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Slow walking on a treadmill desk
does not negatively affect executive
abilities: an examination of cognitive
control, conflict adaptation,
response inhibition, and post-error
slowing
Michael J. Larson1*, James D. LeCheminant2, Kaylie Carbine1, Kyle R. Hill1,
Edward Christenson2, Travis Masterson2 and Rick LeCheminant2

1 Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, USA, 2 Department of Exercise
Sciences, Brigham Young University, Provo, UT, USA

An increasing trend in the workplace is for employees to walk on treadmills while
working to attain known health benefits; however, the effect of walking on a treadmill
during cognitive control and executive function tasks is not well known. We compared
the cognitive control processes of conflict adaptation (i.e., congruency sequence
effects—improved performance following high-conflict relative to low-conflict trials),
post-error slowing (i.e., Rabbitt effect), and response inhibition during treadmill walking
(1.5 mph) relative to sitting. Understanding the influence of treadmill desks on these
cognitive processes may have implications for worker health and productivity. Sixty-nine
individuals were randomized to either a sitting (n = 35) or treadmill-walking condition
(n = 34). Groups did not differ in age or body mass index. All participants completed a
computerized Eriksen flanker task and a response-inhibition go/no-go task in random
order while either walking on a treadmill or seated. Response times (RTs) and accuracy
were analyzed separately for each task using mixed model analysis of variance. Separate
ANOVAs for RTs and accuracy showed the expected conflict adaptation effects, post-
error slowing, and response inhibition effects when collapsed across sitting and treadmill
groups (all Fs > 78.77, Ps < 0.001). There were no main effects or interactions as a
function of group for any analyses (Fs < 0.79, Ps > 0.38), suggesting no decrements
or enhancements in conflict-related control and adjustment processes or response
inhibition for those walking on a treadmill versus sitting. We conclude that cognitive
control performance remains relatively unaffected during slow treadmill walking relative
to sitting.
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Introduction

Insufficient physical activity combined with prolonged sedentary
time (often occurring in the workplace) may increase risk of
chronic disease (e.g., Healy et al., 2011). Consequently, there is
an increased need for workplace health interventions. Previous
interventions include providing employees with information,
workshops, and seminars on the benefits of healthy living (Mills
et al., 2007), conducting team-based weight loss competitions
(Morton et al., 2011), and emphasizing walking to work (Kitchen
et al., 2011). Despite the benefits of multiple workplace programs,
there remains a persistent need to improve work-related health
behaviors (Tudor-Locke et al., 2014).

Activity programs centered on walking could be beneficial in
this regard, since walking is a common physical activity that can
help reduce cardiovascular disease, type-II diabetes, and obesity
(Albright and Thompson, 2006; Sato et al., 2007). There are
clear health benefits of walking at work (Kitchen et al., 2011);
however, most participants in workplace health interventions are
volunteers that are already motivated to change their behavior
(Marshal, 2004). Therefore, programs and activities that increase
the rate of participation in health interventions in the workplace
need to be considered.

One such program in the workplace is for employees to
utilize treadmill workstations (i.e., desks placed over treadmills
that allow individuals to slowly walk while working). Walking
on a treadmill at work has potential health benefits, such as
increasing energy expenditure, alleviating stress, and reducing
weight gain (Levine and Miller, 2007; Thompson et al., 2008);
however, the effect of treadmill walking during work performance
is not well known and limited research is currently available.
Studies to date indicate that office tasks involving fine motor
skills, such as typing and mouse performance, and solving math
problems tend to decrease in proficiency when walking on a
treadmill (John et al., 2009; Straker et al., 2009; Funk et al.,
2012). If individuals are allowed to train on the treadmill desk,
however, simple tasks such as typing performance are not as
significantly affected (Thompson and Levine, 2011; Funk et al.,
2012). Walking on a treadmill requires attentional cognitive
resources that can increase response times (RTs) and decrease
attention performance (Regnaux et al., 2006). The exception is
when performing tasks that are relatively simple, then attention
and processing speed seem to remain generally intact (John
et al., 2009; Ohlinger et al., 2011; Alderman et al., 2014). The
preponderance of research to date has utilized simple tests or
focused primarily on tests of attention, but has rarely included
measures that are sensitive to decrements in cognitive and
executive control.

