2011-05-08

Dynamics of a Partially Fluid-Filled Sphere

Jeff Hendricks

Taylor W. Killian

See next page for additional authors

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

Part of the Mechanical Engineering Commons

Original Publication Citation
Taylor Killian, Robert Klaus, Jeff Hendricks, Nick Smith, and Tadd Truscott. "Dynamics of a Partially Fluid-Filled Sphere".

BYU ScholarsArchive Citation
Hendricks, Jeff; Killian, Taylor W.; Klaus, Robert A.; Smith, Nick; and Truscott, Tadd T., "Dynamics of a Partially Fluid-Filled Sphere" (2011). All Faculty Publications. 1235.
https://scholarsarchive.byu.edu/facpub/1235

This Presentation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Authors
Jeff Hendricks, Taylor W. Killian, Robert A. Klaus, Nick Smith, and Tadd T. Truscott

This presentation is available at BYU ScholarsArchive: https://scholarsarchive.byu.edu/facpub/1235
Dynamics of a Partially Fluid-Filled Sphere

Taylor Killian Robert Klaus*,
with: Jeff Hendricks, Nick Smith*, Prof. Tadd Truscott*

Department of Mathematics, Department of Mechanical Engineering*
Brigham Young University

Supported by NSF Grant No. 0639328
1 Introduction

2 Observed Phenomena
 - Ratio of Rebound Height and Weight
 - Viscosity Independence

3 The Model
 - Previous Work
 - Potential Flow Modeling
 - The Model
 - Validation with PIV

4 Future Work
 - Conclusions
 - Anticipated Applications
Our objectives

- Determine the cause of rebound mitigation.
 - Quantify the motion of the sphere.
 - Video analysis shows the formation of an internal jet at the same time as rebound mitigation.
- Determine the details of the internal energy exchange.
 - Determine the jet velocity and mass through PIV and numerical models.
 - Model the global effect of the energy exchange.
Observed Phenomena

- The measured rebound heights of a 10cm drop: water filled.
The same plot, yet simplified.

Water: Ball Height = 10
The measured rebound heights of a 20cm drop: water filled.
The measured rebound heights of a 30cm drop: water filled.
We considered different viscosities and observed different phenomena as seen in the video below.
Analysis of our data showed that the global effect of the sphere’s motion is unchanged.
In 2006, Antkowiak et. al. analyzed jet formation dependence on meniscus formation within a test tube.

▶ Note the meniscus in the far left frames.

▶ Treating the test tube so that no meniscus forms
The dynamics of the cavity collapse and impulse-generated jet were modeled through a pressure-impulse model.
Fluid motion is defined by ϕ, a partial differential equation

- Potential flow theory utilizes an ideal fluid that is inviscid and irrotational.
 - $\phi = \frac{m}{2\pi} \ln r \to$ source/sink $|m| = \text{magnitude of } \phi$
 - When $m > 0$, ϕ represents a source (pushes fluid away).
 - When $m < 0$, ϕ represents a sink (pulls fluid in).
 - m is found by the localized use of $m = V_r 2\pi r$
The Model

- We approximate the free surface as a parabola and set the sources and sinks along the parabolic interface.

Theory

\[
\phi = \frac{m}{2\pi} \ln r \\
m = V_r \ 2\pi r \\
V_r = \sqrt{u^2 + v^2}
\]

Implementation

\[
\phi = \sum_{k=1}^{n} \frac{m_k}{2\pi} \ln r_k \\
[M] = 2\pi \ [V_0] \ [\ln r]^{-1} \\
V_0 = kgh, \ 0 < k << 1 \text{ except at the points within the impulse diameter.}
\]
Then we calculate the velocity field using the source strengths and the distances of every point in the field to the parabolic boundary.
• PIV was performed to compare with model.
 ▶ Challenging due to internal flow, spherical shape and deformable surface.
PIV was performed to compare with model.

- Challenging due to internal flow, spherical shape and deformable surface.
- 32x32 pixels interrogation on a portion of the total image, 3 passes, nearest neighbor filtering.
Future/Continued Work

- Implement a 2D Spherical Boundary Condition.
- Expand model to 3D.
- Analyze the rebound coefficient and mass removal dynamics.
- Verify numerical results with experimental results.
- Begin exploring the elasticity of the sphere.
Future application of our findings could lead to:

- More efficient methods of damping the shock incurred while traveling over water at high speed.
- A cheaper and more effective way to stabilize oil during transport, reducing oil spills.
Conclusions

- Rebound suppression depends on drop height and fill volume.
- There is an exchange of energy from the sphere to the fluid.
- The collapse of the cavity can be shown using a potential flow model.
Acknowledgments

Department of Mathematics, *Department of Mechanical Engineering
Brigham Young University
Supported by NSF Grant No. 0639328