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ABSTRACT 
 
 
 

WHAT ARE SOME OF THE COMMON TRAITS IN THE THOUGHT  

PROCESSES OF UNDERGRADUATE STUDENTS 

 CAPABLE OF CREATING PROOF? 

 
 

Karen Malina Duff 
 

Department of Mathematics Education 
 

Master of Arts 
 
 

 
Mathematical proof is an important topic in mathematics education research. Many 

researchers have addressed various aspects of proof. One aspect that has not been 

addressed is what common traits are shared by those who are successful at creating proof. 

This research investigates the common traits in the thought processes of undergraduate 

students who are considered successful by their professors at creating mathematical proof. 

 A successful proof is defined as a proof that successfully accomplishes at least 

one of DeVilliers (2003) six roles of proof and demonstrates adequate mathematical 

content, knowledge, deduction and logical reasoning abilities. This will typically be 

present in a proof that fits Weber’s (2004) semantic proof category, though some 

syntactic proofs may also qualify. Proof creation can be considered a type of problem, 



and Schoenfeld’s (1985) categories of resources, heuristics, control and ability are used 

as a framework for reporting the results. 

 The research involved a) finding volunteers based on professorial 

recommendations; b) administering a proof questionnaire and conducting a video 

recorded interview about the results; and then c) holding a second video recorded 

interview where new proofs were introduced to the subjects during the interviews. The 

researcher used Goldin’s (2000) recommendations for making task based research 

scientific and made interview protocols in the style of Galbraith (1981). The interviews 

were transcribed and analyzed using Strauss and Corbin’s (1990) methods. The resulting 

codes corresponded with Schoenfeld’s four categories, so his category names were used. 

 Resources involved the mathematical content knowledge available to the subject. 

Heuristics involved strategies and techniques used by the subject in creating the proof. 

Control involved choices in implementing resources and heuristics, planning and using 

time wisely. Beliefs involved the subjects’ beliefs about mathematics, proof, and their 

own skills. These categories are seen in other research involving proof but not all put 

together.  

 The research has implications for further research possibilities in how the 

categories all work together and develop in successful proof creators. It also has 

implications for what should be taught in proofs courses to help students become 

successful provers. 
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Chapter One: Introduction 

 
  

One of the most discussed topics in mathematics education research is that of 

proof. The role of proof in mathematics education, the importance of proof in 

mathematics and the difficulties of proof for students of mathematics have all been 

discussed a great deal. The National Council for Teachers of Mathematics [NCTM] 

Principles and Standards for School Mathematics (2000) emphasize the importance of 

proof in mathematics education, saying:  

Being able to reason is essential to understanding mathematics…By the end of 

secondary school, students should be able to understand and produce 

mathematical proofs – from hypotheses – and should appreciate the value of such 

arguments…Reasoning and proof should be a consistent part of students’ 

mathematical experience in pre-kindergarten through grade 12. (p. 56) 

Communicating the products of discovered and constructed mathematical ideas is 

necessary in the education of students, and proof can be a natural vehicle.  

Yackel and Hanna (2003) argue for the importance of proof because education is 

currently shifting away from behaviorist theories toward an emphasis on reasoning in 

learning. This emphasis on reasoning has brought more awareness to mathematical 

argumentation and justification, and since proof is the end result of argumentation for 

mathematicians, it is seen as central to mathematical thinking. Hanna (1996) states that 

“proof deserves a prominent place in the curriculum because it continues to be a central 

feature of mathematics itself … [and] it is a valuable tool for promoting mathematical 

understanding” (p. 2). 
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Personal Interest 

 My personal interest in proof comes in part from my own struggle with it in my 

schooling. When I took my first “proofs” course at Brigham Young University, called 

“An Introduction to Proof”, I remember feeling there were 3 kinds of proof: those that 

used induction, those that used contradiction, or those that could only be patterned after 

other proofs I had seen. My struggle with proof continued through Abstract Algebra and 

Basic Analysis. My main strategy in these classes was to memorize proofs, whether or 

not I understood them. My geometry class was a different experience, as I was able to 

appeal to other known facts and definitions as I examined relationships in geometric 

drawings. In this class I also had a strong support structure of friends and much of the 

work was done as a group. Proof was not easy in that class, but it made more sense. 

 When I returned to Brigham Young University to pursue my master’s degree in 

mathematics education, my first class was Theory of Analysis. I learned much in this 

class. The structure was very different from my experience in its prerequisite. The 

professor did not lecture, he asked questions. He demanded that we know our definitions, 

telling us that we could not prove basic facts if we did not know the definitions on which 

they relied. While I may have known this unconsciously beforehand, as I had used the 

idea in geometric proofs, this was the first time it had been explicitly stated in an analysis 

proof setting. It was a real breakthrough in proof for me. Because the professor did not 

lecture, students were expected to prove theorems as homework and present them to the 

class. What developed in that classroom was a wonderful place for debate and discussion 

of proof. We analyzed each other’s methods, determining if there were gaps in the logic, 
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or if there were other ways to do the same proof. Often more than one proof of a theorem 

was presented. The professor truly was a guide, keeping us on track and at the same time 

being a member of the community analyzing proposed proofs.  

My next course was Galois Theory. It was taught in a more standard lecture 

format, but I believe that my experience in my Theory of Analysis class changed the way 

I understood proof. I asked many questions about proofs presented in class, trying to 

understand the logic and reasoning necessary as well as what definitions and previous 

results were being used where. In working on the homework with classmates, I found 

myself saying, “Well, let’s look at the definitions that apply to this statement. Maybe 

there is something there that will help us.” In exploring our definitions and previous 

results, we often found the proof, and just as often did not. But we learned a lot in the 

process about the subject at hand, exploring the topic more than I had ever thought such a 

simple homework question would support. 

While I was taking these courses, I was also taking my core mathematics 

education classes and a discussion seminar on mathematics education research. Among 

the things we talked about in these classes were discussions and readings on the 

philosophies of mathematics education and philosophies of mathematics. This often led 

to pondering how these philosophies applied in the mathematics classes we were taking 

concurrently. I learned much as I struggled to think about and qualify my own beliefs 

about mathematics and mathematics education. As I thought about what mathematics 

truly consisted of and what mathematics education was meant to accomplish, I often 

came back to thinking about the role of proof in the mathematics classroom, why it was 

difficult for so many, and what it meant to create proof.  
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Topic Development 

While taking all these classes, I realized that I enjoyed reading and thinking about 

proof. Specifically, three papers stood out: Harel and Sowder’s (1998) Students’ Proof 

Schemes: Results from Exploratory Studies, Moore’s (1994) Making the Transition to 

Formal Proof, and Recio and Godino’s (2001) Institutional and Personal Meanings of 

Mathematical Proof. This led me to really ponder the relationship between these ideas, 

that is, between proof schemas, meanings of proof and difficulties students have making 

the transition to formal proof. After presenting in the practicum, it became clear to me 

that what I was interested in was the process of developing proof - not the end results, not 

the difficulties of creation, but what led to the successful development of proof. 

Understanding the proof development process can be interesting and useful to the 

mathematics education research community. By understanding the thought processes that 

lead to the creation of proof, we can learn much about how to teach proof. Part of the 

difficulty of learning to create proof is that there are processes in proof creation that are 

unconscious or hidden from plain view. These processes will reveal much about how 

proof is understood and viewed by the those doing proofs as well as how instruction on 

proof might be modified.  

After my initial gathering of data, it was apparent that a framework was needed to 

help describe the successful practice of proof creation. From how I defined successful 

proof creation, it was suggested that I consider Schoenfeld’s 1985 book that discusses 

successful problem solving. His framework for what is necessary to be successful at 

problem solving complemented my definition of successful proof creation as a problem 
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solving process and so I adopted his framework for structuring my analysis, allowing for 

additional possibilities. 

This leads to my research question: What are some of the common traits in the 

thought processes of students capable of creating proof? In the next chapter I will address 

the literature on proof that applies to my study, showing why my study will be of interest 

and bring new information to the research community, and build my theoretical 

framework. Then in chapter three I will outline in detail my research methods. In chapter 

four are my results and analysis and chapter five is the conclusion. 
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Chapter 2: Conceptual Context 

 The conceptual context of this paper is the lens through which my research 

findings will be interpreted. In this chapter I develop that lens and make clear the 

assumptions that ground my research. First I discuss the definition of proof. By carefully 

determining what a proof is and when a proof is created successfully, it will be possible 

to analyze the process of creation, which is my focus. In addition, I consider the previous 

research that guided the development of my research focus.  

What is proof? 

 The question of what constitutes a proof seems innocuous, yet it requires much 

thought and careful analysis to answer adequately. A successful proof can generally be 

thought of as having the appropriate mathematical conceptual knowledge and adequate 

deductive reasoning skills applied with some correct language and formatting. However, 

the formal language of proof is not necessary for a successful proof to occur. A 

successful informal proof will have the presence of appropriate logical deductions and 

adequate mathematical knowledge. Weber (2004) defines three major categories of proof 

creation. He defines semantic proof production as occurring  

…when the prover uses instantiations of relevant mathematical objects to suggest 

and guide the formal inferences that he or she draws. By instantiations, [he 

means] a systematically repeatable way of thinking about a mathematical object 

that is internally meaningful to that individual. (p. 9) 

Weber (2004) considers semantic proof to be a proof that is created when the 

individual understands the mathematical situation and then uses his understanding to 

create a successful proof. In contrast, Weber defines syntactic proof production as 
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occurring when an individual produces a proof solely by manipulating correctly stated 

definitions and other facts and theorems in a logically permissible way.  “Such a proof 

production might be colloquially defined in the mathematical community as a proof that 

is written by ‘unpacking the definitions’ and ‘pushing symbols’.” (p. 8) Weber defined 

procedural proof to be a proof that is created when a person follows a set of rules they 

believe will yield a successful proof. When a procedural proof is created, the person 

“may or may not be aware of how their resulting work establishes the statement to be 

proven.” (p. 5) Weber’s categories of syntactic, procedural and semantic proof are the 

three types of proof production he observed in undergraduates.  

Weber (2004) points out that procedural proof production is not entirely useless. 

The procedurally created proof gives the creator practice at applying and becoming 

effective at using a new technique for proof creation. This becomes another method of 

proof creation that the prover is capable of using. Thus it can be useful in giving the 

creator practice in following logical rules and techniques. Syntactic proof differs from 

procedural proof because strong guidance from an authority (book or person) on how to 

proceed is lacking for the prover when creating a syntactic proof. The prover must decide 

how the assertions are logically connected together in syntactic proof production, while 

in a procedural proof, the prover is following rules given to them by an authority. In 

comparison, a semantic proof creator constructs personal meaning about relevant 

mathematical objects and reasons about them in his proof, gaining understanding about 

the concepts being explored in the proof.  

Weber’s (2004) three categories of proof creation are interesting for several 

reasons. Semantic proof does not necessarily employ the formal language of proof. It 
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may be a complete proof that has little or no formal language in it. It may be mostly 

pictorial with verbal explanation. There are many possibilities. Procedural proof can 

appear to be a very nice proof but generally the creator will have no understanding of 

what has been created. This shows a lack of mathematical content knowledge and 

possibly a lack of reasoning skills. Thus while a procedural proof may appear to be 

successful, in questioning the creator, it can be determined that it was created without 

understanding and should not be considered a successful proof creation. Syntactic proof 

creation will be considered successful if the creator can explain the proof to some extent. 

Often, a syntactic proof will not evidence the mathematical content knowledge required 

to create a meaningful and successful proof. 

Now consider what a proof provides to the mathematical community. According 

to DeVilliers (2003) there are six main roles of proof: verification, explanation, 

discovery, communication, systemization, and intellectual challenge. Verification is a 

checking process in determining the truthfulness of a statement. Explanation is a process 

where the proof explains aspects of the concepts inside the proof. Discovery is a process 

of discovering more about a topic or concept by attempting a proof. Communication is 

explaining and sharing knowledge with others in a clear manner. Systemization involves 

creating and examining the system of operation in which the proof exists. Intellectual 

challenge proofs are undertaken just for the sake of a challenge. Some of these roles are 

used more by students of mathematics and some are used more by mathematicians. A 

proof may not accomplish all of these roles at once yet these are all important functions 

of proof at different times and in different contexts. Moreover, different proofs of the 

same statement will accomplish different roles. For example, in proving Pythagoras’ 
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theorem, a visual proof like Baudhayana’s will provide verification and explanation 

better than Euclid’s proof for many math students. However, Euclid’s proof can be more 

intellectually challenging and is systemizing in nature, being the culmination of his Book 

one of Elements. It could be said that a proof must accomplish one of DeVilliers six roles 

of proof in order to be considered a proof. However a proof that is explanatory for some 

individuals may not be for others. Thus it becomes important to consider for whom must 

the proof accomplish one of these functions, e.g. for the individual creating the proof or 

for their peers.  The role a proof plays will depend upon why the proof is being created, 

and for what audience. If it is being created by an individual to personally determine the 

truthfulness of a statement, the proof will likely be different from the proof that is created 

by an individual to persuade others of the truth of that same statement.  In summary, the 

purposes, context, and audience of a proof are important aspects to consider as the 

success or adequacy of a proof is judged. 

For this study, when I considered whether a person had truly created a proof or 

not, I considered first which of Weber’s (2004) categories was most accurate in 

describing the proof. A successful proof evidences mathematical content knowledge and 

deduction and logical reasoning knowledge. Typically, successful proofs will fit in the 

semantic proof category, though a few syntactic proofs may also qualify. The audience, 

context and purposes of the proof will affect how these two types of knowledge are 

evidenced, so I also considered these aspects.  A successful proof would have to 

accomplish one of the purposes discussed by DeVilliers (2003).   

Proof as Problem Solving 
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 Proofs can be viewed as a type of problem solving. A successful proof has both 

mathematical content knowledge and deductive and logical reasoning skills evidenced. 

These two types of knowledge interact to help a prover work their way through a proof, 

identifying problems and then solving them to create the successful proof. 

Schoenfeld (1985) outlines four categories of knowledge and behavior that he 

considers necessary to adequately describe a person’s problem solving abilities in 

mathematics. According to his definition, “it is a particular relationship between the 

individual and the task that makes the task a problem for that person.  The word problem 

is used here in this relative sense, as a task that is difficult for the individual who is trying 

to solve it.” (p. 74) He also uses the following definition from the Oxford English 

Dictionary, “Problem: A doubtful or difficult question; a matter of inquiry, discussion, or 

thought; a question that exercises the mind.” (Simpson & Weiner, 1989) Some types of 

proof creation can be viewed as a type of problem solving. This is because the creation of 

the proof is often a problem for the prover, challenging them to think, inquire, discuss 

and exercise their mind in determining their course of action. So it is likely that 

characteristics of successful provers will be similar to successful problem solving 

abilities.  

Though Schoenfeld (1985) uses his entire book to outline and explain his 

categories, I will attempt to summarize and explain the categories in a more abbreviated 

manner.  Briefly, the categories are resources, heuristics, control and belief systems.  

Resources can be defined as the “mathematical knowledge possessed by the 

individual that can be brought to bear on the problem at hand.” (Schoenfeld, 1985, p. 15) 

This category includes more than facts about mathematical ideas. It also includes 
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algorithmic procedures, non-algorithmic procedures that are “routine” to the individual, 

intuitions, informal knowledge about the domain, and understandings or propositional 

knowledge about the rules of working in the domain. Resources may also include 

incorrect knowledge. Students make consistent error patterns in research and this is 

indicative of them having incorrect understandings about concepts. Representations can 

provide support for resources and allow students to access problems that may be 

inaccessible in different representations. When an individual demonstrates appropriate 

mathematical content knowledge in a proof creation, it will come from accessing the 

resources available to the individual. 

Heuristics is a category that involves “strategies and techniques for making 

progress on unfamiliar or nonstandard problems or rules of thumb for effective problem 

solving.” (Schoenfeld, 1985, p.15) These include drawing figures and using suitable 

notation, exploiting related problems, working backwards or reformulating a problem 

into a similar, but easier solved problem, and testing and verification procedures. The 

origins of this category can be traced to Polya (1945) and his book How to Solve It. 

Schoenfeld writes that numerous heuristics studies have been done but heuristics have 

proven more complex than expected. Heuristic strategies also rely on the available 

resources in the domain of the problem. Shaky knowledge of subject matter cannot be 

overcome by good heuristics. Heuristic strategies are not necessarily easily developed. 

This is because they are often vaguely taught or hinted towards, and having good 

strategies doesn’t mean one has the ability to use the strategies appropriately to solve a 

problem. An individual who demonstrates adequate deductive and logical reasoning skills 
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in proof creation will have accessed and used heuristic strategies and techniques they 

have available and recognize as relevant.  

Control is defined as “global decisions regarding the selection and 

implementation of resources and strategies.” (Schoenfeld, 1985, p. 15) This includes 

planning, monitoring, assessing, decision making skills, and conscious metacognitive 

acts. Control is resource allocation in problem solving. It is a major factor in the success 

or failure of the individual. Research shows that student problem solving performance 

can be improved by teaching heuristic strategies if they are taught within the framework 

of a prescriptive control strategy. It is also thought that participation in cooperative 

problem-solving experience and the internalization of aspects of that experience can lead 

to better control abilities. Good control abilities are essential in proof creation. 

Individuals who go on wild goose chases of tangentially related information are not 

exercising appropriate control and will become frustrated. Individuals who have good 

control abilities will use their resource and heuristic abilities wisely and apply them to the 

proof problem to demonstrate their deductive and logical reasoning skills as well as their 

mathematical content knowledge. 

Belief Systems is a category that involves one’s “mathematical world view,” 

(Schoenfeld, 1985, p. 15) which is the set of (not necessarily conscious) determinants of 

an individuals’ behavior about self, the environment, the topic and about mathematics in 

general. It is a critical category which has an effect on the individual’s learning of 

material in the other categories as well as affecting whether they will access that learning 

in a problem solving situation. Students with skewed belief systems will not be successful 

provers because they will not see the proof creation process as relevant or useful to them. 
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Proofs that are created will be in a procedural and possibly syntactical method, and will 

access their resources and heuristics abilities very differently from those who have belief 

systems that recognize proof as useful and helpful to them as individuals. Additionally, 

different purposes of proof will be accomplished based on the belief systems held by the 

individual. Those who create procedural and some syntactical proofs will do so possibly 

because they believe the purpose of proof is verification of information already believed 

to be true.  

These four categories and the characteristics of individuals within these categories 

will be a major part of my research lens. I believe that belief systems, control abilities, 

heuristics, and resources will describe all of the common characteristics I will see in my 

subjects.  

 Proof research literature 

 In this section I discuss a number of studies on proof that are relevant to my 

research, and discuss how they relate to Schoenfeld’s (1985) categories.   

 Recio and Godino (2001) researched how various meanings of proof in different 

contexts affect student’s beliefs about proof.  They used a questionnaire to collect data 

about general university students’ capability to build simple deductive proofs as 

freshmen. The questionnaire had two proof problems, one arithmetic based and the other 

geometry based. Student responses were put into five categories. 

1. The answer is very deficient (confused, incoherent). 

2. The student checks the proposition with examples, without serious mistakes. 

3. The student checks the proposition with examples, and asserts its general 

validity. 
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4. The student justifies the validity of the proposition, by using other well-known 

theorems or propositions, by means of partially correct procedures. 

5. The student gives a substantially correct proof, which includes an appropriate 

symbolization (p. 86) 

The data were first analyzed in quantitative tables, to determine whether the type of 

problem and response category were unrelated variables; this suggested that students 

used similar methods, independent of the question posed. This was a validity check on 

their results. Their main conclusion was that most freshmen had difficulty with deductive 

proof. Next, they proposed an interpretation of why this was. 

The five categories in Recio and Godino’s (2001) model were interpreted as 

personal proof schemes that the subjects held and used in response to proof problems 

with elementary content and structure.  Those with a type 2 response were confirming the 

truth of the propositions using particular examples, thus it was seen as an explanatory 

argumentative scheme. Type 3 responses were using examples to verify the propositions, 

using empirical-inductive procedures, thus they are viewed as empirical-inductive proof 

schemes. Type 4 answers used informal logic approaches, so they are informal deductive 

proof schemes. Type 5 answers are elementary deductive proofs, thus they are seen as 

formal deductive schemes.  