Cognitive control refers to the ability to guide one’s
thoughts and actions in accord with internal goals (Miller
and Cohen, 2001). Cognitive control is critical for identifying
problematic patterns of behaviors, such as identifying mistakes
and subsequently adjusting performance in order to accurately
complete a task or improve workplace performance (Botvinick
et al., 2001; Miller and Cohen, 2001). Cognitive control can
be tested in the laboratory using tasks such as the Eriksen
flanker task (Eriksen and Eriksen, 1974) or Stroop task (Stroop,

1935) that activate competing response options (e.g., asking
participants to respond to the color of the word RED written
in green ink on a Stroop task) or induce the commission of
multiple errors. According to cognitive control theory, competing
response options introduce conflict that is detected by the
anterior cingulate cortex (ACC) that subsequently signals to the
dorsolateral prefrontal (dlPFC) and/or ventrolateral prefrontal
(vlPFC) cortices to introduce more attentional control and
change behavior (Botvinick et al., 2001; Kerns et al., 2004; Egner,
2011; Larson et al., 2014).

Changes in cognitive control can be seen in slower RTs
on trials following errors—frequently referred to as post-error
slowing or the “Rabbitt” effect (Rabbitt, 1966)–or faster RTs
on trials that are high in conflict (e.g., incongruent trials
on a Stroop or flanker task) that follow a previous high-
conflict trial, an effect also known as conflict adaptation,
congruency sequence effects, or the “Gratton” effect (for ease
of writing and interpretation we will refer to these as conflict
adaptation effects hereafter: Gratton et al., 1992; Larson et al.,
2009, 2014). More specifically, conflict adaptation shows the
increased recruitment of cognitive control as evidenced by
faster RTs on incongruent trials preceded by incongruent trials
(iI trials) relative to incongruent trials preceded by congruent
trials (cI trials; e.g., Gratton et al., 1992; Clayson and Larson,
2011). RTs and error rates also tend to increase on congruent
trials preceded by an incongruent trial (iC trials) relative
to congruent trials preceded by congruent trials (cC) trials
due to switching between congruencies (Clayson and Larson,
2011).

In addition to looking at behavioral adjustments after
errors and conflict, cognitive control is evident on trials when
individuals must inhibit a response during a speeded task. For
example, on a go/no-go task individuals are asked to respond
as quickly and accurately when a stimulus (e.g., the letter “M”)
is presented, but withhold their response when a less-frequently
presented stimulus (e.g., the letter “W”) is presented. The
accurate identification of a no-go trial and subsequent inhibition
of response is consistently associated with activity of multiple
areas of the prefrontal cortex (including the dlPFC and inferior
frontal gyrus; Bari and Robbins, 2013).

Our knowledge of how cognitive control functions are
affected while walking on a treadmill can be informed by the
existing literature on the effects of acute exercise on cognitive
performance generally and cognitive control. Broadly speaking,
cognitive functioning has a small decline during the initial phases
of performance with concurrent exercise (e.g., first 20 min),
but has some improvements in rapid decision making and
highly automatic tasks thereafter (Lambourne and Tomporowski,
2010). Other research clarifies that acute bouts of exercise are
associated with small improvements in cognitive performance
both during and after exercise, with the most benefit seen at
moderate exercise intensity levels for cognitive performance
speed (Chang et al., 2012; McMorris and Hale, 2012). Accuracy
of cognitive performance is generally not affected by exercise at
any intensity level (McMorris and Hale, 2012). Studies specific
to the effects of exercise on cognitive control generally follow
this same pattern. For example, Davranche et al. (2009) showed
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improved reaction times on cognitive control functions using
a flanker task both during and following moderate intensity
exercise. Similarly, studies in both children and older adults
report some improvement in cognitive control performance
following completion of a moderate exercise bout (Hillman
et al., 2009; O’Leary et al., 2011; Drollette et al., 2012; Joyce
et al., 2014). Research to date, however, has not focused
on the effects of slow treadmill walking (low to very-low
intensity), such as that in a workplace setting, on cognitive
control-related adjustments in performance such as conflict
adaptation and post-error slowing, as well as response inhibition
processes.

The purpose of the current study, therefore, was to test the
effects of slow treadmill walking (1.5 mph) on a treadmill desk,
such as what might be used in the workplace, on cognitive control
adjustment and response inhibition processes. Based on previous
studies, we expected that groups would not differ on cognitive
control processes, but may show some decrements on measures
of response inhibition.

