
Jing Dai
Jingjing Chi
Bin Chen
Liping Ju

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

https://scholarsarchive.byu.edu/iemssconference/2010/all/35

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

Jing Dai 1, Jingjing Chi1, Bin Chen 1,2*, Liping Ju 1

1 State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
2 State Key Laboratory of Turbulence and Complex Systems, Peking University, Beijing 100871, China

Abstract: Security evaluation has become a hot topic in the research field of water resource management. In this paper, we established a novel water resource security indicator system based on the Pressure-Status-Response (PSR) framework using grey relation analysis and technique for order preference by similarity to ideal solution (TOPSIS). A case study of Beijing from 1996 to 2007 was conducted to verify the evaluation system. Results showed that the grey relative closeness degrees of water resource security to the positive ideal solution were low, with the least one of 0.360 in 1999 and largest one of 0.527 in 2007, implying that Beijing was facing severer challenges with water resources during the concerned time. Also, the analysis of water resource security indicated that the pressure of water resource was constantly increasing. Finally, factor analysis was employed to calculate the grey relation degrees of evaluating indices with the ideal solutions so as to reveal the relativity of water resource security of Beijing, which may contribute to a better understanding of the urban water resource management and regulation.

Key words: water resource security; grey relation analysis; TOPSIS; factor analysis

1 Introduction

The increasing impacts of human activities and climate change have imposed great challenges on water resource security in many parts of the world. It is estimated that 2.7 billion people will have to be confronted with water scarcity by 2025 (Lyla, 2007). People in developing countries are particularly at risk because of severe water pollutions, environmental damages, poor water supply conditions and even social conflicts caused by water problems.

There existed literatures on water resource security using various methods, e.g., systems dynamics (Zhang et al., 2002), multi-objective and multilevel fuzzy optimization model (Han et al., 2003), set pair analysis (Lu et al., 2006), and matter-element evaluation model (Li et al., 2006). Compared with traditional regression statistical methods, which require more data and time, the grey relation analysis (GRA), originally formulated by Deng, can obtain reasonable and precise results (Lin et al., 2007). According to the grey system theory, water resource system is regarded as a grey system including resource, society and economy subsystems. Recently, GRA has been widely applied in many fields such as agricultural, socioeconomic and
environmental systems (Kuo et al., 2008; Lin et al., 2007; Zeng et al., 2007; Wang, 2007; He and Hwang, 2007; Fu et al., 2001).

Meanwhile, as one of the most useful multi-attribute decision making (MADM) methods, technique for order preference by similarity to ideal solution (TOPSIS) was widely used in areas of economy and environment (Li, 2008; Shyur, 2006; Montanari, 2004), manufacturing (Bhangale et al., 2004), waste management (Wu et al., 2009, Cheng et al., 2003), tourist analysis (Hsu et al., 2008), water resource management (Simonovic and Verma, 2008), transportation (Tzeng et al., 2005), project management (Kao et al., 2006), inventory planning (Tsou, 2008), airline service evaluation (Tsaur et al., 2002). Therefore, TOPSIS method can be combined with GRA to calculate water resource security performance scores and outranking.

In this paper, TOPSIS based grey relation analysis is introduced with a case study of Beijing city. The temporal evaluation of water resource security is conducted to reveal the pressure of water scarcity on Beijing. Finally, factor analysis is also employed to calculate the grey relation degrees of selected indices with the ideal solutions so as to quantify the relativity of water resource security of Beijing.

2 Methodology

2.1. Grey relation analysis and TOPSIS method

The concept of grey relational space was proposed based on the combined concepts of systems theory and space theory, which emphasized the ‘greyness’ as incomplete information: Grey relations refer to the uncertain relations between things, elements of systems, or between elements and behaviors (Kuo et al., 2007). The aim of the grey relation analysis (GRA) is to measure the relation among elements based on the degree of similarity or difference of development trends among these elements (Feng and Wang, 2000).

Hwang and Yoon introduced the TOPSIS method, assuming that the best alternative should have the shortest distance from the positive ideal solution (PIS) and the largest distance from the negative ideal solution (NIS) (Ahi et al., 2009; Thakker et al., 2008; Wang and Elhag, 2006). The solution comprises all the best achievable values of the criteria, while the worst solution is composed of the worst criteria values achievable. TOPSIS simultaneously considers the distances to both PIS and NIS, and a preference order is ranked according to their relative closeness, and a combination of these two distance measures. In fact, TOPSIS is a utility-based method that compares each alternative directly depending on data in the evaluation matrices and weights.

2.2. TOPSIS based grey relation analysis model

Assume the integrated water resource security multi-attribute evaluation as \(Q = \{S, M, H\} \), in which \(S = \{s_k\} (k=1,2,\ldots,i) \) is the time series, \(s_k \) is the \(k \)th year; \(M = \{m_r\} (r=1,2,\ldots,n) \) is the indicator system. Thus, the decision matrix will be \(H = \{H_{kr}\} \times n \), of which \(H_{kr} \) is the value of \(m_r \) in \(s_k \). We set the comparative solution as
$X_i=\{X_1(r), X_2(r)\ldots X_k(r)\ldots X_{11}(r)\}$, of which $X_k(r)$ is the value of water resource in the kth year in which include n indices. The reference solutions are constituted by the ideal solution ($M^*={M^*(1), M^*(2)\ldots M^*(r)\ldots M^*(n)}$) and the worst solution ($M^0={M^0(1), M^0(2)\ldots M^0(r)\ldots M^0(n)}$), and they are composed of the best and worst value of the n indices, respectively. The grey correlation integrated water resource security evaluation model can be established with four steps:

1) Calculate the weight of each index, and set it as $W=\{w_r\} (r=1, 2, \ldots n)$;

2) Unify the evaluation matrix composed by comparative solutions and reference solutions. And set the standard comparative solution, ideal solution and worst solution as $Y_k=\{Y_k(1), Y_k(2)\ldots Y_k(r)\ldots Y_k(n)\}$, $Y^*={Y^*(1), Y^*(2), Y^*(r)\ldots Y^*(n)}$, $Y^0={Y^0(1), Y^0(2)\ldots Y^0(r)\ldots Y^0(n)}$, respectively.

3) Calculate the grey correlation degree between comparative solutions and ideal solution (rk*), and grey correlation degree between comparative solutions and worst solution (rk0). The grey correlation degree of r index in X_k with this index in ideal and worst solution is calculated as follows:

$$r(Y^*, Y_k) = \frac{\min_{k \in i, r \in n} \min_{k \in i, r \in n} |Y^*(r) - Y_k(r)| + \varepsilon \max_{k \in i, r \in n} \max_{k \in i, r \in n} |Y^*(r) - Y_k(r)|}{\max_{k \in i, r \in n} \max_{k \in i, r \in n} |Y^*(r) - Y_k(r)|}$$

$$r(Y^0, Y_k) = \frac{\min_{k \in i, r \in n} \min_{k \in i, r \in n} |Y^0(r) - Y_k(r)| + \varepsilon \max_{k \in i, r \in n} \max_{k \in i, r \in n} |Y^0(r) - Y_k(r)|}{\max_{k \in i, r \in n} \max_{k \in i, r \in n} |Y^0(r) - Y_k(r)|}$$

where $\varepsilon (0<\varepsilon <1)$ is the distinguishing coefficient, which is equal to 0.5. Then the grey correlation degree of X_k with ideal and worst solution can be given by:

$$r^*_k = r(M^*, X_k) = \sum_{r=1}^{n} w_r r(Y^*, Y_k)$$

$$r^0_k = r(M^0, X_k) = \sum_{r=1}^{n} w_r r(Y^0, Y_k)$$

4) Calculate the grey relative closeness degree $q_k (0<q_k<1)$, which is used as a comprehensive indicator of water resource security. A larger value of q_k indicates a better situation of water resource.

$$q_k = \frac{r^*_k}{r^*_k + r^0_k}$$

3 Case study
3.1 Study site and data

Beijing (39° 28′ – 41° 05′ N, 115°25′ – 117° 30′ E), the capital of China, lies on the northern edge of the North China Plain, with the total area of 16,807km², composed by four city districts, four suburb districts and ten outer suburbs or counties. The per-capita water resource in Beijing is 300 m³, about one eighth of the national average, and one thirtieth of the world’s average. Experienced a most serious dry weather in 50 years, Beijing has been hit by continuous droughts since 1999, with the annual rainfall 428 mm on average, only 70% of the annual rainfall in normal years (Chen and Yang, 2009). The water resource security in a time series of 1996 to 2007 was chosen as the study period in this paper. Related data is collected from official yearbooks and reports, e.g., Beijing Water Resource Bulletin (2003, 2004, 2005, 2006), Beijing Statistical Year Book (1996-2007), China Statistical Year Book (1996-2007), and Beijing Environment Bulletin (1996-2007).

3.2. Indicator system

According to the Pressure-Status-Response (PSR) model, the indicator system of water resource security can be established by factors of system pressure, status and response, in which pressure indices indicate the pressures facing the water resource system, status indices reveal the state of water resource system, while response indices demonstrate how human being respond to the water problems, covering the related management and technology. Originally presented by the Organization for Economic Co-operation and Development (OECD), the PSR framework was proved to be a logical, comprehensive tool to describe the environmental issues from an anthropocentric perspective (Bernhard and Harald, 2008), and has been widely used to establish indicator system (Bob and Neil, 1998; Murray, 2004; