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ABSTRACT

LIFE DATA ANALYSIS OF REPAIRABLE SYSTEMS. A CASE STUDY ON

BRIGHAM YOUNG UNIVERSITY MEDIA ROOMS.

Stephen O. Manortey

Department of Statistics

Master of Science

It is an undisputable fact that most systems, upon consistence usage are bound

to fail in the performance of their intended functions at a point in time. When

this occurs, various strategies are set in place to restore them back to a satisfactory

performance. This may include replacing the failed component with a new one,

swapping parts, resetting adjustable parts to mention but a few. Any such system is

referred to as a repairable system. There is the need to study these systems and use

statistical models to predict their failing time and be able to set modalities in place

to repair them at least cost to the operator.

The main objective of this paper is to analyze data collected on the pro-

jectors used for teaching and learning activities in some designated rooms at the

Brigham Young University (BYU) under the auspices of the Office of Infor-

mation Technology (OIT) and help to detect the failure rate of such systems,

predict the optimal replacement time for the parts with the view of maximizing the

reliability of the systems and finally formulate a cost model that will be used to

estimate the optimal cost involve in servicing a failed projector.
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Chapter 1

Introduction

The advent of technology has brought in its wake several improved teaching

and learning facilities in the present day classroom settings as compared to the past

few years where the chalkboard was the main object mostly used. It is now very

common to find systems such as projectors, computers, microphones, speakers and

VCR/CD/DVD combo players all stock in a single room that go to enhance teaching

and learning activities.

A system by definition can be said to be a collection of two or more parts that

have been assembled to perform one or more functions [Ascher and Feingold, 1984].

It is very obvious that with the passage of time, most of these systems may fail in the

course of duty and will therefore need to be repaired to restore them to their intended

functions.

The Office of Information and Technology (OIT) a unit on most college cam-

puses, Brigham Young University (BYU) inclusive, oversees the performance of the

systems in such room designated as Custom Multimedia Room (CMR) and Technol-

ogy Enhanced Classrooms (TEC) where these facilities are often used. As part of the

work they do, this office makes and responds to service calls from these rooms. This

helps in monitoring the effective usage and performance of the systems. They also

maintain a data base of calls that comes to their office with regard to the specific

cause of failure of a system and the measures put in place to restore any of such

systems to its normal functions.

Some earlier studies on the reliability of repairable systems show that, it is
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cost effective to have some kind of preventive maintenances on a system before failure

rather than to maintain it after failure. It is in line with this that the OIT- (BYU)

has began a maintenance program of replacing items such as bulbs and air filters in

the projectors currently in use before they actually fail.

The data for the project was obtained with the help of Mark Hales from the

OIT. He extracted it from the service calls received at the office over the past few years

that was saved in an ORACLE database and gave it to us as an Excel file. The main

fields of the dataset are; the Work Order, Date of Collection, Media Room, Serial

Number, Item Code, Item Title, Trouble, and Reasons. Stephen Zobell also helped

in getting additional fields which include Notes, Comments and Hours of Failure of

some the systems over time.Mark Sullivan also helped in extracting the Number of

weekly Logins into the projectors in each of the classrooms.

The main objective of this project is to analyze the data collected by the OIT-

(BYU) over time to see if a better maintenance procedure can be suggested to this

very important unit on campus to enable them render and improve upon their services

which go a long way in augmenting teaching and learning activities.

In the analysis, much attention will be geared in getting the optimal replace-

ment time for the parts in the systems and also focusing on the best strategies that

need to be put in place to maximize the systems’ reliability.
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Chapter 2

Literature Review:

2.1 Repairable Systems:

A system is described to be repairable when after it has failed to perform at

least one of its intended functions can be restored to fully satisfactory performance

by any method other than replacement of the entire system [Basu and Rigdon, 1997].

The restoration can be done by any action including changing of parts, changes to

adjustable settings, swapping of components, or even a sharp blow with a hammer

[Ascher and Feingold, 1984]. For example a laptop computer not connect to electrical

power may fail to start when the battery is dead. In this case, replacing the battery

with a new one may solve the problem. A television set is obviously another example

of a repairable system which upon failure may be restored possibly to satisfactory

performance by simply replacing either the failed resistor or transformer if that is the

cause, or by adjustments to the sweep or synchronization settings.

On the contrary, a non-repairable system is any such system which is discarded

immediately after it has failed to perform its desired function. For example a burned-

out florescent bulb is always thrown into the dustbin after failure. However with

the current automated production process turning out inexpensive products, many

products that previously were repaired after failure are now discarded when they fail.

For example , a desktop fan bought for less than $10.00 at a discounted rate would

probably be discarded when it fails because the cost to fix it is greater than the cost

for purchasing a new one[Basu and Rigdon, 1997]. Other examples of nonrepairable

include the element in an electric iron, a one time use camera, etc.
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In the real world, it is very obvious that most systems, such as automobiles,

aircrafts, computers are designed to be repaired rather than replaced upon failure.

By this implication, it would appear therefore that most literature on models for re-

liability of systems will be directed on repairable system. The inverse is rather true.

This is not to belittle any such study on nonrepairable system. One always needs to

appreciate such laudable efforts in totality which has at least brought some form of

recognition on the study of reliability of systems as a whole. This is, because every

repairable system by detailed study is seen to be made up of components that are non-

repairable. Therefore any study that can improve the reliability of the nonrepairable

components is sure to improve the reliability of the repairable system.

[Tobias and Trindade,1994] in their book gave very detailed and more precise

reasons why they think some form of attention now needed to be directed to the study

on repairable systems. Thus, understanding repairable system will go along way to

help in drawing very timely and effective maintenance schedules for the system before

it breaks down and also making provision for all needed spare parts to help restore

the system when it fails. Related to this, is the fact that any information obtained in

the analysis of a system could be used for reliability improvement on later systems.

Alternatively, in a situation where many copies of a system is available, there

will always be the urgent need to have some form of projection on the burn-in ef-

fectiveness, a very clear forecast on the repair cost, should a system fail and also

establishing preventive schedules. The purpose of any such study may be to estimate

the repair rate of the population of systems which will be used for such predictions.

There is the urgent need for a service department such as the OIT to always have

some form of projection on the time to failure of the facilities it operates in enhanc-

ing teaching and learning in the classroom since any such failure will surely have a

negative impact in achieving the goal for that time frame.

