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Despite widespread geographic distribution
in North America, the northern leopard frog
(Rana [Lithobates] pipiens; hereafter leopard
frog) is now considered a sensitive, threatened,
or endangered species in all western states
and western Canadian provinces (see Alberta
Wildlife Act 1996, Washington Fish and Wildlife
Commission 2000, Conservation Data Centre
of British Columbia 2001, COSEWIC 2002)
and has been petitioned for listing as a fed-
eral candidate species (Anonymous 2006). In
Washington, leopard frogs were elevated to
endangered status after surveys of the 17
known historic locations confirmed occupancy
at only 2 sites (Leonard et al. 1999). Historically
present in the Columbia, Crab Creek, Pend
Oreille, Snake, Spokane, and Walla Walla river
drainages, leopard frogs are now only known
in Washington at the Gloyd Seeps and Potholes
Reservoir areas of the Crab Creek drainage in
Grant County.

Leopard frogs disappeared from most sites
in Washington by the mid-1980s (Leonard et

al. 1999), and timing of declines was similar in
neighboring states and provinces. In Alberta,
leopard frog populations declined during the
late 1970s and have not recovered (Kendell
2003), and only one known population remains
in British Columbia (Adama et al. 2004). In
the northwestern United States, leopard frogs
may have been extirpated from Oregon (St.
John 1985, Stebbins 2003), and populations
have declined in Idaho and Nevada (Groves
and Peterson 1992, Panik and Barrett 1994,
Koch et al. 1997).

Primary putative factors affecting leopard
frogs include disease, habitat fragmentation
and loss, artificial hydrologic manipulation,
aquatic contaminants, bullfrogs (Rana [Litho-
bates] cates beiana), and nonnative fish (Hayes
and Jennings 1986, Hecnar and M’Closkey
1997a, Kendell 2003). In western North Amer-
ica, multiple factors appear responsible (Corn
1994), with habitat alteration and exotic species
introductions considered the greatest threats
(Richter et al. 1997). However, none of these
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fish. Models developed at the 1-km2 scale indicated that occupied areas had greater average midsummer pond depths,
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studies were conducted in Washington. Our
objectives were therefore to document the dis-
tribution of northern leopard frogs at the Gloyd
Seeps and Potholes Reservoir areas and relate
site occupancy to local vegetative, hydrologic,
and nonnative-predator characteristics.

METHODS

Study Area

Gloyd Seeps (GS) and Potholes Reservoir
(PR) lie 24 km apart along Crab Creek, Grant
County, Washington, with Moses Lake Reservoir
and its namesake town located between them.
Both sites are on land administered by the
Washington Department of Fish and Wild life
(WDFW), which administers Potholes Reser-
voir Unit jointly with the USDI Bureau of
Reclamation (BOR). The BOR manages Pot-
holes Reservoir as an agricultural water source
under Columbia Basin Project (USDI–BOR
2002) directives. The mandate to provide irri-
gation constrains managers’ ability to manipu-
late water levels to benefit native amphibians
such as leopard frogs.

Wetlands at GS consisted of about 10 linear
km along Crab Creek containing several small
(<1-km-long) impoundments. Wetland vege-
tation was primarily low emergent and mois-
ture-tolerant herbaceous species growing
sporadically in narrow (2–10-m) linear bands
along the creek. Lentic, shallow areas contain-
ing emergent vegetation that might serve as
potential breeding sites were present but rare.

Wetlands at PR included an 8.8-km reach
of Crab Creek and several hundred small ponds
ranging in size from <0.1 to 30 ha surface area.
Wetland vegetation at both areas included
emergent (Carex, Eleocharis, Juncus, Scirpus,
Schoenoplectus, and Typha spp.), grass-forb
(Polygonum, Bidens, and Xanthium spp. and
Lactuca serriola), and willow (Salix spp.) vege-
tation in both shrub and tree form. Reed
canarygrass (Phalaris arundinacea), common
reed (Phragmites sp.), and purple loosestrife
(Lythrum salicaria) were rare but present.

