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Abstract: Power laws are used to describe a large variety of natural and man-made 
phenomena. Consequently, they are used in a wide range of scientific research and 
management applications. In this paper, we focus on the identification of uncertainty 
bounds on a power law relationship from experimental data, using a bounded-error 
characterization. These bounds can subsequently be used as constraints in e.g. optimization 
and scenario studies. The basic so-called set-membership approach involves outlier 
identification and removal, feasible parameter set estimation, evaluation of the feasible 
model output set and tuning of the error bounds. As an example we examine scattered 
sediment yield versus catchment (or watershed) area data of Wasson, (1994). The key 
result of this is an appropriate unfalsified relationship between sediment yield and 
catchment area with uncertainty bounds. 
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1 INTRODUCTION 

In a wide range of science and in many applications power laws are used to describe 
natural and man-made phenomena in a quantitative way (eg Deng and Jung, 2009; 
Millington et al., 2009). In particular, power law distributions are widely applied in earth 
sciences, linguistics, biology, economics and social sciences, when relating sizes to the 
frequency of occurrence. This distribution describes the phenomenon that large is rare and 
small is common. In power law distributions, the exponent in the power law function is 
negative. But it is certainly not limited to this. For instance, an exponent of 0.5 gives a 
square root function describing the free outflow from a tank, as is commonly derived from 
Bernouilli’s law. Moreover, an exponent greater than 1 gives rise to a kind of exponential 
growth, as is frequently seen in biology. In fact, many well-known laws in physics are 
expressed in terms of a power law function, for instance, Stefan–Boltzmann law, Inverse-
square laws of Newtonian gravity and Electrostatics, van der Waals force model, Kepler's 
third law, Square-cube law (ratio of surface area to volume), but also Pareto’s principle 
follows a power law function. In the pre-computer era, scientists plotted all kind of 
phenomena on a log-log scale to arrive at a linear relationship between the variables, which 
they most often found. Hence, the power law is a fundamental way of describing a wide 
range of relationships. 

Apart from some fundamental relationships in physics, most frequently power laws are 
derived from experimental data. Experimental data always contain measurement and 
sampling errors, which are usually characterized in statistical terms. Consequently, the 
estimates of the power law parameter are of a stochastic nature. However, for instance, in 
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case of limited data or after some non-linear transformation of the data, the presumed 
stochastic characterization is not always valid. Hence, as an alternative to a stochastic 
characterization a so-called bounded-error characterization, also called set-membership 
approach, has been proposed in the last decades. 

The objective of this paper is to present a set-membership approach to the identification of 
error bounds on a power law and to provide unfalsified bounds on the data of Wasson 
(1994) using a power law relationship and a bounded-error characterization. The Wasson 
(1994) data provides a convenient example but the technique could be applied to any 
number of similar data sets. 

2 BACKGROUND 

Power-law functions are polynomials in a single variable, that is 

 ( ) ( )k kf x ax o x           (1) 

where a, k are real constants and o(xk) is an asymptotically small function. The parameter k 
is called the scaling exponent, since a typical property of a power law is the scaling 
invariance. To show the scaling invariance of power laws, let x be multiplied with a 

constant c then ( ) ( ) ( ) ( )k kf cx a cx c f x f x   . In other words, multiplication with a 

constant does not change the shape of the function. Hence, power laws are explicitly used 
to describe the scaling behavior of natural processes. Allometric scaling laws, for instance, 
are frequently used to describe the relation between biological variables and thus are some 
of the best known power-law functions in nature.  

When dealing with an experimental data set (y, x), the term o(xk) is replaced by a deviation 
or error term e, so that 

 ky ax e            (2) 

where y is the measured (dependent) variable in (2). In what follows, and from the 
viewpoint of parameter estimation, Eqn. (2) is also called a nonlinear regression, with 
unknown parameters a and k. 

Notice from (2) that when k is given, a can be simply estimated from the resulting linear 
regression using ordinary least-squares estimation. On the contrary, the estimation of the 
exponent k is not so easy. There are many ways of estimating the scaling exponent in a 
power law from data. However, not all of them yield unbiased and consistent estimates. A 
commonly applied technique is to apply a (natural) logarithm transformation to the 
deterministic part of (2), which results in the linear regression 

 ln ln lny a k x           (3) 

It is well-known that logarithmic transformation leads to distortion of the error e (see e.g 
Barlett, 1947; Box and Cox, 1962). If the original error e is normally distributed, after 
logarithmical transformation of the data it becomes log-normally distributed. However, in 
many cases with limited data this assumption about normality of the data is questionable 
and cannot be thoroughly tested. Considering a stochastic nature of e, and more particular 
assuming a Gaussian distribution, the most reliable estimation techniques are often based 
on maximum likelihood methods. 

