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Figure 5.1 The reference and reconstructed power spectra for waveform 1
at 166 dB. The spectral shape is generally well maintained.

Figure 5.2 A surface plot of the error over frequency and distance for wave-
form 1 at 166 dB. The errors are relatively small for all distances and fre-
quencies.
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Figure 5.3 The reference and reconstructed power spectra for waveform 2
at 166 dB. The farther reconstruction distances greatly underestimate the
middle and high frequencies.

Figure 5.4 A surface plot of the error over frequency and distance for wave-
form 2 at 166 dB. The errors are between -4 and -6 dB for frequencies above
400 Hz and propagation distances greater than 0.6 meters. This illustrates
the underestimation of the reconstructed pressure.
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tion of distance and frequency in Figure 5.4. The errors are between -4 and -6 dB for

frequencies above 400 Hz and propagation distances greater than 0.6 meters. This

illustrates the underestimation of the reconstructed pressure.

The reconstructed PSDs for waveform 3 show an increase in energy at frequen-

Figure 5.5 The reference and reconstructed power spectra for waveform 3 at
166 dB. The farther reconstruction distances greatly overestimate the high
frequencies.

cies above the cut-off frequency and the slope of the decay to increase for only the

reconstruction from 1 and 2 meters. The error is shown as a function of distance

and frequency in Figure 5.6. The errors are between 4 and 8 dB for frequencies

above 250 Hz and propagation distances greater than 0.6 meters. This illustrates the

overestimation of the reconstructed pressure.

The reconstructed PSDs for waveform 4 are shown in Figure 5.7. The PSD shows

a decrease in amplitude at the center frequency as well as a shift in the slope at low

frequencies and high frequencies suggesting not only waveform steepening but also

shock coalescence. The error is shown as a function of distance and frequency in Figure
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Figure 5.6 A surface plot of the error over frequency and distance for wave-
form 3 at 166 dB. The errors are between 4 and 8 dB for frequencies above
250 Hz and propagation distances greater than 0.6 meters. This illustrates
the overestimation of the reconstructed pressure.

Figure 5.7 The reference and reconstructed power spectra for waveform 4 at
166 dB. The farther reconstruction distances change both the low-frequency
rise and high-frequency decay.
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Figure 5.8 A surface plot of the error over frequency and distance for wave-
form 4 at 166 dB. The errors are positive below 100 Hz and negative between
300 and 1 kHz. This illustrates the overestimation of the reconstructed pres-
sure at low frequencies and the underestimation of the reconstructed pressure
at middle frequencies.
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5.8. The errors are positive below 100 Hz and negative between 300 Hz and 1 kHz.

This illustrates the overestimation of the reconstructed pressure at low frequencies

and the underestimation of the reconstructed pressure at middle frequencies.

5.1.2 Averaged Errors

The error magnitudes were then averaged over frequency to determine an average

error value and compare the performance of each waveform. Figure 5.9 depicts the

Figure 5.9 Average error plotted against distance for the four waveforms
initially at 143 dB.

errors for the initially 143 dB case. Waveform 4 has the highest error and waveform

1 has the lowest, except at short distances where waveform 2 has the lower error.

However, the error for reconstruction from 2 meters of all the waveforms are closer

are under 1 dB.

Figure 5.10 shows the average error for the 158 dB case. Again, waveform 4 has

the highest error and waveform 1 has the lowest, while waveforms 2 and 3 switch



5.1 Reconstruction for One-dimensional Nonlinear Propagation 89

Figure 5.10 Average error plotted against distance for the four waveforms
initially at 158 dB.

several times. For this case, only waveform 1 has errors under 1 dB at 2 meters, with

the other three average errors close to or exceeding 2.5 dB.

Figure 5.11 shows the last of the three amplitudes, 166 dB. Waveform 1’s error

remains far below the other three and waveform 3 has the highest, exceeding 5 dB at

2 meters. Waveforms 2 and 4 also have average errors above 4 dB.

