
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Faculty Publications 

1994-03-01 

Proof of Correctness for ASOCS AA3 Networks Proof of Correctness for ASOCS AA3 Networks 

J. Cory Barker 
cory_barker@byu.edu 

Tony R. Martinez 
martinez@cs.byu.edu 

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub 

 Part of the Computer Sciences Commons 

Original Publication Citation Original Publication Citation 
Barker, J. C. and Martinez, T. R., "Proof of Correctness for ASOCS AA3 Networks", IEEE 

Transactions on Systems, Man, and Cybernetics, vol. 24, No. 3, pp. 53-51, 1994. 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Barker, J. Cory and Martinez, Tony R., "Proof of Correctness for ASOCS AA3 Networks" (1994). Faculty 
Publications. 1168. 
https://scholarsarchive.byu.edu/facpub/1168 

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been 
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more 
information, please contact ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1168&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1168&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/1168?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F1168&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu


IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. 3. MARCH 1994 503 

Table VI illustrates the F S s  and the DFSs calculated for all the 
part clusters of the subassembly {A, B ,  C} in Fig. 10: 

Note that DFS{A.  B }  and D F S { C }  are equivalent. So are 
D F S { A ,  C} and D F S { B } ,  and DFS{D,C}  and D F S { A } .  This 
is because the +-1 directional freedom of separation of {A, B }  
represents the -2 directional freedom of separation of the rest of the 
cluster {C} against { A .  B } ,  and vice versa. Therefore, D F S { A }  E 
D F S { x } ,  where A U ;? represents the whole subassembly. 
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Proof of Correctness for ASOCS AA3 Networks 

Cory Barker and Tony R. Martinez 

Abstract-This paper analyzes adaptive algorithm 3 (AA3) of adap- 
tive self-organizing concurrent systems (ASOCS) and proves that AA3 
correctly fulfills the rules presented. Several different models for ASOCS 
have been developed. AA3 uses a distributed mechanism for implementing 
rules so correctness is not obvious. An ASOCS is an adaptive network 
composed of many simple computing elements operating in parallel. 
An ASOCS operates in one of two modes: learning and processing. In 
learning mode, rules are presented to the ASOCS and incorporated in a 
self-organizing fashion. In processing mode, the ASOCS acts as a parallel 
hardware circuit that performs the function defined by the learned rules. 

I. INTRODUCTION 
Many connectionist computing or neural network architectures 

have been developed including backpropagation techniques [9], 
Boltzmann machines [ 13, and spontaneous learning systems [3], [lo]. 
Connectionist models are characterized by many simple computing 
elements (nodes) operating in parallel with a large number of 
interconnections. Most models use a static network topology and learn 
by changing node functions. An adaptive self-organizing concurrent 
system (ASOCS) [4], [6] is a connectionist model that learns both by 
selecting node functions and by dynamically changing the network 
topology. An ASOCS, like most connectionist models, operates in 
both data processing and data learning modes. 

During data processing, the ASOCS acts as a parallel hardware 
circuit. As is typical for hardware circuits, it asynchronously maps 
input data to output data in O(max(d, log n ) )  time, where d is the 
maximum depth (longest path) of the network, and n is the number 
of network nodes. 

During data learning, the ASOCS reconfigures itself in a distributed 
manner to accommodate new (and perhaps conflicting) rules. ASOCS 
potential comes from its ability to 1) guarantee correct learning of any 
new rule, and 2) adapt to any new rule in time bounded by O(1og n) ,  
where n is the number of network nodes. 

A number of formal ASOCS models have been developed, with 
initial research focusing on adaptive algorithm 1 (AA1) [5], adaptive 
algorithm 2 (AA2) [7], and adaptive algorithm 3 (AA3) [8]. These 
three algorithms vary dramatically, although AA3 has some similarity 
to AA2. AA3 improves on other ASOCS models in simplicity, 
implementability, and cost. 