At PR we surveyed ponds in 7 hydrologi-
cally distinct management units (USDI–BOR
2002), each of which had at least one record of
a post-1980 leopard frog sighting (Leonard et
al. 1999, McAllister et al. 1999, WDFW Her-
itage Database 2005). Units surveyed included
Dunes, Lower Crab Creek, North Potholes
Reserve, Peninsula North, Peninsula South,

Upper Crab Creek, and Upper West Arm. At
PR in 2002, we focused surveys on areas most
recently occupied by leopard frogs and on
adjacent wetlands. During 2003–2004, we
overlaid random sampling points on digital
aerial photographs that were spatially rectified
and high resolution, and we surveyed the wet-
land nearest each point. Because wetlands at
GS were primarily linearly oriented along Crab
Creek, we searched all of them, especially
focusing on areas where leopard frogs had been
observed since 1995 and on areas of suitable-
looking habitat based on published descriptions
(Dole 1965, Hine et al. 1981, Kendell 2002).

Leopard frog egg-laying occurs in late April
to early May in our area (S. Germaine personal
observation). This period coincided with annual
rapid water impoundment at PR, and water
levels rose ≥1 m during the period of egg-mass
deposition and early larval development. Dur-
ing this time, most ponds surface-connected
to large fish-bearing water bodies, and water
levels rose into upland vegetation. During
1995–2004, annual high-water levels at PR
occurred between 12 March and 15 June.
Draw down began immediately, and water lev-
els had dropped 3–4 m by the time of larval
metamorphosis, which occurred in mid-July
in our area. Annual low-water levels occurred
between 2 September and 23 October. During
low water, mud and sand flats were exposed,
and many shallow ponds dried completely.

Carp (Cyprinus carpio), rainbow trout (On -
cor hynchus mykiss), brown trout (Salmo trutta),
brown bullhead (Ameiurus nebulosus), walleye
(Stizostedion vitreum), and bluegill (Lepomis
macrochirus) were present in both areas. Large -
mouth bass (Micropterus salmoides), smallmouth
bass (Micropterus dolomieui), pumpkinseed
(Lepomis gibbosus), black and white crappie
(Pomoxis nigromaculatus and Pomoxis annu-
laris), and yellow perch (Perca flavescens) were
also present at PR (Washington Department
of Fish and Wildlife unpublished data). In
addition, mosquitofish (Gambusia affinis) were
present in at least 2 isolated ponds in this area.
None of these species are locally native.

Sampling

To determine leopard frog occupancy at
each wetland, we conducted time-constrained
visual-encounter surveys (Crump and Scott
1994, Olson et al. 1997, Kendell 2002) at both
areas from July through early October of
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2002–2005 (2002–2004 at PR, 2003–2005 at
GS). During these months, juvenile leopard
frogs were easy to observe (Kendell 2002,
Simmons 2002), and bullfrogs were easily
detectable via calling activity into early August,
with bullfrog larvae and juveniles visibly
detectable through September. We surveyed
during daytime by slowly walking along water-
lines and concentrating primarily on floating
vegetative mats, shallow water with low emer-
gent vegetation, and terrestrial areas of low
emergent or herb/forb vegetation on moist to
saturated soils. During summer, these areas
were frequently used by leopard frogs (Dole
1965). Leopard frogs were seldom found in
high (≥1 m) grassy vegetation (Merrell 1977),
and Merriam (2002) observed leopard frogs
87% of the time in microsites having no over-
story vegetation Hine et al. 1981). We there-
fore searched less-optimal areas (e.g., tall
emergent vegetation) only after searching in
focal habitat types and as time permitted.
During searches, we meth odically swept long-
handled nets through vegetation to increase
the likelihood of flushing frogs. At large ponds
and sites permanently connected to the creek
or reservoir, we surveyed 200–300 m of shore-
line adjacent to the random-point origin. Time
spent actively surveying at each site was gen-
erally 20–45 person-minutes, with variation
among sites due to variation in wetland size;
each wetland was searched at a uniform rate.

