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Abstract

In this paper we introduce a method of modeling which mixes continuum and discrete variables,

and explain two models in cell biology that use this method. The first application deals with wound

healing, more specifically the collagen alignment in scar tissue formation and the second models

early aggregation in the cellular slime mold Dictyostelium discoideum. We solve these models using

numerical techniques similar to the particle-in-cell method which requires that the discrete and

continuum variables are interpolated one to the other. The implementational and numerical details

are discussed in an informal and practical manner with particular attention given to the problem of

interpolation.

1 Introduction

Since the time of Newton, continuum mathematical models have been used to describe the behavior

of what we believe to be fundamentally discrete physical systems. As a result, much time and effort

has been spent in justifying these continuum formulations with methods from statistical mechanics by

using the fundamental properties, including the discreteness of the system, to derive the models. In an

ironic twist due to the advent of computers, these continuum models of discrete systems are frequently

approximated by discrete models which can be solved numerically. As computers have become more

powerful, there has been renewed interest in models maintaining a discrete formulation from the outset.
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Modeling efforts utilizing the discrete nature of the physical system vary widely and include applica-

tions in chemistry, modeling macromolecules [28] and chemically reactive systems [4]; physics, in textile

research [10], underground waterflow [31] and crystalline structures [9]; and biology, modeling cellular

slime mold [23], the interaction of fibroblasts [8] and cell to cell signaling [3]. The purpose of this paper

is to describe a discrete and continuum hybrid method applied to biological systems. In so doing we

highlight key differences, including implementational differences, with the more standard continuum

modeling. The method is ideal for systems involving cell motion, and we consider two applications of

this type as case studies. The first of these models the process of collagen production and alignment

during wound healing [6] and the second deals with the early aggregation of the cellular slime mold

Dictyostelium discoideum [5].

When deciding how to model a system one must determine what modeling framework to use. A fun-

damental issue is whether to use a discrete representation, a continuous representation or some mixture

of the two. This is resolved by examining the strengths and weaknesses of the different representations

in the context of why the model is being developed. Continuum models are more commonly used and,

perhaps as a consequence, the mathematical techniques to analyze them are readily available. Thus if

the goal of the model is to understand stability, bifurcations or other general qualitative features of the

system, a continuum approach will yield more insight. If on the other hand, a more quantitative model

is desired with specific questions relating to local interaction, such as how the interactions of individual

cells influence the system, a discrete approach may be more appropriate. Of course there are many

other questions to consider. Is there a natural discrete structure to the system? Is the phenomenon

being modeled a macroscopic or microscopic one? Are the interactions causing the phenomenon local or

global? Are the densities such that a continuum is realistic? How is the model going to be understood

analytically, through simulations or in some other way? An example of the importance of modeling

approach is provided by Durrett & Levin [7] who compare four different modeling approaches for the

same biological system: a spatially homogeneous model, a reaction diffusion formulation and two models

with discrete spatial structures. They find that in some circumstances the models give different results,

indicating the importance of how the model is formulated. We will mention a few of the current discrete

methods being used.

Discrete models can have variables that are defined on a fixed lattice, an array of discrete fixed sites

connected to each other so that they have well defined neighbors, or at discrete particles which are

allowed to move freely in the domain. A useful analogy can be made with two different views frequently

used in fluid dynamics: Eulerian, fixed spatial coordinates, and Lagrangian, coordinates which move
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with the fluid. Although in that context these views are applied to continuum models, here we apply

them to discrete modeling methods.

The first viewpoint, Eulerian, gives rise to most of the current discrete modeling, in which a fixed

lattice is defined. These lattice based models include the process mentioned above of numerically solving

continuum models by discretizing the domain and solving the equations based on finite differences. Here

the discrete structure is imposed for numerical reasons and is not motivated by the physical system,

which was originally modeled with a continuum method. In essence, these discrete computational

schemes model mathematical equations and only indirectly represent the physical system. This contrasts

with another group of models where an underlying discrete physical structure motivates the lattice based

modeling approach. These models, while discrete in space, use continuous time variables. Typically

they give rise to a large number of coupled ordinary differential equations and are commonly used in

solid state physics where the crystalline structure of the material defines a natural physical lattice.

The discrete nature of the models along with nonlinear interactions can give rise to solutions which

are not possible in their continuum counterparts [29]. In a newer application, this method is used to

model juxtacrine signaling of epithelial cells, which form a lattice on the surface of the skin and other

tissues, and communicate with nearest neighbors via membrane bound proteins [3, 19]. Although in this

group the models mix a continuous time variable with discrete space variables (the lattice), they are

fundamentally different from the hybrid models which are the focus of this paper and have continuous

and discrete structures in the same dimension.

Cellular automata are lattice based methods which, in addition to the discrete space variable, have

discrete time and a finite set of values that the dependent variable can assume. When this method was

first introduced by von Neumann and Ulam, it was designed for biological applications [30]. Since then

it has been used to model a wide variety of physical and biological phenomena including the evolution

of galaxies, reaction diffusion systems, phase transitions, crystal growth, fluid dynamics, and the growth

of organisms [34]. The cells or lattice sites can represent atoms in a crystal or regions in space. The

state of the cell or the dependent variable could represent the spin of the atom, the excitability of the

system, the average velocity of the fluid or whether a biological cell exists at that space location. At each

time step the state of the cell can alter depending upon interactions with neighboring cells. Cellular

automata have had considerable success in reproducing physical phenomena with relatively simple local

rules which can be easily simulated.