In this paper, given a limited data set - as is quite common in practice - we will follow an 
alternative route that is based on so-called set-membership estimation (Walter, 1990; 
Norton, 1994, 1995; Milanese et al, 1996). Let us shortly summarize this approach. 
Consider hereto the following non-linear regression type of model in vector form, 

 eFy  )(          (4) 

where y  ℝN contains the observed output data, F() is a non-linear vector function 
mapping the unknown parameter vector   ℝm into a noise-free model output ŷ . The 
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error or information uncertainty vector e is assumed to be bounded in a given norm. In 
what follows, we assume that 




e           (5) 

where  is a fixed positive number. Hence, a measurement uncertainty set (MUS), 
containing all possible output measurement vectors consistent with the observed output 
data and uncertainty characterization, is defined as 

y := { y~   ℝN : || y  y~ ||  }       (6) 

This set is a hypercube in ℝN. Let the set 

 := {  ℝm : || y  F()||  }      (7) 

define the feasible parameter set. Then, the set-membership estimation problem is to 
characterize this feasible parameter set (FPS), which is consistent with the model (4), the 
data (y) and uncertainty characterization (5)-(6). 

Hence, instead of trying to find the optimal parameter vector as in an ordinary least-squares 
approach, our goal now is to find the set with feasible parameter vectors that are consistent 
with the model and the data with related error bounds. Hence, we will not consider the 
measurements as such but define intervals for each measurement. This approach avoids the 
distortion of the original probability density function after some non-linear transformation, 
because only bounds are considered. Furthermore, a symmetric bound in the log-log space 
introduces automatically skewed error bounding in the original space, which seems to be 
natural when considering data which most likely can be described by a power law. 

From the set-membership literature, it is well-known that for the linear regression case, the 
FPS is a polytope found from the intersection of N (number of data points) strips in the 
parameter space. This will also be demonstrated in our example case, when working in the 
log-log space. It can even be shown that the well-known weighted least-squares techniques 
can be used to solve the bounded linear regression problem (Milanese, 1995; Keesman, 
1997). But, in general, the FPS can be a complex, and even unconnected, set (see Keesman, 
2003, for details and possible solutions) 

3 APPLICATION 

In this study we examine a data set collated by Wasson (1994) of sediment yields versus 
catchment area. The Wasson (1994) data, was collated from numerous studies of long-term 
sediment yields in south east Australia. The data shows a high level of scatter – a function 
of (i) high inherent spatial and temporal variability of sediment yield across south east 
Australia; and (ii) the use of a range of different underlying methods to estimate sediment 
yields. 

Our particular interest in the analysis of this data was to identify likely upper and lower 
bounds of plausibility for sediment yield estimates. Such information is invaluable in 
informing the development and testing of dynamic, semi-distributed (spatially) models of 
sediment generation e.g. Newham et al. (2004). 

The following figures show the Wasson (1994) data in original and log-log space. 
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Figure 1. Data set (from Wasson, 1994), upper panel: original space and bottom panel: 
log-log space. 

 

Presume that the catchment area-sediment yield data of Figure 1a can be described by the 
power law, 

 kY aA           (8) 

where a and k are unknown parameters. Given these data (Figure 1a,b) and the model (8), 
our objective is to find an appropriate uncertainty description of the sediment yield Y for a 
given catchment area A, preferably in a log-log space. 

Let us start by applying a natural logarithmic transformation of the power law (8). 
Consequently, 

 ln ln lnY a k A           (9) 

from which we define 1 := ln a and 2 := k. The ordinary least-squares (OLS) estimates 
(indicated by a hat) and corresponding covariance matrix of the estimation error () are 
given by 
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However, as mentioned before, it is well-known that a logarithmic transformation leads to 
distortion of the error. Hence, the assumption about normality of the log transformed error 
is questionable and, because of the limited size of the data set (see Figure 1), cannot even 
be thoroughly tested. Consequently, the covariance matrix in (3) cannot be directly 
interpreted, which limits the possibilities for a direct uncertainty analysis. Moreover, due to 
the error distortion the estimates become biased. Hence, bias correction must be applied to 
correctly estimate the unknown parameters. 

The set-membership approach, as presented in Section 2, avoids these obstacles, since we 
focus only on the calculation of the bounds and not at all on the probability distributions. 
However, given the linear regression (9) and the data in Figure 1b, the key question here is 
how to choose the error bound  (see (5)). Notice that outliers, with inappropriate bounds, 
can easily lead to an empty feasible parameter set (FPS). Hence, the first step is to remove 
possible outliers. Keesman and van Straten (1989a) suggested a re-iterative min-max 
estimation, where the maximum error is plotted against the iteration number. After each 
min-max estimation step in a specific iteration, the data point at which the maximum error 
occurs is removed and the procedure is repeated. The result of such a procedure for the 
given data set is presented in Figure 2. 
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Figure 2. Results of reiterative min-max estimation. 