Time scale is an essential variable in the study of the pattern of failure of any

kind of system. Thus, as we study models for the reliability of repairable systems,

we must be clear as to what time scale is used to measure the failure time. For a

refrigerator that runs constantly, it may be appropriate to measure time as actual
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elapsed time. For projectors such as those used in the Technology Enhanced Class-

rooms (TEC) and Custom Multimedia Rooms (CMR) as in BYU, it will be ideal to

measure time as the total number of hours each system has run prior to failure. It

can also not go without mention that, in reality the time to subsequent failure is gen-

erally a function of many variables including the basic system design, the operating

environment, and the quality of the repairs (the material used, the competency of the

technician and so on) [Tobias and Trindade,1994].

2.2 Probabilistic Modeling of Repairable Systems:

Supposing upon failure, a single-component system is apparently restored to

”same-as-new” or a brand new condition by using a component from the same popu-

lation as the failed one, then a Renewal Process (RP) of the system is said to have

began. This therefore leads to the assumption that the times between successive re-

pairs are identical and independently distributed. However, replacement of the failed

part by itself, does not necessarily assure a renewal process. [Tobias and Trindade,

1994]. For example, [Usher, 1993], describes a system repaired by the replacement of

a component with identical unit from the same population. Yet, because the cooling

unit of the system was degrading, the times between consecutive fails became shorter,

thereby ruling out a renewal process.

It is however worth noting that in the real world situation, successive parts

for repairs may not necessarily come from the same population. For example, spare

parts may be purchased from different manufacturers than the supplier of the original

system. The renewal process is usually a poor model for a system when one is looking

at the reliability growth since most repairs involve the replacement of only a small

proportion of the system’s parts.

In an attempt to gain insight into a data collected on a repairable system and

also to select the most appropriate model that best fit the data, graphical tools are

best recommended to check for trend in the times between failures. A simple, but

powerful, graphical method is to plot the failure time (t) along the horizontal axis and

the cumulative number of failure time N (t), on the vertical axis. Such plots generally
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indicate which analytical methods are most appropriate. Given that, the plot shows

some significant amount of curvature, either concave up or down over some range

of time t, which implies an improvement or deterioration of the system respectively,

then a renewal process is not an adequate model. Alternatively, a linear relationship

indicates the system remained stable over the time the data were collected. In this

case, the model which can fit the data is the Homogeneous Poisson Process

(HPP). [Basu and Rigdon, 1997]. The only caution here is that, a smaller data size

may sometime depict a wrong picture on the kind of trend that really exists in a data.

The basic conditions that justify the use of this model are that the process

has stationary increments, that is, the number of events that occurs in any interval

of time depends only on the length on the interval and not the starting point of the

interval. Couple with this is the fact that the inter-arrival times are independently

and exponentially distributed. In addition, the process has no memory. [Tobias and

Trindade, 1994]. In a simpler term, the HPP can therefore be defined as a renewal

process for which the interarrival distribution is exponential.

In a more practical sense, the HPP is a laudable model used to calculate the

expected number of spare parts to stock to ensure a system operates during a mission

period t. Thus, given that the interarrival times Xi are independent and exponentially

distributed with failure rate λ will imply the PDF is;

f(x) = λe−λx, 0 ≤ x.

Therefore the probability of observing exactly N(t)=k replacements in the interval

(0,t) is;

P [N(t) = k] =
(λt)ke−λt

k!
, k = 0, 1, 2, ....

This implies the expected or the mean value M(t) for N(t) is λt and the variance is

also λt. Intuitively, the probability of no failure in the Poisson process in the interval

(0,t) is;

P [N(t) = 0] =
(λt)0e−λt

0!
= e−λt
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and the probability of at least one failure is 1−e−λt, which is the same as the CDF for

an Exponential distribution with failure rate λ . For instance given that components

are assumed to fail with an Exponential distribution having failure rate λ= 0.00030 =

0.030%/hr. with a mission duration of 500hr. A 95% probability of successful mission

completion and how many parts needed to be carried for a single component system

could be derived by first finding out the expected number of failure within the time

frame, which in this case is λt = 0.00030 x 500 = 0.15. This implies the probability

of two or more failure will be;

1− [
(λt)0e−λt

0!
− (λt)1e−λt

1!
] = 1− [

(0.15)0e−0.15

0!
− (0.15)1e−0.15

1!
]

= 1− [0.861− 0.129]

= 0.010

or1%

This indicates carrying one spare part will assure operation during the mission

with nearly 99% probability. Thus in all, two parts may be required; the first is the

original and the second being the spare.

In a scenario where a plot of the data on a system under observation depict a

significant curvature in its trends, will therefore imply the interarrival time of failures

are not identically distributed hence a different model other than the HPP must be

fitted. The Non-Homogeneous Poisson Process abbreviated NHPP is therefore

an excellent choice in such cases. [Barlow and Hunter, 1960], [Ascher and Feingold,

1984]. When the reoccurrence rate is a function of time, it is called the intensity

function, λ(t). It has a mean cumulative function defined as; M(t) =
∫ t
0 λ(τ)dτ .

[Ross, 1993] has shown that;

P [N(t + s)−N(t) = n] = e[M(t+s)−M(t)] [M(t + s)−M(t)]n

n!
, n ≤ 0

This clearly implies that any incremental occurrence within the time interval between
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t and (t+s) has a Poisson distribution. Intuitively, it will imply the reliability R(s)

defined on the probability of zero occurrence in the specified time t to (t+s), is

R(s) = e[M(t+s)−M(t)].

2.3 Shortcomings of Probabilistic Modeling:

The general assumption that operating time is the only variable in reliability

study appears too restrictive and unrealistic. For instance, the number of on/off cy-

cles of parts as simple as the light bulbs need to be considered when looking out for

the appropriate probabilistic model for any system that uses such part [Farewell and

Cox, 1979]. Thus, in as much as the existing model may be reasonably accurate in

predicting the distribution, it needs mentioning that they may become totally inaccu-

rate when other significant variables which could exert increasing effects on reliability

are ignored. It is from this perspective that we now discussed the shortcomings of

the probabilistic models mentioned above.

i.)Replacement parts may not necessarily come from the same population:

There is a strong likelihood that the parts used for repairs may not necessary

come from the same population as assumed. Thus, there is the possibility that a

part with the same brand name and model could just be an imitation designed by a

different company and not from the original manufacturer as the failed part. When

this occurs, then the assumption of identical and independent distributed of the

renewal process in highly defeated.

ii.) Overhaul do not necessarily restore a system to a same-as-new condition:

The general assumption that by replacing a failed part, a system tends to gain a

condition as a brand new is highly disputed by the following evidences; Lavalee et al.