The second view point which can be taken in discrete modeling is a Lagrangian view of tracing
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particles which are unconstrained in the domain. In these models, usually numerical treatments of

continuum models, if a grid is defined it is defined by particle positions which change as the particles

move. This gives a major disadvantage if the particles’ motion with respect to its neighbors is great.

The mesh deforms and particles which started as nearest neighbors are no longer close. If near neighbor

interactions are important the solutions will become numerically unstable. To correct this, remeshing

is employed or, more typically, hybrid numerical methods of the Lagrangian and Eulerian views are

used. In the hybrid numerical method particle-in-cell, the moving or Lagrangian particles define only

nodes and not a mesh, eliminating the problem. Originally the particles in this method carried mass

and as they moved from one grid cell to another they transferred mass, momentum and energy to

different parts of the Eulerian grid. It was on the fixed grid which defined the computational cells

where the average values of velocity, pressue, energy and other quantities were calculated. The method

has evolved into a group of particle-mesh methods commonly used in physics and chemistry to solve

models of plasmas, fluid flow, and combustion problems [25, 11, 18]. In these methods there is both a

fixed (Eulerian) grid and moving (Lagrangian) particles. The field quantities are typically solved on the

fixed grid and the particle properties remain with the particles. In plasma flow this means the charges

are located with the particles and the electric field is solved on the fixed grid. For combustion models

the convection current is solved on the fixed grid and the reacting particles are solved using the moving

particles. Here we adapt this technique and apply it to a modeling method which mixes continuum and

discrete variables. We numerically solve the continuum variables on a fixed grid using finite differences

and allow the discrete variables to be unconstrained in the domain.

We mention two other methods which use the Lagrangian views. One very similar to both the

particle-in-cell method and our models is the immersed boundary method [20], developed for a model

of the heart. This numerical method uses an Eulerian approach for the fluid flow of the blood and a

Lagrangian approach for the fibers which model the heart tissue. The two main differences with our

model are first, this method is a numerical one for a continuum model and second, the Lagrangian

particles define a mesh (a fiber) where the connections to the original neighbors are important. The

other method is given in a model developed by Weliky & Oster [32] for epithelial morphogenesis. There

the cells are represented by nodes on their boundaries. The nodes are free to move depending on the

forces exerted on them. In this model the mesh defined with the nodes is important. It is essential to

know which nodes belong to which cell boundary.

The remainder of the paper is outlined as follows. In the next section the general framework for

the models is described after introducing the two biological applications. Then the key issue of how the
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discrete variables interact with the continuum variables is addressed. This is followed by sections 4 and

5 in which the implementational details for the wound healing and the Dictyostelium discoideum models

are given. Finally we conclude with a discussion of different biological applications of this model.

2 The Models

The basic modeling technique used for the two models we consider in this paper is the same. In both

cases it is convenient to represent some components of the systems as continuum variables and some as

discrete variables. As commonly occurs when examining biological systems, there is a great disparity

in space scale between interacting parts of the system, for example, herd animals with respect to their

food, amoeba with respect to the chemical environment or amoeba and their substrate. While it is true

that both parts of the system have a discrete structure, on the scale of the larger component, microns for

the cell, the substrate can be easily and accurately modeled as a continuum, whereas the cells cannot.

Of course for both our applications, we are interested in a macroscopic pattern on yet a larger scale.

One could argue that at this scale the cells can also be modeled as continuum. This is the most common

modeling approach, but it is the properties of individual cells acting locally that give rise to the global

patterns. Thus a discrete formulation for the cells makes the models more flexible with regard to the

cell properties and it is easier to explore how changing these properties alters the global results. We

now introduce the two models, starting with wound healing and then Dictyostelium discoideum. After

introducing the applications we describe the general mathematical framework.

2.1 Wound Healing

In the early 1980’s it was discovered that fetal wound repair results in little or no scarring, generating

significant renewed interest in the mechanisms of wound healing [1]. Although much has been learned,

it is still unclear why in adults the tissue regenerates in a manner which results in scarring. The

characteristic of scars on which we focus is the alignment of collagen fibers. The bulk of the dermis is

composed of a fibrous protein called collagen. In normal skin this fibrous structure has a random or

reticular orientation, whereas in scars it is aligned [33]. We are interested in how the fibroblasts, the cell

type that produces collagen, replace the blood clot, which is composed primarily of fibrin. The obvious

ingredients for the model are the fibroblasts, collagen and fibrin. Although there are many other things

we could include, for simplicity we limit the model to these three components. The collagen and fibrin

fibers composing the extracellular matrix are represented by a continuous vector field, but the fibroblasts
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are represented as discrete particles. The protein fibers are two to three orders of magnitude smaller

than the fibroblasts and are densely spread, so that a continuum approximation is justified. We use a

vector field because both the density, represented by the length of the vector, and the direction of the

fibrous network are important. The wounds we consider are approximately 1mm by 0.5mm in size. This

makes the fibroblasts one to two orders of magnitude smaller than the domain size we are considering

and the densities of the fibroblasts (typically a maximum of 600 cells in the domain) are low making a

continuum representation for the fibroblasts less realistic (see figure 1). In addition, when comparing

the results of continuum models with the discrete formulation [17], one sees that more structure in the

fiber orientation is captured when using the discrete cells.

