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2 Hexahedral Mesh Operations 

In recent years, a greater understanding of hexahedral mesh topology has led to 

the development of many new hexahedral mesh operations [17, 18, 19]. In this chapter, 

three operations which are useful for hexahedral coarsening are presented. These 

operations are based on hexahedral sheets and columns, which are topology-based groups 

of hexahedra that always exist in a conforming hexahedral mesh. 

2.1 Hexahedral Sheets and Columns 

A perfectly shaped hexahedral element contains three sets of four parallel edges, 

as shown in Figure 2-1. Regardless of its shape, a hexahedral element will always have 

the same topology. For this reason, it is convenient to describe the four edges in each set 

as being topologically parallel, even if they are not geometrically parallel. Topologically 

parallel edges provide the basis for hexahedral sheets. The formation of a sheet begins 

with a single edge. Once an edge has been chosen, all elements which share that edge are 

identified. For each of these elements, the three edges which are topologically parallel to 

the original edge are also identified. These new edges are then used to find another layer 

of elements and topologically parallel edges. This process is repeated until no new 

adjacent elements can be found. The set of elements which are traversed during this 
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process makes up a hexahedral sheet. Figure 2-2 shows a hexahedral mesh with one of 

the sheets in the mesh defined. 

 

 

Figure 2-1. A hexahedral element’s three sets of topologically parallel edges. 

 

 

Figure 2-2. A hexahedral sheet: (a) A hexahedral mesh with one sheet defined. (b) A view of the 
entire sheet. 

 

A hexahedral element also contains three pairs of topologically opposite 

quadrilateral faces, as shown in Figure 2-3. Topologically opposite faces provide the 

basis for hexahedral columns. The formation of a column begins with a single face. Once 

a face has been chosen, the elements which share that face are identified. For each of 
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these elements, the face which is topologically opposite of the original face is also 

identified. These new faces are then used to find another layer of elements and 

topologically opposite faces. This process is repeated until no new adjacent elements can 

be found. The set of elements which are traversed during this process makes up a 

hexahedral column. An important relationship between sheets and columns is that a 

column defines the intersection of two sheets. This relationship is illustrated in Figure 

2-4. 

 

 

Figure 2-3. A hexahedral element’s three pairs of topologically opposite faces. 

 

 

Figure 2-4. A hexahedral column: (a) Two intersecting sheets. (b) The column that defines the 
intersection of the two sheets in (a). 
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3 Hexahedral Mesh Coarsening 

The hexahedral coarsening method presented in this chapter was discovered after 

many failed attempts to extend various quadrilateral coarsening methods to a hexahedral 

mesh. Not surprisingly, three-dimensional mesh modifications are much more difficult to 

localize than two-dimensional mesh modifications. While it is true that some 

quadrilateral coarsening operations can be directly extended to hexahedral coarsening, by 

themselves, these operations are not always able to prevent changes in element density 

from propagating beyond the boundaries of a defined hexahedral coarsening region.  

Utilizing the sheet and column operations described in Chapter 2, the hexahedral 

coarsening method presented here builds upon recent developments in quadrilateral 

coarsening [21, 22]. Since two-dimensional coarsening operations are generally easier to 

visualize than their three-dimensional counterparts, an explanation of the related 

quadrilateral coarsening operations is provided in Appendix A. However, as will be seen 

in this chapter, entirely localized hexahedral coarsening often requires an additional step 

that is not necessary in quadrilateral coarsening. 

3.1 Previously Developed Coarsening Techniques 

As illustrated in Chapter 2, sheet extraction decreases mesh density by removing 

elements from a mesh. Therefore, sheet extraction is a very useful tool for hexahedral 
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Figure 3-5. Smoothing: (a) A coarsened mesh that has not been smoothed. (b) The mesh in (a) after 
smoothing has taken place. 

 

Before smoothing takes place, node locations are mostly affected by sheet 

extractions. As described in Chapter 2, when a sheet is extracted, pairs of nodes are 

merged into a single node. The location of the new node is the average of the two 

unmerged nodes’ locations. Therefore, before a given sheet extraction occurs, it is 

possible to know where the nodes of adjacent elements will be located after the 

extraction. With this information, it can be known in advance how a sheet will affect the 

quality of the mesh if it is extracted.  

In the automated coarsening algorithm, element quality is calculated using a shape 

quality metric, fshape, proposed by Knupp [24]. This metric has a value of 1.0 if the 

element is a perfect cube and a value of 0.0 if the element is degenerate. The metric is 

mathematically defined in Equation 3-1. 
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Figure 4-2. Unstructured mechanical part example: (a) Original mesh with coarsening region 
defined. (b) 25 percent coarsening. (c) 50 percent coarsening. (d) 75 percent coarsening.
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Table 4-2. Coarsening Results for Mechanical Part Model 

Target % Elements in Actual % Min. Scaled Coarsening
Removal Region Removal Jacobian Time (sec)

0 7641 -- 0.77 --
25 5807 24.0 0.59 5.3
50 4057 46.9 0.32 9.6
75 2205 71.1 0.22 12.5  

 

 

 

Table 4-3. Coarsening Results for Human Head Model 

Target % Elements in Actual % Min. Scaled Coarsening
Removal Region Removal Jacobian Time (sec)

