12-31-1980

Postemergence development and interyear residence of juvenile Columbian ground squirrels in the Idaho Primitive Area

Charles L. Elliott
Brigham Young University

Jerran T. Flinders
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/gbn

Recommended Citation
Available at: https://scholarsarchive.byu.edu/gbn/vol40/iss4/7

This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
POSTEMERGENCE DEVELOPMENT AND INTERYEAR RESIDENCE OF JUVENILE COLUMBIAN GROUND SQUIRRELS IN THE IDAHO PRIMITIVE AREA

Charles L. Elliott and Jerran T. Flinders

Abstract.—A colony of Columbian ground squirrels in the Idaho Primitive Area was observed from 1976 to 1978. Seven body measurements were recorded for juveniles obtained in 1978. There was a lack of sexual dimorphism among developing juveniles. The hind foot was the fastest developing feature. Juveniles obtain adult size their second year. Juvenile males exhibited the lowest interyear residency of either sex or age group examined.

Pengelley (1966), in a comparison of developmental patterns of four species of ground squirrels (Genus: Spermophilus), noted that developmental rates appeared to have an adaptive value for the particular habitats occupied by each species. Thus an understanding of the developmental pattern of a particular species may provide insight into the basic ecology of that species. Information on various aspects of growth and development for several species of Spermophilus has been reported (Svihla 1939, Blair 1942, Mayer and Roche 1954, Tomich 1962, McKeever 1964, Neal 1965, Clark 1970, Iverson and Turner 1972, Zimmerman 1972, Michener 1974, Turner et al. 1976), but little data have been compiled for the Columbian ground squirrel (Spermophilus columbianus). Levenson (1979) presented a growth rate constant from birth to 50 days for S. columbianus and Shaw (1925) traced the development of Columbian ground squirrels from birth to emergence from the den, but information concerning postemergence development is lacking.

Methods

A description of the Cold Meadows study area and trapping procedure used have been described elsewhere (Elliott and Flinders 1980). In addition to ground squirrels live trapped, specimens were collected from outside the trap grid using a small caliber rifle. Postemergence development reported here is based on data acquired during the 1978 field season.

Results and Discussion

Seven body measurements were taken on each sex of juvenile (juvenile = young of the year) Columbian ground squirrel live trapped or shot (Table 1). No significant difference (unpaired t-test) was found between measurements of males and females (excluding body weights for July or August). This lack of sexual dimorphism in developing ground squirrels has been observed for other spermophiles (Kiell and Millar 1978).

Table 1. Mean measurements ± SD of juvenile Columbian ground squirrels collected at Cold Meadows, Idaho Primitive Area, 1978.

<table>
<thead>
<tr>
<th>Date</th>
<th>Sex</th>
<th>N</th>
<th>Foot length</th>
<th>Ear length</th>
<th>Tail length</th>
<th>Total length</th>
<th>Body weight</th>
<th>Zygomatic breadth</th>
<th>Condylar length</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 17-21</td>
<td>M</td>
<td>4</td>
<td>17 ± 1 mm</td>
<td>17 ± 1</td>
<td>82 ± 5</td>
<td>258 ± 14</td>
<td>200 ± 34 g</td>
<td>27 ± 2</td>
<td>49 ± 3</td>
</tr>
<tr>
<td>F</td>
<td>8</td>
<td></td>
<td>16 ± 2</td>
<td>17 ± 1</td>
<td>82 ± 7</td>
<td>258 ± 15</td>
<td>173 ± 34 g</td>
<td>27 ± 1</td>
<td>51 ± 3</td>
</tr>
<tr>
<td>Combined</td>
<td>12</td>
<td></td>
<td>16 ± 1</td>
<td>17 ± 1</td>
<td>82 ± 6</td>
<td>258 ± 14</td>
<td>182 ± 35 g</td>
<td>27 ± 1</td>
<td>50 ± 3</td>
</tr>
<tr>
<td>August 14-21</td>
<td>M</td>
<td>9</td>
<td>50 ± 1</td>
<td>18 ± 1</td>
<td>82 ± 1</td>
<td>280 ± 7</td>
<td>311 ± 13 g</td>
<td>30 ± 2</td>
<td>52 ± 3</td>
</tr>
<tr>
<td>F</td>
<td>9</td>
<td></td>
<td>19 ± 1</td>
<td>17 ± 1</td>
<td>81 ± 3</td>
<td>276 ± 11</td>
<td>264 ± 31 g</td>
<td>29 ± 3</td>
<td>49 ± 1</td>
</tr>
<tr>
<td>Combined</td>
<td>18</td>
<td></td>
<td>19 ± 1</td>
<td>18 ± 1</td>
<td>82 ± 3</td>
<td>278 ± 9</td>
<td>288 ± 44 g</td>
<td>29 ± 2</td>
<td>50 ± 2</td>
</tr>
</tbody>
</table>

Department of Botany and Range Science, Brigham Young University, Provo, Utah 84602.
The body dimensions were compared (Table 2) to corresponding measurements of 76 adult squirrels taken in the same collection periods. The hind foot was the fastest developing item measured, a feature also noted in *S. richardsonii* (Clark 1970), *S. lateralis* (Clark and Skryja 1969), *S. parryi* (Kiell and Millar 1978), *S. tereticaudus* (Neal 1965), and *S. harrisii* (Neal 1965). All measurements except tail length and condylobasal length were significantly larger (unpaired t-test, *P* < 0.01) during August than July. Shaw (1925) noted Columbian ground squirrels did not complete their growth cycle until the second season. Based on 12 juveniles captured in 1977 and recaptured in 1978, ground squirrels at Cold Meadows also obtain adult size their second year of life. The combined proportions for both sexes in August (Table 2) indicate approximately 90 percent of the adult dimensions (excluding body weight) are obtained by the end of the first season. This delaying of maturity has been observed in other species of *Spermophilus* (Bridgewater 1966, Morton and Tung 1970). Morton et al. (1974) noted that in *S. beldingi* fattening and overall growth were concurrent at first but that caloric intake was then diverted primarily toward lipid synthesis and storage for catabolism during hibernation. This caloric diversion resulted in a late season slowing of increase in linear dimensions. The Columbian ground squirrels at Cold Meadows are active four months out of the year, hibernating for the remaining period. The necessity to "trade off" calories for body growth to develop greater body reserves for hibernation may account for the inability of juveniles to attain adult size their first season.

Utilizing capture-recapture data acquired during 1976–1978, the percent interyear residence for each sex and age group of *S. columbiaeans* was calculated (Table 3). Juvenile males exhibited the lowest rate of fidelity. Michener and Michener (1971) observed the same residency pattern for *S. richardsonii*. Reasons for the absence of juvenile male ground squirrels has been postulated to be the result of dispersal (Evans and Holdenried 1943, Fitch 1948, McCarley 1966, Quanstrom 1971, Yecatn 1972), exceptional vulnerability to predation (Schmutz 1979), and/or overwinter mortality (Michener and Michener 1977). We did not determine which specific factor(s) resulted in the observed low juvenile male interyear residency for the Cold Meadows colony.

We thank the University of Idaho for permission to use the facilities at the Taylor Ranch Field Station, Idaho Primitive Area.

Literature Cited