AA3 has a number of potential advantages over other learning 
models. Typical connectionist learning models require many presen- 
tations of the training set while AA3 learns a set of rules in one 
pass. Some learning models can fail to converge on the training 
data. AA3 will always learn the training data correctly. Judd [2] 
has shown that learning in a network with fixed topology (where 
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outputs 0 
Positive AA 

Inputs 0 
Fig. 1. AA3 structure. 

learning is done by changing node functions) is intractable. Since 
AA3 modifies the network topology during learning the system is 
able to learn a set of rules in polynomial time. A w e h e s s  of 
AA3 is its lack of good generalization. Work is currently being 
done to combine ASOCS ideas with other techniques to improve 
generalization. Potential applications for AA3 include adaptive logic, 
robotics, and real-time dynamic control. 

AA3 uses a distributed, as opposed to localist, approach to fulfilling 
a rule; i.e., for a given rule no single node can be identified that 
implements the rule. For this reason it can be difficult to intuitively 
see how AA3 correctly implements a set of rules. The goal of this 
paper is to prove that AA3 is correct and also to support intuitive 
understanding of the model. A brief description of the AA3 model 
is given here. A detailed description and motivation for the model 
can be found elsewhere [8] .  

The outline of the paper is as follows. Section I1 defines the 
mechanism of ASOCS knowledge input. Section I11 describes AA3 
architecture and operation in processing mode. Section N describes 
AA3 operation during learning mode. Section V defines the concepts 
of Boolean domains and subdomains. Section VI proves that an 
AA3 network is a total function. Section VI1 proves that an AA3 
network correctly fulfills the rules presented to it. Section VIII gives 
conclusions and summary. Section IX contains references. 

n. KNOWLEDGEINPUT 

The function to be performed by the network is defined by if-then 
rules called instances. Each instance is a partial function from a set 
of Boolean variables to a Boolean variable. An instance is written 
as a variable set followed by an implication arrow followed by an 
ouput variable. A variable may include a negation which is indicated 
by a prime symbol. For example, A' is the negation of the variable 
A.  The variables A' and A are different variables, but A' and A are 
related in that the value of A' is always the opposite of the value 

TABLE I 
VAFUABLE SET bLNI0NSHIPS 

Variable Set Relationship to AB'D 
A Subset 
AB'D Equal 
AB'DE Superset 
B'E' Nondiscriminated 
CG Nondiscriminated 
AB'D' Discriminated 

of A. When reference is made to a negated variable, the variable is 
considered to include its negation. A variable set is matched when 
the conjunction of its variables is true. An instance specifies that, 
when its variable set is matched, the output variable must be set true. 
When the variable set of an instance is not matched, the instance says 
nothing about the output of the function. 

The following are examples of instances: 
I. A'B' + C 
II. AB'C + 2' 
III. A'B' -+ C' 
Instance I forces C to become true whenever A and B are false. 

Instance I1 forces 2 to become false whenever A and C are true and 
B is false. Instance III forces C to become false whenever A and B 
are false. Instances I and III are inconsistent with each other; when 
A and B are false, instance I tries to set C to true while instance 
111 tries to set C to false. 

An instance with a non-negated output variable is called a positive 
instance. An instance with a negated output variable is called a 
negative instance. This characteristic of an instance is called polariq. 

A set of instances S is consistent if S does not contain any two 
instances X and Y where X is a positive instance, Y is a negative 
instance and 1) they have the same output variable and 2) there is a 
set of Boolean values which can simultaneously match the variable 
sets of X and Y .  If a new instance is inconsistent with an instance 
set, then we give precedence to the newer instance and remove any 
contradicted portions of old instances. 

The reasoning for giving precedence to newer instances is based 
on the concept of incremental learning. Incremental learning assumes 
that general rules are learned first. Specific rules are learned later 
and override portions of the general rules as exceptions. When the 
specific rules do not apply, the system falls back on the general rule. 
For example, when learning rules for English language plural, the 
first and most general rule learned is to add s to a base noun. The 
rule works for a large majority of words. Later specific exceptions 
are learned such as with the word mouse where the plural is mice 
instead of mouses. 