The model focuses on the interactions of the fibroblasts with the extracellular matrix. There are

four fairly simple interactions: the cell speed depends on the local protein densities, the cell direction

depends on the local fiber orientation, the fiber orientation is modified by the direction of the cells and

the protein densities are modified by the fibroblasts. In the model the location and direction of the

fibroblasts are tracked as well as the evolution of the extracellular matrix. The matrix evolution and

the cell paths are described by ordinary differential equations.

2.2 Dictyostelium discoideum

Dictyostelium discoideum (Dd) is a widely studied system exhibiting key features in developmental bi-

ology, including in particular the ability to move in a directed manner due to a chemical stimulus called

chemotaxis. During its life cycle, the individual amoeba feeds on bacteria and multiplies by cell division.

When food becomes scarce and the amoebae starve they undergo several developmental changes. Two

of these changes, which occur between six and eight hours after starvation are obtaining a chemotactic

sensitivity to the chemical cyclic adenosine 3’,5’-monophosphate, or cAMP, and becoming relay compe-

tent. The first means they move up chemical gradients of cAMP. The second, relay competence, means

that a cell can relay a signal of cAMP. In other words, if a cell is stimulated with cAMP it will produce

and output its own burst of cAMP, thus relaying the signal. So if relay competent cells are spread on a

substrate, they can form an excitable medium which is capable of supporting traveling waves of cAMP.

If in addition the cells are chemotactically sensitive, they will reorganize themselves. Thus, due to the

presence of cells which periodically emit signals of cAMP called pacemakers, the other cells aggregate

towards the pacemaker and form a multicellular organism.

In this different biological setting where cell motion is key to the development of the organism, we
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Figure 1: The collagen alignment and cell positions are shown for a typical wound healing simulation. It is clear

that the density for the upper region of the wound is low and not well approximated by a continuum variable.

The thin lines are stream lines for the vector field representing the collagen fibers, i.e., at each point the tangent

of the line is in the same direction as the vector field. The black dots show the position of the cells and are scaled

such that their area is the same as the support of the weight w.
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Figure 2: Aggregation patterns for a typical simulation of the Dd model. The discrete nature of the cells allows

the model to easily simulate the intricate branching patterns seen during aggregation.

formulate a model of the early aggregation phase with the same basic framework used for wound healing.

We represent the chemical concentration of cAMP as a continuum variable and the individual amoebae

as discrete entities. Typical aggregation territories have from 10,000 to 120,000 cells in the region. Thus

a continuous model would be feasible [13], but with the discrete depiction the properties of the cells

are more easily modeled and altered giving the method more flexibility. This is an important feature

since a major goal of the work is to understand how cell properties alter the overall density patterns. In

addition the discrete representation of the cells allows the model to easily capture the detailed streaming

behavior of the system (see figure 2) and the rough profile of the global cAMP wave which is the result of

the relay response of each individual cell (see figure 3). The chemotactic ability of the cells is simulated

using various motion rules such as: if the time derivative of cAMP exceeds a threshold the cells move,

they move at a fixed speed, for a fixed time and in the direction of the gradient of cAMP. Other possible

rules are described and used in [5]. The relay competence is modeled with ordinary differential equations

which represent the various internal chemical complexes which are involved in the signal transduction

pathway for cAMP relay. The external concentration is determined by a parabolic partial differential

equation. Thus we again have individual cells which modify the continuum variable, which in turn

modifies the behavior of the cells.
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Figure 3: Here the concentration of cAMP is plotted. The rough profile is due to the high and low amoeba

density regions. The discrete cell representation enhances this feature of the system.

2.3 The General Model

Both models fit the following general framework. Let u represent the continuum variable which is defined

over the entire spatial domain. For wound healing, it represents the fibrous proteins of the extracellular

matrix and for Dd it is a scalar and represents the concentration of cAMP. The discrete variables vi are

not defined on the spatial domain and represent properties of the cells, with the superscript i denoting

which cell. For example vi could have two components representing the location of the cell and thus its

range would be a subset of the spatial domain for u. In the wound healing application vi is a vector in

�4, two components representing the fibroblast location and two representing its direction. In the Dd

model, vi has ten components, two again give the cell location, one gives movement information, and

the other seven represent internal chemicals which depict the state of the cell. The manner in which

these variables interact with each other is determined by the system being modeled. In wound healing

the system consists of coupled ordinary differential equations, while for Dd the system is made up of

coupled ordinary differential equations and a partial differential equation. In general, the interaction

can be represented:

L1(u) = F(u) +
N∑

i=1

w(x,vi)Fi(u,vi) (1)

L2(vi) = Gi(u,vi), (2)

where x is the spatial variable i.e., in �2. We have in mind that Li are linear differential operators such

as differentiation with respect to time. The Fi’s describe how the cells modify the continuum variables
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and the weights w determine if the cell influence is local or not. For Dd the influence is modeled as

a Dirac delta function making it a point source or sink. In wound healing the weight is a localized

pyramid-like function. Choosing two very different type of interpolant for similarly sized cells is due

primarily to how the cells modify their environment and also to the domain size being considered. In

Dd the cells modify their surroundings by degrading or outputting a diffusible substance. In wound

healing the fibroblast and extracellular matrix interactions we consider are not diffusible. In addition

the size scale of interest for wound healing is at least one order of magnitude smaller than that in Dd.