(1974) stated,”It appears, therefore, that an aircraft will be statistically less reliable

and will require more unscheduled lower level maintenance after depot mendainte-

nance than before.” Again, in his 1975 paper, he reported,”There is considerable
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evidence that engines wear in mishap, accident, and removal rates generally being

higher shortly after overhaul than later in the engine’s tour.” Other conclusions like

this,”A review of the work performed in 16 ships overhauls revealed that 10 out of the

remaining 12 equipments that show no degradation were worked on in less than 20%

of the overhauls. In contrast, six of the nine equipments that showed degradation

were worked on in more than 40% of the overhaul.” [Tullier, 1976].

iii.) There may be incomplete repairs where the real problem is not corrected during

the first repairs:

In an attempt to repair a failed system on a first failure, there could be instances

where an incomplete repair will lead to either an improvement or deterioration of the

system. This could be incidental, however it may have an effect on the reliability of

the system over a given duration.

iv.) All parts will not be in series:

In a real world sense, it is very obvious that most systems are not designed with

components in series where the failure of one may lead to the complete failure of

the whole system. It will therefore become very difficult to assess the importance

of either a designed-in redundancy (e.g. two fuel pumps for an aircraft engine) or

operational redundancy (multiple spark plugs in an automobile engine) [Ascher and

Feingold, 1984].

v.) Inconsistence stresses may result in seasonal effects:

Time is often emphasized as a factor that affects the reliability of a repairable system.

However, it is worth mentioning that, besides time, other stresses like the number

of on/off cycling and environmental effects may turn to have seasonal effects. For

example, [Molter, 1979] stated in his paper on a study on air conditioner that failures

were significantly due, at least in part, to the summer weather.

vi.) Repair may be made by adjustment:

11



The repair of a system will initially sound like replacing a failed part with another

one. However, a repair could be done by just adjusting or a giving a gentle tap on

the system without necessarily using any part.

2.4 Alternative Statistical Analysis of Repairable Systems:

It must however be acknowledged, that practically there are too few failures

that may occur on any one system, at least during the limited observation intervals

usually encountered, to apply such techniques as Renewal Process or HPP or

NHPP. They basically, consider time as the only possible factor that explains reli-

ability growth if used in analyzing data on repairable systems. Also, in a situation

where a large number of system copies exist for analysis, there usually are known

differences which may have significant effect on their reliability. Thus, the same type

of system may be switched on and off at different times (e.g. computers in the class-

rooms), the rate at which projector filter accumulates dirt may differ based on their

location, thermal events in the systems may not necessarily be the same (i.e. there

may be differences based on whether the said room is fully air-conditioned or not).

In addition, the skilled level of the maintenance men and the way a system may be

configured may all have considerable effects on the system. It may therefore always

be beneficial to have an alternative analysis even if any of the aforementioned models

is assumed for each system copy.

An earlier method of dealing with any such differences that may have effect

on the system was to either (1) ignore them or (2) to break the data set into two or

more group based on major difference [Ascher and Feingold, 1984]. The weakness in

the second method is that of having inadequate data in any one group for meaningful

analysis when the data is divided into too many groups. Also, the arbitrary segrega-

tion of the data ignores the fact that the systems are basically the same - or at least

similar.

The only useful or best alternative to be considered here is that of a Regres-

sion type of analysis. The kind of approach which provides a common baseline for

all systems and which is suited to the special conditions of reliability analyses such

12



as the presence of censored data and lack of knowledge about the suitable choices

for interarrival time distributions. The kind of regression approach depends on the

number of variables under study. A Simple Linear Regression approach is used

when there is just a single explanatory factor involved, and a Multiple Regression

is used when the analyst has at least two explanatory factors on hand.

The model proposed by Prentice, Williams and Peterson [PWP, 1981] paved

way for reliability analyses using the regression procedure. Their model was an ex-

tension of Cox’s (1972b) model, where multiple failures of a single system can occur.

Thus, in a sense, Cox’s regression model may be considered to be a nonparametric

method. The model may be written as:

h(t), (z1, z2, ..., zm) = h0(t)
∗exp(b1

∗z1 + ... + bm
∗zm),

where h(t,...) denotes the resultant hazard, given the values of the m covariates for

the respective case (z1, z2, ..., zm) and the respective survival time (t). The term h0(t)

is called the baseline hazard ; it is the hazard for the respective individual when all

independent variable values are equal to zero. We can linearize this model by dividing

both sides of the equation by h0(t) and then taking the natural logarithm of both

sides:

log[h[(t), (z...)]/h0(t)] = b1
∗z1 + ... + bm

∗zm.

We now have a fairly ”simple” linear model that can be readily estimated.

While no assumptions are made about the shape of the underlying hazard function,

the model equations shown above do imply two assumptions. First, they specify a

multiplicative relationship between the underlying hazard function and the log-linear

function of the covariates. This assumption is also called the proportionality assump-

tion. In practical terms, it is assumed that, given two observations with different

values for the independent variables, the ratio of the hazard functions for those two

observations does not depend on time. The second assumption of course, is that

there is a log-linear relationship between the independent variables and the underly-

ing hazard function. Another attempt to use the regression method as an alternative
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approach in a reliability study could be traced to Wolfe’s work in 1977 where he

considered the analysis of NHPP with a covariate. He applied his method to small

numbers of events observed on only few systems. [Anderson and Gill, 1982], also used

an extension of the Cox’s (1972b) model on repetitive events. Other writers such as

Braun and Hoem (1979) put further innovation into this approach by analyzing the

data on the birth interval pattern of a set of Danish women with the assumption that

the baseline model for interarrival times has a gamma distribution. [Ascher and Fein-

gold, 1984] also assumed the Weibull distribution as a baseline function to determine

how different temperature rates accelerates the failure times of sampled capacitors

from a given manufacturer in the fashion of regression.

2.5 Cost Models for Repairable Systems :

A system’s reliability can be increased substantially by setting either a pre-

ventive or scheduled maintenance policies in place whereby units which are about to

enter their wear-out life , or are partially worn out , or aged, or are due for a minor or

a major overhaul, are replaced with new units at predetermined periods of operation.

These policies when implemented effectively have the advantage of reducing the aver-

age failure rate of the equipment, reduce the cost and inconveniences associated with

failures, increase the equipment availability and productivity, and if it is a production

system, it will invariably decrease the unit cost of production.[Kececioglu,1995]

By deduction, it will be much more expensive to handle failures during oper-

ation than preventive maintenance, since any such failing unit has the potential of

damaging many other parts adjacent to it or other associated systems. The focus

of this paper, as stated earlier is among other things, help formulate a kind of cost

model that will assist the OIT to adopt an appropriate maintenance policy on their

equipments.