Recio and Godino (2001) then point out that there are other contexts in which 

proof is used which can affect student understanding of proof. For example, in daily life 

people use intuitive arguments, which are situationally based. These arguments do not 

require deductive logic. In the experimental sciences, hypotheses are validated by the 

results of experiments, and theories are established based on these results, without 
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confirming that it is true in all situations. New theories will refine existing theories by the 

addition of further research results. This type of justification is empirical-inductive in 

nature. Even in the mathematical classroom, the teacher often uses informal reasoning to 

argue the truth of things. So based on these ideas that proof can have different social 

contexts, the research argues that because students are simultaneously members of 

different institutions where proof has different meanings, it is often difficult to 

discriminate between the respective types of argumentation. Thus with this framework, 

student proof schemes are seen as related to institutional meanings of proof. Those using 

an explanatory scheme are reflecting their elementary intuitive argumentation styles; 

those with empirical-inductive schemes are using a more scientific view of proof. Those 

using informal deductive schemes are using the type of reasoning often used in the 

classroom by the teacher, with a strong intuitive component, and those with the formal 

deductive schemes are closes to the usual ways rigorous proof is done. 

Recio and Godino’s (2001) paper discusses how personal and social meanings of 

proof can affect students’ proving abilities. The idea that a student may not view proof 

strictly in the way that mathematicians view proof is important. Their beliefs about proof 

are part of their belief systems about mathematics. As Schoenfeld (1985) discovered in 

his research, the beliefs that an individual has about mathematics affects their problem 

solving performance.  

 “In other cases, much of the mathematical knowledge that the students had 

 at their disposal, and that they should have been able to use, went unused in 

 problem solving. This was not because they had forgotten it (a matter of 

 resources) or because they ran out of time to use it (a matter of control) but 
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 because they did not perceive their mathematical knowledge as being useful to 

 them , and consequently did not call upon it.” (p. 13) 

I hypothesized that in my research, successful provers would view proof similarly 

to mathematicians. This view of proof would aid my research subjects in understanding 

what is expected of them when they are presented with a proof problem. Their beliefs 

about proof would influence how long they spend on a proof problem, how they approach 

the proof and what they view as success in the creation of a proof. Those with a different 

view of proof would create a different final product than their peers because of their 

beliefs about proof.  

Harel and Sowder’s (1998) research was to learn more about college students’ 

proof understanding, production and appreciation. Their focus was on students’ schemes 

of mathematical proof. Their data comes from six separate sources, five one-semester 

teaching experiments in various mathematics classes, and one case study of a precocious 

junior-high student. Data were collected from classroom observations in field notes, 

retrospective notes, clinical interviews, homework and tests. Two of the classes had more 

extensive data collected, including video-taping and transcribing of all class sessions and 

observations from graduate students as well as the previous forms of data mentioned 

above. Their validity checks include interviews with other math majors at a different 

institution and numerous revisions of their model until it reached a stable stage after 

analysis. The goal of their report is to explain and demonstrate the different categories of 

proof schemes that they observed.  

In their research, Harel and Sowder (1998) found three major categories of proof 

schemes for students, each of which had several subcategories. It is pointed out that these 
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schemes are not viewed as mutually exclusive; it is possible for people to hold more than 

one proof scheme at a time. The three main categories are external conviction, empirical 

and analytical.  

External conviction is characterized by the belief that mathematical proof must 

come from an outside source other than the individual. Three subcategories in this 

external conviction scheme are the ritual scheme, where the appearance of the argument 

means more than the actual argument, the authoritarian scheme, where a book or a 

teacher is the source of conviction, and the symbolic scheme, where the usage of 

mathematical symbols means that a proof is being established, without understanding the 

meaning of the problem situation.  

Empirical schemes use physical or sensory experiences to find conviction. 

Students have two subcategories here, inductive and perceptual. Those with an inductive 

proof scheme use specific cases to evaluate a conjecture. They believe the statement to be 

true after observing its truth in several cases. Perceptual schemes use mental images and 

pictures to make observations, but the subject is unable to change or transform the 

images. For example, the subject may think only of an isosceles trapezoid when thinking 

of a trapezoid, and not consider other possibilities. 

Analytical proof is broken into two major subcategories: transformational and 

axiomatic. Those possessing analytical schemes are using some form of deductive logic 

to reason about conjecture. Those using one of the transformational proof schemes are 

using pictures and mental images similar to a perceptual empirical scheme. However, in 

these schemes, the individual is capable of manipulating the images in order to reason 

about them logically. The axiomatic scheme exists when an individual understands to 
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some degree that justification starts with statements that are accepted without proof. 

Within both the transformational and axiomatic schemes, Harel and Sowder (1998) 

identify more subcategories; however it is not necessary for me to describe them here. 

Harel and Sowder’s (1998) research is very interesting and applicable to my own. 

They have developed a comprehensive structure about proof schemas and what proofs 

can be created based on the schema that an individual holds.  For this study, I 

hypothesized that students would move back and forth between schemas while 

developing their proofs (although this is not how Harel and Sowder viewed their 

schemas) I believe that proof schemas are mainly part of the belief system category of 

proof as problem solving that we have from Schoenfeld (1985). However, this category is 

very influential and affects student success in proof creation.  

The purpose of Galbraith’s (1981) research was to investigate student perception 

and understanding of some processes involved in mathematical argumentation. His 

method of investigation was clinical interviews with several hundred children ages 

twelve to fifteen. He used three tasks in the interviews, working through all tasks with 

each student. Since the research was on a large scale, it was not feasible for one 

individual to conduct all the interviews, thus a set of protocols was designed to help the 

interviewers be consistent. The protocols are like flow charts, telling the interviewer what 

to do based on student success or failure at the previous step. The purpose of this was to 

probe student reasoning at different levels and points of item discussion. The data was 

tape-recorded for retrospective analysis. Validity of data is claimed because of 

consistency in responses across interviews, even those with variable age, gender, school 

and interviewer, and because results agreed with pilot study data.  
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 Eight clusters of response patterns were found in the students’ reasoning. These 

are considered essential parts of successful thought processes in mathematical reasoning 

for students. Students need these process skills as well as an agreement with the class 

instructor on the power and purpose of these skills. The skills that Galbraith (1981) found 

are summarized below, directly from Galbraith’s paper.  

A. Variety/Completeness in checking 

(a) Variety in choice of special cases 

(b) Thoroughness of checks 

(c) Avoidance of conjectures on insufficient evidence 

B. Proof/Explanation related to external principle 

(a) Recognition that a principle is present 

(b) Identification of the principle 

(c) Application of the principle 

C. Linking of inferences 

(a) Identification of chains 

(b) Acceptance of Lack of Closure within chains 

D. Domain of validity of generalizations 

(a) Need for system in generating/examining special cases implied by 

definitions and statements 

(b) Significance of a counter-example 

(c) Mechanism of refutation by counter-example 

E. Literal interpretation of the data 

(a) Local interpretation of statements 
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(b) Global conservation of contexts 

F. Evaluating statements/distinguishing implication and equivalence 

(a) Avoidance of Centration (evaluation of whole based on 

consideration of only part of statement) 

(b) Separation of conditions and conclusions 

(c) Awareness of distinction between conjecture and defined 

knowledge 

G. Meaning of definitions 

(a) Properties of definitions 

(b) Awareness of need to restructure basic schemas 

H. Proof structure 

(a) Analysis of a proof into components 

(b) Evaluation of the components  (p. 26-27) 

I see these eight clusters of thought as being part of problem solving resources, 

control and heuristics. Their variety and completeness in checking is a heuristic strategy 

that they may have developed or still need to develop more. Relation of proof to an 

external principle and the recognition, identification and application of that principle is an 

aspect of control and their ability to monitor progress. Their ability to exploit related 

problems is a heuristic, and their knowledge about the problem they are working with is 

their resources. Linking of Inferences is a heuristics strategy. Domain of validity of 

generalizations is also a heuristic strategy, with some control elements. Use of counter-

examples in this category is a heuristic and the need for systematical testing is an element 

of control. Literal interpretation of data is heuristics and being able to use the data in 
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aiding the proof creation. Evaluating statements is a heuristic skill of being able to see 

implication and equivalence. Definitions are a resource available to a prover, and using 

them is a heuristical skill. Proof structure will come thru control and heuristics, and be 

affected by their belief systems about proof. So these eight clusters of reasoning 

responses that Galbraith (1981) found are found inside Schoenfeld’s (1985) framework of 

categories, showing how interactive the categores are with one another. 

Moore’s (1994) research is concerned with the cognitive difficulties university 

students experience in learning formal mathematical proof. His research used grounded 

theory methodology and involved non-participant observation in a class devoted to 

helping students in their transition to formal proof as well as interviews with the 

professor and several members of the class. His major findings were that students have 

difficulty with concept understanding, mathematical language and notation and getting 

started in their proofs. Within concept understanding were five subcategories of 

difficulties that he focused on. These subcategories were the inability to state the 

definition, no intuitive understanding of the concept, inability to use concept images, 

inability to generate and use examples and not knowing how to structure the proof from a 

definition. These findings are all examples of student deficits in heuristics and resources. 

Although this research does a good job of focusing on the process of proof, it 

focuses on the negative, or the difficulties that students have with proof. The question of 

whether students who are successful in proof are strong in the areas he found others 

having difficulty with remains unanswered. Though the research shows observed 

interactions among the difficulties, a negative model does not imply an opposite positive 

model. Moore’s (1994) paper provides the difficulties that students had when learning to 
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create proof. Although it cannot be assumed that the only strengths held by successful 

provers are in the categories that his subjects had difficulties in, I hypothesized that these 

would show up as some of the strengths I would see in my subjects. The difficulties that 

he found can be classified in Schoenfeld’s (1985) categories as lacking the resources, 

heuristics, and control abilities to create the proof. Their concept understanding, 

definition difficulties and mathematical language and notation were all resource 

problems. Their difficulties with knowing where to start were control and heuristics 

problems. While I do not see explicit problems with belief systems, it is postulated that 

some of their resource and heuristics difficulties are due to their belief systems and not 

believing that their resources and heuristics will be useful to them in their proof creation. 

