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1 INTRODUCTION 

In 2002, injuries hospitalized or killed approximately 12 out of every 100 children 

under age 5 years in the United States (CDC 2002). In 1994, the estimated economic cost 

of injury for children under age 5 years was $75 billion (Danseco et al. 2000). Factoring 

in inflation, increasing costs of health care, and an increasing population, that figure is 

probably much greater today (Weiss et al. 1997) (McCaig and Burt 2001). Pediatric 

injury is costly and finding ways to prevent it has become a major public health concern. 

A number of studies have investigated infant injury (Brenner et al. 1999) (Scholer 

et al. 1997) (Agran et al 2003) (Nathens et al. 2000).  However, none of the studies have 

targeted the effect of birth order on emergency department (ED) attended fatal and 

nonfatal infant injury. Birth order may play an important role as a predictor of injury for a 

new infant.  For example, an infant in a multiple-child household may have increased 

odds of injury compared to first-born infants because the possibility of lessened 

supervision becomes greater when the attention of the caregiver(s) is divided among 

many young children. Birth order also may help characterize types of injury.  For 

example, a third-born infant may be more likely to choke on small parts of toys due to the 

presence of age-inappropriate toys in a household with multiple siblings. 

The objective of this study was to investigate the relationship of selected 

individual and maternal factors with infant injuries. In particular, the association of birth 

order with infant injury was studied, while controlling for other individual, socio-

economic, and family factors as detailed in the analysis section. 

The analysis dataset is a compilation of data from the Utah birth certificate 

database, the Utah death certificate database, and the Utah hospital emergency 
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department database. The Utah datasets were particularly useful for this study because 

Utah has the highest birth rate in the United States (Sutton and Matthews 2004), as well 

as large families with many young preschool-age children in households. Data include all 

injury causes and intents; data are not excluded by intention or outcome (fatal or 

nonfatal). 

The three databases were probabilistically linked using LinkSolv 7.0 (Strategic 

Matching, Inc.). Data were analyzed using PROC LOGISTIC and PROC GENMOD in 

SAS 9.1.3 (Cary, NC). The model was built using logistic regression on a randomly 

selected, non-correlated subset of the full data.  Two models were built.  One model was 

built using backward elimination, and the second model was built using forward 

elimination.  The two models were built to examine any potential differences between 

variables selected by the two elimination methods. A generalized estimating equations 

(GEE) model for correlated binary data was fitted to the full dataset to account for the 

correlation within sibling groups and further reduced using backward elimination. 

Characterizing the risk factors for injuries to first-, second-, third-, and fourth-or-

more-born children in households may help injury-prevention educators target the issues 

specific to each child in a household and assist clinicians and parents in preventing the 

injuries that are common to their household type. 
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2 REVIEW OF LITERATURE 

2.1 Infant Injury Literature 

A number of investigators have studied pediatric injury.  Of particular interest to 

this study are those studies which examine infants < 1 year of age and those studies 

which examine birth order (first-, second-, third-born) as a predictor of childhood injury. 

Brenner et al. (1999) used national birth and death certificate data to observe types of 

injury deaths and risk factors for fatal injury in infants < 1 year of age. They found that 

homicide, suffocation, motor vehicle crashes, and choking are the leading causes of death 

for this age group. These investigators also found that birth order is an important 

predictor of fatal injuries due to drowning, fire, and mechanical suffocation. Similarly, 

Scholer et al. (1997) examined linked national birth and infant death data to identify 

socio-demographic predictors of injury mortality in infants. Their findings suggest that 

birth order may be an important predictor for infant injury death, with infants born to 

mothers with more than 2 other children at higher risk of injury mortality. Nathens et al. 

(2000) used Washington State birth, hospital discharge, and death data to study risk 

factors for unintentional injuries to children under age 6 years. Nathens found an 

association between the presence of older siblings and increased odds of injury in this 

older age group.  Other important risk factors for childhood injury in this study include 

maternal age, maternal marital status, maternal education, prenatal care, insurance status, 

preterm birth, and gender. 

Most studies of childhood injury group children into categories of < 1 year and 1–

4 years.  In a study using the California hospital discharge database, Agran et al. 

examined the mechanism of injury for infants using finer increments of time. These 
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investigators found that, in the first year of life, causes of infant injury change by each 3-

month age grouping.  In fact, infants in each age grouping had a different leading cause 

of injury: falls from height (0–2 months), battering (3–5 months), falls from furniture (6–

8 months), and non-airway foreign body (9–11 months).  While this study did not assess 

birth order, it does emphasize that infant injury is developmentally linked and may 

provide insight into associations of infant injury with birth order.  Several other studies 

specifically examine the effect of birth order on childhood health, but do not focus on 

injury directly, rely on parent recall, or have small sample size. 

2.2 Generalized Linear Models 

Regression analysis and analysis of variance (ANOVA) are widely used in 

virtually all fields including medicine, business, marketing, logistics, agriculture, product 

development, economics, and more.  These traditional linear models assume that the 

outcome being studied is normally distributed.  The normality assumption is problematic 

when data do not fit this requirement, as is frequently the case.  Nelder and Wedderburn 

(1972) first introduced “generalized linear models” to solve the problem of building a 

linear model for non-normally distributed outcomes. 

Generalized linear models (GLM) include the aforementioned ordinary least squares 

methods (simple linear regression and ANOVA), as well as expansions of these 

traditional methods such as logistic regression, Poisson regression, and loglinear models 

to deal with categorical, count, and other non-normally distributed data (Neter et. al., 

1996).  By letting Y ],...,[ 21 nYYY=  represent the n independent observations from an 

outcome variable of interest, then generalized linear models may be characterized by two 

requirements (Rencher 2000): 
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1. The outcome variable, Yi, has a density function from the exponential family 

(binomial, normal, Poisson, gamma, negative binomial, etc.). 

2. A link function, g, of the expected value of the outcome variable is described by a 

linear function of predictors. 

Requirement 2 is expressed as g(E(Yi))= xi’ß, which is equivalent to E(Yi) = g-1(xi’ß).  In 

this model, g must be a monotonic, differentiable function (McCullagh and Nelder 1989).  

The variance of the outcome variable also turns out to be specified as a function of the 

expected value because of the properties of exponential family distributions: 

))(( ii YEfV = . 

Following notation similar to Liang and Zeger’s (1986), the estimate of ß is the solution 

to a set of k “quasi-score” differential equations for k covariates and N observations: 

( ) 0)()(
1

1 =−=∑
=

−
ii

N

i
iik YEYVDU β , 

where iD  = β/)( iYE .  If the model is specified correctly, then asymptotically E[ )(βkU ] 

= 0 and Cov[ )(βkU ] = iii DVD 1' − .  Therefore, the function  )(βkU  behaves like the 

derivative of a log-likelihood; estimation is accomplished by generalized weighted least-

squares, usually through an iterative process (McCullagh and Nelder 1989). 