A Boolean variable occurring in the variable set of one instance and 
occurring in its complemented form in another instance is said to be 
a discriminant variable for the two instances. A discriminant variable 
is a necessary and sufficient condition for consistency between two 
instances with the same output variable and opposite polarity. 

If X:V1 ---t 01, Y:V2  + 0 2  are two instances, then the rela- 
tionship between V1 and V2 may be one of superset, equal, subset, 
discriminated or nondiscriminated. Superset, equal, and subset are 
standard set relationships. Two variable sets are discriminated if they 
have a discriminant variable. Two variable sets are nondiscriminated 
if one of the other four relationships does not hold. Superset, equal, 
and subset are actually special cases of nondiscriminated. Table I 
shows examples of the five relationships between variable sets. 

m. NETWORK STRUCTClRE 

This section describes the structure of the network and how 
Boolean inputs are mapped to Boolean outputs in processing mode. 
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Fig. 2. AA3 network. 

Nodes that perform a two-input AND function are dynamically al- 
located and connected to build conjunctions of input variables. The 
constructed conjunctions are not identical to the conjunctions given by 
the variable sets of the input instances. The implementation of a single 
instance’s conjunction may be distributed over multiple network 
conjunctions. Conjunctions are combined using two multiple-input 
OR gates called OR-phneS, one for positive conjunctions and one for 
negative conjunctions. This overall structure is shown in Fig. 1. 

The AND nodes have several important characteristics illustrated in 
Fig. 2. At the base of the network of nodes is a root node with no 
inputs. All other nodes have two inputs or children, one from a node 
and the other from an input variable. The variable set of a node is the 
union of the variable set of the node’s child and the variable directly 
input to the node. The variable set of the root is empty. The output 
of the root is always true, while the output of any other node N is 
the conjunction of the variables in the variable set of 1%’. Each node 
is labeled with its variable set. 

Each node is either a Primitive node (Pnode) or a Discriminant 
node (Dnode). Pnodes are building block nodes and output to other 
nodes, while Dnodes are terminal or leaf nodes and output to the 
OR-planeS. Dnodes can be either positive Dnodes ( D S )  or negative 
Dnodes ( D - ) .  Positive Dnodes output to the positive OR-plane while 
negative Dnodes output to the negative OR-plane. If the variable set 
of any positive Dnode is matched, then the positive OR-plane outputs 
true. If the variable set of any negative Dnode is matched, then the 
negative OR-plane outputs true. 

Each Pnode has exactly two parents, the left parent and the right 
parent. Such parent nodes are said to be siblings with respect to each 
other. If a node has variable input V, its sibling always has variable 
input V’. The root node can be either a Pnode or a Dnode but has no 
sibling since it has no inputs. All other nodes must have a sibling. 

A networkfu&lls an instance set if, when any positive instance 
is matched the positive OR-plane output is true and the negative OR- 

plane output is false. When any negative instance is matched, the 
negative OR-plane output is true and the positive OR-plane output is 
false. Conflicts between instances are resolved by order; the latest 
instance takes priority over the portion of any previous instances that 
it contradicts. For states of the environment that are not matched by 

any instance in the instance set, the network may arbitrarily choose 
the output of the OR-pheS. The positive OR-plane may output true, 
the negative OR-plane may output true, or both OR-planes may output 
false indicating no output. Both OR-pheS are never allowed to output 
true simultaneously since this is a contradiction. 

An example of network execution is as follows. Suppose the 
network in Fig. 2 is given the input A’BC.  Node 1 will be active 
because the root is always active. Node 2 will be active because A’ 
is active and the child of node 2 (the root) is active. Similarly nodes 
5 and 9 are active. Since node 9 is a positive Dnode the positive 
OR-plane will be active. Note that all other nodes and the negative 
OR-plane are inactive. 

Iv .  LEARNING 

We describe the AA3 learning algorithm which tells how a consis- 
tent network reconfigures itself when faced with a new instance and 
we give an example of learning. When the system receives a new 
instance, each Dnode is sent the variable set and the polarity of the 
new instance. Each Dnode then independently executes the learning 
algorithm. Pnodes may be created by learning but remain inactive 
during the learning algorithm. 