The numerical algorithm used to solve the system is similar to the particle-in-cell method mentioned

earlier. For equation 1 the domain is discretized and values for u are solved on a fixed or Eulerian grid.

Equation 2 is solved by treating vi as Lagrangian particles which are unconstrained in their movement.

Immediately the key issue is apparent - how can the variables interact when one, u, is constrained to a

lattice and the other, vi, is not. The solution is to interpolate the information from the lattice to the

cell locations and back.

3 Interpolators

By letting ū be the discrete version of u and writing the difference operator approximating L1 as L̄1,

equations 1 and 2 become

L̄1(ū) = F(ū) +
N∑

i=1

I
[
w(x,vi)Fi(T(ū,xi),vi)

]
(3)

L2(vi) = Gi(T(ū,xi),vi), (4)

where T interpolates the value of ū to the location of the cell, xi = (xi, yi) and I interpolates the way

the cell modifies u to the lattice. The interpolators which are chosen will depend on the system being

modeled.

The interpolators I and T are chosen to be the same in some particle-mesh simulations in physics.

For problems with charged particles it can be shown that in order to conserve momentum the two

interpolators must be the same. This ensures that a particle does not exert any force on itself [12].

It is worth mentioning that in multigrid methods the same problem of interpolating back and forth

from different grids exists. There it is sometimes convenient to choose I to be the adjoint of T, but

as in our method the best choice for the interpolators is problem dependent [2]. We do not do that in

our examples, although we comment on the possibility of doing so in the following subsections. Unlike
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our situation, in multigrid methods the grids are typically static structures with some being subsets of

others. In addition the variables being interpolated are the same, either errors or solutions, whereas in

our case they can represent items which behave very differently.

3.1 Interpolation for the wound healing model

First let us consider the function T which interpolates ū from the Eulerian grid to the Lagrangian

particles. It gives values for a function which is continuous, but for numerical purposes has been

discretized, at point off the numerical lattice. This is a standard interpolation problem and depending

on the lattice structure, the accuracy and the smoothness desired, an appropriate interpolator can be

chosen. We choose a tensor product interpolant using quartic Lagrangian interpolation in each direction

[21] defined by

T(ū,xi) =
2∑

n=−2


 2∑

m=−2

ūj−m,k−n�j−m(xi)


 �k−n(yi) (5)

where

�j(x) =
(x− xj−2)(x− xj−1)(x− xj+1)(x− xj+2)

(xj − xj−2)(xj − xj−1)(xj − xj+1)(xj − xj+2)
. (6)

In equation 5, ūj,k is the value of u at the grid point (xj , yk) which is the closest grid point to xi = (xi, yi),

thus j and k depend on xi. The error introduced by T is O(h5
x) + O(h

5
y) where O(x) ∝ x and hx and

hy are the mesh sizes in the x and y directions respectively.

Now we consider the function I. The situation is very different when interpolating from the La-

grangian particles to the Eulerian grid. In our models the Lagrangian particles are not the discretized

version of a continuum variable, rather they are inherently discrete particles. The behavior of I[wFi]

depends on the physical system being modeled and on how the discrete particles interact with the con-

tinuum variables. Thus using a standard interpolant may not make sense. In fact, since there may be

one Lagrangian particle surrounded by several Eulerian grid points, there is one known value and several

unknown values. Typically, interpolation problems are cases where there are several known values. A

more intuitive way to handle the problem is to think how the discrete particles influence the contin-

uum variable. This will define the weight function w and help determine what type of interpolation

is sensible. For example, provided that the support of w is larger than the mesh size for the Eulerian

grid, I[wFi] can simply be w evaluated on the grid or I could be chosen as the adjoint of T. In wound

healing the effect of the cells on the extracellular matrix is very different from the effect of the matrix

on the cells giving little justification for the latter example. By choosing I to be the restriction of w to
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the grid, the larger the support of w when compared with the mesh size the better I[wFi] approximates

the behavior of wFi. If the support of w is not large when compared to the mesh size, I needs to be

considered carefully. This will be demonstrated when we treat the interpolations used for Dd.

In the wound healing example, we take I[wFi] to be wFi defined on the lattice. Recall that the

Lagrangian particles are fibroblasts. They modify the extracellular matrix primarily through processes

localized at the cell surface. For the most realistic model, the support of w should coincide with the

shape of the fibroblasts. The next approximation would be to have an elongated support in the direction

of the fibroblasts’ motion. For simplicity we take the support to be a square region with sides of length

20 microns. We choose a piecewise linear function whose maximum is at the cell location defined by

w(x,xi) = axay (7)

where

ax = max

(
1− |xi − x|

L
, 0

)
(8)

ay = max

(
1− |yi − y|

L
, 0

)
. (9)

Here L is a parameter that determines the support of w and is taken to be 10 microns. A graph of w

is shown in figure 4.

3.2 Interpolation for the Dd model

The interpolator from the Eulerian grid to the Lagrangian particles used in the Dd application is the

scalar version of T defined in equations 5 and 6.