To summarize, a generalized linear model is a linear model for the transformed 

expected value of an outcome variable having a distribution from the exponential family 

of distributions.  The generalized linear model only requires that a relationship between 

the expected value of the outcome variable and the explanatory variables and between the 

mean and variance of the response variable is specified.  The primary attractiveness of 

the GLM is its allowance for linear and non-linear models under a single framework.  It 

(1) 

(2) 
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is possible to fit models for data that are normal, gamma, Poisson, geometric, binomial, 

or from any distribution of the exponential family.  Generalized linear models for binary 

data are a special subset of GLMs, as explained below. 

2.3 Generalized Linear Models for Binary Data 

Many response variables have only two possible outcomes.  Examples include 

patients’ contraction of bacterial infection during hospital stay (Yes, No), mortality from 

car crash (Died, Survived), decision to purchase a product (Buy, Not Buy), or choice of 

computer (Laptop, Desktop).   In each of these scenarios, the response will always be one 

of two possible outcomes. 

Agresti (1990) describes how to represent this class of outcomes statistically.  For 

models with binary outcomes, the response variable is represented by Y.  Because each 

response Yi has 2 possible outcomes, denoted by 0 and 1, the Bernoulli distribution is an 

appropriate description of Y from the exponential family.  In this case, E(Yi) = 1*Pr(Yi = 

1) + 0 * Pr(Yi  = 0) = Pr(Yi  = 1).  Representing E(Yi) = Pr(Yi = 1) by π(xi) demonstrates 

the outcome variable’s dependence on the values of the explanatory variables, xi. 

In general, the goal of modeling a Bernoulli outcome variable is to describe the 

relationship of the explanatory variables to the probability of an event (Yi = 1). A classical 

linear probability method, such as an ordinary least squares regression, may be applied to 

the analysis of binary data, but there are three primary problems with this method 

(Agresti 1990).  First, the variance of an ordinary least squares model should be constant.  

The variance of a Bernoulli outcome variable is given by V(Yi) =  π(xi)[1 - π(xi)].  This 

shows the variance is not constant (that is, it depends on the explanatory variables’ 

influence on the probability of an event); therefore, ordinary least squares estimators will 
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not be unbiased minimum variance estimators. Second, from a likelihood point of view, 

the ordinary least squares method is optimal for a normally distributed outcome variable.  

However, a Bernoulli outcome variable is not normally distributed, which implies that the 

sampling distribution for the ordinary least squares method is inappropriate.  Third, 

because a probability is being modeled, π(xi) should be restricted to π(xi) > 0 and π(xi) < 

1; the ordinary least squares method does not restrict π(xi) in this way. 

A more appropriate model for binary outcome data would not require assumptions 

about normality or assumptions about constant variance and would simultaneously model 

the relationship between the probability of an event in Y and the values of the explanatory 

variables (Agresti 1990). 

If the link function, g, is defined as g(π(xi)) = ln [π(xi)/(1- π(xi)], then ln[π(xi)/(1- 

π(xi)] = xi’ß or π(xi) = exp(xi’ß)/[1 + exp(xi’ß)] (Dobson, 1990).  By defining the link 

function this way, no normality assumptions or constant variance assumptions are made.   

For the single variable case, π(x) = )(

)(

1 x

x

e
e

βα

βα

+

+

+
.  Notice that when 0<β  and as ,0→x  

π(x) 0→  and when 0>β  and as ,∞→x  π(x) 1→ .  Therefore, π(x) has the appropriate 

restrictions on its value set for a single predictor variable (Agresti 1990).  Dobson (1990) 

gives a more complete demonstration for multiple predictor variables. 

The model defined here is called the logistic regression model, and the link 

function employed, g, is commonly referred to as the logit link function. In contrast to the 

ordinary linear regression model, the logistic regression model appropriately describes 

the relationship between the probability of an event in Yi, expressed as π(xi), and the 

explanatory variables, expressed as xi, because it does not require normality, does not 

assume constant variance, and restricts the outcome to (0,1). 
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The logistic regression model has useful properties relating to interpretation of 

results.  The function, π(xi)/(1 - π(xi), is usually referred to as the “odds.”  For example, if 

response “Yes” has odds of 3, then the response is 3 times as likely as response “No”.  

When taking the ratio of the odds, this is called the “odds ratio.”  The odds ratio is a 

measure of association frequently used in medical and public health applications (Agresti 

1990).  The interpretation of the β parameters is straightforward and directly related to 

the odds ratio.  The β parameters are interpreted as a multiplicative effect on the odds 

ratio (Stokes 1985). In the case of a Bernoulli explanatory variable, eβ is the estimate of 

the odds ratio of the outcome for one level of the explanatory variable compared to 

another level of the explanatory variable.  For example, if the explanatory variable is sex 

and eβ = 2 for males compared to females, the parameter estimate would be interpreted as 

follows: “The odds of observing males with an event are increased two-fold when 

compared to females.” 

2.4 Generalized Estimating Equations 

In many cases data are correlated.  Common types of correlated data include 

repeated measures and clustered data.  Observations on the same individual (repeated 

measures) or observations from individuals in the same cluster (clustered data) tend to 

exhibit correlation; thus, analysis without accounting for this relationship may result in 

poorly fitted models and will always result in incorrect estimates of the variances.  For 

correlated data arising from repeated measurements where the measurements are assumed 

to be from a normal distribution, analysis methods have been investigated and fairly well-

developed (Littell et al. 1996), although work is still needed in calculating degrees of 

freedom and in handling small sample sizes (Schaalje et al. 2002). 
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Although correlated data may be normally distributed, the normality assumption 

is problematic for many response variables of interest.  This is especially true in the 

medical and health sciences where outcomes are frequently both correlated and event-

oriented.  In order to address this problem, Liang and Zeger (1986) proposed an extension 

of generalized linear models to the analysis of correlated data.  This method is ideal for 

data that could otherwise be analyzed using a generalized linear model, except for the 

correlation among observations.  This extension of generalized linear models introduces a 

class of estimating equations which allows for analysis of non-normally distributed and 

correlated data.  This analysis technique, known as “Generalized Estimating Equations” 

(GEEs), provides a practical approach to the analysis of non-normal, correlated data. 