We also noted presence of bullfrogs and
visually searched through the water column
for fish from multiple vantage points around
each pond. When we observed fish, we identi-
fied them to the most precise taxonomic level
possible. In addition, we noted whether focal
ponds connected at least seasonally to perma-
nent water bodies (e.g., Crab Creek, Potholes
Reservoir, or a large reservoir in the North
Potholes Reserve), all of which contained non-
native predatory fish and bullfrogs. We also
noted whether focal ponds were ephemeral or
permanent and whether they connected annu-
ally to other permanent ponds. We estimated
maximum pond depth by noting high-water
marks on shoreline vegetation. We measured
actual pond depths by wading to pond center,
and we indexed water clarity by inserting a
white, 2.54-cm-diameter pole 0.5 m into each
pond. Index values were clear (visibility > 50
cm), tannin colored (white pole became tea
colored), slightly murky (visibility 20–50 cm

along pole), or murky (visibility <20 cm). In
cases where water depth was <0.5 m, observers
classified ponds as clear if objects on the
bottom could be seen with fine detail, slightly
murky if the bottom could be seen but with
poor detail, and murky if the bottom could not
be seen. Aided by high-resolution aerial photo -
graphy, we walked pond perimeters and visually
estimated percent vegetative cover to the near-
est 5% in the following classes: tall emergent,
low emergent, herbaceous, woody scrub-shrub,
submerged or floating aquatic vegetation, and
open water–exposed mudflats. All wetland-
associated vegetation occurring below the eco-
tone with upland shrubsteppe vegetation was
included in estimates.

Analyses

We related leopard frog site occupancy to
environmental attributes by contrasting vege-
tative, vertebrate, and hydrologic characteris-
tics of individual ponds using binary logistic
regression and an information-theoretic multi-
model comparison approach (Burnham and
Anderson 2002). This calculation was done at
2 spatial scales: in individual ponds and in 1-
km2 areas within which individual pond data
had been pooled. We chose a 1-km2 spatial
scale because juvenile leopard frogs may dis-
perse up to 1 km soon after metamorphosis
(Dole 1971, Seburn et al. 1997) and because
radio-telemetered adult leopard frogs traveled
this distance while migrating from breeding
ponds to overwintering ponds in a related study
(S. Germaine unpublished data). This scale also
facilitated a logical organizational unit in GIS.

Because our survey season encompassed
the period of rapid juvenile dispersal, we
considered it likely that dispersing juvenile
frogs would occasionally be encountered at
ponds poorly suited to them. To reduce analyt-
ical noise associated with these observations,
when developing models at the pond scale,
we adjusted our logistic cutpoint to less than
or ≥1 frog observed per 15 minutes of sur-
vey effort, following pseudospecies methods
described by Hill et al. (1975) and Jongman
et al. (1995). When developing models at
the 1-km2 scale, we used true presence
(observed)–absence (not observed) to model
wetland char acteristics of grid cells.

Candidate predictor variables in the logis-
tic regression model included the vegetative
and hydrologic variables described above, plus
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an enumeration of the neighboring ponds con-
taining bullfrogs, carp, and predatory fish. We
generated this number by counting how many
of the 6 nearest neighboring ponds (inclusive
of focal ponds) contained each type of nonna-
tive vertebrate. We required ponds to be ≤1
km from focal ponds but made no further
effort to account for variability in distance
between ponds. Within 1-km2 cells, we gener-
ated average and maximum values for each
candidate predictor variable.