Materials and Methods

Participants
A total of 76 participants initially enrolled in the study. Upon
arrival for the study, participants were randomly assigned using
a random number generator to either a treadmill walking group
(n = 37; 14 female) or a sitting group (n = 39; 22 female). A total
of seven participants were excluded after study participation (four
from the sitting group and three from the treadmill group).
Participants were excluded due to computer malfunction wherein
accuracy data were not recorded (n = 3) or due to poor task
understanding leading to less than chance performance on either
the go/no-go or flanker tasks (n = 4; two each from the treadmill
and sitting groups—participants responded to no-go stimuli or
to the flankers instead of the target). Thus, the final sample
included 69 participants, with 34 (13 female) in the treadmill
group and 35 (20 female) in the walking group. Ratio of females
to males was slightly higher in the seated group, although this
difference was not statistically significant, χ2(1) = 2.47, p = 0.12.
All participants were healthy and did not differ in demographic or
health-related variables, including age, years of education, body
mass index (BMI), weight, or height (see Table 1). None of the
participants had used treadmill desks previously and there were
no practice or learning periods for the current tasks.

TABLE 1 | Demographic and fitness characteristics of sitting and treadmill
walking participants.

Sitting
n = 35

Treadmill
n = 34

t-value p-value

Age (yrs) 20.74 (2.12) 20.91 (2.43) 0.31 0.76

Weight (kg) 67.19 (12.13) 70.14 (13.52) 0.95 0.34

Height (cm) 172.26 (10.00) 173.89 (8.84) 0.72 0.47

Body mass
index (BMI)

22.53 (2.81) 23.13 (4.03) 0.72 0.47

Data include mean (SD).

Participants provided written informed consent in accord with
study procedures approved by the Brigham Young University
Institutional Review Board. Participants were recruited from
large undergraduate psychology courses and met the following
inclusion criteria based on self-report: between the ages of
18 and 35, native English speakers, right handed, and self-
reported normal or corrected-to-normal vision, and that they
are able to jog for 7 min (to ensure sufficient physical fitness
to complete the treadmill task). Participants were excluded if
they were diagnosed with any chronic disease, psychiatric, or
neurologic disorder (including any head injury with loss of
consciousness or attention-deficit/hyperactivity disorder), were
taking medication, were pregnant or currently lactating, had
inconsistent sleep patterns, had a physical injury, or disability that
prevented them from walking or jogging, or endorsed alcohol,
nicotine, or substance abuse within the last year on a self-report
measure. Participants either received course credit or financial
compensation for their participation.

Procedures
All participants completed the study individually between
the hours of 7 and 10 am to control for possible variations
due to time of day (Larson et al., 2015). The testing session
lasted approximately 1 h. In an effort to control potential
variation in energy due to caloric intake, all participants
arrived in a fasted state having refrained from eating food or
caloric beverage after 9 pm the previous night. Participants
also indicated they had at least 7 h of sleep the previous
night and had not used caffeine or participated any vigorous
exercise activities for 24-h prior to testing. Upon arrival,
inclusion/exclusion criteria were verbally confirmed, the
informed consent was completed, and participants were assigned
to the sitting or treadmill group. Subsequently, demographic
information was gathered, body weight was measured using
a digital scale (Tanita Corporation, Japan), and height was
measured using a wall-mounted stadiometer (Seca, Chino,
CA, USA).