Conclusion 

 Weber (2004) outlines three basic types of proof created by college students. 

These are procedural, syntactical and semantic proofs. According to DeVilliers (2003), 

proof has six main roles in mathematics. These possible roles are verification, 

explanation, discovery, communication, systemization and intellectual challenge. A 

successful proof will accomplish at least one of these six roles for its intended audience 

as well as demonstrate appropriate mathematical content knowledge and deductive or 

logical reasoning skills. This will generally occur only in semantic proofs, but may occur 

in some syntactical proofs.  Proof can be considered a type of problem solving. 

Schoenfeld (1985) describes the four categories necessary to adequately characterize 

problem solving performance. These categories are resources, heuristics, control and 

belief systems.  
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Much of the research on proof that exists currently can be viewed through this 

lens of proof as a problem solving process. Recio and Godino (2001), Galbraith (1981), 

Harel and Sowder (1998), and Moore (1994) all wrote influential papers on proof that can 

be viewed in this manner and support the view of proof as a problem solving process.  

Table 1 below summarizes the categories in Schoenfeld’s (1985) problem solving scheme 

that are addressed by each of the proof studies discussed above.   

Table 1 

Aspects of Problem Solving Discussed in Proof Literature 

 
Aspect of Problem Solving 

 
Proof Literature Discussing this Aspect 

 
Beliefs 
 

 
DeVilliers, Harel & Sowder, Recio & Godino, Moore, 
Weber 

 
Resources 
 

 
Galbraith, Moore, Weber 

 
Heuristics 
 

 
Galbraith, Moore, Weber 

 
Control  
 

 
Galbraith, Moore, Weber 

 

It is expected that my research will sustain and corroborate what others have 

found but by using this lens of proof as a problem solving process we can learn more 

about proof  and what it means to be a successful proof creator. 
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Chapter 3: Research Methods 
  

As has been shown in the last chapter, much research has been done about proof, 

but little of it has been primarily focused on students capable of creating proof. Thus, my 

study investigated some common traits of thought processes in students capable of 

creating proof, with the goal of providing new information about the learning of proof 

that can inform better instruction. Using my theoretical framework as a guide I examined 

the mental processes used by students as they worked on creating proofs.  In this chapter 

I discuss research methodology.   

Theoretical Background 

 Goldin (2000) argues that by carefully considering and adjusting for various 

aspects of task-based interviews, it is possible to use them in a rigorous, scientific manner 

to conduct research. Among those aspects specifically addressed by Goldin are the 

environment, the structure of the interview, the questions, and the tasks.  Goldin goes on 

to discuss five issues that will affect the scientific validity of interview based research. 

They are control and design, replicability & generalizability, importance of mathematical 

content, role of cognitive theory, and interplay among task and contextual variables. 

When these five issues are sufficiently addressed, validity in results can be argued. 

Furthermore, these issues can be addressed by using the ten broad methodologically- 

based principles he proposes and explains in his chapter.  

 Scientific research involves the careful description of all methods employed in the 

observation of subjects. This includes the researcher distinguishing between what is 

completely controlled, what is partially controlled, and what was not controlled. This is 

done for several reasons. First, it is an essential step so that future researchers will be able 
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to recreate the experiment and obtain similar results. Second, it is necessary so that when 

inferences and results are developed from the collected data, the researcher can logically 

reason about the effect of the varying controls on the results. Goldin (2000) points out 

that it is the presented tasks that are subject to control, not the interpreted tasks. He says: 

“Quality research not only addresses the variables that are controlled, but also includes 

explicit consideration of known variables that are uncontrolled, seeking to understand and 

allow for their possible effects.” (p. 527) Without careful consideration of all variables, 

the validity of results becomes more questionable. Such lack of consideration gives way 

to the report being characterized as an anecdote. 

 It is not easy to quantify results in task based interviews. However, generalization 

is part of scientific research and necessary for progress. Goldin (2000) discusses Piaget as 

an example of using interviews in his research. Piaget’s results have been verified by 

many different researchers in a variety of settings and cultures. The corroboration of his 

results with others is part of what made his findings so influential. They were 

generalizable and replicable. Goldin argues that a large body of anecdotal accounts does 

not provide grounds for generalizability, noting that astrology, medical quacks and other 

pseudoscientific beliefs have numerous anecdotes to support their claims.  

 The content and structure of the mathematical task-based interview is subject to 

the researcher’s control and one that must be addressed more than superficially. Deeper 

semantic and mathematical structures that may occur in various task domains should also 

be considered. Goldin (2000) states that the analysis of the structures and possible 

interactions among mathematical topics is an important part of the research.  
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 All scientific investigation is based in theory and guided by theory, thus 

mathematical task-based interview research should also be based in theory. Our 

definitions are essential to what we will observe and thus our theories which guide are 

definitions must be carefully considered. All researchers will have preconceived ideas, 

and it is better to make them explicit and part of the theoretical model than tacit with their 

effect on results unknown. All assumptions about subject’s competencies, cognitions, 

attitudes, pathways, beliefs, strategies, etc., should be carefully considered in the 

interview design. This careful consideration of our cognitive theories will help us in the 

design of contingencies and in drawing our inferences about the observations. 

 Additionally, the interplay between variables must be considered. The 

environment of a task based interview will have social and cultural aspects which may 

have consequences and influence on the subjects’ behavior. Goldin (2000) points out that 

these interactions mean that some observations will be traded for others. Also, 

researchers must be open-minded and ready to deal with unanticipated events.  

 In order to address and provide a solid foundation for research that utilizes task-

based interviews, Goldin (2000) proposes ten principles. These principles help establish 

quality standards in mathematics education research and allow for good progress. They 

are: 

• Design task based interviews to address advance research questions 

• Choose tasks that are accessible to the subjects 

• Choose tasks that embody rich representational structures 

• Develop explicitly described interviews and establish criteria for major 

contingencies 
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• Encourage free problem solving 

• Maximize interaction with the external learning environment 

• Decide what will be recorded and record as much of it as possible 

• Train the clinicians and pilot-test the interview 

• Design to be alert to new or unforeseen possibilities 

• Compromise when appropriate  

Goldin has carefully considered aspects of task based interview research, including 

control and design, replicability & generalizability, importance of mathematical content, 

role of cognitive theory, and interplay among task and contextual variables and clearly 

laid out a plan for quality research to be conducted. His proposed principles help 

researchers to achieve more validity and also to design effective and quality research. 

In designing my study, I addressed applicable principles from Goldin (2000) in 

several ways. The principle of designing task based interviews that addressed advanced 

research questions was appropriately addressed because my research questions were 

developed first, and my methodology was appropriately chosen so that it addressed them.  

I wanted to see what successful provers did, so I gave subjects proofs to do and observed 

them in action.  I also carefully defined what constituted a proof, which allowed me to 

know if my research subjects were successful in creating proofs when I observed them. I 

chose my subjects to be able to do proofs, by seeking advice from professors. I also 

sought advice from professors in choosing the proof problems.  This addresses the 

principle of choosing good tasks that are accessible to the subjects. I developed explicitly 

described interviews and established criteria for major contingencies by following 

Galbraith (1981) and I created my interview protocols  as an outline of questions based 
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on situations in the interview so that the interviews would be standardized as much as 

possible.  These protocols can be viewed in the appendices. I purposely did not offer 

suggestions or hints, and allowed students to do what they wanted in order to solve the 

problems, which encouraged free problem solving. The principle of deciding what will be 

recorded and recording as much of it as possible was followed because I recorded 

everything in video and collected all papers used by subjects in working on tasks as well. 

The principle of training the clinicians and pilot-testing the interview was simple to keep 

because I had a pilot test and was the only clinician in the data collection. The last two 

principles of designing to be alert to new or unforeseen possibilities and compromising 

when appropriate where followed because I structured my interviews to allow for 

individual differences in knowledge and ability in proof creation. While I tried to use 

many of the same problems with each subject, each subject had different strengths and 

weaknesses.   

Two of Goldin’s principles do not apply, namely maximizing interaction with the 

external learning environment and choosing tasks that embody rich representational 

structures. These did not deal with what my study was investigating and what I wanted to 

observe. I was not interested in whether subjects used representations and how they 

affected proof creation or how interaction with the learning environment affected proof. 

These principles were not useful to me in structuring my study but the other principles 

were very helpful. 

Research Methods 

 I first conducted a pilot study with two volunteers, having them complete my 

questionnaire and completing the first interview with them, so that I could practice my 
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questioning and my videoing skills. The pilot study was a success. It indicated I had some 

interesting problems on the questionnaire as I got very different answers from my two 

capable volunteers and I gained some interview experience which was very helpful in 

knowing more of what I would be doing in my data collection. 

When it was time to begin the study, I had twenty-seven students from Brigham 

Young University’s mathematics and mathematics education junior and senior 

undergraduates recommended to me by faculty in these departments. Students were 

recommended based on three criteria. These criteria were being a junior or senior 

undergraduate majoring in mathematics or mathematics education at Brigham Young 

University, being a capable prover, and being able to communicate clearly about proof.  I 

chose to select subjects from junior and senior undergraduates because they have some 

experience with proof creation, having taken several upper level proof based courses by 

this time in their schooling, but they are still relatively new at the process overall. Thus, 

the process of proof creation is less automatic for them and they were able to 

communicate about their thoughts and processes more clearly than someone who has 

been creating proof for many years (e.g. a professor of mathematics). 

I asked for volunteers through e-mail. Seven volunteered to participate, but two 

withdrew early and two withdrew later due to time constraints on their schedule, leaving 

three subjects total. I chose to work with one student at a time. This was so that I could 

prepare and focus on each interview individually, and could also test hypotheses 

developed with one student in my work with the next.  

My three subjects were Carl, Candace and Matt (all names are pseudonyms). I 

interviewed them in that order. Carl was a senior double majoring in mathematics and 
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statistics. Carl was in the beginning of his basic analysis and abstract algebra courses 

when our interviews occurred. Candace was a junior majoring in mathematics education. 

She was also a tutor in the math lab. Matt was a senior majoring in mathematics and 

minoring in philosophy. He used some of his logic skills from philosophy in his proofs as 

well.  