In the Dd model I, the interpolator from the Lagrangian particles to the Eulerian grid, is a real

valued function and not vector valued (thus we change from I to I). The Dirac distribution is the

weight for the influence of the cells. So in this case, the support of the weight function is smaller than

the mesh size. The approach taken for defining this interpolator in the wound healing model fails here

because the cell would only modify the cAMP concentration when its location coincides with a grid

point. Clearly that is not acceptable. Instead we choose I to have properties which are consistent with

the underlying model. Recall that the amoebae influence the concentration of cAMP by acting as point

sources or sinks. We choose I to have the following three features:

(i) I[Fi](xi, yi) =
Fi

hxhy
.
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Figure 4: Graph of w for the wound healing model.

(ii)
∫
R2 I[Fi] dA = Fi (we define I to be zero where it is not positive).

(iii) I should decrease from (xi, yi) at the same rate in the x and y directions.

By restricting I to be a tensor product interpolation which is a continuous, bivariate, piecewise linear

polynomial, the three conditions above uniquely define the interpolant. The second condition ensures

that the amount of chemical produced (or degraded) by the cell is conserved. The other two ensure

that only the four nearest grid points are in the support of I and the maximum value of I is attained

at the cell location. The third property also implies that the cAMP diffuses at the same rate in both

directions. If the amoeba is located exactly at a grid point, I acts as the Dirac distribution.

The interpolant I is defined as

I[Fi](x, y) = axayFi (10)

where

ax = max

(
hx − |xi − x|

h2
x

, 0

)
(11)

ay = max

(
hy − |yi − y|

h2
y

, 0

)
. (12)

Geometrically we think of the interpolation as being proportional to the complementary area of the

point to which we are interpolating (see Figure 5). This interpolant is similar to the one used in the
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Figure 5: The complementary areas are shown for each of the four surrounding grid points. The location of the

cell is marked by × and the grid points are marked by •. ASW is the complementary area for the grid point

(xS , yW ).

wound healing but has a fundamental difference. Here the support of I depends on the mesh size. In

fact, the sequence of interpolants In[1] where hx = hy = 1
n is a delta sequence [15] meaning that

lim
n→∞

∫
In[1] dA = 1. (13)

This is exactly the property we want since we are trying to interpolate the Dirac distribution. The

particle-mesh method cloud-in-cell uses the same type of interpolation [12].

This interpolation of the Dirac distribution, depending on the grid size, the time step and the

diffusion coefficient, has the effect of more rapidly or more slowly diffusing the contribution of the

amoebae to the grid. Consider an initial point source in the plane that satisfies the heat equation with

the same diffusion coefficient used in our model. After the largest time step used in our numerical

simulations, approximately ninety percent of the diffusing substance is contained in the circle centered
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at the source with diameter equal to the mesh size. This shows that our interpolation initially speeds

up the diffusion of cAMP until it reaches the grid. The error introduced by I can be either considered

as temporal, spatial or both in the numerical algorithm.

In this case an alternate choice of T would be the adjoint of I. Since both T and I interpolate the

chemical concentration of cAMP from one grid to another, using an interpolator which is symmetric

and thus behaves in a similar manner makes some sense. We opted to use a more accurate interpolation

when feasible (from the more dense regular Eulerian grid to the sparse Lagrangian particles).

3.3 Immersed-Boundary Method Interpolator

We conclude this section with another interpolant developed by Peskin & McQueen [20]. Although we

do not use this interpolant, it further illustrates how the problem dictates the type of interpolant which

should be used. This interpolant also approximates the Dirac function and was developed to satisfy

certain properties determined by the physical system being modeled - blood flow in the heart. The

authors defined a smoothed δ-function in three dimensions as

δh(x) = h−3φ

(
x1

h

)
φ

(
x2

h

)
φ

(
x3

h

)
(14)

where x = (x1, x2, x3). A graph of φ is shown in figure 6. The function φ is uniquely defined by

five properties of the interpolant including small support, conservation of momentum and angular

momentum and ensuring that the force exerted by one fiber point on another is no greater than the

force on itself.
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4 Numerical and Implementational Details for the Wound Healing

Model

In the model for wound healing, equation 1 is

d � c
dt

= κ‖f‖ sin (� f − � c)

d‖c‖
dt

= (pc − dc‖c‖)
N∑

i=1

w(x, f i) (15)

d‖b‖
dt

= −df‖b‖
N∑

i=1

w(x, f i)

where

f(x, t) =
N∑

i=0

w(x, f i(t))
f i(t)′

‖f i(t)′‖ . (16)

Here c represent the collagen fibers, b represents the fibrin fibers (the blood clot) and these two vectors

taken together form u (in equation 1), whereas f i represents the path of the fibroblasts and thus forms

part of vi (in equation 2). The parameters κ, pc, dc and df are positive constants, the prime denotes

differentiation with respect to time and � c denotes the angle of the vector c. Equation 2 is given by

f i(t)′ = s
(
‖c(f i(t))‖, ‖b(f i(t))‖

) wi(t)
‖wi(t)‖ (17)

wi(t) = (1− α)c(f i(t)) + αb(f i(t)),

where α is a positive constant and the function s is the speed of the cells which depends on the density

of the fibrin and collagen at the cells location. The numerical algorithm used to solve these equations

is as follows:

(i) Interpolate (using T) the magnitude of the collagen and fibrin as well as the direction of the

collagen to the fibroblast locations.

