Users/gradstudent/Documents/Master’s Project/Bayes

Project/Results/beta3.txt",header=FALSE)

beta4<-read.table("/Users/gradstudent/Documents/Master’s Project/Bayes

Project/Results/beta4.txt",header=FALSE)

burn<-1001

beta0<-beta0[-c(1:burn),]

beta1<-beta1[-c(1:burn),]

beta2<-beta2[-c(1:burn),]

beta3<-beta3[-c(1:burn),]

beta4<-beta4[-c(1:burn),]

Beta.team1<-cbind(beta0[,1],beta1[,1],beta2[,1],beta3[,1],beta4[,1])

####Scan in the data

x1<-read.table("/Users/gradstudent/Documents/Master’s Project/Bayes

Project/Opt/x1.txt",header=FALSE)

x1<-as.matrix(x1)

X<-list(x1)

Beta<-list(Beta.team1)

y1<-read.csv("/Users/gradstudent/Documents/Master’s Project/Bayes

Project/Opt/y1.txt",header=FALSE)

Y<-rbind(y1)

tabY<-table(Y)

BX2<-rep(0,nrow(beta0))

nteams<-1

for(i in 1:nrow(beta0)){

tabs<-rep(0,2)

for(j in 1:nteams){

vals<-rbern(nrow(X[[j]]),exp(X[[j]]%*%as.matrix(Beta[[j]][i,],

ncol=1))/(1+exp(X[[j]]%*%as.matrix(Beta[[j]][i,],ncol=1))))
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tabs<-tabs+table(vals)

}

BX2[i]<-sum(((tabs-tabY)^2/tabY))

}

#I wrote the BX2 to a file called BayesChi2.txt

mean(pchisq(BX2,1,lower=TRUE)<0.05)

#[1] 0.04147

#Importance Scores

beta1<-read.table("/Users/gradstudent/Documents/Master’s Project/

Bayes Project/Results/beta1.txt",header=FALSE)

beta1.good<-beta1[-c(1:1001),]

apply(beta1.good,2,mean)/sqrt(apply(beta1.good,2,var))

beta2<-read.table("/Users/gradstudent/Documents/Master’s Project/

Bayes Project/Results/beta2.txt",header=FALSE)

beta2.good<-beta2[-c(1:1001),]

apply(beta2.good,2,mean)/sqrt(apply(beta2.good,2,var))

beta3<-read.table("/Users/gradstudent/Documents/Master’s Project/

Bayes Project/Results/beta3.txt",header=FALSE)

beta3.good<-beta3[-c(1:1001),]

apply(beta3.good,2,mean)/sqrt(apply(beta3.good,2,var))

beta4<-read.table("/Users/gradstudent/Documents/Master’s Project/

Bayes Project/Results/beta4.txt",header=FALSE)

beta4.good<-beta4[-c(1:1001),]

apply(beta4.good,2,mean)/sqrt(apply(beta4.good,2,var))
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