To begin, I asked each student to fill out a questionnaire that contained four proof 

problems (see Appendix A). I chose these proof problems for several reasons. They cover 

a broad range of mathematical topics, so that I investigated my subjects’ proving abilities 

overall in mathematics and not just in a specific branch of mathematics. In addition, they 

are varied in possible approach strategies. Thus, a student cannot take the same approach 

on each problem, and the approaches taken on each problem should vary from student to 

student. This was so many different thought processes and strategies that students use in 

proof creation would occur. I intentionally avoided problems that would suggest proof by 

induction, a special type of proof that does not typically involve semantic proof creation 

as it is taught as a syntactical or procedural proof creation. 

The questionnaire asked the student to provide their best proofs. It also asked 

them to not erase anything that they wrote down, but merely cross it out so that it was 

still legible. After they returned this questionnaire, we scheduled the first interview to 

occur within a week of them returning the questionnaire.  Before that interview I 

reviewed their proofs. In reviewing the proofs ahead of time, I was able to know what the 

student had done to create the proof as much as possible so that the first interview could 

focus on their processes and strategies instead of why the proof was correct. In the first 

interview, I asked them to verbally explain what they had written and how they thought 
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about the problem, thoroughly explaining their proof and what they tried and did while 

working on the proof.  The interview was video recorded. I asked questions to prompt 

them to explain their thoughts more. 

This interview provided useful information on several fronts. It allowed me to 

verify that they were capable with proof and that they were good at communicating about 

their proofs and allowed me to start to understand how they approached and worked on 

proof. All three volunteers were capable of discussing their thoughts clearly, so a second 

interview was scheduled to take place a week or two after the first, based on their 

schedules. This task-based interview on proof asked the student to create proofs in front 

of the interviewer while being video-recorded and with occasional prompts from the 

interviewer to explain their thoughts verbally. At the end of this second interview, they 

were also questioned about their beliefs about mathematics and proof. These responses 

were to aid in understanding and interpreting the data, as a kind of member check. These 

questions about belief were added in consideration of Recio and Godino’s (2001) paper 

on the possible meanings of proof to individuals. I wanted to be able to know if the 

students’ beliefs were strongly affecting their proof creation. 

After the process of interviewing Carl was complete, some analysis was 

performed. I transcribed the interviews and did an initial read through and marked 

possible codes. I then did a second read through the interviews to see if there were any 

other codes that appeared to me at that time. When I felt I had identified all of the codes I 

could at that time, Candace was asked to go through the same interview process.  After 

Candace, Matt went through the process. While designing the study I had felt that four or 

five subjects would have been desirable, but there were no more volunteers and I did 
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have a plentiful amount of data available. All three subjects were capable provers and 

good communicators. They each had differences and similarities, so there were plenty of 

rich data on which to perform analysis.  

 I chose task-based interviews to help me study students’ thought processes. 

Because we do not have mind readers and interpreters, the next best thing is students who 

are capable of talking about their thoughts and ideas while working on tasks. Written 

questionnaires alone would not have generated enough information about student thought 

processes.  Task-based interviews allowed me to be present, observing and recording 

student thought processes while they created proof. The questionnaires allowed me to 

have subjects reflect back on their proof creation, and then I was able to compare that 

with their proof creation in the task-based interview. This was a validity check, as it 

allowed me to check the inferences of what they say they do with what they did do in the 

task-based interview. I used the responses to these questions more than I had anticipated 

because they helped me understand how mathematics was viewed by my subjects and 

how they viewed what they were doing.  

My list of possible tasks is in appendix D, and was created from problems used in 

studies from my literature review and bibliography, textbook problems from introduction 

to proof courses and with the aid of professors at Brigham Young University. They were 

chosen as tasks that the students were capable of solving and that they were good 

discussion tasks, as determined by myself and some professors that I consulted. Good 

discussion tasks were determined by considering whether the proof had multiple 

approach strategies that would cause the students to think carefully about how they would 

create a proof. I chose which tasks each student would complete after the first interview. I 
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reviewed what had occurred in the first interview, and what appeared to be the strengths 

and weaknesses of that person’s proving abilities and then tested this with the proofs I 

chose to ask them to complete in the second interview. I also chose tasks from a broad 

range of mathematics in the second interview to allow for different proof strategies on 

different types of problems to be evident. Because the proofs in the first interview were 

created before the interview, it also allowed me to get a different view of their proof 

creation from this second interview where the proofs were created during the interview. 

As an example of how I used the first interview to plan the second, during the first 

interview, Carl said he had struggled with the geometric proof and that he was not as 

capable at creating these types of proof. I chose to present him with two different 

geometric proofs at the beginning of interview two, the first being to show that the 

bisectors of supplementary angles were always complementary. This proof was 

completed very quickly by Carl and did not cause him to think deeply. He said “Seems 

like there’s not a lot to prove. By definition, the bisector of A will have half measure A 

and bisector of B will have have measure of B, add together, they will be half the sum. 

There sum is 180, so it will be 90”.  

The interviews were video-recorded, and transcribed for analysis. I used Galbraith’s 

(1981) research in structuring my question protocols. Galbraith outlined his questioning 

protocols ahead of time so that the interviews were standardized as much as possible and 

easily compared. My questions were written in a similar fashion, as an outline of 

questioning protocols so that the interviews would be standardized as much as possible. 

This was done so that I would ask each subject similar questions about each proof. I was 

concerned that otherwise, I might forget to ask about difficulties on one subjects’ proofs 
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and not know what that individual viewed as the difficulties in their proofs. By 

standardizing my interviews, I ensured that such a thing did not occur. These question 

protocols are located in appendices B and C, for interviews 1 and 2 respectively. The 

questions are general, so that they can be used for all types of proof problems. I wrote 

these questions to help prompt the students to talk about their proof creation when they 

were having trouble expressing themselves, and also to make sure that many aspects of 

proof creation were discussed on each proof that was created in the interviews.  The 

belief questions at the end of the second interview were added to aid in validity checks, 

allowing me to determine the subjects’ beliefs about proof and aid in determining that my 

interpretation of their proof creation tools was correct.  

Analysis 

 Initial analysis was done by reading the transcripts and creating open codes in the 

style of Strauss and Corbin’s (1990) Basics of Qualitative Research. After open coding, I 

had over thirty possible codes. To begin the axial coding, I started reviewing my codes 

and refining them. I worked to create solid definitions of each code by examining the text 

clips and determining what had stood out to me and made me think they had 

commonalities. Some of the codes were too general, and had to be clarified and made 

more specific. Some of them were too specific and not supported by enough data.  

 From this initial axial coding, I developed nine major codes. By repeating the 

refining process for selective coding, five of these codes collapsed into other codes for 

four major codes which corresponded closely to Schoenfeld’s (1985) four categories. 

Because of the close correspondence, I chose to use his category names. The four 
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categories were resources, heuristics, control and belief systems. The way these 

categories were demonstrated in my data will be discussed in detail in the next chapter.  
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Chapter 4: Results 

   

 As mentioned in chapter 3, I chose Schoenfeld’s (1985) categories to encompass 

my codes and findings. I believe this to be the clearest and most accurate interpretation of 

my data. I have not interpreted my data to fit the categories of Schoenfeld, but have found 

my data fits the observations he made concerning mathematical problem solving and can 

be applied to proof creation. This is true because I coded the data before realizing how 

well it fit his categories. Additionally, I am able to apply Schoenfeld’s categories without 

losing my lens of how I defined proof and success in proof creation. This is because 

Schoenfeld was originally dealing with problem solving more than proof, and he does not 

explicitly define the things that I have defined.  

 Schoenfeld’s (1985) categories of Resources, Heuristics, Control & Beliefs 

encompass my findings which answer my research question. The things that make a 

student a successful creator of proof are in the types of resources, heuristics and control 

they have available to them, and the beliefs that they carry about mathematics and 

mathematical proof. The specific types of each category that help a student to be 

successful are discussed in detail in this chapter.  

Resources 

 Resources is a broad cognitive category that includes different types of 

knowledge available to subjects in their proof creation. It includes informal and intuitive 

knowledge regarding the domain of the proof, facts and definitions that are relevant to the 

proof, algorithmic and “routine” non-algorithmic procedures that relate to the proof and 

understandings about the rules of the domain of the proof (Schoenfeld 1985). Thus 
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resources are the facts, definitions, procedures, concepts and knowledge available to an 

individual that they are consciously able to use in proof creation.  

The resources used by my subjects were of several different types.  For example, 

all of my subjects used definitions as resources in their proof creations. When explaining 

his set theory proof from the questionnaire, Carl said “Just the proposition, then you just 

have to basically change the set notation into the notation of propositions so that the ands 

and ors can be… so that you can distribute the or across the and and then switch it back 

into sets.”  Carl clearly considered this a proof where the definition was easily used to 

create the proof. When discussing her proving abilities, Candace remarked “Um, if I’m 

familiar with the definitions that I need, um… then I usually feel like I can [create a 

proof].”  When discussing the last proof on the questionnaire, Matt remarked “So I got 

out those definitions.  That seems to be the running theme here, is definitions that I 

looked up first.” 

Specific mathematical knowledge was also a resource often used by my subjects.  

When working on his proof of the divisibility by nines rule, Matt used modular 

arithmetic. He saw the different powers of 10 as all being equivalent to 1 mod 9, and that 

played a powerful role in his proof. “And then, um, I realized that each one of those 10-

to-the-whatevers would be congruent to 1 mod 9.  And so, if we multiply them, it would, 

they just disappear.  And so, then the digits themselves would have to be congruent to 0 

mod 9, themselves.” The concepts and definitions of modular arithmetic are an important 

resource available to Matt in this proof creation. 

The definitions, facts, resources and specific mathematical knowledge available to 

my subjects determined much about their success in creating a proof. Without appropriate 
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definitions or knowledge, and an understanding of how to use these in proof creation, my 

subjects would not have been successful at proof creation. This was clearly demonstrated 

when I proposed the following task to Carl: Prove that the intersection of any finite 

collection of open sets is open. . Carl was able to prove the statement for sets on a 

number line, which he was familiar with. But he did not have a definition for a more open 

set available to him and the proof was unapproachable as a result. Matt approached the 

same task, and as he had taken a class involving the subject material, had the definitions 

available to him and was easily able to structure a proof. 