(ii) Interpolate (using I) the infuence of the fibroblasts to the extracellular matrix (equation 16).

(iii) Determine the fibroblasts direction (equation 17) using an explicit Euler method.

(iv) Solve the direction and magnitude of the collagen and the magnitude of the fibrin (equations 15)

on a fixed grid using an explicit Euler method.

(v) Move the fibroblasts to their new locations.
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a b c

Figure 7: The collagen orientations for typical simulations. In (a) the initial random collagen orientation is

shown and in (b) the collagen orientation is shown after 100 hours of remodeling by the fibroblasts on a domain

of 0.5 mm by 1.0 mm. In (c) the collagen alignment and density are shown in a wound region with the right

and left boundaries representing interfaces with normal dermis, the bottom representing the interface with the

subcutaneous fascia and the top representing the interface with the epidermis. The alignment is shown by drawing

lines whose tangent corresponds to the collagen vector field (the streamlines) with black representing high collagen

density and white representing low collagen density.

4.1 Wound Healing Model Results

In figure 7 we show typical results of the wound healing model. Figure 7(a) shows an example of a

random initial orientation for either the collagen or the fibrin fibrous networks. In 7(b) a simulation is

shown where there is no fibrin, thus the cells simply remodel and give more structure to the collagen

matrix. After 100 hours the fibroblasts have considerably altered the original collagen configuration.

The degree to which they smooth the vector field depends on several factors. Figure 7(c) shows a

simulation of wound healing where the blood clot composed of fibrin is being replaced with collagen in

the process of tissue regeneration. The initial conditions are given by a randomly oriented fibrin clot

with fibroblasts entering from the periphery.
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4.2 Numerical Verification

A standard technique to test numerical solutions is to compare results using different time and/or space

steps. Usually the numerical analysis predicts that the solutions will differ by an error in a manner

which depends on the ratio of the different time and space steps. In this application reductions in the

space step will behave in the typical manner with the error between the solutions getting smaller as the

space step is decreased, but due to the discrete cells and the way they move, reductions in time step

are more difficult to compare. When the time step is changed the fibroblasts sample the extracellular

matrix at different points, move in different directions along different paths and alter different regions

of the extracellular matrix. This means that two solutions which differ only by the time step used can

be entirely different. But one still expects that the solution should converge to a limit as the time step

goes to zero, although this limit may be a less biologically relevant solution than one with a finite time

step. Let c̄k be the numerical solution of equations 15 and 17 where the time step is k. We define the

following error function:

error(x) =



1, |� c̄k1 − � c̄k2| ≥ 0.1,
0, otherwise.

(18)

A comparison of the support of error as the time step decreases shows that indeed the solution is

converging to a limit. Figure 8 shows such a comparison and one can see that the support of the error

function gets smaller as the time steps decrease. Equally instructive is a comparison of the individual

fibroblast paths as the time step is changed. In figure 9 one can see that some tracks converge as the

time step decreases while others diverge. This is primarily due to the random nature of the initial vector

field representing the extracellular matrix. It is random on a scale of 80 microns, and since the cell

location are graphed every 40 microns, differences are easily seen. Still on average the paths converge

and if the initial vector field is random on a coarser scale (every 160 microns), the paths are even more

similar and converge quickly as expected (see figure 10).

4.3 Cell Division

One other implementational detail which is due to the discrete nature of the cells involves cell division.

Since the model is deterministic, when two cells resulting from cell division are at the same location,

they will behave identically. One way to correct this is by separating the cells. We randomly place the

new cell on a circle of radius 10 microns centered at the old cell. It is obvious that the separation of the

cells is important in determining how this feature affects the overall model results. The cell paths will
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Figure 8: The shaded regions denote the support for the function error. The black corresponds to error with

k1 = .005 and k2 = .0025, the medium grey corresponds to k1 = .01 and k2 = .005 and the light grey to k1 = .02

and k2 = .01. The support of error is decreasing as the time step gets smaller. The simulations were run to 10

hours with cell speeds fixed at 40 microns per hour. One hundred cells are uniformly placed in the domain of

8mm by 4mm.
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Figure 9: The cell tracks are shown for simulations using different time steps. Although some paths diverge

as the time step becomes smaller, overall the paths are converging. In (a) the time steps represented are .0025

and .005, in (b) .005 and .01 and in (c) .01 and .02. The symbol (x) denotes the position of the cell with the

larger time step and (◦) denotes the position of the cell with the smaller time step. The cell tracks remain similar
until the gradual separation and the random initial conditions drastically alter the cell courses. The simulations

were run to 10 hours with the cell speed fixed at 40 microns per hour and the position graphed every hour. The

initial vector field, identical for all three simulations, is random on a scale of 80 microns. The axes are scaled in

millimeters.
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Figure 10: The cell tracks are shown for simulations using different time steps, with smoother initial conditions

than used in Figure 9. The cell paths all converge as the time step decreases. In (a) the time steps represented

are .02 and .01, in (b) .01 and .005 and in (c) .005 and .0025. The (x) denotes the position of the cell with the

larger time step and the (◦) denotes the position of the cell with the smaller time step. The simulations were
run to 10 hours with the cell speed fixed at 40 microns per hour and the cell position graphed every hour. The

initial vector field, identical for all three simulations, is random on a scale of 160 microns. The axes are scaled in

millimeters.
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be closer to each other if the radius chosen is small when compared to the scale at which the collagen

field is random. Also the simulation will behave differently if the cells are placed within the support of

the weight function w than if they are not. In practice, when cells divide they round up and we assume

that they lose the internal structures which predisposed them to continue in the direction they where

moving. In the model, the cell direction changes from the current direction according to equation 17.