At each spatial scale, we evaluated the fol-
lowing competing models: a full global model,
1–2 reduced global models, a hydrologic-vege-
tative model, a hydrologic–nonnative vertebrate
model, a vegetative–nonnative vertebrate model,
a hydrologic model, a vegetative model, and a
nonnative vertebrate model. The pond-scale
full global model contained the variables pond
depth, tall emergent vegetative cover, open
water–exposed mud, herbaceous vegetative
cover, bullfrog abundance, and fish abundance;
the 1-km2-scale global model contained the
variables pond depth, water clarity, maximum
observed tall emergent vegetative cover, maxi-
mum observed herbaceous vegetative cover,
bullfrog abundance, and carp abundance. While
each independent variable in our study was
chosen based on a priori information about
its potential to influence leopard frog distribu-
tions, we screened each variable prior to model
development by requiring t scores ≥0.7 when
grouped on the dependent variable. We assessed
correlations between candidates; and in all pair-
wise instances of r ≥ 0.60, we retained only
the variable thought to be of greater impor-
tance, based on other studies. For each model
other than the full global model, we assessed
within-model combinations of variables for con-
founding and interaction and kept only subsets
of variables that fit the data as well as each ini-
tial model did based on log-likelihood G scores
at α= 0.05 (Hosmer and Lemeshow 1989).

We used the second-order Akaike’s informa-
tion criterion (AICc) values to compare models
within each spatial scale because AICc is
adjusted for small sample sizes (Burnham and
Anderson 2002). Low AICc scores indicated
models that used relatively few variables to
achieve high fit to the data relative to other
models being assessed. We ranked models by
calculating Akaike weighted probabilities (wi)
for each score. Akaike weights rank models
from best (high scores) to poorest using an

objective proportional ranking factor that sums
to 1 over all models (Burnham and Anderson
2002). Once optimal models were identified at
each spatial scale, we reran our logistic regres-
sion analyses and generated prediction-success
tables to determine the classificatory success of
each model using SYSTAT software (SYSTAT
2004).

RESULTS

At GS in 2003, we observed 2 juvenile leop-
ard frogs in 0.5 person-days while searching a
0.5-km length of Crab Creek. In 2004 and 2005,
we surveyed approximately 9.1 km along the
creek in 7.7 person-days and confirmed no leop-
ard frogs. In 2004, one suspect leopard frog
exhibiting long zigzag jumps (Stebbins 2003)
was observed but not captured for verification.

At PR we surveyed 243 individual wetland
ponds within a 41-km2 area in the 7 manage-
ment units during 2002–2004. Fifty-five ponds
(23%) were surveyed in multiple years, resulting
in a total of 302 surveys. For ponds surveyed
multiple times, we kept only the information
from the survey with the highest abundance of
leopard frogs. Leopard frogs were present at
87 PR ponds.

Because of the paucity (n = 2) of leopard
frogs at GS, we collected detailed habitat data
and modeled environmental relationships only
at PR. At PR, distribution of leopard frogs and
nonnative vertebrates varied among manage-
ment units, as did the number of seasonally
surface-connected ponds. Percent pond occu-
pancy by leopard frogs was highest in the
Upper Crab, Lower Crab, and Peninsula North
management units, and leopard frogs were rare
or absent elsewhere. Bullfrogs were largely
absent from Upper Crab, Lower Crab, and
Peninsula North but were present in >25% of
all ponds surveyed in each management unit
in the west half of the study area and in >60%
of ponds in the Dunes and Upper West Arm
units. Carp and nonnative sportfish were abun-
dant in all units except Peninsula North, where
they were entirely absent. More than 75% of
ponds in all management units except for the
Upper Crab and Peninsula North units con-
tained multiple nonnative vertebrate types.