Waveform 1 has the lowest errors because of its self-preserving shape. The non-

linear effects filter the waveform to have the same shape. However, waveform 2 also

has the same shape but exhibits much higher error at higher frequencies. As shown

in Figure 5.3, the slope is maintained, but the loss in energy at the fundamental fre-

quency causes the decay to become offset from its original position. Also, the center

frequency appears to have shifted downward, further offsetting the high-frequency

decay. The low-frequency slope, however, remains preserved. This shift is caused by

more nonlinear effects that seem to be caused by the higher center frequency. This

follows the same trend as seen in Equation 2.28 in that higher frequencies steepen
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Figure 5.11 Average error plotted against distance for the four waveforms
initially at 166 dB.

and form shocks more quickly.

Waveform 4 has greater errors than waveform 3 at most distances because of

this same frequency-dependent effect. Both have experienced waveform steepening

evident in the high- frequency increase. However, since waveform 4 has a shift in

the low-frequency rise and waveform 3 does not, it seems that shock coalescence has

not occurred significantly for waveform 3 yet, possibly due to the larger distances

needed to experience distortion. The shift in waveform 4 effectively lowers the errors

where the slopes intersect causing the average error to be lower than waveform 3 even

though more nonlinear effects have occurred.

5.1.3 Summary

These four waveforms exhibit four separate effects that can occur when attempting

reconstruction. The first two are for a waveform with a ‘haystack’ spectral shape.

The first case is when nonlinear propagation effects do not change the already exist-
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ing spectral shape, therefore allowing for good reconstruction. This occurs when only

small amounts of energy are lost at the center frequency due to waveform steepening

and no shock coalescence has occurred. Second, if a waveform does experience signif-

icant waveform steepening or shock coalescence, the reconstruction will only be good

at low frequencies but will become very inaccurate at and above the center frequency.

This is caused by the downward shift in the center frequency and not by a shift in

the slope of the high-frequency decay. This effect can be caused by large amplitudes,

long propagation distances and higher center frequencies.

The last two cases are for waveforms with the narrower spectrum. The third

case occurs when waveform steepening causes a high frequency boost, but no shock

coalescence occurs. This allows for good reconstruction below the center frequency

but alters the spectral shape above the center frequency and causes significant recon-

struction error. The last and final case is when both waveform steepening and shock

coalescence occur, therefore boosting low and high frequencies and decreasing middle

frequencies. This also leads to significant reconstruction error. This then becomes the

limiting case as propagation distances, amplitudes and center frequencies increase.

5.2 Insight into Nonlinear Reconstruction in 2-D

Applying NAH in two-dimensions becomes quite different than the one-dimensional

implementation. First, the spatial nature of the field must analyzed for single frequen-

cies allowing for a spatial reconstruction at the source for that frequency. Second, the

implementation must use cylindrical NAH and assume that the acoustic field exhibits

circumferential symmetry. Finally, the spectral Fourier transform must be utilized to

obtain complex data that is required to account for the phase. This would require

enough data points to obtain a good frequency resolution.
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Considering these factors, the major limitation for applying NAH to nonlinear

sound fields in two dimensions is still obtaining the field itself. The WENO algorithm

used is capable of obtaining these fields but at considerable cost. Parallel processing

techniques may be used, but even then, 128 processors running for 9 days would only

obtain a domain that is about one square meter. The propagation results shown in

Chapter 4 were for a very small domain, still requiring a multi-day run time on a

highly optimized processor, and were not sufficient to obtain accurate reconstruction.

However, the results of the one-dimensional reconstruction shed some insight into

the errors that would arise when attempting to perform NAH reconstruction in two-

dimensions. Reconstruction errors may be small when the spectrum already has

the ‘haystack’ shape. As previously noted, as the amplitude, center frequency and

propagation distance increase, the nonlinear effects become more significant and re-

construction errors will be large regardless of the initial ‘haystack’ shape.

These results do not take in account interference effects which were shown to

be important for two-dimensional propagation in Chapter 4. Therefore, the 1-D

results would not directly apply to the reconstruction of multiple or extended sources

in nonlinear fields. The assumption that small nonlinear effects will cause small

reconstruction errors is likely valid though.
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Conclusions

6.1 Summary

Four random noise waveforms were propagated nonlinearly in one dimension using

the Wochner algorithm to test the effect of center frequency and spectral shape on

the nonlinear propagation. The waveforms that were initially at 166 dB experienced

significant nonlinear distortion after propagating two meters. Higher-order statistical

analysis as well as bispectral analysis showed that the waveforms with higher cen-

ter frequencies experience more distortion in shorter distances. Also, the narrower

spectrally-shaped waveforms experienced more nonlinear effects. This confirms the

need to consider nonlinear effects when studying this problem.