Let *V be a Dnode and let I be the new instance. Let V, be the 
variable set of 1V and let I;; be the variable set of I .  Let P, be the 
polarity of N and P, be the polarity of I .  The learning algorithm first 
compares P, with P,. If P, = Pi, then the node makes no change 
since the node and the instance agree in output. 

If P, # P,, then \% is compared to ti,. If 1;; is discriminated 
from S:, then the node makes no change because the node and the 
instance can never cover the same state of the environment. If V, 
is superset or equal to I;; then I covers all of N ( N  is completely 
contradicted by I ) ,  so P, is changed to agree in polarity with Pi. 
Otherwise the input spaces of 1%’ and I overlap and the procedure 
DVA changes the contradicted part of N to agree with I .  After the 
new instance has been incorporated, the node checks to see if it can 
self-delete. The procedures DVA and Self-Delete are described later. 

Procedure Learn-New-Instance( N ,  I ) ;  
If 1%’ is a Dnode and P, # P, and V, is not 

discriminated from \i, then 
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B' 

C c; A B' 

A' A 

Fig. 3. Network aftex adding instance B + 2. 

If V, is superset or equal to V,  then 

else 
Invert the polarity of N .  

L e t s = V , - v , .  
Call procedure DVA(N, S). 

end. 
end. 
Call procedure Self-Delete( N )  . 

end. 
The procedure DVA changes the contradicted part of N to agree 

with I. For each variable in V,  that is not in Vn, DVA adds two 
new nodes effectively splitting the input space of the old node in 
half. The final split creates a node covering the contradicted part of 
the old node. The polarity of this node is set to agree with the new 
instance. 

Procedure DVA(N, S); 
Allocate two new nodes, N 1 and 

N 2 as parents of N .  
Let V be a variable in S. 
Make N 1 a Dnode with polarity P, 

Make N2 a Dnode with polarity P, 

Make N a Pnode. 
If IS1 > 1 then 

end. 

and variable input V. 

and variable input V'. 

Call procedure DVA(N1, S - V). 

end. 
The procedure Self-Delete allows two sibling Dnodes that output 

the same polarity to be removed. If two sibling Dnodes have the same 
polarity as a result of polarity inversion, the two nodes combined 
perform the same function as their child Pnode. The two nodes are 
removed and the child node is changed to a Dnode with the polarity 
of the deleted parent Dnodes. The algorithm is as follows: 

Let N be a node, S be the sibling of N,  and C be 

If N is a Dnode and the polarity of N is the same 

Procedure Self-Delete(N); 

the child of N and S. 

as the polarity of S then 

Change C to a Dnode with same polarity as N 
Delete N and S. 
Call procedure Self-Delete(C). 

end. 
end. 
We now give an example of learning. Suppose the instance B + 2 

is presented to the network in Fig. 2. Nodes 7 and 8 are the only 
nodes that are modified since they are the only Dnodes that differ 
in polarity from the new instance and are not discriminated from 
the new instance. Node 4 differs in polarity but is discriminated by 
the variable B. The variable set of node 8 is a superset of B so 
node 8 does polarity inversion becoming a positive Dnode. Node 
7 is nondiscriminated with B so node 7 does DVA with S equal 
to B - AC = B. Since S contains only one variable the DVA 
procedure is executed only once creating two new parents for node 7 
with variable sets ABC and AB'C. The network after incorporating 
the new instance is shown in Fig. 3. Note that if S contained a second 
variable, node 11 would be split by adding two new parents. 

Next, self-deletion commences. Nodes 8 and 9 are sibling Dnodes 
with the same polarity so they delete making node 5 a positive Dnode. 
All sibling Dnodes are now opposite in polarity so self-deletion is 
completed. Note that if Node 4 were a positive Dnode, Nodes 4 and 5 
would delete and node 2 would become a positive Dnode. The final 
network is shown in Fig. 4. 