0 10080 -- 0.48 --
25 7953 21.1 0.29 13.0
50 5129 49.1 0.17 17.9
75 2615 74.1 0.22 22.5
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Figure 4-3. Unstructured human head example (side view): (a) Original mesh with coarsening region 
defined. (b) 25 percent coarsening. (c) 50 percent coarsening. (d) 75 percent coarsening. 
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Figure 4-4. Unstructured human head example (top view): (a) Original mesh with coarsening region 
defined. (b) 25 percent coarsening. (c) 50 percent coarsening. (d) 75 percent coarsening.
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5 Future Work 

The automated coarsening algorithm described in Chapter 3 takes advantage of 

sheets already existing entirely within the coarsening region which can be extracted 

without any previous operations. However, it does not take advantage of columns already 

existing entirely within the coarsening region which can be collapsed without any 

previous operations. Modifying the algorithm to take advantage of such columns would 

improve the efficiency and effectiveness of the coarsening process in certain situations. 

While the automated coarsening algorithm guarantees a topologically conforming 

mesh, it does not guarantee that the final quality of the mesh will be acceptable. Further 

research is needed to ensure that hexahedral coarsening does not degrade mesh quality 

below an acceptable threshold. This might be accomplished through more sophisticated 

methods which prevent poor quality elements from forming, or through cleanup 

operations which fix bad elements without significantly affecting mesh density. Many 

effective methods to cleanup a quadrilateral mesh have recently been developed [22]. It is 

hoped that further research will lead to similar methods for a hexahedral mesh. 

The coarsening method presented in this thesis has been shown to work on 

unstructured meshes. However, even though these meshes are considered to be 

unstructured, they are usually structured in one dimension. Little work has been done to 

test this method on completely unstructured meshes. In theory, the method should work 
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for any hexahedral mesh. However, it is likely that some meshes cannot be coarsened 

without degrading element quality below an acceptable level. 

While the coarsening method presented in this thesis works, it involves steps 

which may not be necessary. For example, most of the elements that are added to the 

mesh through pillowing are later removed. It is hoped that further research will lead to a 

more efficient method which only inserts elements that are necessary to transition from 

higher to lower mesh density. 

Finally, the ultimate goal of this research is to develop an effective hexahedral 

coarsening method that can be combined with existing refinement methods in a fully 

automated mesh adaptation process. Currently, the automated coarsening algorithm relies 

on a user to define a coarsening region and level of coarsening. Further work is needed to 

link this algorithm with finite element software that can dictate which areas of a mesh 

need to be coarsened and by how much. 
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Appendix A. Quadrilateral Coarsening Operations 

The hexahedral coarsening method presented in this thesis grew out of recent 

developments in quadrilateral coarsening. Since two-dimensional coarsening operations 

are generally easier to visualize than their three-dimensional counterparts, an explanation 

of the related quadrilateral coarsening operations is given in this Appendix. While these 

operations can be directly extended to hexahedral coarsening, by themselves, they are not 

always able to prevent changes in element density from propagating beyond the 

boundaries of a defined hexahedral coarsening region. Entirely localized hexahedral 

coarsening often requires an additional step that is not necessary in quadrilateral 

coarsening. 

A quadrilateral element can be represented by two line segments that connect the 

midpoints of opposite edges, as shown in Figure A-1. In a conforming quadrilateral mesh, 

these line segments combine to form chords, as seen in Figure A-2.  

Using an operation known as chord extraction [21], the nodes associated with a 

given chord are merged together, as demonstrated in Figure A-3. Chord extraction is a 

valuable coarsening tool because it not only decreases mesh density, but it also 

guarantees the preservation of a conforming mesh. However, in many situations, chords 

extend beyond the boundaries of a defined region. The removal of such chords would 

decrease mesh density in areas where coarsening is not desired. Therefore, it is often
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Figure A-1. A quadrilateral element with two line segments connecting the midpoints of opposite 
edges. 

 

 

Figure A-2. Quadrilateral chords: (a) A quadrilateral mesh with one chord shown. (b) All the chords 
representing the mesh are shown.   

 

necessary to modify the mesh in such a way that produces chords which are confined to 

the coarsening region. 

Several operations have been developed to locally modify the topology of a 

quadrilateral mesh [21]. One such operation is an element collapse, which is illustrated in
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Figure A-3. Chord extraction: (a) A chord is selected for extraction. (b) The chord is extracted by 
collapsing the edges that define the chord and merging the two nodes on each edge. 

 

Figure A-4. As seen in the figure, this operation alters the paths of two intersecting 

chords, preserves a conforming mesh, and only affects the elements immediately 

surrounding the collapsed element.  

 

 

Figure A-4. Element collapse: (a) An element representing the intersection of two chords is selected 
for collapse. (b) The two nodes in (a) are merged and the two intersecting chords no longer intersect. 
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As shown in Figure A-5, the element collapse operation can be used at multiple 

chord intersections to form a chord which is contained entirely within the boundaries of a 

defined region. This chord can then be extracted to coarsen the region without affecting 

any other part of the mesh. 

 

 

Figure A-5. Formation of a localized chord: (a) Three intersecting chords pass through a region 
selected for coarsening. (b) The elements representing the chord intersections in (a) are collapsed to 
produce a chord which is contained entirely within the boundaries of the coarsening region.  

 

 

 