We collected environmental data at 222
surveyed sites throughout PR, and 8 variables
met criteria for inclusion in pond-specific model
building: surface connectivity, pond depth (at
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time of survey), percent area covered by tall
emergent, herbaceous, or woody-stemmed
veg e tative types, percent area of open water–
exposed mudflat, abundance of bullfrogs, and
abundance of predatory fish. Variables for
woody-stemmed and herbaceous vegetation
were highly correlated (Pearson r = –0.97). We
considered herbaceous vegetation more impor-
tant to leopard frogs (Dole 1965, Merrell 1977,
Hine et al. 1981) and therefore removed woody-
stemmed vegetation from further analysis. Sur-
face connectivity and predatory fish abundance
were also correlated (Pearson r = 0.64), so we
excluded connectivity from all models contain-
ing both hydrologic and nonnative vertebrate
variables. We didn’t find any interaction terms
that improved model fit to the data.

Based on the wi values, greater empirical
support existed for the reduced global model
than for any other model evaluated (Table 1;
Burnham and Anderson 2002). The reduced
global model was significant (χ2 = 17.25, df =

4, P = 0.002) and correctly classified 87.7% of
occupied sites but had poor success (23.4%) in
classifying sites where few or no frogs occurred.

Based on the variables in the reduced global
model, sites containing leopard frogs during
the postbreeding summer season had the fol-
lowing characteristics (Fig. 1): greater pond
depths (median 0.5 m; interquartile range
0.1–1.0 m), less tall emergent vegetative cover
(median 10%; 10%–20%), more herbaceous veg-
etative cover (median 80%; 30%–90%), and few
fish (median index value 1; 0–4 neighboring
pond[s] containing nonnative fish).

Six variables met criteria for inclusion in
model-building at the 1-km2 scale: average
pond depth, water clarity, maximum percent
cover of tall emergent and herbaceous veg -
etation, and abundances of bullfrogs and carp.
Again, no interaction terms improved the
model’s fit to the data. Weighted AIC (wi) val-
ues indicated overwhelming support for the
reduced global model (Table 2).
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TABLE 1. Akaike’s information criteria parameters and log-likelihood scores for 8 logistic regression models character-
izing environmental factors associated with leopard frog pond occupancy at Potholes Reservoir Wildlife Area, WA,
2002–2004. Best models, based on differences in weighted AIC values, shown in boldface. Variable definitions: PD = pond
depth (at time of survey); CONNECT = degree of pond isolation; TE = tall emergent vegetative cover; OWEX = open
water or exposed mudflat containing ≤10% vegetative cover at water or soil surface; HE = live herbaceous vegetation;
BFab = bullfrog abundance; Fab = nonnative predatory fish abundance.

Model: –+ coefficients (variables) K loge(L) AIC ΔAICc wi

Global reduced: 0.68(PD) – 0.04(TE) + 0.02(HE) – 0.27(Fab) 6 –55.29 123.13 0.00 0.68
Global: 0.69(PD) – 0.04(TE) + 0.00(OWEX) + 0.01(HE) – 

0.27(BFab) – 0.26(Fab) 7 –54.49 125.94 2.81 0.17
Hydro + Veg reduced: 0.41(PD) – 0.03(TE) + 0.02(HE) 4 –58.13 126.64 3.51 0.12
Hydro + Exotics reduced: 0.62(PD) – 0.26(Fab) 3 –60.44 129.13 6.00 0.03
Hydrology: 0.43(CONNECT) + 0.58(PD) 3 –62.97 134.19 11.06 0.00
Veg + Exotics reduced:  – 0.03(TE) – 0.29(Fab) 3 –67.04 142.32 19.18 0.00
Veg reduced: 0.02(HE) 2 –69.31 144.76 21.62 0.00
Exotic Vertebrates reduced: – 0.23(Fab) 2 –71.10 148.33 25.20 0.00

TABLE 2. Akaike’s information criteria parameters and log-likelihood scores for 5 logistic regression models character-
izing environmental factors associated with leopard frog occupancy of 1-km2 wetland areas at Potholes Reservoir
Wildlife Area, WA, 2002–2004. Best model, based on both differences in AIC scores and weighted AIC, shown in boldface.
Variable definitions: pond depth = average pond depth; clarity = average water clarity; maxTE = maximum value of
tall emergent vegetative cover; maxHE = maximum value of live herbaceous vegetation; BFab = average bullfrog abun-
dance; CAab = average carp abundance.