Thus we simulate the biology by giving each cell a new direction determined by the extracellular matrix.

There are other options we could have used including randomly altering the cells’ directions in some

manner causing their paths to diverge.

5 Numerical and Implementational Details for the Dd Model

The specific form of equation 1 for the Dd model is given by

∂u(x)
∂τ

= D∇2u(x)− γ9 u(x)
u(x) + γ8

+
N∑

i=1

Vc

Vo
δ(x− xi)

(
sr(vi

7)− γ7
u(x)

u(x) + γ6

)
(19)

where u is the cAMP concentration, ∇2 is the Laplace operator in two dimensions, sr is a non decreasing

function, D, γ6, γ7, γ8, γ9, Vc, and Vo are positive parameters. Equation 2 takes the following form:

vi
1 =

α0u(xi) + (β5 − α0u(xi))vi
6

α1 + α0w5(xi) + β4vi
5

vi
2 =

α2α3c1v
i
1(1− vi

4)
1 + α4 + α2α3c1vi

1 − α4vi
4

vi
3 =

β0w5(xi)
β1 + β0w5(xi)

dvi
4

dτ
= α4v

i
2 − vi

4 − α4v
i
2v

i
4 (20)

dvi
5

dτ
= β2β3c2v

i
3 − β5v

i
5 + β6c3v

i
6 − c3β4v

i
1v

i
5 − β2β3c2v

i
3(v

i
5 + c3v

i
6)

dvi
6

dτ
= −(β5 + β6)vi

6 + β4v
i
1v

i
5

dvi
7

dτ
= γ1γ2v

i
4 + Γ5(1− Γ7v

i
4)− γ4

vi
7

vi
7 + γ3

− sr(vi
7).

The αi’s, βi’s, γi’s, Γi’s and ci’s are constant positive parameters and are defined in Dallon & Othmer

[5]. The algorithm we have developed to solve these equations can be summarized as follows. Given the

initial cell states and the cell distribution, which may be uniform or random, in a square domain, with

a particular initial distribution of extracellular cAMP, we perform the following steps.
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(i) Solve the extracellular equation (19) on a regular grid, using an Alternating-Direction Implicit

(ADI) method for the partial differential equation, lagging the secretion term.

(ii) Interpolate cAMP from the grid to the cell positions (using T) and update the intracellular vari-

ables (20) by an implicit scheme.

(iii) Update cell movement. If a cell is not moving, should it begin to move? If so, compute the

direction and start movement. If it is moving, should it continue?

(iv) Transfer the secreted cAMP to the grid (using I) and repeat the cycle.

5.1 Dd Simulation Results

The two variables we are most interested in are the extracellular cAMP and the cell density. The cell

density is the biologically visible variable which forms the patterns of interest. In figure 11 we show

the cell density after 150 minutes of simulation. The cells have formed streams and are aggregating

into the two circular cores. This is caused by two spiral waves of cAMP which cells are producing

due to their excitability. The cAMP waves are also of interest and help explain the features of the

Figure 11: Density plot for a simulation at time 150 minutes. Initially 10089 cells where randomly

placed on the domain. Two spiral waves form and cause the cell to aggregate and form two circular

cores. The parameters are such that approximately 0.1% of the cells are pacemakers and they are

randomly located. These computations use a 101 by 101 grid.
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cellular aggregation. Typically the cAMP waves are generated at pacemaking cells and expand outward

as one would expect in an excitable media. They can be very rough depending on the underlying cell

density (see figure 3). Thus a typical simulation starts out with a roughly uniform density of cells. The

oscillatory cells initiate a cAMP wave which propagates outward into the excitable media formed by

the cells. The cells then start to move and organize themselves according to the cAMP wave. As they

move and aggregate they change the excitability of the system by changing the cell density. Thus the

low density regions eventually do not propagate cAMP waves.

5.2 Verification of the Numerical Scheme

The standard method for showing convergence of a numerical scheme for a linear problem is to prove

that it is consistent and stable, which is equivalent to convergence by the Lax equivalence theorem [22].

This is the approach we have taken for the linear portion of the model without the summation term in

equation 19. Consistency is easily seen by expanding the discretized equations about a point using Taylor

series and proving that the local truncation error approaches zero as the mesh size approaches zero.