The very kind of stochastic process used in modeling the pattern of failures

on a repairable system determines the nature of the cost model that is applicable. It

is therefore interesting to note that, there is just a limited literature on cost models

for repairable systems since in most cases the usual assumption of a renewal process
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is really inapplicable in the real world situations [Gertsbakh, 1977]. Another reason

being that, only a small portion of a system is replaced during most repairs.

Cost Models for repairable systems are mostly classified into two main cat-

egories. Thus, models associated with deteriorating or those undergoing reliability

improvements. The main principle addressed by models in the first class is that of

establishing some form of policies that will optimize factors such as maintenance

cost, availability, reliability that could make considerable impact on the maintenance

policies of the operating system. The kind of optimization a model will focus on

will always take into consideration the criterion chosen with respect to the length

of the planned replacement interval,(i.e. the cost of minimally repairing the system

are traded off against the cost of replacing the system upon failure). [Ascher and

Feingold, 1984].

2.5.1 Deteriorating Repairable Systems:

Various kinds of Cost Models have been formulated over the years under sit-

uation in which a system is identified to be deteriorating. Notable among them is

what has become known as the Type 1 Model or Age-Dependent Replacement Poli-

cies. In this model, the item is replaced either at failure or after a fixed operating

time I, whichever occur first. It is assumed that the time to failure distribution is of

an increased hazard rate function and the cost of planned replacement is always less

than the cost of replacement after failure. The proposed cost model is expressed as:

E[C(I)] = C3E[N3(t)] + C2E[N2(t)],

where N2(t) is the number of planned system replacements within the time (0, t], N3(t)

is the number of system failures within the time (0, t] which cause system replacement,

(I) is the system planned replacement interval, C2 is the cost of a scheduled system

replacement assumed to be constant and C3 is the cost of an unscheduled system

replacement assumed to be constant [Fox, 1966]. Many other modifications have

since been made to the above cost model. This led to models such as Modified Type I
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Policies, authored by Schaeffer (1971), Minimal Repair Policies which gave credit to

writers such as Barlow and Hunter (1960), Makabe and Morimura (1963) to mention

but a few.

2.5.2 Repairable Systems Under Reliability Improvement

A careful trace on the life cycle of certain systems mostly in production shows

some form reliability improvement after having subjected them to successive redesigns

based on test, analyze and fix programs. When this happens, such systems will always

give lower rate of occurrence of failures. Specific example can be related to a situation

when a system undergoes a debugging period. Eventually, as the causes of failure are

eliminated, the system will operate in a region of constant or near constant rate of

occurrence of failures. Such periods however adds directly to the cost of procurement

and need to be traded off against the cost of repairing the system that fails one or

more times during deployment. The length of the debugging period is however very

significant in making an economic decision on whether to undertake the process or

receiving the product in an unreliable state.

Again, only a handful of research work has been done in this field of reliability

of repairable systems. One such outstanding cost model was that propounded by

Plesser and Field (1977). They assumed a ”minimal repair” model for the pattern of

successive failures with a strict decreasing rate of occurrence of failures, rather than

the one with the bathtub shaped. The proposed model is:

C(tα) = B1 + B2tα + C1
αE[N1

α] + C1E[N1],

where B1 is the fixed cost of debugging,B2 is the cost per system copy per hour of

the debugging program, and C1
α is the repair cost for a copy which fails during the

debugging period.
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Chapter 3

Methodology

3.1 Introduction:

The goal for this project is to analyze the data collected on the projectors

using various statistical approaches and the data at hand. In addition, a cost model

will be formulated to determine the total cost of undertaking both preventive and

maintenance services on the projectors. This cost model will then be used to make

recommendations to the OIT as to what might be the most appropriate maintenance

schedule taking into consideration the cost of replacement and down time of a bulb

in a projector.

It was from a very great effort and much sacrifice on the part of individuals

such as Stephen Zobell, Mark Sullivan, Mark Hales and Blair Warner, that we were

able to obtain the data on projector bulb failures in OIT technology room on campus.

Each person helped to retrieve some information on the projectors from the OIT’s

records and I finally compiled them into a format that will be needed for the analysis.

The final fields arrived at included the following;

1. Date of Failure or Censor

2. Room Number

3. Serial Number of Projector

4. Hours to Failure

5. Projector Type
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6. Number of Logins

7. Number of Thermal Events

8. Failure Indicator

The Number of Logins refers to the counts of logins into the computer system

whenever the projectors were used. This information was taken per room over a

year’s period with the counts computed on weekly basis. With assistance from Mark

Sullivan we were able to track down how many times a system was used with regards

to the login before the bulb failed. Just like any other system powered on electricity,

the projectors also undergo some form of fluctuation in heat. The field for thermal

events therefore is the count of times the heat level of a projector exceed a preset

temperature level. When this occurs the system automatically triggers off and that

is taken as a count of thermal event. The projectors over time have been monitored

to find out if they fail before some specified number of hours of used as a measure

to warrant a replacement from the producers. Since some operate below and beyond

the specified hours, the Failure Indication field is therefore created to represent if the

response variable is censored or an actual failure time.

3.2 Graphical Analysis:

Various graphical tools in SPLIDA will be used to determine the sampling

distribution that best fit the time between bulb failures of the data. This could be

related to the method used by [Davis ,1952] to analyze the number of miles between

successive major failures of a bus engine. In doing so the projectors will be sorted,

based on type,and a Mean Cumulative Plot [Nelson,1988] will be made for each of

the three types of projectors (EPSON 8100, 8200, and 8300). If the trend

in the Mean Cumulative Function plot (MCF) is a straight line, it indicates that

the projector is a renewal process where once a bulb is replaced the system is as

good as new. Also, probability plots will be made to determine the distribution of

the interarrival times between failures. Some viable distributions for time between
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failures that are most likely to be considered include the Exponential, Weibull and

the Lognormal distributions.

If the process is a renewal process and Exponential distribution fits the inter-

arrival times best, then the Homogeneous Poisson Process (HPP) model will

then be fitted to the data. If the MCF plot is convex rather than a straight line, it

would lead to the fitting of the Non-Homogeneous Poisson Process (NHPP)

as an alternative model. If the MCF plot is straight but the Exponential distribution

looks inappropriate, we will then check for Renewal Process with time between failure

on other distribution such as the Weibull, Lognormal, etc.

3.3 Regression Model:

A careful study of the final data, taking into account the various field calls

for the usage of a regression model as an alternative way of undertaking a reliabil-

ity study on the projectors. The purpose of using the regression is to determine if

the distribution of time between failures is dependent upon some variable such as

Projector Type, Number of Thermal Events and Number of Logins.