Model: –+ coefficients (variables) K loge(L) AIC ΔAICc wi

Global reduced: 3.47(pond depth) + 0.02(maxHE) – 
0.84(BFab) – 0.35(CAab) 6 –18.49 52.19 0.00 0.76

Global: 2.35(pond depth) + 0.45(clarity) – 0.01(maxTE) +
0.02(maxHE) – 0.71(BFab) – 0.44(CAab) 8 –17.36 55.36 3.17 0.16

Nonnative Vertebrates: − 0.68(BFab) − 0.17(CAab) 4 –23.95 56.96 4.77 0.07
Hydrology: 0.54(pond depth) + 0.29(clarity) 4 –26.95 63.04 10.85 0.00
Vegetation: 0.02(maxTE) + 0.02(maxHE) 4 –26.04 61.13 8.94 0.01



The reduced global model for the 1-km2

scale was significant (χ2 = 21.14, df = 4, P <
0.001), and correctly classified 72.5% of occu-
pied areas and 69.8% of unoccupied areas.
Areas occupied by leopard frogs during the
postbreeding summer season had deeper aver-
age water depths, greater maximum amounts
of herbaceous vegetative cover, and fewer ponds
occupied by bullfrogs and carp than did areas
where we found no leopard frogs (Fig. 2).

DISCUSSION

Leopard frog populations have clear trends
and associations with nonnative vertebrates in
our study area. We found leopard frog distribu-
tions at both GS and PR severely reduced rela-

tive to 10–20 years ago. At GS we documented
no reproduction and observed only 2 leopard
frogs during 3 years of surveying. The PR popu-
lation now appears to be present in only 4 (57%)
of the 7 management units in which it occurred
during the 1980s. In 1 of the 4 PR units still
occupied (the North Potholes Reserve Unit),
leopard frogs were present at only 7% of the
sites surveyed and co-occurred in all instances
with both bullfrogs and nonnative fish.

At both spatial scales, strong empirical sup-
port existed for models containing vegetative,
nonnative vertebrate, and hydrologic variables,
suggesting that a suite of environmental fac-
tors influenced leopard frog distributions
during summer. Also, our logistic regression
models demonstrated that leopard frogs were
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Fig. 1. Median values and 25th and 75th percentile values (box ends) for variables included in the most parsimonious
of 5 models evaluated for ability to classify ponds by leopard frog abundance in Potholes Reservoir Wildlife Area, Wash-
ington, 2002–2004. Panels depict (a) pond depth (m), (b) percent area composed of tall emergent vegetation, (c) percent
area covered in herbaceous vegetation, and (d) number of neighboring ponds (range 0–6) containing nonnative preda-
tory fish. Asterisks (*) represent outlier values lying beyond 1.5 × hinge-spread range.
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negatively associated with both bullfrogs and
nonnative predatory fish.

While correlative studies do not prove cause
and effect, a large body of published literature
exists associating nonnative sportfish and bull-
frogs with declines in native amphibian popu-
lations. Fish prey upon all life stages of ranid
frogs, and heterogeneous fish assemblages are
capable of causing local extinctions and alter-
ing distribution patterns (Petranka 1983, Hayes
and Jennings 1986, Hecnar and M’Closkey
1997a, Bradford et al. 1993). Hine et al. (1981)
concluded that fish predation could substan-
tially reduce a leopard frog population, and
multiple studies have described optimal leopard
frog breeding ponds as free of nonnative fish

(Hine et al. 1981, Knutson et al. 2004). Most
introduced fish species in the Pacific North-
west are aggressive and efficient generalist
predators with whom native amphibians are
not well adapted to coexist (Kats et al. 1988,
Werner and McPeek 1994, Skelly 1996). Mon-
ello and Wright (1999) found a variety of
amphibians absent from ponds containing
introduced fish, with only the bullfrog able to
reproduce successfully in fish-bearing ponds.