Note that B + 2 is implemented by nodes 5,6,  and 11. With the 
three inputs, A, B, and C, there are four states of the environment 
that match the instance B + 2: ABC, ABC', A'BC, and A'BC'. 
Node 11 covers the state ABC,  node 6 covers the state ABC', and 
node 5 covers the states A'BC and A'BC'. Node 6 was not modified 
by the learning algorithm but still participates in fulfilling the new 
instance. This distributed nature of the AA3 learning algorithm causes 
it to be unobvious. In addition since unmodified nodes may fulfill 
part of a new instance, it is many times unclear if an instance is 
completely fulfilled. This shows the need for a proof of the AA3 
learning algorithm. 

V. BOOLEANDOMAINS 
In order to show that an AA3 network correctly fulfills its instance 

set it is useful to be able to refer to subsets of the complete 
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Fig. 4. Network after Self-Deletion. 

B I B' 

Fig. 5. Domain with variables A ,  B ,  and C. 

input environment. This section defines the input environment as the 
domain and subsets of the environment as subdomains. The method 
for naming subdomains and relating them to instances and nodes is 
also defined. 

The domain of a network is the set of all possible combinations 
of the input variables and their complements. For example, suppose 
the environment has three variables A, B ,  and C. The domain then 
consists of all possible true/false combinations of the three variables 
as shown in Fig. 5. 

We define a subdomain to be a subset of a domain that can be 
described by the conjunction of a set of variables; the subdomain 
being only the states of the environment where all variables in the 
set are matched. For example, if the variable A' is in the set, then 
the subdomain is restricted to the bottom row of Fig. 5. A must be 
false for the variable set to be matched. On the other hand, if neither 
variables V nor IT' are contained in the variable set describing a 
subdomain, the subdomain is not restricted in terms of V ,  and covers 
states of the environment where V is both negated and not negated. If 
the variables B and B' are not in the set, then the subdomain covers 
both sides of Fig. 5. B is not specified in the variable set, so L3 can 
be either true or false in the environment and the variable set will still 
be matched. The variable set A'B describes the subdomain covering 
the two squares in the lower left of Fig. 5. The variable A' restricts 
the subdomain to the bottom row and the variable B restricts the 

B 1 B' 

A 

A' 

Fig. 6. Subdomain A'B' 

B 1 B' 

C ' I  c I C '  

Fig. 7. Subdomain 4 .  

subdomain to the left half. The subdomain is not restricted in terms 
of the C variable and so covers both states of C. 

A node in an AA3 network implements the network function for a 
subdomain. The subdomain of a node is defined by the variable set 
of the node. For example, node 4 in Fig. 2 has the subdomain shown 
in Fig. 6 since the variable set of node 4 is A'B'. 

Each instance input to an AA3 network defines the function for a 
subdomain. The subdomain of an instance is defined by the variable 
set of the instance. For example, the instance A -+ 2 has the 
subdomain shown in Fig. 7. 
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satisfied 
\ B  I B' 

/ C ' I  c I C '  
contradicted ' 

I 

Fig. 8. Subdomain E. 
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A subdomain can sometimes be divided into smaller subdomains. 
For the domain consisting of the three variables A, B, and C, the 
instance A + 2 is equivalent to four instances. 

AB'C' + z 
AB'C + z 
ABC' -t 2 

A B C +  Z 

The subdomain of a new instance can be divided into two parts, a 
satisfid part and a contradicted part. Either part may be empty. The 
satisfied part is already implemented correctly by the AA3 network. 
This is true because the network is a total function (shown later), 
meaning that it is defined for all inputs, and the network does not 
contradict the instance. The network outputs the wrong value for the 
contradicted part. For example, Fig. 8 shows the domain and outputs 
of a network. The instance B + 2 has the subdomain with a satisfied 
part and a contradicted part as shown. 

VI. AN k 4 3  NETWORK IS A TOTAL FUNCTION 

In this section we show that an AA3 network is a consistent and 
total function. Consistent means that the network will not activate 
both the positive and the negative OR-planes simultaneously. Total 
means that the network will always have an output for any input; 
one of the two OR-planes will be active. The total nature of the 
network is important for understanding how the network correctly 
covers instances that are not contradictory. The learning algorithm 
performs no operation for instances or portions of instances that do 
not contradict the existing network. Since the network is total it will 
already output the correct value for such instances. 