2.4.1 An Overview of GEEs 

The solution proposed by Liang and Zeger (1986) for expanding GLM’s to 

correlated data is to specify a “working” correlation matrix incorporated into the variance 

term of equation (1).  Let ni be the number of observations within each cluster, and let j 

index the observations within a cluster: j = [1, 2,… ni] for i = [1,…,K] clusters.  Also let 

)(αiR  be an ii nn × correlation matrix for cluster i, where α  is a vector which fully 

characterizes )(αiR .  Equation (1) becomes a covariance matrix for the i-th cluster: 

φα 2/12/1 )( iiii ARAV = , 

where the iA  are ii nn ×  diagonal matrices with f(E(Yij)) as the diagonal elements and φ  

is the scale parameter for exponential family distributions.  Substitution of equation (3) 

into equation (2) gives us the general estimating equations: 

( ) 0)(')(
1

1 =−=∑
=

−
ii

K

i
iik YEYVDU β , 

(3) 

(4) 
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where )](/)(([ β∂∂= YEDi  is an kni ×  matrix, and )( ii YEY −  is of order 1×in  for the ith 

cluster.  Notice that when ni = 1, or the independence case, the GEE estimator reduces to 

a GLM.  From this substitution, it is clear that GEEs are an extension of the GLM model.  

Therefore, the interpretation of the parameter estimates stems from the generalized linear 

model.  For example, for a logistic regression model incorporating a correlation structure, 

the β parameter estimates are still interpreted in the same manner as in a logistic 

regression model; that is, as a multiplicative effect on the odds ratio. 

2.4.2 Advantages of GEEs 

As discussed and shown by Liang and Zeger (1986) and Lipsitz et al. (1994), 

GEEs have a number of advantages for the analysis of correlated data.  First, GEEs offer 

reasonable statistical efficiency.  Because the first two terms of equation (2) do not 

depend on Yi, the score equations converge to 0, which implies that the score equations 

are consistent as long as E[Yi – E(Yi)] = 0.  Additionally, when E(Yi) is correctly 

specified, GEE estimates of the parameters ( rβ̂ ) will also be consistent (Liang and Zeger  

1986). 

A second advantage to the GEE model is its allowance for a range of correlation 

structures within correlated groups (clusters).  Three common specifications of the 

“working” correlation matrix )(αiR  include the exchangeable, autoregressive, and 

unstructured correlation structures.  For the following examples, s and t are used to 

represent the rows and columns of iR .  Set ,)( ρα =iR ts ≠  and ,1)( =αiR  ts = .  This 

is an exchangeable correlation structure.  This structure allows all of the Yi to be related 

to each other in the same way across all observations in a cluster.   
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Setting st
iR −= ρα )(  generates an autoregressive correlation structure.  The 

autoregressive correlation structure forces the correlation to be the same across 

observations and the correlation within an observation is an exponential function of the 

“distance” between observations.  If ,)( stiR αα =  ts ≠ , and ,1)( =αiR  ts = , constraints 

on the correlation between observations within a cluster are removed and each correlation 

might be unique.  There are a number of other correlation matrix specifications available, 

as described in detail by Fitzmaurice et al. (1993). 

Finally, like GLMs, GEEs have applicability to a wide range of data including 

non-normal continuous, dichotomous, polychotomous, ordinal, and event-count response 

variables.   

2.4.3 Inference from GEE Models 

GEEs are a population-averaged (or marginal) approach to analyzing correlated 

data, which differs from the traditional conditional approaches to correlated data analysis.  

Neuhaus, Kalbfleisch, and Hauck (1991) as well as Hu et al. (1998) both provide a good 

discussion on the distinctions between these two approaches. They explain that 

conditional approaches, such as mixed model analysis, model the distribution of the 

response variable as a function of the predictor variables and a parameter specific to each 

cluster. The cluster-level parameter is estimated as a fixed-effect or as a random-effect.  

In marginal models, however, the population-averaged expectation of the dependent 

variable is modeled as a function of the predictor variables.  There is no specific cluster-

level parameter; instead, intracluster correlation is accounted for by specifying an 

appropriate covariance matrix to account for non-independence between observations.  

Diggle, Liang, and Zeger (1994, pg 131) explain this concept as follows, “Marginal 
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models, then, model the . . . average response over the sub-population that shares a 

common value of X.”  The distinction between the two types of models is important due 

to the difference in how the parameter estimates may be interpreted.  A conditional 

model’s parameter estimate represents the effect of a change in the predictor for the same 

individual, whereas a marginal model’s parameter represents the average effect of a one-

unit shift in the predictor across the entire population (Pendergast et al. 1996).   Because 

GEEs do not explicitly model between-cluster variation, as conditional model approaches 

do, it is important to note that for GEEs the computational complexity is a function of the 

size of the largest cluster rather than the number of clusters.  Therefore, when there are 

many small clusters, GEEs have a computational advantage over conditional models and 

are a source of reliable parameter estimates. 

2.4.4 GEEs and Convergence, Goodness-of-Fit, and Missing Data 

Under certain circumstances, GEEs may fail to converge.  Generally, GEE 

convergence becomes more difficult as the number of clusters (sample size) decreases, as 

the number of correlation parameters being estimated increases, and as the size of 

intracluster correlations increases.  Lipsitz et al. (1994) found that for N (clusters) = 15 

and r = .60, 65% of convergence problems were traced to singularities in the variance-

covariance matrix, and the other 35% were due to exploding estimates of β.  Therefore, 

when using GEEs with few clusters or high intracluster correlations, there is a tradeoff 

between specifying a complex correlation matrix and computational manageability. 

Another issue to consider when using GEE analysis is that goodness-of-fit 

statistics are problematic for GEE models.  Because residuals from GEEs are correlated, 

they are not appropriately evaluated by many common goodness-of-fit procedures 
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(Chang 2000).  There have been some recent developments in goodness-of-fit statistics 

for GEEs, however, they are all limited to the binary outcome variable case.  These will 

be discussed in more detail in the final section. 

In the context of GEE models, the issue of missing data needs special treatment.  

Little and Rubin (1987) and Sherman (2000) outline what are now the standard 

classifications for missing data: missing completely at random (MCAR) and missing at 

random (MAR).  For models based on complete likelihoods, these types of random 

missing data are typically considered ignorable non-response mechanisms.  Inferences 

are valid without explicitly modeling the mechanism for the missing data.   For GEE 

models, this is not the case.  Data which are MAR (past values of Y affect the probability 

of missingness), will not necessarily yield consistent estimates of β.  Fitzmaurice, Laird, 

and Rotnitzky (1993) show that the extent of the bias in estimating β depends on several 

factors, including the extent of the missing data, accuracy of the model’s specification, 

presence of time-varying covariates, and specification of the working correlation matrix. 