Bullfrogs also have a strong influence on
amphibian community structure (Hecnar and
M’Closkey 1997b, Laufer et al. 2007). Bullfrog
colonization of the Upper West Arm and North
Potholes Reserve units at PR occurred during
the 1980s (R. Friesz and J. Tabor, Washington
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Fig. 2. Median values and 25th and 75th percentile values (box ends) for variables included in the most parsimonious
of 5 models evaluated for ability to classify 1-km2 wetland areas by leopard frog presence/absence in Potholes Reservoir
Wildlife Area, Washington, 2002–2004. Panels depict (a) average pond depth (m), (b) maximum value of herbaceous veg-
etative cover, (c) average number of ponds occupied by bullfrogs, and (d) average number of ponds containing carp.
Asterisks (*) represent outlier values lying beyond 1.5 × hinge-spread range. Circles (°) represent outlier values lying
beyond 3 × hinge-spread range.
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Department of Fish and Wildlife, personal
communication), which closely preceded leop -
ard frog declines. We found leopard frogs
almost absent from these units. Bullfrogs prey
readily on other ranids, including leopard frogs,
and consume both larval and newly metamor-
phosed stages (McAlpine and Dilworth 1989,
authors’ personal observation). Smith (1977)
found that up to 80% of bullfrog diets con-
sisted of frogs. Bullfrogs also may displace
ranid frogs competitively (Kiesecker and
Blaustein 1997, Kupferberg 1997) and may be
more tolerant of disturbed environments (Kruse
and Francis 1977, Hayes and Jennings 1986).
Kupferberg (1997) found that yellow-legged
frogs (Rana boylii) were less abundant in areas
where bullfrogs became well established and
documented that presence of bullfrog tadpoles
resulted in a 48% reduction in survivorship of
R. boylii tadpoles.

Herbaceous vegetation loaded in models at
both spatial scales and was more abundant at
occupied sites, suggesting high relative impor-
tance of herbaceous vegetation to leopard frogs
during summer. We commonly found adult
leopard frogs in moist terrestrial areas covered
by low emergent and herbaceous vegetation.
Adult leopard frogs become highly terrestrial
in summer and may travel long distances (>3
km) from water under appropriate conditions
(Breckenridge 1944, Merrell 1977, Knutson et
al. 2004). Factors important to adults during
summer include prey abundance, herbaceous
cover, and moisture (Dole 1965, Merrel 1977,
Seburn et al. 1997, Smith 2003). However, we
observed that most herbaceous habitat occurred
in small patches (≤0.04 ha) and was restricted
to within 10–20 m of pond margins, suggest-
ing that this important seasonal habitat com-
ponent may be a limiting factor for leopard
frogs in our system.

During summer, juvenile leopard frogs fre-
quent the margins of more-permanent bodies
of water (Merrell 1970), and this behavior may
have contributed to our observation that occu-
pied ponds tended to be slightly deeper than
unoccupied ones. Also, pond depths were nega-
tively correlated with the likelihood of a pond
drying prior to completion of metamorphosis,
and this may have contributed to our obser -
vation of occupancy at deeper ponds. We
observed juveniles most frequently on floating
vegetative mats and in terrestrial and aquatic
areas containing low emergent vegetation (e.g.,

Eleocharis, Carex, and Scirpus spp.). In a
telemetry study of leopard frogs at a natural
site in Minnesota, Pember et al. (2002) observed
leopard frogs in natural grass, aquatic emergent,
and wet meadow vegetation 83% of the time
during summer.