Lemma 1.1 shows that for any two siblings in a network only one 
of the two siblings may be active at a time. This result is used in 
Lemma 1.2 to show inductively that only one Dnode can be active 
in any network. Finally, Theorem 1 shows that if only one Dnode 
is active then exactly one of the OR-planes will be active indicating 
that the network is a total function. 

If two nodes L and R in 
an AA3 network are siblings with an active child C, exactly one 
of L and R will be active. 

PmoJ The node L has as inputs 1) the output of C, and 2) 
some variable V. The node R has as inputs 1) the output of C, and 
2) the complement of the variable V; written VI. Since all nodes in an 
AA3 network perform the AND function, both inputs to a node must 
be active for the node to be active. The variable V and its complement 
V' cannot both be active simultaneously, so both L and R cannot 
both be active simultaneously. On the other hand, one input to each 
node is the output of C, which is active as given in the statement of 
the lemma, and one of V or V' must be active, so one of L or R 
must be active. 0 

Lemma I.1SingEe Sibling Active: 

Fig. 9. AA3 siblings. 

Lemma 1.2-Single Dnode Active: In an AA3 network exactly 
one Dnode is active at a time. 

Pro03 We show by induction that exactly one node is active at 
each level in the trw from the root to the single active leaf or Dnode. 
The proof is by induction on the level, K, in the tree. The level of 
the root node is defined as 0 and is the basis case. The root node is 
always active and is the only node at level 0, so level 0 has exactly 
one node active and the basis is true. 

Let the active node at level K be denoted by N. The inductive 
hypothesis allows us to assume that node N is the one and only 
active node at level K. All other nodes at level K must be inactive 
so any parents of those nodes will be inactive. N has two parents, L 
and R, that are siblings. Exactly one of L and R will be active by 
lemma 1.1, so exactly one node will be active at level K + 1 and 
the induction step is true. 

Node N at level K must be either a Pnode or a Dnode. If N 
is a Pnode then N has two parents and one of the parents must be 
active by lemma 1.1 so the induction must continue to level K + 1. 
If N is a Dnode then N has no parents and no node can be active 
at level K + 1 so the induction must terminate at the first Dnode 
encountered. 0 

Theorem 1-AA3 Consistency and Totality: An AA3 network 
is a consistent, total function. 

Pro03 In an AA3 network, positive Dnodes connect to one 
OR-plane and negative Dnodes connect to a second OR-plane. Since 
exactly one Dnode is active, either the positive OR-plane will be active 
or the negative OR-plane will be active. Both OR-planes cannot be 
active, indicating an inconsistent state, since more than one Dnode 
cannot be active. Both OR-planes cannot be inactive, indicating no 
output for the given input or a non-total function, since one Dnode 
must be active. 0 

VU. AN AA3 NETWORK FULFILLS 
THE INSTANCES PRESENTED TO IT 

This section proves that an AA3 network fulfills the instances 
presented to it. The proof shows that the network is correct for 
the first instance and that all changes to the network preserve its 
correctness. Theorem 1 is used to show that input subdomains that 
are not modified are still correctly covered by the network. 

When a new instance is incorporated into a network, zero or more 
nodes may change in parallel according to the learning algorithm, but 
all changes are of two types: polarity inversion and DVA. Polarity 
inversion occurs when an existing node is superset or equal with 
respect to the new instance. Lemma 2.1 shows that polarity inversion 
is correct in this case since the subdomain of the node is contained 
within the subdomain of the new instance. Lemma 2.3 is used to 
show that DVA is correct since it only changes the contradicted part 
of existing nodes. When DVA occurs a new node is created whose 
variable set is the union of the variable sets of the old node and the 
new instance. Lemma 2.2 is used in Lemma 2.3 to show that this new 
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Fig. 10. Subdomain intersection. 

node covers the subdomain that is the intersection of the subdomains 
of the new instance and the old node. 

I f  the vari- 
able set of a node is superset or equal with respect to the variable 
set of an instance, then the subdomain of the node is completely 
contained within the subdomain of the instance. 