Both parametric and non-parametric regression models will be explored to find

out which of them offers more viable assessment of the variables under consideration.

Since there is more than one kind of projector,an indicator variable will be created

to represent each particular type. The response variable will include actual time

to failure and time to censor. The proposed Parametric Regression Model using

SPLIDA in Splus will be;

T = β0 + τi + β1X1 + β2X2,

where T is the response variable (Total Hours to Failure), βi is the regression co-

efficients, τi is Projector Type, X1 and X2 are the Number of Thermal Events and

Number of Logins respectively.

An alternative approach will be to run a Non-Parametric Regression model

again in Splus using Surreg(Survival Regression).
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3.4 Proposed Cost Model for the Project:

Holding all prevailing factors referred to in the data constant, it may be pro-

posed that the appropriate type of cost model for the systems will fall directly under

the class of Deteriorating Repairable Systems, given that the time to failure has an

increasing hazard rate, however with some kind of modification. Thus, with the pas-

sage of time, there is a strong likelihood that the systems will tend to be less effective

in executing their intended functions as a result of conditions such as thermal events,

the number of login and logout to mention but a few . Also given the fact that, upon

the failure of a unit as simple as a bulb, the teaching and learning process could come

to some form a stand-still condition, before any alternative measure is set in place to

rectify the situation. This could account for a great loss of time. Besides the cost of

man hours needed to replace such units. It is further assumed that after each failure

the system is only minimally repaired, hence the rate of occurrence of failure of the

system is in effect unchanged by the repair. The purpose of the cost model is to find

out how to minimize the total cost by choice of planned bulb replacement time. The

Expected cost model therefore could be:

E[C(tr)] = C3E[N3(t)] + C2E[N2(t)]

where C(tr) is the total cost of repair or replacement given the interval (0,t], tr is

scheduled bulb replacement time, C3 is the cost of unscheduled bulb replacements

times,C2 is the cost of scheduled bulb replacement times, N3(t) is number of failures

in the interval (0,t] that caused a replacement and N2(t) is the number of planned

bulb replacements in (0.t].

Barlow and Hunter, (1960) showed the optimum replacement time tr that

minimizes E[C(tr)]
t

as t→∞ is given by;

h(tr)
∫ tr

0
R(tr)dt− F (tr) =

C2

C2 − C3

Currently the OIT replaces bulbs after 1800hr or if failure occurs before that
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time. The research interest is to find out if this is the optimum replacement time.
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Chapter 4 
 

Data Analysis and Findings 
 
4.1 Graphical Analysis 
  
         Various tools and techniques have been implored on the data to enable the 

research question of whether the OIT should maintain the current policy of the 1800 

hours replacement time of a failed bulb in the projectors. In undertaking this analysis, 

collected data was first treated as a whole taking into accounts all the regressor 

variables on the three types of projectors used in the designated media rooms.  

         Some basic and well known distributions have been fitted to determine which of 

them will offer a good fit to the data. Fig.1 below shows a plot of these distributions. 
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           Fig.1     Probability Plots of Interarrival Times 
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For further study on the distributions, much attention has been paid on their 

respective log likelihood values which are displayed in the Table 1 below. 

 

 

 

 
 
 
 
 
 
 
 
 
 

Table 1.  Log Likelihood for Basic Distributions 
 
 

 

       Considering th  either Fig.1 or Table 1, one will not hesitate to 

avoid using the Exponential Di odel 

therefore go to rule out the possibility a Homogeneous Poisson Processes since it has 

been established from the chapter on the  Literature  Review that we need to have the 

data to be independent and me a Renewal Process(RP) 

nd also independent and exponentially distributed to assume the Homogeneous 

MAXIMUM POINT 

e findings from

stribution to fit any m in this study. This will 

DISTRIBUTION LOG LIKELIHOOD AT 

Exponential Distribution -292.6 
Normal Distribution -288.5 
Frechet Distribution -285.6 

Smallest Extreme Value -292.5 
Distribution 

Largest Extreme Value -286.2 
Distribution 

Lognormal Distribution -284.3 
Weibull Distribution -284.3 

identically distributed to assu

a

Poisson Process (HPP). Plot on the Exponential Distribution and its Hazard Function 

is respectively shown in Fig 2 and Fig.3 below. 
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Fig.2 Exponential Probability Plot of Interarrival Times      
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Fig4. through Fig.7 also shows the Lognormal and the Weibull distributions with 

their respective hazard plots 

 

 

 

 

 

 

 

                              

                            Fig.4 Lognormal Probability Plot of Interarrival Times      

 

 

 

 

 

                      Fig.5 Lognormal Hazard Plot 
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                              Fig.6 Weibull Probability Plot of Interarrival Times 

 

 

 

 

                            Fig.7 Weibull Lognormal Hazard Plot 

Hazard plots for the Lognormal and the Weibull distributions show clearly 

 is an increase rate in failure time. However, the Weibull hazard plot shows 
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 a point with a constant failure rate later. Since projector bulbs should not have a 

onstant failure rate in any interval, it was decided that the Weibull distribution is 

more appropriate.
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        To further show that, the Exponential distribution is not adequate, a Log 

Likelihood Ratio Test was used as a diagnostic tool, where T is the test Statistic: 

Log Likelihood Ratio Test 

T

)1,95.0( 84.3

6.16))3.284(6.292(2

χ =

oHrejectweTSince 2
)1,95.0(

2

χ>

=−−−×=

 

       Other diagnostic assessment done on the data was to use the Mean Cumulative 

Plot to check if the time to failure on the projector really warranty the fit of the 

Weibull distribution. This was done on the whole data irrespective of the projector  

type (Fig.8) and also on the specific type of projector (Fig.8 to 11). The plots below 

show the output. 
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Mon Nov 13 17:24:28 MST 2006

   0  400  800 1200 1600
-0.1

 0.0

Mon Nov 13 17:24:32 MST 2006Time in Hours of Failure

 0.1

 0.2

 0.3

 0.4

 0.5

M
ea

n 
C

um
ul

at
iv

e 
Fu

nc
tio

n

Mean Cumulative Function for MCFType8200 data 
with 95%Confidence Intervals

Mon Nov 13 17:24:32 MST 2006

   0  500 1000 1500 2000 2500
-0.2

 0.0

Mon Nov 13 17:24:36 MST 2006Time in Hours of Failure

 0.2

 0.4

 0.6

 0.8

 1.0

M
ea

n 
C

um
ul

at
iv

e 
Fu

nc
tio

n

Mean Cumulative Function for MCFType8300 data 
with 95%Confidence Intervals

Mon Nov 13 17:24:36 MST 2006

CF Plot for Data 
om 8100 Projectors 

         Fig 10. 
CF Plot for Data 
om 8200 Projectors 

         Fig 11. 
CF Plot for Data 
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        A careful look at Fig.9 shows the data on 8100  type of projectors did not give a 

ood fit which could be acknowledg h data 

 them. The straight line trend in Figure 8, 10 and 11 indicate that a 

 reasonable. 