Individuals assigned to the treadmill group received
instruction on treadmill safety. They then completed a
familiarization period of approximately 5 min of slow treadmill
walking prior to beginning the study tasks. Responses for
all tasks were given by pressing the correct keys on a typical
QWERTY keyboard while viewing the tasks on a 17-inch
computer monitor. Participants in the treadmill walking
condition completed the tasks using a computer monitor
and keyboard placed on a desk that was 37 inches wide and
24 inches deep placed over the top of the treadmill console.
Participants in the sitting condition used the same monitor and
keyboard while seated on a typical desk setup. The treadmill
was a motor-driven treadmill (LifeSpan, Salt Lake City, UT,
USA) programmed to a continuous speed of 1.5 miles per
hour with a 0% grade. Tasks were presented in random order
along with some additional memory, typing, and attention
tasks (not included in the current manuscript, but presented
in Larson et al., 2015) to control for potential order effects.
Participants completed both a modified flanker task and a
go/no-go task.
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Modified Flanker Task
Participants completed a modified version of the Eriksen flanker
task (Eriksen and Eriksen, 1974) to examine conflict processing,
conflict adaptation, and post-error slowing. Trials consisted
of incongruent (e.g., <<><<) or congruent (e.g., <<<<<)
arrow stimuli presented in 32-point Arial white font on a black
background. Participants responded as quickly and accurately as
possible to the direction of the middle (“target”) arrow with a
right hand key press. Participants used an index finger button
press for arrows pointing to the left and a middle finger button
press for arrows pointing to the right. Flanking arrows were
presented for 100 ms prior to the onset of the target stimulus that
was on the screen for 600 ms (participants had up to 1500 ms
to respond). Participants were shown a fixation cross during the
inter-trial interval that varied randomly between 800, 1,000, and
1200 ms, with a mean of 1,000 ms. There were three blocks of
200 trials (600 total trials). Participants were allowed to rest for
as long as they desired between blocks. The ratio of congruent to
incongruent trials was 50/50.

Go/No-Go Task
A go/no-go task was used to measure response inhibition.
Participants were presented either the letter “M” or letter “W”
in 36-point black Arial font on a white background. Letters were
presented for 100 ms. A fixation cross was presented during an
inter-trial interval that varied randomly between 300 and 800 ms
to reduce expectancy effects of the next stimulus. Participants
were instructed to respond with an index finger button press
when presented with the letter “M” (a Go trial) and withhold
their response when presented the letter “W” (a No-Go trial).
The task consisted of five blocks of fifty trials with 40 Go trials
and 10 No-Go trials (250 total trials, 200 Go trials, and 50
No-Go trials). From the task, we calculated the rate of No-Go
response-inhibition errors (i.e., pressing a button during a No-Go
trial).

Data Analysis
Data were analyzed separately for the flanker and go/no-go
tasks. For conflict adaptation analyses, RT data were calculated
excluding error and post-error trials, as these are associated
with impulsive (i.e., fast) or slowed RTs, respectively. Mean
RTs and accuracy were analyzed using separate 2-Group
(treadmill, sitting) × 2-Previous-trial Congruency (congruent,
incongruent) × 2-Current-trial Congruency (congruent,
incongruent) repeated measures analyses of variance (ANOVA).
Post-error slowing was examined using only correct trials and
comparing post-correct trial RTs and post-error trials RTs using
a 2-Group × 2-Accuracy (post-correct, post-error) ANOVA.
We used tests of simple effects to decompose significant main
effects and interactions. Partial-eta2 (η2

p) is reported as a measure
of effect size for ANOVA analyses. For the go/no-go data, we
focused on no-go response-inhibition errors comparing groups
using independent samples t-tests. Cohen’s d is presented as a
measure of effect size. We examined homogeneity of variance
for all variables. When sample variance was heterogenous, the
Levene’s test of equality of variances is noted and a t-test not
assuming equal variances is reported.

Results

Conflict Adaptation
Reaction Times
Response time and accuracy data for the sitting and treadmill
groups for conflict adaptation and post-error slowing is presented
in Table 2. The Group × Previous-trial Congruency × Current-
trial Congruency ANOVA showed a significant main effect
of current-trial congruency, F(1,67) = 839.77, p < 0.001,
η2
p = 0.93, with the expected slower RTs to incongruent versus

congruent trials. The Previous-trial Congruency × Current-trial
Congruency interaction was also significant, F(1,67) = 147.03,
p < 0.001, η2

p = 0.69, indicating there was significant conflict
adaptation when collapsed across groups. As expected, cI trials
were significantly slower than iI trials, t(68)= 5.32, p< 0.001, and
iC trials were slower than cC trials, t(68) = 13.69, p< 0.001. Most
important, however, the Group × Current-trial Congruency,
F(1,67) = 3.19, p = 0.08, η2

p = 0.05, Group × Previous-
trial Congruency × Current-trial Congruency, F(1,67) = 0.08,
p= 0.78, η2

p = 0.001, and the main effect of group, F(1,67)= 0.77,
p = 0.38, η2

p = 0.01, were not significant—indicating no
significant group-related differences on conflict adaptation-
related RTs.