Prooj Let the variable set for the node be V, and the variable 
set for the instance be I<. Let the subdomain of the node be S ,  and 
the subdomain of the instance be S,. I,', is either a superset or equal 
to 1:. Let D be Vr, - 1;;. If Vn is equal to V, then D is empty and 
S ,  is equal to S,. Otherwise the instance can be rewritten as several 
separate instances with the following variable sets: 

Lemma 2.1-Superset Subdomain Containment: 

v ,D:D: .  . . D: 

V,Dl 0:. . .D;  
. . .  

V , D l D z . . .  Dk 
Each member of D is included exactly once in each instance 

using all combinations of polarity. The last instance matches 1,: so 
the original instance covers at least as much as the node, and the 

0 
For example, let the variable set for the node be ABCD and let 

subdomain of r/, is a superset of the subdomain of 51,. 

the variable set for instance be AB. 

.AB = ABCD + ABCD' + ABC'D + ABC'D' 

So the subdomain of the instance includes the subdomain of 
ABCD as well as the subdomains of the other terms listed. 

Let A and B be two 
subdomains. Let V, and V, be the variable sets that define 
the subdomains A and B. Let C be the subdomain that is the 
intersection of A and B. The variable set that defines C, Vc, is 
equal to V, u V,. 

Pro08 The proof is by contradiction. There are two cases where 
the statement can be contradicted, either 1;: is missing a variable that 
is contained in the union, or 1.2, contains an additional variable not 
contained in the union. In both cases it is shown that C would not 
equal the intersection of A and B.  

Case 1 : Suppose VC does not contain a variable I/ in 1/74 U 1)B. The 
subdomain C then covers both polarities of It', but the complement of 
V is outside of one of the original subdomains. Since V is in l,!k UVB, 
ti must be contained in one of V4 or 1,'~. Suppose I-' is contained 
in 1'5. Then A only covers V and not the complement of 1', so the 
intersection of A and B cannot contain the complement of 1'. 

Then C covers only one polarity of the variable V and not its 
complement, but the complemented position is contained in both -4 
and B (since the variable is not listed) and so should be contained 
in the intersection. 

Lemma 2.2-Subdomain Intersection: 

Case 2: Suppose contains an extra variable 1" not in 1;;~ U 

AB'D 

C ' I  c I C  

Fig. 11. DVA correctness. 

For example, the intersection of the two subdomains A and B in 
Fig. 10 is AB. Note that the subdomain -4 is equivalent to the union 
of four subdomains. 

AB'C' 

AB'C 

ABC' 

ABC 

Subdomain B is equivalent to the union of four subdomains. 

A' BC' 

A'BC 

ABC' 

ABC 

The intersection of the above two sets of subdomains is ABC', 
ABC which is equivalent to the subdomain AB. 

Let N be a node and I be a 
new instance with opposite polarity and no discriminant variable. 
Let S ,  be the subdomain of N ,  S,  be the subdomain of I ,  and 
S be the intersection of S,  and S,. AA3 DVA: 1) changes the 
function for  the subdomain S to match I ,  2) leaves thefunction 
for the subdomain S ,  - S unchanged. 

Proof: Let VI  be the variable set for AV and r/, be the variable 
set for I .  Let D be the set difference T/; - LL. Starting with the 
node A;, DVA creates two new nodes for each member of D. Each 
iteration adds a variable from the set D to the set la until the final 
iteration creates a node F with variable set V, U D = 1.; U V,. The 
polarity of F is set to match I and by lemma 2.2 the subdomain of 
F is equal to S .  This proves the first claim of the lemma. 

The second claim of the lemma follows by noting that all other 
nodes created by the DVA are set to the polarity of N. By lemma 
1.2 no Dnode other than N can cover S,  before DVA. The Dnodes 
created by DVA must therefore cover all of S ,  after DVA. One of 
these nodes is F and it covers S ,  so the remaining nodes must cover 
s, - s. 0 

For example, given node AD and instance ABC, the first DVA 
iteration produces two nodes from AD; ABD and AB'D. The 
second iteration splits ABD into two nodes; ABCD and ABC'D. 
The variable set ABCD is the union of AD and ABC. The map in 
Fig. 11 shows that ABCD covers the intersection and the remaining 
nodes cover the rest of the original node's subdomain. 