Heuristics 

 Heuristics is a cognitive category involving the strategies and techniques used to 

make progress on a proof problem. It includes rules of thumb, usage of notation, 

representations, pulling from previous similar proofs, testing and verifying statements, 

and reformulating proof problems into something more solvable (among others). 

Heuristics and resources are continually interacting with one another. Without the 

appropriate resources, heuristics cannot necessarily help someone in proof creation. 

An example of using the heuristic strategy of considering similar proofs is found 

with Carl. He explained that considering similar proofs he had already done was helpful 

for him because his brain had already built connections between concepts. This was 

clearly evidenced in the interviews when Carl uses his proof of the nine’s divisibility rule 

to begin the structure of his eleven’s divisibility rule proof. In working on his proof of the 

nines divisibility rule it took him a while to develop how to represent what happened with 

a generic number of digits in the number. He struggled with what notation would be 

effective and pondered how to make sure all cases were considered. His starting point 
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was induction, because he felt he needed a general form for the number and he could add 

9 to 9k. Then he had to consider how 9k was the sum of the digits and consider how 

adding 9 would affect those digits:  

The last digit and then in the ones place and then the tens will increase by 1 unless 

its 9 and it’ll go to 0 and then that’ll keep going for as many consecutive 9’s as 

you have and then you’ll add one at the end. So you’re subtracting one on one end 

and adding one on the other end and any 9’s in between are 0’d out so your new 

sum is divisible by nine. 

 However, in the eleven’s divisibility proof, he quickly remembered what he had done in 

the proof of nine’s divisibility and used it to help him structure his proof, explaining to 

the interviewer the similarities between the proofs. 

Carl also provides an example of the limitations placed on heuristics by resources. 

When working on an analysis proof about the intersection of an infinite number of open 

sets, Carl was unable to go beyond a finite group of one-dimensional sets. He was aware 

that open sets could exist in more dimensions, but did not have any other knowledge 

about them. Additionally, he felt he had shown it was true for any finite number of one-

dimensional open sets but was unable to extend it to an infinite number. Characteristics 

of infinite sets were not part of his available resources. His use of heuristics allowed him 

to break the proof down into a simpler, similar proof about a collection of finite one-

dimensional open sets, which he was able to prove. However, his lack of resources 

prevented him from extending this proof toward the originally posed proof. 

 The issue of notation arose with my subjects, in several instances. When working 

on the quadrilateral inside a square problem, Matt began labeling segments with various 
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letters. What the letters would stand for was not immediately obvious so I questioned him 

about it. When asked why he used labels, he replied that it was a kind of shorthand: “I 

think of them more as just a shorthand way of writing the whole description, other than 

the variable.” Matt had chosen variables to represent things in the picture. He implicitly 

knew what they all meant though he had not written down the labels for the variables 

anywhere. When working on the divisibility by nines proof on the questionnaire, Carl 

explained that he had encountered issues with how to represent the generic number being 

divided by 9.  He said, “it’s easy to explain this verbally, but then trying to write it down 

so that its clear and anybody can follow it is a little bit different, you have to write, you 

have to think of new symbols and things that will hold true throughout.” Ultimately, Carl 

chose to represent the generic number 9k as d1 thru dn, while those of 9k + 9 were 

denoted as D1 thru Dn . He then examined cases of what the sums of dk and Dk would be 

to show that his induction proof was true. Candace took a similar induction approach to 

this problem, and encountered difficulty with how to represent the sum of the digits. She 

chose similar notation, but reasoned about the cases differently and used summation 

notation. In contrast, Matt did not have the notational issues that plagued Candace and 

Carl on this problem, as he chose to use modular arithmetic and his notation was all 

based on learned conventions.  

 The use of notation can be a hindrance in proof creation, when students are faced 

with a new situation and are unsure about what notation to use. This is demonstrated by 

Carl and Candace’s struggles in representing the sum of digits. However, notation, when 

it is known and used with confidence, can be a powerful tool to aid a student explaining 

their proof and in arriving at the solution. Matt’s abilities with modular notation and in 



 41  

creating his own shorthand in the square and quadrilateral problem were aids to him in 

arriving at the solutions quicker. In the square and quadrilateral problem, he was able to 

create simple equations with the notation that allowed him to prove the statement 

relatively quickly. In the divisibility by nines problem, modular notation allowed him to 

skip the difficulty of generically representing all the digits of a number and then adding 

nine to the number and deal with the messy abstract changes and instead look at the 

whole number mod 9and then each digit’s place value mod 9. In this manner, he quickly 

saw the number k which was equivalent to 0 mod 9 could also be written as a0*100 + 

a1*101 +. . . +an*10n . where each ai was a digit of k.  He then took the mod 9 of this entire 

expression and considered each piece mod 9. Since each 10i was equal to 1 mod 9 

however, they could be collected and written as 1 mod 9 * (a1 + a2 + . . . + an) mod 9 = k 

= 0 mod 9. When questioned about the rules of modular arithmetic, he answered he had 

used the rules appropriately and understood them from use. 

 Making sketches or drawings of figures, sets, functions, and so forth is a useful 

heuristic strategy in the context of creating a proof. When working on a proof that 

involves geometrical figures, making sketches of the figure and properties held by that 

figure can help determine whether a statement is true or not, and also what path to take to 

write the proof. When working on the trapezoidal proof in the questionnaire, Matt made 

many sketches of isosceles trapezoids and their properties before even starting the proof. 

He used the sketches to determine if the statement was true or false and how he would 

prove it once this was known. In his sketches he examined triangles, which he explained 

were trapezoids with the top base equal to zero, and isosceles trapezoids of varying 

lengths in the top and bottom sides. He made calculations about angles and congruencies 



 42  

in the trapezoids, and these considerations made it into his proof which included some 

sketching of trapezoids. When working on the variation of the triangle inequality, 

Candace recognized that it was similar to the triangle inequality and decided to use 

vectors to represent what the statement said. She spent a few minutes making sure her 

drawing represented the statement correctly and used it to reason about the truth of the 

statement. This only took her so far in the proof though because she could not see how it 

would handle negative numbers. Her sketch was of two vectors, a and b, originating from 

the same point, in different directions, and then the vector that could be drawn between 

their endpoints was labeled a – b. She could not see how this could represent a negative 

distance, and moved on to using a number line. The vector representation was only as 

useful to her as her understanding of vectors and magnitudes allowed it to be. While it 

did help her in the proof, her resource limitations prevented it from helping her more. 

 Another heuristic strategy is to reformulate a proof problem into other similar 

problems. This allows the prover to examine the problem from different angles to help 

find a solution. When working on the isosceles trapezoid proof on the questionnaire, (By 

connecting the midpoints of an isosceles trapezoid, you obtain a rhombus) Matt used 

drawings to help him think about the proof in a simpler form. He said: 

 I was thinking that because you could make this top one as small as you  

 wanted, you could make it arbitrarily small. And so I thought, I could  

 make it almost just like a triangle … ‘Cuz if it was true, then it would have to be 

 true for, like, an epsilon like, up there, really small. And so I thought, I mean, it 

 might not necessarily prove it, but it would be, if it was false for a triangle or true 
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 for a triangle, then I would think that it would probably be the same for the 

 other one. 

By thinking about the top base of the trapezoid as arbitrarily small, Matt reduced the 

proof question to a similar question about triangles, namely, by connecting the midpoints 

of an isosceles triangle and the top vertex, do you obtain a rhombus? This helped him 

think about the proof problem and determine if the original statement was true. 

 These Heuristic strategies of considering similar proofs, reformulating proofs into 

different problems, notational choices and using sketches, drawings or graphs to aid in 

proof creation were essential to the success of the proof creators. Without these 

techniques, they would not have known where to start or what to do when they were 

stuck. Having various strategies for considering and thinking about the proof and making 

it more approachable for them aided them in their proof creation. This was demonstrated 

by Moore’s 1994 study on student difficulties in proof. They were not able to use concept 

images or generate and use examples. They also had difficulty with mathematical 

notation and language. These deficits relate directly to the skills my successful proof 

creators had in their arsenal. 

Control  

 Control is a category that includes cognitive and meta-cognitive acts by the 

individual. These acts are about implementing resources and heuristics in proof creation. 

Planning how to create a proof, monitoring progress in the proof, making decisions about 

what to do in the proof, thinking about the proof, are all typical processes included in this 

category.  
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 During the first interview, which was about the proofs created based on the 

questionnaire, Matt indicated that the length of his written proofs was an indicator of its 

difficulty level to him.  He said that more could be assumed in the shorter proofs because 

they were trivial and basic. Longer proofs were those were more was needed to be 

shown. He said “you can make a fairly simple proof extremely long and detailed without 

really having much, um, it really wouldn’t be enlightening at all, it would just be really 

detailed and that’s it.” Matt’s acts of determining what was assumed in a proof and what 

was not assumed are acts of control. He determined what resources and heuristics he 

would need based on what he would assume and require to be proved as background to 

the proof problems. As an example, in his work on the divisibility by nines proof 

discussed previously, his written proof does not prove that 10i = 1 mod 9. He states that 

as a fact. When questioned, he explained it as being an obvious step that was unnecessary 

to prove individually. 

 Thinking about a proof during proof creation as a means of control in the 

implementation of resources and heuristics was used often by my subjects. Candace 

indicated that she thought about the divisibility by nines proof in the back of her mind for 

more than a day, which finally resulted in her progressing in her proof. She said “this was 

the one that I would think about even while I was doing other things.” It is considered a 

conscious control decision, as she also states that “I think this was the last one that 

actually finished writing up but probably the first one that I wrote something down 

about.” She chose to stop work on it and think about how she would represent the place 

value for a while before finishing the proof. After one proof that Matt worked on in the 

second interview, he told me “It took me forever.  Um…  I think it’s ‘cuz, um, I think the 
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main thing was, I just didn’t stop to gather my thoughts because I was talking so much. 