.2 Regression Analysis on All Projector Data: 

bles used are the Number of Logins, Number of 

al Events, and Type of Projector. Indicator variables were created for the Type 

has a contributing influence. 

g e to the fact that there were not enoug

collected on

Renewal Process is

 

4

        To determine which of the explanatory variables has a significant effect on the 

hour to failure of the bulbs in the projectors, a multiple regression analysis was run 

using the Hours recorded at either the failed or censored time as the response 

variable. The explanatory varia

Therm

of Projectors to help distinguish if any type in question 

The output below shows the Number of Logins on the projector and the Type were 

significant since their respective 95% Lower and Upper confidence intervals do not 

include zero (0). 

Table 2:   REGRESSION Output on the  Whole Data 
Variable: Relationship (g)                          
1 Type8200: Linear       

3 NO..LOGINS: Linear     

Model formula: 
Location ~ Type8200 + Type8300 + NO..LOGINS + THERMAL.EVENT 
Log likelihood at maximum point: -265.2  
  Parameter                                                   Approx Conf. Interval 

(Intercept)               

2 Type8300: Linear       

4 THERMAL.EVENT: Linear  

                                        MLE       Std.Err.    95% Lower 95% Upper  
   5.675336  0.3461271    4.9969398   6.353733 

Type8200                   0.600608  0.3694854   -0.1235700   1.324786 
Type8300                   0.950565  0.2949872    0.3724004   1.528729 
NO()LOGINS              0.001698  0.000365

074458  0.108810
3    0.0009822   0.002414 

THERMAL.EVENT     0. 0   -0.1388060   0.287721 
453221  0.0610493    0.3480582   0.590157 
206431  0.2972087    1.6944649   2.873083 

Sigma                         0.
weibull.beta               2.
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        In addition to the output 
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shown above, residual plots were used to check if the 

eibull Probability 

                             Fig.12 Weibull Probability Plot of Residuals on all Projectors 

 

 

 

                                                  Fig.13 Residual versus Number of Logins on all Projectors. 

model fit and distribution applied was appropriate.  Fig.12 is a W

Plot of the residuals and it depicts very clearly that, Weibull distribution has a good 

fit. 
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4.3 Regression Analysis on Type 8300 Projector Data: 

      In attempt to narrow down the scope of the study, more attention was given to 

the Type8300 projectors since it has a significant effect on the whole data set. The 

en the regression was run on the whole 

ataset turned out to be positive which is the opposite of what was expected.  When 

er week 

f Logins) and the Hours to 

  

coefficient of the Number of Logins wh

d

fitting the regression model to this subset of the data, the average Logins p

was used as the explanatory (rather than the total number o

failure as the response variable.  The output below, also confirmed the explanatory 

variable is significant since the constructed Confidence interval did not capture zero  

 

Table 3: Regression Output on Type8300 Using Average Logins 

 
Ty8300AvLg data   
Maximum likelihood estimation results: 

Weibull Distribution 
Variable: Relationship (g)                           
1 Average.Logins: Linear  
Model formula: 

Response units: Hours to Failure 

Location ~ g(Average.Logins) 
og likelihood at maximum point: -213.5  

 

)                 8.45704      0.42716      7.61982       9.294260 

L

Parameter                                                      Approx Conf. Interval 
                                     MLE        Std.Err.   95% Lower    95% Upper  
(Intercept
g.Average.Logins.   -0.04437      0.01790     -0.07945      -0.009293 

 0.51008      0.08131      0.37321       0.697139 
0      1.43443       2.679444 

ts such as the Model and Residual plots were again used to 

g.14 below show the model plot whilst Fig.15 

sigma                       
weibull.beta              1.96048       0.3125
 
 
 
         Some analytical plo

assess if this model is appropriate. Fi

through Fig. 17 shows residual plots.  
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Fig.17 Weibull Probability Model Plot of Residuals on 8300 projectors 
Using Average Logins 

 
      A look at the Box-Cox transformation plot suggested some form of 

transformation. The figure below shows the plot.  

 

 

 

 

                    Fig.18 Box Cox Transformation Plot on 8300 projectors                                    
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Average.Logins.Sq. on Linear Scale
   0  500 1000 1500 2000 2500 3000

Type8300AvLG2 data 
e.Logins.Sq.Linear , Dist:Weibull

      This led to refitting the Model using the square of the average Logins on the 

ype8300 projectors as the explanatory variable. The output just showed some 

ifference which was noted in the log likelihood value. Thus, instead of -213.5 in the 

rst case, we now had -211.5 which indeed confirm the fact that the transformation 

ielded a better fit.  Below is the output for that analysis and its corresponding Model 

nd Residual plots. As shown in Fig.19 

Table 4: Regression Output on Type8300 Using Average Logins Squared
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Maximum likelihood estimation results: 

Weibull Distribution 
Variable: Relationship (g)                               

Model formula: 

Log likelihood at maximum point: -211.5  
Parameter                                                    

Type8300AvLG2 data   

Response units: Hours to Failure 

1 Average.Logins.Sq.: Linear  

Location ~ g(Average.Logins.Sq.) 

                  Approx Conf. Interval 
                                             MLE           Std.Err.        95% Lower   95% Upper  
(Intercept)                      7.9561315       0.1916 98     7.580583     8.3316797 0
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                       Fig.19 Model Plot for 8300 Data Using Average Logins Squared 

g.Logins.Sq.         -0.0009613       0.0002215    -0.001395    -0.0005272 
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Time

Expected survival (for a subject with average covariates)

      To confirm the results of the Weibull regression, the Cox Proportional Hazard 

 

e. The results are shown in Tables 5 and 6 and Fig.23 and 24 

Cox Proportional Hazards Output for Type8300 using             

  

function was run on the data with average Logins and the average Logins squared as

the explanatory variabl

below.     