The stability of the scheme can be proved using von Neumann’s method where the initial conditions

are expressed in a finite Fourier sum and then determining if the terms are amplified [26]. We can

further show, using results from Hundsdorfer & Verwer [14], that the scheme including the nonlinear

term in equation 19, but still without the summation, is unconditionally stable and convergent. Due to

the discrete model formulation, the Dirac delta distribution is included as a weight in the summation

and causes difficulties in performing any standard local truncation error analysis. Some progress can

be made by locally integrating the error and thus defining a somewhat paradoxical “averaged” local

truncation error. This approach does not distinguish between different interpolants as one would hope,

provided that they have the limiting property of a delta sequence (see equation 13). It is likely that

for the purposes of numerical analysis and the type of limiting argument used, the discretized equation

will be consistent with almost any interpolator which approximates the Dirac distribution. In order to

determine which type of interpolation is most appropriate, the physical characteristics of the system

being modeled must be considered.

Once the model is formulated and the numerical scheme has been developed, an important issue is

testing it. In this case, there are several ways to test different parts of the algorithm. The movement

rules and internal variables vi are easily tested with various functions which specify u. In this way

it is easy to determine that the cells are moving in the appropriate directions and at the right times.
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Likewise, the ADI scheme and the interpolators are tested on known problems. In order to test the

combined effect of several components in the model, the cells are fixed at the grid sites. This makes

the model equivalent to a continuum description developed by Tang & Othmer [27] and the results can

be compared. The waves of cAMP which are generated have the same amplitudes, speeds and periods

for both models and compare nicely to experimental results. The full model is tested by using two

different order discretizations of the Laplace operator. In these tests, a comparison of the results shows

significant differences in the solutions with the lower order scheme showing more grid effects than the

higher order scheme. This indicates that errors from the interpolators are not dominating the simulation

results. The final test is to determine if the results of the entire model are consistent with the biological

system, which they are.

5.3 Cell Adhesion

We include a feature of the model which is allowed by the discrete representation of the cells. In order

to simulate the biology more closely and to save computation time, the cells are combined when then

are within a radius of 5 microns of one another, and then they are treated as one cell with twice the

strength. For example if cell j and k are are close enough to adhere, then in equation 19 the jth term

of the summation is deleted and the kth term is multiplied by two. This is biologically reasonable since

cells tend to adhere to one another when they come in contact [24]. The contact radius is chosen in

an arbitrary manner erring on the conservative side. In reality, Dd amoebae become quite elongated,

making a contact distance difficult to determine. The major problem with this feature is that as cells

adhere they become artificially compact. The effects of this will be increased as the simulation runs

for longer periods of time, so that the local densities increase causing more adhesion. Numerical tests

indicate that combining cells has only a minor impact on the simulations in the time frame we are

considering (150 minutes).

6 Discussion

In this paper we have described a modeling method which mixes continuum variables with discrete

variables. To numerically solve the model an algorithm similar to the particle-in-cell methods is used

where the interactions between the two types of variables are interpolated back and forth. This type

of formulation tries to capitalize on the benefits from each type of representation. The continuum

representation is usually numerically less intensive to calculate and can accurately describe high density
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interactions in a qualitative manner. In addition there is a vast mathematical theory developed that

allows the continuum formulation to be analyzed and understood. The discrete structure may model

the fundamental interactions of the system more accurately and allow more flexibility in understanding

how these interactions affect the system as a whole.

The benefits and limitations of this hybrid type of modeling can be clearly seen by comparing

models of the same system which use the different formulations. In Dallon & Othmer [5] and Hofer &

Maini [13], the early aggregation of Dd is modeled using reaction diffusion equations. In the first model

(described in Section 2) the hybrid approach is used, whereas in the second a continuum approach is

used. Both models give insight into how the global density patterns are formed; the hybrid model

is closely tied to experimental results and provides insight into the mechanisms that the cells use to

move; the continuum model sheds light on the formation of the linear instabilities in the system and the

characteristic spatial scales observed. In fact, each model addresses questions that, due to the different

formulation, the other model cannot answer. Similarly in Olsen et. al. [17] the usefulness of the hybrid

approach for wound healing is demonstrated. There the orientation of collagen in wound healing is

modeled using a continuum description with a brief comparison of results obtained using the hybrid

model discussed here. In this work one can see how the different model formulations highlight different

features of the system. The discrete approach is able to capture collagen structures on small spatial

scales which are observed biologically. The continuum models represent averages and cannot reproduce

the detailed structures. Durrett & Levin [7] also showed how different features of a system are captured

by the model formation. They model a predator prey system using first continuum then discrete spatial

structures. By using discrete structures, as in the hybrid method presented in this paper, questions

which continuum models cannot address are answered.

Although discrete formulations have been widely applied in the physical sciences, there are many

biological applications which are well suited to a discrete approach. In particular the hybrid method

described here can be used in many areas where cell motion is important. Models involving taxis are

good examples, including chemotaxis as in the Dd application, haptotaxis as in the wound healing

application and Boyden chamber experiments. Other systems which could easily be modeled in this

manner are cancer growth, tumor invasion and angiogenesis. This model formulation can also be

applied to ecological modeling where larger organisms including animals can be represented naturally

as discrete structures. For instance, in the work of Lewis et. al. [16] wolves and scent markings are

modeled using a continuum formulation to learn about territories. This system would fit nicely into

the hybrid method described here with the wolves modeled as discrete entities and the scent markings
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modeled as continuum variables.

Depending on the level one wishes to examine, models can range from a totally discrete represen-

tation, as in cellular automata, to a continuum formulation. Here we have described a method which

combines the two formulations focusing on the discrete structure of some components and using a

continuum representation for others.
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