2.5 Generalized Estimating Equations for Binary Data 

GEE modeling has been developed primarily in the context of binary response 

variables.  The following discussion focuses on two recent developments related to GEEs 

for binary data, goodness-of-fit statistics, and the alternating logistic regressions 

algorithm. 

2.5.1 Goodness-of-Fit Statistics for GEEs 

Obtaining goodness-of-fit statistics is problematic for GEEs because goodness-of-

fit statistics are not based on the complete information maximum likelihood (conditional 

approach), but on a marginal model approach based on quasi-likelihood.  Because GEES 
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are a marginal model, the widely used likelihood-ratio tests for testing goodness of fit of 

the model are not available for GEEs.  Recently, several goodness-of-fit tests for GEEs 

have been developed, although they are all limited to the case of binary dependent 

variables. These alternative goodness-of-fit tests are asymptotically identical to likelihood 

ratio tests developed for ordinary least squares models. 

Barnhart and Williamson (1998, pg 720) developed a test based on “partitioning 

the space of covariates into distinct regions and forming score statistics that are 

asymptotically distributed as chi-square random variables with the appropriate degrees of 

freedom.”  The primary drawback of this goodness of fit test is the necessity of 

partitioning the covariate space, which becomes cumbersome when many or continuous 

covariates are included in the model. 

Horton et al. (1999) proposed an extension to the GEE context of the goodness-

of-fit test for ordinary logistic regression developed by Hosmer and Lemeshow (1980).  

This statistic is constructed by estimating a model, generating predicted probabilities, 

dividing the data into G groups based on deciles of the predicted probabilities, defining 

G-1 indicator variables corresponding to the deciles, and then including the indicator 

variables in an additional model from which score or Wald statistics are derived.  This 

statistic has an approximate chi-squared distribution when the model has been specified 

correctly, and a significant result indicates a lack of fit. 

Additional approaches summarized by Zheng (2000, pg 1265) include tests based 

on reductions in entropy and deviance and on “the concordance correlation coefficient 

and the concordance index,” which are indices of concordance between ordinal ranking 
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or predicted versus actual values.  Future research is needed to compare these different 

approaches for goodness-of-fit of GEE models. 

2.5.2 Alternating Logistic Regressions Algorithm 

The Alternating Logistic Regression (ALR) algorithm was developed as a more 

computationally feasible option for obtaining parameter estimates than typical GEEs.  

Carey, Zeger, and Diggle (1993) introduced the ALR algorithm as an alternative method 

for taking the correlation between measurements for correlated binary data into account.  

Instead of using correlation between measurements to model association, as GEEs 

normally do, the log odds ratios may be used instead.  The ALR algorithm iterates 

between a GEE step and a logistic regression step; the GEE step estimates regression 

coefficients, and the logistic regression step updates odds ratio parameters.  When the 

ALR algorithm converges, it provides estimates of the mean and log odds ratios, as well 

as their regression parameters (standard errors and covariances) (SAS 2004).  The 

primary reason for using the log odds ratios instead of the normal GEE is that GEEs 

become computationally unmanageable with large cluster sizes.  When using the ALR 

algorithm to model association between pairs of responses, clusters of size n require 

inversion of matrices of order n2 rather than n4, making the ALR algorithm a more 

feasible approach if cluster sizes are large.  The ALR algorithm estimates have also been 

shown to be reasonably efficient (Carey, Zeger, and Diggle 1993). 

2.6 Conclusion 

GEEs provide a fairly flexible and easily implemented method for analyzing 

correlated data.  They are well-suited for data with many small clusters and provide a 

more computationally feasible alternative to full-likelihood approaches.  Furthermore, 



 16

there is a wide range of software packages that offer GEE analysis as a built-in feature, 

providing estimates of odds ratios and other regression parameters that researchers are 

already familiar with from logistic regression of non-correlated data.  Because of their 

utility, accessibility, and particular applicability to biostatistics and epidemiological 

studies, GEEs will continue to be an active area of development. 
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3 METHODS 

This section provides detailed information about the data used for analysis, how 

the variables were structured and presented, and the analysis methods and statistical tests 

that were used to answer research questions. 

3.1 Data 

Data for analysis included Utah birth certificate, death certificate, and hospital 

emergency department datasets. The birth dataset contained birth certificate information 

for all live births occurring in Utah between the years 1999–2002.  Information from the 

birth certificate dataset included maternal factors: age, race, education, marital status, 

alcohol and tobacco use during pregnancy, and sufficiency of prenatal care; as well as 

infant factors: gestational age, major birth abnormalities or anomalies, birth order, 

multiple-birth status (twins, triplets, etc.), and birth weight. The death certificate database 

provided information for all injury deaths that occurred within one year of the birth of an 

infant, 1999–2003. The emergency department database included information regarding 

whether or not an infant was seen in the emergency department and discharged or seen 

and admitted to the hospital for an injury during the first year of life. These three datasets 

were probabilistically linked using LinkSolv 7.0 (Strategic Matching, Inc.) to obtain 

complete infant, maternal, and emergency department information for all medically 

attended infant injuries. By definition, these data did not include information about 

injuries to infants who were born in Utah that were treated outside of Utah, or injuries 

that occurred to infants born outside of Utah who were treated in Utah. 
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Also excluded from the analysis were multiple-birth infants (twins, triplets, etc.), 

premature infants (completed gestational age ≤ 24 weeks), infants with a birth weight < 

500 grams, and infants with a major birth defect noted on the birth certificate.  Multiple-

birth infants were excluded because they are difficult to distinguish from each other when 

conducting probabilistic linkage and will frequently be double-counted.  Extremely 

premature births, very low birth weight infants, and infants with a major birth defect were 

excluded because these groups are likely to die or spend extended periods of time in the 

hospital after birth, thus changing their exposure time to risk of injury.  Major birth 

defects noted on the birth certificate include spina bifida, anencephaly, hydrocephalus, 

microcephalus, renal agenesis, tracheo-esophageal fistula, esophageal atresia, 

gastroschisis, omphalocoeole, diaphragmatic hernia, chromosomal anomalies, multiple 

anomalies, birth injury requiring ventilation greater than 30 minutes, congenital infection, 

meconium aspiration requiring greater than 30 minutes ventilation, seizures, and 

congenital heart defects. 

3.2 Risk Factors 

     Three groups of risk factors were defined for analysis: maternal demographics, 

maternal risk behaviors, and infant demographics.  

     Maternal demographics include level of education, age, race, and marital status.  