The higher-order statistical analysis confirmed the work of McInerny [35] that

the time derivative is more sensitive to nonlinear effects, particularly the presence of

shocks. However, the fact that skewness and kurtosis coefficients of the time derivative

both decrease once the waveform is dominated by the shocks has not been known.

This strengthens the potential of using higher-order statistics of time derivatives as a

point or multi-point nonlinearity indicator to extract information about the relative
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amount of nonlinearity occurring. Specifically, the skewness and kurtosis of the time

derivative could show whether waveform steepening or shock decay is more significant,

information that is not currently available from point nonlinearity indicators.

These nonlinearly propagated waveforms were then reconstructed using one-dimensional

spherical NAH. Waveform 1 showed the least amount of error due to the self-preserving

nature of its spectral shape. However, the errors for waveform 2, which were also

small for very short propagation distances, were significant after propagating 2 me-

ters despite having the same spectral shape. This is due to the increased amount

of nonlinearity, which then causes the center frequency to shift downward and its

amplitude to decrease. Waveforms 3 and 4 also had significant reconstruction error

as the nonlinear propagation effectively filtered the spectral shape of the waveform

to have f 2 dependence.

This implies that a ‘haystack’ spectrum with a low center frequency, a very small

propagation distance or low amplitude could be reconstructed correctly in regions

where the spherical spreading assumption holds. However, since all three factors play

a significant roll in the propagation, it may be difficult to predict whether this would

actually be the case. However, if the higher-order statistics of the time derivative were

known to be decreasing, this could indicate that the nonlinearity would cause large

reconstruction errors. Reconstruction of a narrow-band spectrum will likely always

have significant error when any nonlinear effects are present due to the filtering effects

of the distortion.

Propagation of narrow-band-noise from two point sources in two dimensions also

showed the effects of nonlinear distortion. However, the interference effects of the

steepened waveforms created more errors than expected. Since the broadband wave-

forms are random, the deviations from linear behavior become more unpredictable

with increasing amplitude. This would imply that a holography scheme must in-
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clude nonlinear interference/diffraction terms for accurate reconstruction of a finite-

amplitude sound field if the holography plane is in the near-field of the source.

6.2 Applications to Rocket and Jet Noise Imaging

The specific application of this research is to determine the accuracy of using NAH

to reconstruct the acoustic source of a rocket. However, jets and rockets are similar

in their source mechanisms and this research is therefore naturally extended to jets.

The major benefit for possible imaging rockets over jets is the low center frequency

associated with its spectra, which require longer distances for nonlinear effects to

occur. However, since amplitudes are so high, nonlinear effects may still occur over

very short distances and it is possible that amplitudes are high enough to fall into

the strongly nonlinear regime where shocks can form right at the source (see Refer-

ence [71]). Jets on the other hand have higher center frequencies which would more

experience nonlinearity over shorter distances but lower amplitudes. Considering only

these factors (center frequency and amplitude), it remains difficult to predict which

source would have more accurate reconstruction.

It must be noted that before any imaging of either jet or rocket sources could

be performed, several other problems that must be overcome. First, a typical rocket

or jet source can be quite large, extending several tens of meters with directional

radiation. This would cause even more complicated diffraction effects and could

require a very large microphone array. Additionally, rockets are typically fired in

the vertical position, with the plume usually being deflected to the side by a large

deflector. This could severely limit the locations where acoustical measurements

are even possible and introduction reflection effects. Jets may also have limited

accessibility and ground reflection problems. Lastly, the temperatures associated with
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rocket launches are very high. The temperature fluctuations would greatly change

the behavior of the acoustic field and create other problems with the measurement

hardware. Although temperatures effects are not as great for jets, they can be large

enough to significantly alter the acoustical behavior. Additionally, other atmospheric

effects, such as temperature gradients, turbulence and wind, would likely significantly

affect the noise propagation. However, these effects may be low over small distances.

To conclude, nonlinear propagation effects can cause significant errors in finite-

amplitude reconstruction techniques. It is possible though that that these errors may

be small due to a low center frequency, ‘haystack’ spectral shape, short propagation

distance or low but still finite in nature amplitude. However, for real-life application

to rockets, many other problems also exist that make it difficult to reach definitive

conclusions.