Accuracy
Accuracy data were very similar to the RT data. As expected,
there was a significant main effect of Current-trial congruency,
F(1,67) = 106.70, p < 0.001, η2

p = 0.61, and significant Previous-
trial Congruency × Current-trial Congruency interaction,
F(1,67) = 78.77, p < 0.001, η2

p = 0.54. Performance was worse on
cI trials relative to iI trials, t(68) = 9.40, p < 0.001, and iC trials
relative to cC trials, t(68) = 2.02, p = 0.05, indicating that the

TABLE 2 | Cognitive control and response inhibition outcome variables for
sitting and treadmill walking participants.

Sitting (n = 35) Treadmill (n = 34)

Congruent RT 405.38 (43.71) 418.24 (39.70)

Incongruent RT 479.24 (41.03) 483.72 (43.77)

cC RT 394.06 (41.76) 408.40 (40.64)

iC RT 417.00 (46.49) 428.50 (39.52)

cI RT 483.72 (45.42) 488.79 (48.07)

iI RT 474.92 (37.96) 478.57 (39.86)

Congruent accuracy 98% (2%) 98% (2%)

Incongruent accuracy 92% (5%) 93% (5%)

cC accuracy 98% (2%) 98% (2%)

iC accuracy 98% (3%) 97% (2%)

cI accuracy 90% (6%) 91% (6%)

iI accuracy 94% (4%) 95% (4%)

Post-correct RT 441.38 (41.61) 450.35 (40.10)

Post-error RT 488.71 (67.69) 501.64 (69.70)

Go accuracy 84% (12%) 84% (11%)

No-Go accuracy 67% (14%) 67% (14%)

Data include mean (SD).
All response time (RT) data are in milliseconds. cC, congruent trial preceded by
congruent trial; iC, congruent trial preceded by incongruent trial; cI, incongruent
trial preceded by congruent trial; iI, incongruent trial preceded by incongruent trial.
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expected congruency and conflict adaptation effects were present.
There was not a significant Group × Current-trial Congruency,
F(1,67) = 0.54, p = 0.47, η2

p = 0.008, Group × Previous-
trial Congruency × Current-trial Congruency, F(1,67) = 0.01,
p = 0.94, η2

p < 0.001, or main effect of group, F(1,67) = 0.04,
p = 0.84, η2

p < 0.001.

Post-Error Slowing
The Group × Accuracy ANOVA revealed that post-error slowing
was present when collapsed across groups, with a significant
main effect of accuracy, F(1,67) = 78.77, p < 0.001, η2

p = 0.54.
The Group × Accuracy interaction, F(1,67) = 0.12, p = 0.73,
η2
p = 0.002, and the main effect of group, F(1,67)= 0.79, p= 0.38,

η2
p = 0.01, were not significant—indicating similar post-error RTs

between groups.

Go/No-Go
Response inhibition accuracy for both go and no-go trials is
presented in Table 2. Sitting and walking groups performed
nearly identically on both go-trial, t(67) = 0.25, p = 0.81,
d = 0.03, and no-go response-inhibition accuracy, t(67) = 0.03,
p = 0.98, d < 0.001.

Discussion

We aimed to examine the effects of concurrent slow treadmill
walking on the cognitive and executive control functions of
conflict adaptation, post-error slowing, and response inhibition.
Consistent with expectations, conflict adaptation and post-
error slowing were evident when collapsed across groups.
Notably, however, there were no significant differences between
individuals in the walking and sitting conditions for any cognitive
control or response inhibition measures. Findings are consistent
with another recent study of treadmill desks that focused on
cognitive and executive control functions (Alderman et al., 2014).
These authors indicated that treadmill-type workstations are
one plausible way to address health issues related to sedentary
lifestyle rates based on their findings and previous studies
showing treadmill desks offer increased energy expenditure
and health benefits relative to both sitting and other forms
of work-related movement such as sit-stand desks (Levine
and Miller, 2007; Thompson et al., 2008; Tudor-Locke et al.,
2014). Our findings, using tasks associated with the cognitive
control functions of post-error slowing, conflict adaptation,
and inhibition of inappropriate response tendencies, support
Alderman’s conclusion.