Lemma 2.3-DVA Correctness: 
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Theorem 2-AA3 Instance FulJllment: An AA3 network ful- 
jills the instances presented to it. 

Pro08 It will be shown that 1) an initial AA3 network consisting 
of a single root node fulfills the first instance, and 2) all changes to the 
network caused by the addition of instances preserve its correctness. 

1) An initial AA3 network consists of one Dnode. The Dnode 
has no inputs and is set to output the same polarity as the first 
instance without regard to the state of the environment. Since 
the node outputs the same polarity as the first instance no matter 
what the state of the environment, the first instance is fulfilled. 

2) There are three ways that an AA3 network can be modified: 

polarity inversion 
DVA 
self-deletion 

We will show that a) Polarity inversion and b) DVA both change 
only subdomains that contradict the new instance and that c) Self- 
deletion does not change the network function. The subdomain of 
the new instance that is not contradicted by any node in the network 
must be satisfied because the network is a total function and if the 
network does not disagree in output with the new instance then it 
must agree in output. Nodes that agree in output with a new instance 
do not change. Nodes that disagree in output with a new instance but 
have a discriminant variable do not change because the subdomains 
of the node and the instance do not overlap. 

Polarity inversion is done when a node is superset or equal with 
respect to the new instance. By lemma 2.1, the subdomain of the 
node is completely contained within the subdomain of the new 
instance. Polarity inversion changes the defined function for the 
node’s subdomain to agree with the new instance. No part of the 
domain outside of the subdomain of the new instance is modified. 
Thus, only changes needed to satisfy the new instance are made. 

When a node is subset or nondiscriminated with respect to the 
new instance then the subdomain of the node intersects with the 
subdomain of the new instance. By lemma 2.3, DVA changes the 
function for the intersection of the two subdomains. The network 
then agrees with the new instance in the subdomain of intersection. 
The rest of the subdomain of the node is unchanged. Thus, only the 
part of the domain needed to satisfy the new instance is changed. 
(Recall that newer instances take priority over old, so the network is 
correct to change a contradicting node within the subdomain of the 
new instance to agree with the new instance.) 

Self deletion does not change the network function. The self delete 
process allows two sibling Dnodes of the same polarity to be removed 
from the network. The variable set of one sibling is of the form AX 
while the variable set of the other sibling is of the form A’X,  where 
A is the direct input variable and X is the variable set of the child 
node. Since the two Dnodes are of the same polarity they are both 
connected to the same OR-phe. The functions of the two nodes 
therefore can be combined by the OR function giving AX + A‘X.  
The function performed by the child of the two Dnodes is X since all 
AA3 nodes perform the AND function of their child and their direct 
input variable. By standard Boolean identities, AX + A’X = X .  
Therefore, when the child node performing the function X is made a 
Dnode of the same polarity as the two removed nodes, the function 

0 of the network does not change. 

VIII. CONCLUSION 

We have proven that an AA3 network correctly fulfills the instances 
presented to it. The network will always output the correct value when 
an instance is matched by the input. When no instance is matched, 
meaning that the network has not been trained for the current input, 

the network will extend the function defined by the instances and 
output a default value given by the first instance. The network is 
always a consistent and total function. 

The AA3 learning algorithm has been explained. Each node is sent 
the polarity and variable set of the new instance. Nodes that conflict 
with the new instance then either invert their polarity or perform DVA 
to resolve the conflict. Nodes then independently consider whether 
self-deletion is possible. 

Though at times not intuitive, the AA3 algorithm is guaranteed to 
learn any Boolean function correctly and to learn the function in time 
bounded by the log of the number of nodes in the network. Once the 
function is learned, the network will then execute the mapping like 
a parallel hardware circuit, in time also bounded by the log of the 
number of nodes in the network. 
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