 
        Table 5:        

                                                                average Logins  

Su
rv

iv
al

0 200 400 600 800 1000 1200 1400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

Average.Logins             0.0902        1.09         0.0348       2.59     0.0095 

                exp(coef)   exp(-coef)    lower .95     upper .95  
verage.Logins              1.09           0.914          1.02           1.17 

 (logrank) test  = 6.33  on 1 df,   p=0.0119 

 
Fig. 23 Survival Curve from Cox Regression with Average Logins as Explanatory Variable 

 
Call: 
coxph(formula = Surv(Hours.to.Failure, Status) ~ Average.Logins, data =  
 Ty8300AvLg, na.action = na.exclude, method = "efron", robust = F) n= 146  
 
                                       coef       exp(coef)     se(coef)        z           p  

 
                  
A
 
Rsquare= 0.044   (max possible= 0.721 ) 
Likelihood ratio test  = 6.58  on 1 df,   p=0.0103 

ald test                  = 6.72  on 1 df,   p=0.00952 W
Score
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able 6:        Cox Proportional Hazards Output for Type8300 T  
                                        using (average Logins)2   

all: 
oxph(formula = Surv(Hours.to.Failure, Status) ~ Average.Logins.Sq., data =  
ype8300AvLG2, na.action = na.exclude, method = "efron", robust = F) n= 146  

                                      coef      exp(coef)      se(coef)         z               p  
verage.Logins.Sq.      0.00209           1         0.000546       3.82       0.00013 

                    

hood ratio test  = 10.4  on 1 df,   p=0.00123 

 
Fig. 24   Survival Curve from Cox Regression with 

               (Average Logins)2 as Explanatory Variable 
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                 exp(coef)   exp(-coef)     lower .95     upper .95  
            1              0.998               1                1 Average.Logins.Sq.

 
Rsquare= 0.069   (max possible= 0.721 ) 
Likeli
Wald test                  = 14.6  on 1 df,   p=0.000132 
Score (logrank) test = 15.5  on 1 df,   p=0.0000808 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 38 
 



        The results are essentially the same as the Weibull Regression, with a significant 

ontribution from the explanatory variable and the model with average squared fitting 

e model better than the model with average Logins. 

 

 
.4 Cost Model Base t

c

th

4 d on the Weibull Dis ribution: 
  
       Given that a continuous random variable have a Weibull distribution with 

parameters, 00 >> ηβ and , thus, ),(~ βηWeibullX  then its pdf would be 

expressed  in the form; 

( ) 0,/exp1),;( 1 >−⎟⎟
⎞
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= − xxxxf ββ
β

η
η

ββη . 
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Also the Hazard rate,  

1

)(
)()( = −= β

βη
β t

t
t

  Relating this to the project scenario, it will imply 

R
fth  

β and η  are the shape parameter 

and characteristic life res  failure. This 

will mean the CDF, F(t) can be written as  

pectively and (x) can be related to time (t) to

⎥
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⎤
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 where 
β

σ =  and 1 ημ log= . Now fitting a regress n mo el,         io d

                                    [ ][ ]pzt −−++= 1loglog)log( γμ  

based on the Weibull distribution, where (z) is the average number of logins per week 

in this particular case then, 
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        If we the co unscheduled replacement ,23 MCClet st of an =  where  2C  is the 

cost of a scheduled replacem  3.4, then for the 

Weibull regression model the optimum scheduled time, t  is the solution of the 

equation; 

ent in the Cost Model of Section
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where ,, γμ  and  σ  are the parameters from the Weibull distribution. 

        To derive the optimum time for wh

we will therefore have to fix z (the average Logins per week), 

variables in the model constant.  A value has to be placed on the cost to the multiple, 

M , which in this case  will be the cost to the learning activity when a projector failed 

 

es. 

r

the average number of Logins in the case of the first analysis or the that quantity 

squared in the second case. For example, using  

4792373.0,009613.0,9561315.7

ich bulbs in the projectors must be replaced 

but keep all other 

during class time compared  to the cost to replace a bulb as a scheduled maintenance 

in  the evening or over the weekend. Given that, the assumed value, M, is placed at 

ten tim

        Using Solver in Excel and the coefficients representing the constants in the 

equation above, we solve for the t  ,the optimum time for replacement  by varying z, 

=−==μ γ σ  , which are the coefficients form 

either the Regression or the Parametric Survival analysis on the Type8300 with 
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Finding the Optimum Time to Failure

0

500

1000

1500

2000

2500

4500

0 10 20 30 40 50

Average Logins (z)

O
pt

im
um

 T
im

e

3000

3500

4000

 (t
r)

M=10
M=5
M=2

16

and the corresponding plot in Fig.25 below. 
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Fig. 25 A plot of Optimum replacement times as a function of Average Logins. 
 

average logins and using M=10, M=5 or M=2. The generated values for rt  are shown 

in Table 7 

 

 

 

 

 

 

Table 7: Optimum time as a function of Average Logins 

 

 

 

 

 

Average Logins Optimum Replacement Times 
z M=10 M=5 M=2 
1 3196.164 3463.158 4272.326 
5 2676.394 2899.972 3577.551 

12 1961.837 2125.721 2622.396 
18 1503.296 1628.877 2009.465 
25 1101.938 1193.99 1472.967 
36 676.3809 732.883 904.1214 
45 453.6953 491.5955 606.4569 

OIT- Current

Recommendations
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     From the graph above, it will be noted that quantifying the lost of time to 

arn e (i.e. 

ber of 

ng hours as a result of a failure of bulb 

during class hours, we strongly recommend that, the current scheduled time be 

reduced to about 1550 hr taking since the data accounted for  an average 16  logins 

per room on campus.  The graph also shows what might be the situation when M=5 

and M=2. It is also clear that for rooms where projector is used more often and the 

average number of logins per week is greater than 16, the scheduled replacement time 

should

  

 

  

le ing as ten times the cost of the current OIT’s scheduled replacement tim

M=10), then it is clear that the office is operating below the average num

Logins per room as accounted for in the data.   To improve upon the reliability of the 

projectors and also avoid the lost of learni

 be reduced to less than 1550 hrs as indicated in Table 7 and Fig.25 

 

 

 

 

 

 

 



 

Chapter 5 

Summary and Conclusions 

 
        The Office of Information Technology (OIT), a unit at the Brigham Young 

University campus has the responsibility among many others of overseeing to the 

smooth running and maintenance of the projectors used for learning and teaching 

activities in rooms designated as Media Rooms on the entire university campus. This 

vital role is played by keeping records on the times and causes of failure of the bulbs 

in the projectors and other maintenance ser

        The main objective of this paper is to analyze the data so collected and help to 

detect the failure rate of such systems, predict the optimal replacement time for the 

bulbs with the goal of maximizing the reliability of the systems and finally formulate 

a cost model that will be used to timal cost involve in servicing a 

failed projector.  