Maternal education is presented as “Less than High School,” “Completed High School,” 

or “Education Beyond High School.” Maternal age is treated continuously. Maternal race 

is presented as “Non-Hispanic White,” “Hispanic,” or “Other Minority.”  Maternal 

marital status is “Not Married” versus “Married.”  

     Maternal risk behaviors include adequacy of prenatal care, cigarette smoking 
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during pregnancy, and alcohol consumption during pregnancy.  Adequacy of prenatal 

care is defined by the Kotelchuck index (Kotelchuck 1994), and presented as “Adequate” 

or “Inadequate.” Cigarette smoking and alcohol consumption are both dichotomized into 

“No” versus “Yes.” These variables are coded “Yes” if the mother self-reported smoking 

at least 1 cigarette or consuming at least 1 alcoholic drink during any trimester of her 

pregnancy. It is expected that these numbers are under-reported.  

     Infant demographics include sex, birth order, and prematurity (gestational age < 

37 weeks). Sex is dichotomized into “Female” versus “Male.” Birth order is 1st, 2nd, 3rd, 

4th or greater birth order. The reference group is the firstborn child. Prematurity is defined 

as completed gestational age < 37 weeks and is dichotomized as “Premature” or “Not 

Premature.” 

Interactions between maternal age and several other covariates were considered in 

the model including birth order, maternal education, marital status, race, prenatal care, 

smoking behavior during pregnancy, and alcohol use during pregnancy.  Additionally, 

interactions between maternal prenatal care and race, maternal prenatal care and maternal 

education, and birth order and maternal education were also considered.  Finally, a 

quadratic term and a cubic term for maternal age were considered in the model. 

3.3 Outcomes 

Two outcome variables were defined for this study.  The first outcome is an 

“injury event.”  An injury event is defined as an emergency department-attended injury, 

or a death resulting from injury. Patients who were seen in an emergency department 

(ED) or died during their first year of life due to injury were flagged in the dataset as an 

injury event. Some patients may have been seen in the emergency department more than 
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once during their first year of life; the injury outcome variable only indicates that at least 

one medically attended injury (or death) occurred.   Injury events were identified using 

the World Health Organization’s International Classification of Diseases, Ninth Revision, 

diagnosis codes and external cause of injury codes (Ecodes). Thus, diagnosis codes 800–

999 were used to identify injuries, and wherever the Ecode was available, the injury was 

excluded if the injury was caused by medical procedures (E870–E879), adverse effects 

from treatment (E930–E949), legal intervention (E970–E979), or operations of war 

(E990–E999). 

     The second outcome is a “severe injury event.”  Patients who were admitted to the 

hospital or died during their first year of life due to an injury were flagged in the dataset 

as having a severe injury event and were flagged as no severe injury otherwise. Some 

patients may have been admitted to the hospital during their first year of life due to the 

same or different injury events multiple times; however, the severe injury outcome only 

indicates at least one hospital admission (or death) due to injury. Severe injury events 

were identified using death certificate records and ED records indicating whether or not 

an injured infant was admitted to the hospital.   

3.4 Analysis 

     For each outcome variable, injury, and severe injury, the same analysis methods 

were used and the same procedure for each outcome was followed.  First, the data were 

summarized by calculating means, medians, frequencies and percents.  Next, a non-

correlated subset of the complete dataset was created by randomly selecting one sibling 

from each family group.   Then, logistic regression was used to analyze the non-

correlated dataset.  Due to controversy over which variable selection method is optimal 



 21

for model-building, multiple model building strategies including stepwise, forward and 

backward elimination methods were used to create three different models. The three 

models were compared for any differences in variable selection.  No differences were 

found in the variables selected for each of the three models.  Variables were kept in the 

logistic regression models with a p < .05.  Last, the complete dataset was analyzed.  

Because the complete dataset contained siblings, observations were correlated within 

family groups.  Therefore, the complete dataset was analyzed using generalized 

estimating equations (GEE), a method that incorporates correlation between observations. 

The non-correlated was analyzed before the complete dataset because the variable 

selection and analysis of the complete dataset required computational resources that were 

unavailable.  By using the non-correlated subset for variable selection and then further 

refining the model using the complete dataset, an appropriate model could be constructed 

without violating any assumptions of the analysis methods employed. 

Injury incidence rate per 1,000 person-years was calculated for each subgroup of 

statistically significant interaction terms.  These were calculated using the number of 

births in the subgroup as the denominator.  Statistical significance was declared with a p-

value of <0.05 in the adjusted final model. Odds ratios and 95% confidence intervals (CI) 

from the GEE analysis were used for presentation of the results.  Because SAS 

automatically excludes any record without complete information for all of the covariates, 

the missing values population was tested for differences in the covariates compared with 

the analysis population using chi-squared tests of independence and t-tests. No 

statistically significant differences were found between the missing values population and 

the analysis population for each of the covariates.  The non-correlated dataset was created 
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using PROC SURVEYMEANS, the non-correlated dataset was analyzed using PROC 

LOGISTIC, and the complete dataset was analyzed using PROC GENMOD (SAS 9.1.3  

Cary, NC). 
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4 RESULTS 

4.1 Population Description 

Between the years 1999–2002, there were 195,070 live births in Utah.  Excluded 

from the analysis were 8,395 infants with < 24 weeks gestational age, infants with a 

major birth defect, multiple-birth infants, and infants with birth weight < 500 grams.  

Also excluded are 507 infants whose deaths were due to non-injury causes. 

Between the years 1999–2003, there were 8,553 infant injured in the state of Utah 

that met the eligibility criteria of this study.  Of these infants, 637 were excluded because 

the infant’s injury resulted from complications of medical care, birth injury, or other 

medical misadventures.  Thus, the eligible study population was comprised of 185,531 

infants; a total of 7,798 of these infants were injured. 

4.2 Mother and Infant Demographics 

Infant demographics are shown in Table 4.1. There was an incremental increase in 

the number of births each year with negligible difference in the proportion of males to 

females.  There were 13,048 infants with < 37 weeks completed gestational age. 
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Table 4.1: Infant Demographics 

     N % 
 Year    
  1999 44767 24.1 
  2000 46092 24.8 
  2001 46779 25.2 
  2002 47893 25.8 
 Sex    
  F 90324 48.7 
  M 95206 51.3 
  Missing 1 0.0 
 Birth Order    
  1st 66527 35.9 
  2nd 54231 29.2 
  3rd 33860 18.3 
  4+ 30315 16.3 
  Missing 598 0.3 

 Premature 
(<37 wks)    

  Y 13048 7.0 
  N 172483 93.0 
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Maternal demographics are displayed in Table 4.2. Mothers’ median age was 26 

years (25th, 75th quartiles: [22, 30]). Maternal education was high with over 52% of 

mothers having attained education beyond high school.  The largest minority group in the 

state is Hispanic (13%).  Most mothers (83%) were married. 