Finally, we advise caution when interpret-
ing the coefficients of our tall emergent vege-
tation model. We focused surveys primarily on
areas of herbaceous and short emergent vege-
tation because leopard frogs frequented these
areas during summer (Dole 1965) and because
leopard frogs were seldom found in grassy
vegetation a meter or more high (Merrell 1977).
Also, in a radiotelemetry study in nearby Idaho,
Merriam (2002) observed leopard frogs 87%
of the time in microsites having no overstory
vegetation. We therefore spent relatively little
time searching in tall emergent vegetation and
recognize the possibility that we occasionally
may have failed to detect leopard frogs in
these areas. For this reason, we advise that any
efforts to reduce tall emergent vegetation to
favor leopard frogs be closely combined with
intensive effects monitoring.

Management Implications

Our results suggest that removal of nonna-
tive fish and bullfrogs will benefit northern
leopard frogs. In California, Rana muscosa
population densities increased 40-fold follow-
ing removal of nonnative fish (Knapp et al.
2007), and the tadpole stage appeared to be
the most vulnerable life stage (Vredenburg
2004). Petranka (1983) found densities of Amby -
stoma texanum larvae 16-fold greater in years
when predatory fish were absent from breed-
ing reaches of streams. Adams (1999) found
fish to have a greater negative impact on Rana
aurora than did bullfrogs. In systems where
water levels are artificially managed (such as
ours), some leeway exists for water-level
manipulation even within irrigation con-
straints. Fish removal could be accomplished
via drawdowns, by pumping isolated ponds
dry, or with applications of Rotenone® during
late summer or fall, after leopard frog larvae
have metamorphosed and when water levels
are already at annual lows.

Reducing bullfrog larvae may facilitate leop-
ard frog coexistence (Doubledee et al. 2003),
but such reduction should be carefully moni-
tored because survival and growth of bullfrog
larvae can be density dependent (Govindarajulu
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2004). Stage-specific population modeling by
Govindarajulu et al. (2005) suggests that if
efforts are undertaken to remove bullfrog lar-
vae, methods with potential to achieve near-
complete removal, such as drawdowns and
rotenone application, should be used.

At the pond scale, we recommend reducing
tall emergent vegetative cover to ≤20% (based
on our interquartile-range estimates of occu-
pied sites) of the total cover along the perime-
ters of ponds. This can be accomplished most
efficiently by burning or mechanical removal
and, to avoid mortalities, should be done dur-
ing winter hibernation or early spring when
frogs are at aquatic-breeding positions. In place
of tall emergent vegetative cover, herbaceous
vegetative cover should be encouraged to
compose 30%–90% of the vegetation along the
perimeters of ponds used as summer habitat
(see Fig. 1).

At the 1-km scale, depths of breeding
ponds (which may not be the same ponds as
oversummering ponds) should be maintained
at ≥0.5 m until metamorphosis is completed
in mid-July, after which we encourage draw-
downs at ponds containing nonnative fish or
bullfrog larvae. Patches of herbaceous vegeta-
tion exceeding 0.4 ha should be encouraged
and could be brought about simultaneously
with burning and other actions designed to
reduce tall emergent vegetation. Herbaceous
patches should be implemented first at ponds
known to be used by leopard frogs during
summer. Finally, reducing the overall number
of ponds containing bullfrogs, carp, and non-
native sport fish will benefit leopard frogs.
These management actions should be coupled
with continued monitoring at a level sufficient
to evaluate their effectiveness for conserving
northern leopard frog populations in Washing-
ton and elsewhere.

Optimally, the enactment of any of these
recommendations should be coupled with a
monitoring effort designed to assess whether
such a management action achieves predefined
response levels for both the direct management
targets (e.g. tall emergent vegetation) and
leopard frogs (Morrison et al. 2001). Also, the
management plan should be cast in an adap-
tive framework, where monitoring information
directs decisions about whether a particular
action should be continued, altered, or replaced
by another management action (Block et al.
2001).
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