Other studies focusing on additional workplace abilities,
such as fine motor skills, attention, and working memory are
somewhat more mixed about the effects of treadmill desks in the
workplace. For example, our group recently found that relative to
sitting controls, treadmill walking decreased typing performance,
was associated with decreased learning (but intact longer-term
memory), and reduced attention/working memory (Larson et al.,
2015). Other treadmill workstation studies also report poorer
typing performance when walking relative to when seated (John
et al., 2009; Straker et al., 2009; Thompson and Levine, 2011; Funk

et al., 2012). In contrast, three other studies are consistent with
the current findings showing treadmill walking generally does
not affect measures of attention, processing speed, and cognitive
control (John et al., 2009; Ohlinger et al., 2011; Alderman et al.,
2014). The common component amongst the studies that show
no significant differences between groups is the presence of
executive/cognitive control measures. Specifically, the current
study used the flanker test and a go/no-go test. John et al. (2009),
Ohlinger et al. (2011), and Alderman et al. (2014) all used the
Stroop color–word test (another index of attention and cognitive
control) as well as the flanker test similar to that used in this study
(Alderman et al., 2014), and the Auditory Consonant Trigrams
test (a measure of attention and working memory; Ohlinger
et al., 2011). Taken together, results suggest that executive and
cognitive control measures remain similar to sitting performance
when walking on a treadmill, whereas typing (fine motor skills)
and potentially speed of learning and data manipulation are
reduced. Studies replicating these results and examining multiple
cognitive domains, including learning, memory, language,
visuospatial functioning, etc. are needed to further understand
the impact of workplace treadmill walking on cognitive and work
performance.

Our findings of no specific decreases in cognitive control
and response inhibition functioning during treadmill walking
can be contrasted with previous research showing improvements
in cognitive control associated with fitness and exercise. For
example, Davranche et al. (2009) showed improved Flanker
performance during cycling. Meta-analytic work looking at
the speed and accuracy of cognitive functioning suggests
that increased arousal during moderate-intensity exercise is
associated with faster processing speed, but not improved
accuracy (McMorris and Hale, 2012). The low intensity
exercise used in workplace situations likely does not induce
sufficient arousal to improve reaction time performance in
accord with an inverted-U interpretation. More important,
however, is the finding that a workplace-type treadmill
desk does not impair cognitive control conflict or error
identification and subsequent adjustment processes as well
as response inhibition, which can be impaired at more
moderate intensity exercise levels (Davranche and McMorris,
2009).

Our study should be understood within the context of several
limitations and strengths. We include one of the largest sample
sizes amongst treadmill workstation studies to date; however,
the use of a two-group randomized design may have introduced
unnecessary between-groups variability into the results. The
absence of between-groups findings should be further examined
in future studies using within-subjects, counterbalanced designs.
We also used healthy university students that may not completely
generalize to other workplace populations. Next, there was no
baseline testing or practice trials provided. Whereas it is unlikely
that groups of healthy college students differed in baseline
cognitive functioning, it is possible and should be considered.
The absence of practice trials may have increased learning effects,
but these effects would have been the same between groups. In
addition, we only used one speed of walking. The beneficial effects
of exercise on task processing speed (but not accuracy) appear to
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be maximized at moderate levels of exercise intensity (McMorris
and Hale, 2012) and the optimal speed for walking during
workplace activities is unknown, although one study suggests
2.25 km/hr (1.4 mph) results in optimal typing performance
(Funk et al., 2012). Using the same speed of walking may
have also been differentially taxing for different individuals (e.g.,
individuals with different fitness levels or length of legs); however,
we chose to be consistent in the speed to ensure possible between-
groups differences were not due to individual variation in speed
of the treadmill. Future studies should incorporate multiple levels
of intensity and collect heart rate data to test the effects of effort
level on these findings. Notably, however, we were focused on low
to very-low intensity walking rather than moderate or vigorous
exercise. Finally, all study procedures were conducted between
7 and 10 am. It is possible that restricting the time of day may
have artificially altered some participants’ typical lifestyle and
day-to-day patterns.

In sum, our findings and those of previous studies
on executive and cognitive control tasks using treadmill
workstations suggest no detrimental effect of slow treadmill
walking on performance. Other workplace tasks such as fine
motor skills and learning may be detrimentally affected, but
future research is needed to replicate these findings. We
conclude, however, that cognitive control performance remains
relatively unaffected during conditions of slow treadmill walking
and that treadmill walking may provide a good way to
increase energy expenditure with periodic use in the workplace
environment.
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