Table 4.2: Maternal Demographics 

   N % 
Age    

 <21 24429 13.2 
 21–25 65870 35.5 
 26–30 54132 29.2 
 >30 41089 22.1 
 Missing 11 0.0 
    

Education    
 < high school 27955 15.1 
 = high school 58519 31.5 
 > high school 96621 52.1 
 Missing 2436 1.3 

Marital Status    
 Y 153595 82.8 
 N 31935 17.2 
 Missing 1 0.0 

Race/Ethnicity    

 Non-Hispanic 
White 150337 81.0 

 Hispanic 23614 12.7 
 Other Minority 8277 4.5 
 Missing 3,303 1.8 

 

 4.3 Maternal Risk Behaviors 

Information about maternal risk behaviors available from the birth certificate data 

included extent of prenatal care, smoking during pregnancy, and consumption of alcohol 
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during pregnancy (Table 4.3).  A majority of mothers (84%) received adequate prenatal 

care. Few mothers reported smoking (8%) or consuming alcohol during pregnancy (1%). 

Table 4.3: Maternal Risk Behaviors 

    N % 
Prenatal Care    
 Adequate 155396 83.8% 
 Inadequate 24451 13.2% 
 Missing 5684 3.1% 
Consumed Tobacco 
During Pregnancy    

 Y 14386 7.8% 
 N 170182 91.7% 
 Missing 963 0.5% 
Consumed Alcohol 
During Pregnancy    

 Y 2052 1.1% 
 N 182443 98.3% 
 Missing 1036 0.6% 

4.4 GEE Analysis 

4.4.1 All Infant Injuries 

Complete model information and SAS output for all infant injuries are presented 

in Appendix A.  Odds ratios and p-values for main effects are presented in Table 4.4.   

Table 4.4: P-Values and Adjusted Odds Ratios for All Infant Injury 

Risk Factor   Adjusted OR Lower Upper P-Value 
Year 2000 1.0 1.0 1.1 0.0614 
Year 2001 1.0 1.0 1.1 0.1466 
Year 2002 1.0 0.9 1.0 0.4884 

Married N 1.2 1.1 1.2 <.0001 
Race/Ethnicity Hispanic 0.8 0.8 0.9 <.0001 

Race/Ethnicity Other 
Minority 1.1 1.0 1.2 0.0048 

Maternal 
Smoking Y 1.2 1.1 1.2 <.0001 
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Birth order and year of birth were associated with infant injury. Sex and 

prematurity of the infant did not show an effect.  There was a statistically significant 

interaction between birth order and maternal age (Figure 4.1). High birth order infants of 

young mothers have the highest odds of injury. 

Figure 4.1: Odds of Injury by Birth Order and Maternal Age 
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Maternal characteristics associated with infant injury included marital status, race, 

age, and education.  Infants’ mothers who were unmarried had an increased odds of 

injury compared to infants of married mothers (AOR = 1.2, [95% CI, 1.1–1.2]).  
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Compared to non-Hispanic white mothers, infants of Hispanic mothers had decreased 

odds of injury (AOR = 0.8, [95% CI, 0.8–0.9]), while infants with a mother from other 

minority groups had increased odds of injury (AOR = 1.1, [95% CI, 1.0–1.2]).  There was 

a statistically significant interaction term for maternal age and infant birth order.  In 

general, as maternal age increased, the odds of infant injury decreased.  Accounting for 

the interaction term, injury odds do not differ by infant birth order for mothers in their 

late twenties and older (Figure 4.1).   

Table 4.5 provides the injury incidence rate per 1,000 person-years for infants by 

birth order and mother’s age. The incidence rate of infant injuries decreased with 

mother’s age, and infant birth order was associated with a higher incidence of infant 

injuries for younger mothers, but not for older mothers.   The age-squared term for 

mother’s age was also statistically significant.  The adjusted odds of injury decreased 

until mothers reached their late twenties, and then injury odds remained constant. 

Table 4.5: Incidence Rate per 1 000 person-years (95% CI): Birth Order by Maternal Age 

Birth Order Mother's Age 
 <21 21–25 26–30 >30 
1 68 (64–71) 38 (36–40) 34 (31–38) 28 (23–32) 
2 69 (62–76) 44 (41–47) 37 (34–40) 34 (30–38) 
3 58 (41–75) 50 (46–55) 35 (32–38) 33 (30–37) 

4+ 104 (42–166) 60 (51–70) 42 (38–46) 33 (30–35) 

Maternal education was associated with infant injury odds, and there was a 

statistically significant interaction between maternal education and prenatal care.  Infants 

born to mothers with adequate prenatal care and a higher educational level had decreased 

odds of injury (0.8, [95% CI, [0.8–0.9]) while infants born to mothers with adequate 

prenatal care and a low educational level had higher odds of injury (1.1, [95% CI, [1.0–
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1.2]).  Education was less important when comparing mothers with inadequate prenatal 

care to those with adequate prenatal care (Table 4.6).  That is, maternal educational level 

only showed an effect for infants whose mothers received adequate prenatal care.  

Maternal risk behaviors associated with elevated injury odds included smoking 

during pregnancy and adequacy of prenatal care. Smoking during pregnancy was 

associated with increased infant injury odds (1.2, [95% CI, 1.2–1.2]), and, as previously 

discussed, there was a statistically significant interaction between adequacy of prenatal 

care and maternal education.   

Table 4.6:  Adjusted Odds Ratios for Prenatal Care by Maternal Education 

  OR Lower Upper 

>HS, adequate care 0.8 0.8 0.9 
<HS, adequate care 1.1 1.0 1.2 

*Compared to =HS, inadequate care  
    
>HS, inadequate care 0.9 0.8 1.0 
<HS, inadequate care 1.0 0.9 1.1 
*Compared to =HS, adequate care  

 

4.4.2 Severe Infant Injuries 

Complete model information and SAS output for severe injuries are presented in 

Appendix B.  Birth order was associated with severe infant injury (Table 4.7).  Second- 

and third-born infants did not have increased odds of severe injury; however, fourth-or 

more-born infants had an increased odds of severe injury (AOR=2.2, [95% CI, 1.1–4.6]).  

The interaction term for mother’s age by birth order was not statistically significant for 

severe injuries. 