… That’s a lot of it.  ‘Cuz, when I get stuck to a point like that, usually I, I just need to 

stop and say, Okay, this is what I’m gonna do.” During interviews, all my subjects’ 

decision to spend some time pondering of the proof and planning what to do was 

evidenced by their tendency to trail off from talking and stare off into space or at the 

paper intently for a period of time, though several times it was also explicitly stated that 

they needed to spend some time thinking. This is a control mechanism they had that 

allowed them to step back and consider what they had done and what still needed to be 

done and how they should accomplish their goals. It is a conscious decision to step back 

and ponder what their next step should be. 

 When planning how to create a proof, individuals, based on their available 

heuristics and resources and the type of proof problem they are encountering, will employ 

different strategies.  When discussing the first proof on the questionnaire, which was a set 

theory proof, Candace indicated that her initial thoughts were that it reminded her of her 

abstract algebra class and a proof she had helped another individual with in her job at the 

math lab. She said that she remembered that “we just need to show subsets.” This was 

where she got her idea about how she was going to prove it. However, she couldn’t 

remember what exactly she needed to show, so she decided to show all combinations. 

(This refers to x being in each subset and all combinations of subsets). She is using the 

heuristic of considering similar proofs in helping her plan her proof. She is conscious of 

her choice and so this is evidence of control. Candace also stated the other way to prove it 

would be with Venn diagrams, but that those don’t count as proofs, “because they’re 

almost … an example.” She proceeded to work out all the cases she could see. Her proof 
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contained seven individual cases (which was not all combinations) and their verifications. 

This is an example of her employing her cognitive control over implementing her 

available resources and heuristics. She chose which heuristic strategy she would use, 

which was affected by some of her beliefs. Her choice is where her control is evidenced. 

She felt that a proof of all combinations was the best available strategy for creating a 

proof available to her.  

 In contrast, Carl’s first thoughts when looking at the same proof problem were 

“Oh, I did that in [my introduction to proofs course]. As well as it was equivalent to 

changing notation into and and or symbols”. In his words: “you just have to basically 

change the set notation into the notation of propositions so that the ands and ors can be… 

so that you can distribute the or across the and and then switch it back into sets.” Because 

his resources (i.e. the definitions he remembered) here were better than Candace’s, and he 

was confident in his notational heuristics, the planning of how to create the proof was a 

short period, as it seemed obvious to him what needed to be done and simple for him to 

do.  

 Monitoring progress during a proof creation is a control method that helps an 

individual make sure they are making progress towards a viable proof and not pursuing a 

dead end. Such monitoring may involve a conscious decision to step back and examine 

what has been done and if it is helpful, and it may be subconscious, just seeming natural 

to re-examine the path and determine if continuing on the same path is the best course. 

When working on the “divisibility by 120” proof problem in the second interview, Matt’s 

initial strategy was to factor the polynomial n5-5n3+4n.  After factoring it completely, 

however, he declared that it seemed like the statement he was proving in fact wasn’t 
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going to be true, that he should have checked some examples first, and he was going to 

do so now.  He proceeded to check several examples, determined that it did seem like it 

was true and then indicated he needed to think about why for a few minutes. After 

reflecting on his factored polynomial, he proceeded to use modular arithmetic to explain 

why it was a true statement. In this proof creation, we see Matt exercising cognitive 

control of his proof creation process – based on his beliefs about the truth of the problem.  

 My subjects’ control abilities, both cognitive and meta-cognitive, were vital to 

their successful proving abilities. The abilities to determine what can be assumed and 

what can not, to monitor progress in the proof creation and to plan how the proof will be 

created were all essential to their success. Galbraith (1981) saw these skills as necessary 

in his study. Moore (1994) also reported that one of the main difficulties student had with 

creating proof was where to start.  My subjects could plan how they were going to create 

the proof and what they were allowed to assume in the proof creation.  

Beliefs  

 Beliefs is an affective category that includes a person’s beliefs about mathematics 

and proof, including their proof schemas in the sense that Harel and Sowder (1998) used 

the term.  It also includes beliefs about a person’s own mathematical capabilities.  Beliefs 

determine much about a person’s behavior in proof creation. When I was designing my 

research, I chose to include questions about beliefs concerning mathematics in the second 

interview to aid in the accurate interpretation of subjects’ proof heuristics. However, the 

answers to these questions are not the only indicators of subjects’ beliefs about 

mathematics and proof. Some commentary in the proof creation process also gave insight 

about subjects’ beliefs. 
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 When Candace was discussing the set proof in the questionnaire, she indicated 

that she had created Venn diagrams to help her in understanding the problem. However, 

she said that the diagrams did not count as a proof, but just an example of one way of 

looking at the sets. She explains it as “I have to think of them more as an example rather 

than proof.” So she dropped that line of reasoning and chose to make a (faulty) list of all 

the possible set combinations and check each individually. This is an example of her 

beliefs affecting her control acts and consequently the resources she used in this proof 

creation.  

 On the bijection proof on the questionnaire, Candace wanted to use matrices to 

demonstrate the injective and surjective properties. She believed that it should be a valid 

method of proof, but did not have the experience to be certain.  In discussing the proof, 

she said: 

Where things are bijections with algebra, I’ve never done it using matrices. And I 

didn’t know if bijection meant the same thing.  I, I knew that if I could do it with 

a matrix, I could do it algebraically, but I… I really, I think that you can do it 

using linear algebra, that that is valid.  I just, I don’t feel confident doing it.  

Didn’t have the experience to do that… No, I didn’t have experience with linear 

algebra and so I, I think I doubted using that. 

 
Thus her beliefs about her capabilities and available resources affected the type of proof 

that she created.  

 My subjects also discussed the idea of one proof being more elegant or better than 

another proof. They had beliefs about whether their proof was a “good” proof or an 

awkwardly constructed one. When talking about it, Matt said:  
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Um, I think I could make a more… I don’t know what a better proof means, but 

uh, probably a prettier proof or a more, I don’t even know what that means, either.  

It’s kind of subjective.  But I, I think I could make a proof that I think would be a 

lot more impressed with, maybe.  

 
 I also found that what it meant to create a proof varied among my subjects. Their 

beliefs about what proof was were evidenced in their proof creations. Candace told me: 

“And so…and I guess that’s what proof is, …Whether or not you can connect definitions 

to the other… to make statements equal to one another.” This was evidenced in her proof 

creations, as she relied heavily on her definitions as a resource in structuring most of her 

proofs. She placed definitions in a main role in all of her proofs on the questionnaire and 

in the second interview. 

 It was apparent that belief played a significant role in the proof creation process. 

For example, Candace explained why she wasn’t sure if her proof was valid. “But I don’t, 

I just don’t have experience to back it, I haven’t done it before and seen that it works, so 

that’s kind of why I doubt it.” Carl explained why he felt his informal proof was valid. “I 

think even if somebody…that has more experience with this kind of thing, even if you 

can see holes in the proof or places where it could be better, you understood the idea that 

I was saying and could tell that I’d covered the possibilities.” Matt asserted that he 

understood the concepts in the proof. “ ‘Cuz I know how to prove this!  I’m just trying to 

think of how to explain this a little bit, and I’m just floundering here.” 

 Positive beliefs’ about mathematics and mathematical proof have a strong 

influence on how students go about proof creation. My subjects beliefs’ about what were 

valid methods of proof creation, about what made a proof valid and complete and what 
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made a proof more elegant or better than another proof were more in line with the beliefs 

held by mathematicians. This is shown in the papers discussed in chapter two by Recio & 

Godino, Harel & Sowder and also DeVilliers.  

Summary 

 Table 2 below provides a summary of the specific behaviors of my students in 

creating proof, discussed above and categorized according to Schoenfeld’s problem-

solving framework.  This summary provides a compact answer to my research questions.  

In the next chapter, I discuss the contributions of my study, and provide some suggestions 

for future research and implications for instruction.   
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Table 2 
 
Results of Study Organized by Aspects of Problem Solving Discussed in Proof Literature 
 
 

 
Aspect of Problem Solving 

 
Specific Use by Students in Study 

 
Beliefs 

 

 
What constitutes valid methods of creating proof 
 

 What constitutes an elegant proof or makes a proof better 
than another 
 

 How to know when a proof is valid and complete 
 
 

Resources 
 
 

Facts and definitions related to the proof 

 
 
 

Specific mathematical knowledge in the domain of the 
proof 
 

Heuristics 
 
 

Considering similar proofs as a guide to proof creation 

 
 
 

Reformulating a proof into similar but easier problems 

 
 
 

Choices of notation to aid the proof 

 
 
 

Making sketches, drawings, graphs 

Control 
 
 

Determining what can be assumed in a proof situation 

 
 
 

Monitoring progress towards the proof 

 
 
 

Planning how to create a proof 
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Chapter 5: Conclusion 
 
Answer to the Research Question 

 The question that drove this research project was: What are some of the common traits in 

the thought processes of students capable of creating proof? This question arose from my 

personal interest and struggle with proof in mathematics and was inspired by some interesting 

research papers I read in mathematics education classes. These papers included Harel and 

Sowder (1998), Moore (1994), Galbraith (1981) and Recio and Godino (2001).  My review of 

these papers and others led me to conclude that no one had addressed what was happening in 

successful proof creation at the university level. Much of the research on proof had classified 

students according to the final product. People had investigated difficulties that students were 

having with proof, but few had considered or studied the process of what was happening when 

proof was being created successfully.  

 I carefully considered and defined what a successful proof creation would be in my 

research and began with a small pilot study. I refined my data collection process from the results 

of my pilot study and collected my data. Galbraith’s (1981) research influenced my structure, as 

did Goldin’s (2000) writings about how to make task based research scientific and rigorous. I 

used interview protocols of questions to keep the questions asked of each subject similar and had 

think-aloud protocols to prompt and aid subjects in sharing their thoughts during the proof 

creation process. Tasks from the interview were compiled from books and professors and 

selected according to subject abilities, while keeping task selection similar overall. I video-taped 

the interviews and collected all papers that were written on by subjects. After the interviews were 

transcribed, I analyzed my data, following Strauss and Corbin’s (1990) guidelines. After 

analyzing the data and refining my categories, my final categories closely aligned with 
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Schoenfeld’s (1985) categories. Notably, I found that my results could be clearly organized using 

the categories already created by Schoenfeld to describe successful problem solving. Proof can 

be considered a type of problem solving, and the process of proof creation is similar to the 

process of problem solving.  