6.3 Future Work

The results of two-dimensional finite-amplitude propagation were discussed in Chap-

ter 4. This research could be extended by performing NAH reconstruction in 2-D and

determining the reconstruction errors. The NAH implementation must then change

from spherical to cylindrical and assume azimuthal symmetry, or no dependence in

the circumferential (φ) direction. This would be a more realistic application of NAH,

where all spatial points are imaged for a single frequency.

Additional research could also be performed to study and experimentally verify the

evolution of the statistics of the time derivative of random noise using a shock tube.

Perhaps more insight could be gained into the physical meaning of this occurrence,

which may be valuable in the study of intense random-noise.

Future work could also include verifying the reconstruction results experimentally
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by measuring actual rocket data to determine realistic propagation distances, sound

pressure levels, and temperatures. It would actually be recommended that the future

direction of experimental research be using model-scale jets. This could allow for a

more complete study in a controlled environment to be performed that is also less

expensive. The results could then be applied to full-scale jets and finally to rockets.
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Appendix A

The Basics of Finite-difference

Approximations

Finite-difference schemes are frequently used to solve ordinary and partial differential

equations or sets of equations with complicated or unknown analytical solutions, but

can also be used to solve simple equations. Many schemes have been developed,

some which are very efficient for solving certain equations but cannot solve others.

For this reason, it has become common to separate the temporal and spatial aspects

of an equation, estimate the respective derivatives using an efficient finite-difference

scheme, solve the respective portion of the equation explicitly or implicitly and then

to combine the results.

The theory behind finite-difference approximations is that of series expansions. A

Taylor series expansion is shown here for the function f evaluated at x.

f(x) = f(a)+f ′(a)(x−a)+f ′′(a)

2!
(x−a)2+

f ′′′(a)

3!
(x−a)3+. . .+

f (n)(a)

n!
(x−a)n, (A.1)

where ′ denotes a derivative that is defined at that location. If f(a) = U(xj) and

f(x) = U(xj+1), the expansion can be truncated by removing all terms above some

107



108 Chapter A The Basics of Finite-difference Approximations

order and rewritten as

U(xj+1) = U(xj) + U ′(xj)(xj+1 − xj) + τ, (A.2)

where τ becomes the local truncation error. Since xj+1 − xj can be simplified to ∆x,

the expression can be further rearranged to obtain

U ′(xj) =
U(xj+1)− U(xj)

∆x
− τ

∆x
, (A.3)

which is a first-order forward-difference estimate because the estimate uses informa-

tion at xj+1 to determine the value of the derivative at xj and could be easily modified

to obtain a backward-difference estimate. τ then reveals the highest order of the er-

ror, which in this case is O(∆x), or of order ∆x. A centered-difference estimate

is obtained by subtracting two series expansions centered at j + 1 and j − 1 and

the local truncation error is O(∆x2), becoming a higher-order accurate approxima-

tion. All three schemes become more accurate by keeping more terms in series before

truncating [70].

Since all numerical work is inherently discrete, this makes for easy implementation

of finite-difference approximations. The number of points used in the estimate is

known as the stencil size, where the stencil represents all the group of points used

in the finite-difference estimate. One can use one stencil or multiple stencil schemes

with combinations of backward-, forward-, and centered-difference estimates.

Each scheme requires three criteria to achieve accurate results: consistency, sta-

bility and convergence. Consistency means that as the discretization step decreases

and goes to zero, the estimate becomes the exact solution or τ = 0. Stability refers

to when small changes in initial or boundary conditions do not alter the solution.

Convergence would then mean that the numerical solution approaches the actual so-

lution within some tolerance. For a scheme to be stable a realizable relationship
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must be maintained between the spatial steps and temporal steps. When this oc-

curs, convergence is automatically achieved. For wave problems, the wave speed c

then plays an important part in determining the necessary ratio between the two

for stability. This ratio is known as the Courant-Fredrichs-Levy (CFL) number. For

simple finite-difference schemes, consistency and stability can be proven analytically.

However, both conditions are specific to the equation being solved and are not easily

determined for more complex finite-difference schemes used on complicated equation

sets [70].