      To achieve this goal, several individuals were contacted to help retrieve the 

Type, Number of Logins, and Number of Thermal Events were used for the analysis. 

 

vices on each of the projectors. 

estimate the op

  

needed data set from an ORACLE database used by the office and given out in an 

Excel spreadsheet. This indeed came with some information which were not needed. 

However, after various data cleaning procedures, fields such as Date of Failure, 

Room Number, Serial Number of Projector, Hours to Failure of the Bulbs, Projector 
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       Findings from the data after trying various probabilistic models, showed that the 

projector bulbs undergo a renewal process , which goes to imply that, whenever a 

is shows clearly that the Number of Logins into the projector 

 

 

 

 

 

 

failed bulb is replaced, the projector operates as same as it was before failure. Also 

the Weibull distribution gave the best fit to the interarrival times, which led to the 

acceptance of general renewal process and rejection of the Homogeneous Poisson 

Process (HPP). Finally, all assessment on the explanatory variables during a 

regression analys

contributes significantly to the failure of the bulbs. 

      The OIT currently uses 1800hrs as the scheduled replacement time for all 

replacements. However, modeling the data as a the Type 1 Model or Age-Dependent 

Replacement Policy  since the systems showed an increasing failure rate, it became 

very obvious, when assuming that the cost of lost hours of learning is placed at ten 

times of repairing the system when classes are not in progress, then  the scheduled

replacement time needs to be reduced drastically taking into consideration the number 

of average logins per week. Table 7 and Fig.25  

    

 

 

 

 

 

 44 
 



Bibliography 

Andersen, P.K. and Gill, R.D. (1982), “Cox’s Regression Model for Counting Processes; a    

  Lager Sample Study” Ann. Stat.6, 701-726, 

Ascher, H. E. and Feingold, H. (1984), Repairable Systems Reliability, Marcel Dekker,  New  

  York, NY, pp.78-9. 

Barlow, R.E. and Hunter, L. (1960), Optimum Preventive Maintenance Policies, Operations  

Basu, A.P. and Rigdon, S.E. (1997), Statistical Model for the Reliability of Repairable  

  Systems” pg 5. 

  Research, 8, 90-100 

Braun, H. and Hoem J.M (1979), “Modeling Cohabitational Birth Intervals in the Current 

ish Population,” Lab. Of Actuarial Math., Univ. of Copenhagen, Working Paper No.24 

ox, D.R. (1972b), “Regression Models and Life Tables (with Discussion), ”J. Roy. Stat.  

Soc., ser. B, 34, 187-220 

avis, D.J.  (1952), “An Analysis of Some Failure Data,” J. Amer. Stat. Soc. 47:113-150 

arewell, V. T. and Cox, D.R (1979), “A Note on Multiple Time scales in Life testing,” J.  

Roy Stat Soc. Ser. C, 28, 73-75 

ox B. (1966), “ Age Replacement with Discounting”, Operations Research,14, 533-537 

ertsbarkh, I. B. (1977), Models of Preventive Maintenance, North –Holland, New York.      

(1995), “Maintainability, Availability & Operational Readiness Engineering”  

Vol. 1 pg 243 

4), Aircraft Periodic Depot Level Maintenance Study, Center for Naval  

nce Study, Center for Naval Analyses,  

ura, H.(1963), “On Some Preventive Maintenance Policies,” J.  

Reliability Investigations on an Automatic Test System in Avionics  

No.  

 Sein. France, pp 27-1 to 27-13. 

Dan

C

  

D

F

  

F

G

Kececioglu, D. 

  

Lavalee, W. (197

  Analyses, Arlington, Virginia, Rep. No. CNS 1025  

Lavalee, W. (1975), Aircraft Engine Maintena

  Arlington, Virginia, Rep. No. CNS 1060  

Makabe, H. and Morim

  Operations  Research Society of Japan, 6 ,17-47. 

Molter, H.H. (1979), “

  Reliability, Its Techniques and Related Disciplines” AGARD Conference Proceedings 

  261, Neuilly Sur

Nelson, W. (1988), “Analysis of Repair Data”, Proceedings Annual Reliability and  

  Maintainability Symposium, pg. 231- 233 

Prentice, R.L. Williams, B.J. and Peterson, A.V. (1981), “On the Regression Analysis of  

 45 
 



  Multivariate Failure Time Data,” Biometrika, 68, 373-379 

to Probability Models”, 5th ed. Academic Press San Diego,  

 Trindade, D.C. Applied Reliability’ New York Van Nostrand Reinhold,  

dation of Shipboard Machinery”,  

 Models and Misconceptions,”, Quality  

ovariate on a Poisson Point Process”,  

Plesser K.T. and Field T.O (1977),Cost-Optimized Burn-In Duration for Repairable  

  Electronic Systems, IEEE Trans, R-26,195-197 

Ross, S.M. (1993), “Introduction 

  CA. 

Schaeffer, R.L. (1971), “Optimum Age Replacement Policies with an Increasing Cost  

  Factor”, Technometrics, 13,139-144. 

Tobias, P.A. and

  1986 (2nd ed. 1995). 

Tullier, P. (1976), “Determining Reliability and Degra

  ARMS, IEE- 76CHO-1044-7RQC, pg.239-244.  . 

Usher, J.S. (1993), “Case Study: Reliability

  Engineering, 6(2): 261-271. 

Wolfe, R.A. (1977), “Testing for the Effect of the C

  Div. of Biostat. Stanford Univ.Tech. Rep. No. 35  

 46 
 


	Life Data Analysis of Repairable Systems: A Case Study on Brigham Young University Media Rooms
	BYU ScholarsArchive Citation

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Literature Review
	2.1 Repairable Systems
	2.2 Probabilistic Modeling of Repairable Systems
	2.3 Shortcomings of Probabilistic Modeling
	2.4 Alternative Statistical Analysis of Repairable Systems
	2.5 Cost Models for Repairable Systems
	2.5.1 Deteriorating Repairable Systems
	2.5.2 Repairable Systems Under Reliability Improvement


	3 Methodology
	3.1 Introduction
	3.2 Graphical Analysis
	3.3 Regression Model
	3.4 Proposed Cost Model for the Project

	4 Data Analysis and Findings
	4.1 Graphical Analysis
	4.2 Regression Analysis on All Projector Data
	4.3 Regression Analysis on Type 8300 Projector Data
	4.4 Cost Model Based on the Weibull Distribution

	5 Summary and Conclusions
	Bibliography