Three maternal factors were associated with severe infant injury: smoking, marital 

status, and age. Infants whose mothers reported smoking during pregnancy (AOR=1.8 
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[95% CI, 1.4–2.3]), were unmarried (AOR=1.4 [95% CI, 1.1–1.8]), or young had 

increased odds of severe injury.   For each 1-year increase in mother’s age, injury odds 

decreased by 8%.  Prenatal care was not associated with severe infant injury. 

Table 4.7: P-values and Adjusted Odds Ratios for Severe Infant Injury 

Risk Factor  Adjusted OR Lower Upper P-value 
Birth Order 2 1.6 0.9 2.7 0.0969 
Birth Order 3 0.9 0.5 1.9 0.8551 
Birth Order 4+ 2.2 1.1 4.6 0.0305 

Smoke Y 1.8 1.3 2.3 <.0001 
Married N 1.4 1.1 1.8 0.0167 

Age  0.9 0.9 1.0 0.0217 
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5 DISCUSSION 

5.1 Study Findings 

This study identified several risk factors for infant injury.  Specifically, birth order 

and maternal smoking behavior were associated with infant injury and severe infant 

injury.  Maternal race/ethnicity was associated with infant injury, but not severe infant 

injury.  Overall, this study ascertained two targeted groups well-suited for injury 

prevention efforts.  

Similar to the findings of Nathens et al. (2005), Brenner et al. (1999), and Scholer 

et al. (1999), whose study settings were hospital admissions or deaths due to injury for 

slightly older children, this study found birth order was associated with infant injury.  

However, this study found that for all-cause ED-attended injuries, high birth order is 

most important among young mothers and not as important for older mothers.  As 

maternal age increases, the effect of birth order diminishes.  This is relevant because 

there is a relatively small group of infants born to young mothers with many other 

children in the household. 

For severe injury (injury resulting in death or hospital admission), birth order did 

not become important until birth order was 4th or greater.   Interestingly, there was no 

interaction of birth order with maternal age for severe injuries as there was for all ED-

attended injuries.  Therefore, while high birth order was important for all injury in infants 

of young mothers, it is a risk factor for severe injuries in all families.  Although the 

hypothesis had been that the risk of severe injury would increase as more children were 

added to the household, injury risk did not increase significantly until the fourth child 

entered the family.  It may be that parent(s) gain experience with each new child, but 
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reach a threshold with the fourth child.  It is possible that when there are many children in 

a household there is a large division of supervision from the parent(s), or an increase in 

supervision by older siblings resulting in higher risk of infant injury. 

Maternal smoking behavior is associated with increased injury risk.  This effect is 

largest for severe infant injury.   Studies have demonstrated that persons who smoke are 

more likely to be injured from fires and to be in motor vehicle crashes (Sacks and Nelson 

1994).  Therefore, it may be that infants with mothers who smoke have increased risk of 

injury from fire and motor vehicle crashes.  This is a noteworthy finding because the 

mothers in the population have a very low rate of smoking; therefore, a 

disproportionately large amount of infant injury risk is clustered within a relatively small 

group of infants. 

Race/ethnicity showed an effect for ED-attended infant injuries.  Specifically, the 

results of this study show a protective effect for infants born to Hispanic mothers.  This 

finding is different from what has been found by other studies which have indicated that 

rates of pediatric injury are higher among Hispanics than among non-Hispanic whites in 

the United States (Agran et. al 1996).  The difference between the results of this study 

and the results of others may be due to the fact that Hispanics are a relatively new 

population to Utah and may not have very good access to medical care, lack insurance, 

and tend to have lower household incomes.  Anderson et. al (1998) found that poverty 

was associated with lower injury rates.  Therefore, it may be that Hispanics in the Utah 

population do not have access to medical care because of poverty leading to lack of 

insurance and lack of access to medical care.  The results of this study show a protective 

effect for mild-moderate injury (ED-attended injury), but no protective effect for severe 
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injuries (death or hospital admission).  This implies that infants of Hispanic mothers in 

Utah may not have as much access to medical care for mild-moderate injuries as white 

and other racial/ethnic groups do, but utilize the ED for severe injuries as frequently as 

other racial/ethnic groups.  This supports the idea that the protective effect observed in 

this study is probably due to an issue with access to medical care. 

5.2 Limitations 

Severely injured infants are frequently transferred to Intermountain Health Care 

(IHC) hospitals such as Primary Children’s Hospital and LDS Hospital.  Unfortunately, 

IHC hospitals do not provide infants’ names to the Utah Department of Health (DOH).  

When patients are admitted from an emergency department to a hospital, the Utah 

Department of Health copies hospital information to the emergency department records.  

Without infants’ names, the additional available information was not enough to link with 

high probability to the birth certificate file.  This resulted in approximately 75% of 

severely injured infants not being identified as having had severe injury events.  

Assuming infants’ names were missing at random, or similarly, that whether a severely 

injured infant was admitted as an inpatient to IHC or non-IHC hospitals was not related 

to other injury factors, not identifying 75% of the severe injury events implies that the 

results for severe injuries are conservative. 

Although other studies have shown birth interval may be an important predictor 

for injury in households with multiple siblings, birth interval was not included as a 

predictor variable in the analysis because the data had 15% missing values for this field; 

including it would have caused the false loss of data for each observation without birth 

interval information.  Birth order was important for infants of young mothers with many 
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other children in the household.  This suggests that by looking at birth interval, the birth 

order effect may not be important after adjusting for birth interval because short birth 

intervals may account for the risk of injury in those families. 

Overall, the model did not describe very much variation (~2%) in injury outcomes 

for infants, and many of the statistically significant results that were found are not 

practically meaningful for implementation in injury prevention.  This suggests there may 

be other important infant injury risk factors not considered in the analysis. 

5.3 Strengths 

The study benefited from a large sample size, collected from statewide datasets.  

Using probabilistic linkage, this study examined information available from ED, birth 

and death data in a novel way.  Additionally, using the GEE analysis was a new approach 

for studying infant injury because it allowed adjustment for family correlation structures. 

5.4 Conclusions 

A large proportion of infant injury risk is concentrated in a small percent of 

households, namely those with infants of 4th or higher birth order with young mothers, 

and those with mothers who smoke.  These two groups are more likely to have medically-

attended injuries.  Injury prevention efforts would be well-suited to these groups because 

it is a relatively small proportion of the population that has the largest amount of infant 

injury risk.  Therefore, injury prevention efforts should be developed for parents and 

pediatricians to assist in reducing injury for these specific groups of infants. 

5.5 Future Work 

Imputation has been shown to perform well for up to 25% missing data in a single 

field, so future work might include imputation of birth interval, which currently has 15% 
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missing data, for inclusion in analysis to examine how this variable might also affect 

infant injury. 