 I found that there were many factors affecting successful provers as they participated in 

the proof creation process.  These are that successful provers are good problems solvers. They 

have sufficient resources and heuristics available to them. They can use facts and definitions 

related to the proof problem and specific mathematical knowledge in the domain of the proof to 

their advantage. They are able to consider similar proofs and if necessary, reformulate the proof 

question into an easier one to answer. They are capable of making good notational choices to aid 

their proof creation, and make use of sketches, drawing and graphs to learn more about the proof 

problem they are solving. They have good cognitive and meta-cognitive control over the 

allocation of these resources and heuristics. They are able to determine what they are able to 

assume about a proof situation and what must be verified. They make plans for proof creation 

and monitor their progress on the proof so their resources and heuristics are used more 

effectively and efficiently. Their beliefs about mathematics and problem solving are positive. 

They have beliefs about what makes a proof valid and complete, and what methods are valid for 

proof creation. They have ideas and beliefs about what makes one proof more elegant or better 

than another proof. 

Contributions of the Study 

 As noted, above, most studies of proof have taken a deficit viewpoint, attempting to 

explain unsuccessful attempts at proof.  By focusing on successful provers, this study takes a 

step toward understanding the aspects of student understanding that allow for success.  This is 
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supported by coming to see writing proofs as a problem solving process, and arguing for 

bringing to bear the literature on problem solving to understanding proof production.     

Suggestions for Further Research  

 There are a number of possible ways to extend this study. A larger scale project with 

more participants could find more cognitive and meta-cognitive tools that students use in the 

successful proof creation process and verify my results. More can be learned about the affective 

processes that have an effect on proof creation.   

 Additionally, the findings of this study could be incorporated into a study on teaching 

students to be successful proof creators. An investigation into which aspects of successful proof 

creation are key points in the development of successful proof creators would be useful in seeing 

which elements seem to change an average student into a successful student. 

Implications for Instruction 

The use of these results to aid in the improvement of instruction in mathematical proof 

needs to be considered, discussed and analyzed, implemented, researched and refined. These 

tools and processes can be an aid to teachers of proof, as they are things that could be taught 

explicitly to students as skills they need to work at developing. Teachers can also help develop 

the affective processes students need by cultivating a classroom atmosphere that breeds these 

types of beliefs and behaviors. It is important that teachers to be aware of and understand these 

proof tools that need developing among students to create capable provers, so they can try to aid 

this development, while means of implementation are researched further.  

After completing this research, if I was called to teach an introduction to proofs class, 

there are several things I would do in my classroom. I would have students read about the 

different purposes of proof, perhaps as discussed by DeVilliers (2003). I would make sure they 
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were exposed to some of the more “classic” proof problems from which proof strategies can be 

obtained, and explicitly discuss these strategies. I feel I have found many of these in my informal 

discussions with professors to collect proof problems for my interviews. An example is the proof 

that the square root of 2 is irrational, a classic proof for learning proof by contradiction. After 

allowing students to attempt to prove this fact, and discussing it and showing the traditional 

proof, I would lead a discussion about why this proves that the square root of 2 is irrational. Then 

I would have them attempt similar proofs. Similarly, we would discuss the importance of 

definitions, and the various ways definitions can be used in a proof. I would set a timer for 20 

minutes, give them a proof problem they’ve never seen and have them work on it in groups. 

Then when the timer rang, we would first discuss the proof creation process, not the answer, and 

look at the different strategies attempted, the time allotted to the strategies, and how or why 

students decided to abandon (or not abandon) strategies for other ideas. I would discuss how 

reformulating a proof problem into smaller proof problems can aid in finding how to solve the 

larger proof problem. Currently, I believe that by explicitly discussing with students many of the 

attributes I saw in my research, I might make them more aware of the traits they need to be 

successful provers.  
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Appendix A 
 
Questionnaire 
 
Name_______________________________________ 
Phone number________________________________ 
Alternate means of contact______________________ 
 
Please place your name and contact information at the top of this paper. Fill out this 
questionnaire to the best of your ability and return it to my (K. Duff) mailbox in 260 
TMCB. You will then be contacted to set up an interview time. 
 
Prove or disprove the following statements. Please use additional sheets of paper which 
you attach to this sheet to show all your work. Do not erase, just place a line through or 
an X over anything that is not part of your final proof, so that it is still legible. Please 
write clearly. 
 
1. ( ) ( ) ( )A B C A B A C∪ ∩ = ∪ ∩ ∪   
 
 
 
 
 
 
2. If a whole number is divisible by nine, then the sum of its digits is divisible by nine. 
 
 
 
 
 
 
 
 
 
3. If you connect the midpoints of the sides of an isosceles trapezoid, it always forms a 
rhombus. 
 
 
 
 
 
 
 
4. Let 2 2:f → be defined by ( , ) ( , )f x y ax by bx ay= − + , where a, b are numbers with 

2 2 0a b+ ≠ . Prove that f is a bijection. 
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Appendix B 
 
Interview 1 (Follow up to Questionnaire) 
 
The following is a list of questions that the interviewer will draw from to probe the 
subjects’ proofs on the questionnaire. In the course of the interview, some questions may 
be used more than once, and some may not be used at all. 
 
What were your initial thoughts about this problem? 
 
Can you elaborate on that? 
 
Why did you choose to use that approach? 
 
Can you tell me more? 
 
How did you accomplish that? 
 
What were you considering at that point? 
 
How was that helpful? 
 
When were you convinced of the truthfulness (or falsity) of the statement you were asked 
to prove?  
 
What role did that belief play in your thought process? 
 
Did you become stuck at any point?  
 
What did you do then? 
 
How did you decide that you were done with the proof? 
 
Do you believe that this is the best proof you could create? 
 
Why? 
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Appendix C 
 
Interview 2  
 
Part 1: The following is a list of questions that the interviewer will draw from to probe 
the subjects’ thoughts while working on the proofs presented. In the course of the 
interview, some questions may be used more than once, and some may not be used at all. 
 
What are your initial thoughts about this problem? 
 
Can you elaborate on that? 
 
Why are you choosing to use that approach? 
 
Can you tell me more? 
 
How will you accomplish that? 
 
What are you considering at that point? 
 
How is that helpful? 
 
Are you convinced of the truthfulness (or falsity) of the statement you have been asked to 
prove?  
 
How is that influencing your thoughts? 
 
Are you stuck? 
 
What will you do to move forward in the proof? 
 
Are you done with this proof? 
 
How do you know? 
 
Do you believe that this is the best proof you can create? 
 
Why? 
 
Part 2: The following is a list of questions that the interviewer will then use after the 
proof tasks to probe the students beliefs about proof. In the course of the interview, some 
questions may not be used. 
 
What is mathematics? 
 
What is proof? 
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What role do proof exercises play in your mathematics learning? 
 
How do you feel about proofs in general?  
 
Can you elaborate there on what you mean? 
 
How do you feel about your ability to create proof? 
 
Can you say more? 
 
Do you work best alone or with others? Why? 
 
Do you think you have a general approach to proof problems? What is it? 
 
How do you think your mathematical abilities compare with other students in your 
major?  Why do you feel that way? 
 
How are your proving abilities compared with other students in your major? Why do you 
think that? 
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Appendix D 
 
Bank of tasks for interviews (excluding tasks on questionnaire for first interview) 
 
There are 180( 2)n − degrees in an n-gon. 
 
The bisectors of adjacent, supplementary angles form a right angle. 
 

3n n−  is divisible by 6 for all n∈  
 
A point p is a limit point of a set M if and only if every neighborhood of p contains a 
point of M distinct from p. 
 
The union of any finite collection of closed sets is closed. 
 
The intersection of any finite collection of open sets is open. 
 
You have a square of side length one. Inside this square you are going to place five 

points. Prove that at least two of the points will be within 2 or 1
2

of each 

other. 
Prove that X  is not cyclic. 
 
Prove that if A and B are subsets of G with A B⊆  then ( )GC B is a subgroup of ( )GC A . 
 
If n is not prime, then / n is not a field. 
 
 Show that [0,1] is uncountable. 
 
Let G be a group of order pq, where p and q are prime numbers. Prove that every proper 
subgroup of G is cyclic. 
 
Let F be the splitting field of 4 2x − over . Find, with proof, all intermediate fields 
between F and . 
 
Let r and s be algebraic over F. Prove that r+s is algebraic over F. 
 
Prove 5 3120 /( 5 4 )n n n n− + ∀ ∈  
 
Suppose that gcd(a,b) = 1 and that a/n and b/n.  Prove that ab/n. 
 
Prove that (2n)!/(2nn!) is an odd number. 
 
Prove that if 2n-1 is prime, then n is prime. 
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Given a square with the midpoints connected in such a fashion as shown, determine, with 
proof the area of the middle quadrilateral. 

 
Why is every palindrome number with an even number of digits divisible by 11? What 
can be said about palindromes with an odd number of digits? 
 
Prove that  A B A B U⊆ ≡ ∪ =  
 
Let n be an integer.  Prove that ( , ,*)n + is a commutative ring. 
 
Prove that , ,a b a b a b∀ ∈ − ≤ −  
 
Prove that 1/ 2 0n → as n →∞  
 
Define a binary operation * on Z by a*b=a+b+1.  Prove that Z with * forms an abelian 
group. 
 
 
 


	What Are Some of the Common Traits in the Thought Processes of Undergraduate Students Capable of Creating Proof?
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	Chapter I: Introduction
	Personal Interest
	Topic Development
	Research Question

	Chapter II: Conceptual Context
	What is proof?
	Proof as Problem Solving
	Proof research literature

	Chapter III: Research Methods
	Theoretical Background
	Research Methods
	Analysis

	Chapter IV: Results
	Resources
	Heuristics
	Control
	Beliefs
	Summary

	Chapter V: Conclusion
	Answer to the Research Question
	Contributions of the Study
	Suggestions for Further Research
	Implications for Instruction

	Bibliography
	Appendices
	Appendix A: Questionnaire
	Appendix B: Interview 1 Protocol
	Appendix C: Interview 2 Protocol
	Appendix D: Task Bank