Figures 1 and 2 suggest that the data set basically contains two possible outliers (as 
indicated in Fig. 1b in red) and that a sufficient error bound would be 3 t/a. The min-max 
estimate from the third iteration, thus after removal of two possible outliers, is given by: 1 
= 3.5237 and 2 = 0.9072, with maximum error of 2.85 t/a. Hence, choosing the error 
bounds on the basis of this maximum error, would degenerate the FPS to a singleton. The 
estimation results related to a constant error bound of 3 t/a and using exact (see e.g. Walter 
and Piet-Lahanier, 1989; Mo and Norton, 1990) and approximate (Monte Carlo based) 
bounding techniques (Keesman and van Straten, 1989b; 1990) indicate that, for this error 
bound, the feasible model output set (FMOS) does not fully reflect the uncertainty in the 
measurements (not shown here). This would be acceptable when the data points not 
covered by the FMOS could be considered as outliers. However, in this case there is no 
evidence to do so. Hence, in the next step, we will increase the error bounds such that the 
FMOS contains (most of) the measurements. 

The variation in the data set, in particular for ln(A) = -4.6 and on the intervals [2.12, 
1.96], [0.67, 0.56] (see Figure 1b), can be estimated from the standard deviations in 
ln(Y). For each of these regions the standard deviations have been estimated as 1.40, 1.49 
and 2.33, respectively. Consequently, an error bound of 5 t/a has been chosen to reflect the 
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3-bound for the individual measurements in this data set. The set-membership estimation 
results are presented in Figures 3 and 4. Notice from Figure 3 that, given the uncertainty in 
the data, the scaling exponent can possibly be smaller and larger than 1. As expected, the 
FPS indicated by blue dots and constrained by lower (green) and upper (red) bounds 
contains the min-max estimate (1 = 3.5237 and 2 = 0.9072). Increasing the error bound 
will thus lead to a larger FPS. Hence, it reflects the larger uncertainty considered in the 
data. Notice that the FMOS in Figure 4 does contain almost all of the measurements and 
thus we may consider these results as appropriate for further evaluation. For instance, the 
(interpolated) bounds could be used in the identification of an erosion model, using 
bounded information, i.e. basically taking into account constraints instead of point 
measurements.  

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
 Feasible Parameter Set

1


2

 

Figure 3. Feasible parameter set related to error bound of 5 t/a. 
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Figure 4. Feasible model output bounds (upper bound: green +; lower bound: blue +) 
related to error bound of 5 t/a. 
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4 DISCUSSION 

Considerable challenges exist in the identification of feasible parameter sets for modelling 
environmental data. This is particularly the case for power law relationships such as those 
applied to water quality data.  

It is interesting to see that the power law, kY aA , is a solution to the differential 
equation, 

, (0) 0
dY Y

k Y
dA A

          (11) 

In other words, since 
/

/

A dY dY Y
k

Y dA dA A
  , the relative or normalized slope of the relation 

between catchment area and sediment yield is constant and equal to the scaling exponent. 

Notice that power law functions, as in (1), describe the static, non-linear relationship 
between variables. In this paper it has been shown that, given bounded-error data, a Monte 
Carlo-based bounding technique, also known as the Monte Carlo Set-membership Method 
(MCSM), can solve the parameter estimation problem. However, approximate (Monte 
Carlo based) bounding techniques are also applicable to the identification of dynamic, non-
linear simulation models (see e.g. Keesman and van Straten, 1990). As for all other non-
linear deterministic or stochastic estimation methods, the Monte Carlo-based bounding 
technique is practically constrained to cases with a limited number of unknown parameters. 
This curse of dimensionality is, in fact, an issue in many estimation and optimization 
problems. Hence, reduction of the problem via e.g. time scale decomposition or parameter 
space decomposition is crucial (Keesman, 2002).  

5 CONCLUSIONS 

A bounded-error characterization leads either to an empty set, a singleton or a (non-convex, 
not even connected) set of parameter vectors, using deterministic algorithms. As such, it 
directly reflects the uncertainty in the model and in the data without statistical 
computations. In particular for data sets of limited size, for which statistical properties are 
difficult to verify, the set-membership approach provides a good alternative. Given the 
Wasson (1994) catchment area-sediment yield data and a power law relationship with 
unknown coefficients, we were able to derive unfalsified model-based bounds on the data 
for use in constrained optimization and scenario studies. 
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