Another important avenue for future work is to investigate other options for 

identifying the severely injured infants more completely in the analysis dataset.  Some 

options to consider are improving the probabilistic linkage by investigating other 

informative variables that might be available in both datasets, revising the linkage 

requirements, linking to the Utah state trauma registry, obtaining and linking to IHC 

hospital inpatient data, and/or imputing match status. 

Although the model explained a small amount of total variation in infant injury, it 

did provide a targeted population for injury prevention.  Future work should include 

investigation of additional factors that were not available in the datasets employed 

because additional explanatory variables may help further define infants at highest injury 

risk. 
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APPENDIX A: ALL INJURIES, SAS CODE AND OUTPUT 

ODS RTF FILE="P:\Users\hvanduker\Infant Injury First-time Mother\ANALYSIS\SAS Code and 
Tables\TABLES\GEE.RTF"; 
ODS SELECT ALL; 
PROC GENMOD DATA=BIRTH.dat2analysis DESC; 

format  BIRTHORDER SEX YEAR RACE3 MATOBACCO care3 MAEDU2 MAAGE MAMARRIED SEX; 
CLASS   MOTHERID 

BIRTHORDER(REF=FIRST) SEX (ref=first) NYEAR(REF=FIRST) 
MAMARRIED(ref=last) MAEDU2(ref=first) race3(ref=last) 
MATOBACCO(ref=first) CARE3(ref=LAST); 

MODEL  INJURY =  BIRTHORDER NYEAR 
MAMARRIED MAAGE MAAGE2 MAEDU2 RACE3 
MATOBACCO CARE3 
MAAGE*BIRTHORDER CARE3*MAEDU2 

/DIST=BINOMIAL LINK=LOGIT TYPE3; 
REPEATED SUBJECT=MOTHERID/TYPE=EXCH; 

RUN; 
ODS RTF CLOSE; 

 
Score Statistics For Type 3 GEE Analysis 

Source 
D
F Chi-Square Pr > ChiSq 

Birth Order 3 15.17 0.0017 

Year 3 9.31 0.0254 

Maternal Marital Status 1 60.17 <.0001 

Maternal Age 1 52.31 <.0001 

Maternal Age^2 1 32.22 <.0001 

Maternal Education 2 17.58 0.0002 

Race/Ethnicity 2 36.91 <.0001 

Maternal Smoking 1 64.78 <.0001 

Prenatal Care 1 17.08 <.0001 

Age*Birth Order 3 13.72 0.0033 

Education*Prenatal Care 2 15.08 0.0005 
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Analysis Of GEE Parameter Estimates 

Empirical Standard Error Estimates 

Parameter  Estimate

95% 
Confidence 
Limits Pr > |Z|

Intercept   -0.3966 -0.943 0.1495 0.1546 
Birth Order 2  -0.0949 -0.419 0.2293 0.5662 
Birth Order 3  0.2569 -0.171 0.6844 0.239 
Birth Order 4  0.7728 0.2329 1.3127 0.005 
Year 2000  0.0382 -0.002 0.0782 0.0614 
Year 2001  0.0295 -0.01 0.0694 0.1466 
Year 2002  -0.0144 -0.055 0.0264 0.4884 
Marital Status N  0.1415 0.1069 0.1761 <.0001 
Maternal Age   -0.1712 -0.213 -0.129 <.0001 
Maternal Age^2   0.0025 0.0018 0.0033 <.0001 
Maternal 
Education 

< HS  0.0249 -0.035 0.0848 0.4149 

Maternal 
Education 

>HS  -0.1061 -0.164 -0.048 0.0003 

Race/Ethnicity Hispanic  -0.1756 -0.239 -0.113 <.0001 
Race/Ethnicity Other  0.109 0.0333 0.1847 0.0048 
Maternal Smoking Y  0.1759 0.1364 0.2154 <.0001 
Prenatal Care Adequate  0.0723 0.0367 0.108 <.0001 
Age*Birth Order 2  0.0087 -0.005 0.022 0.1999 
Age*Birth Order 3  -0.0094 -0.025 0.0064 0.2432 
Age*Birth Order 4  -0.0232 -0.041 -0.005 0.0125 
Education*Prenatal 
Care 

<HS Adequate 0.0958 0.0459 0.1456 0.0002 

Education*Prenatal 
Care 

>HS Adequate -0.072 -0.122 -0.022 0.0048 
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APPENDIX B: SEVERE INJURIES, SAS CODE AND OUTPUT 

ODS RTF FILE="P:\Users\hvanduker\Infant Injury First-time Mother\ANALYSIS\MODEL BUILDING 
SAS OUTPUT FILES\SEVERE\GEE_REMOVE MAAGEBYMAEDU2 MAEDU2.RTF"; 
ODS SELECT ALL; 
PROC GENMOD DATA=BIRTH.dat2analysis DESC; 

format  BIRTHORDER MATOBACCO MAMARRIED MAEDU2; 
CLASS   MOTHERID 

BIRTHORDER(REF=FIRST) 
MATOBACCO(ref=first) MAMARRIED(ref=last) MAEDU2 (REF=FIRST); 

MODEL  SEVERE = BIRTHORDER MATOBACCO MAMARRIED MAAGE 
/DIST=BINOMIAL LINK=LOGIT TYPE3; 
REPEATED SUBJECT=MOTHERID/TYPE=EXCH; 

RUN; 
ODS RTF CLOSE; 

 
Score Statistics For Type 3 GEE Analysis 

Source DF
Chi-
Square Pr > ChiSq 

Birth Order 3 8.26 0.0410 

Maternal 
Smoking 

1 10.08 0.0015 

Marital Status 1 4.93 0.0264 

Maternal Age 1 6.34 0.0118 
 
 

Analysis Of GEE Parameter Estimates 

Empirical Standard Error Estimates 

Parameter  Estimate 
Standard 
Error 

95% Confidence 
Limits Z Pr > |Z| 

Intercept  -5.7077 0.7016 -7.0829 -4.3325 -8.13 <.0001 

Birth Order 2 0.4543 0.2736 -0.0820 0.9906 1.66 0.0969 

Birth Order 3 -0.0638 0.3492 -0.7481 0.6206 -0.18 0.8551 

Birth Order 4 0.7950 0.3675 0.0747 1.5153 2.16 0.0305 

Maternal Smoking Y 0.5705 0.1384 0.2992 0.8418 4.12 <.0001 

Marital Status N 0.3304 0.1381 0.0598 0.6010 2.39 0.0167 

Maternal Age  -0.0735 0.0320 -0.1362 -0.0107 -2.30 0.0217 
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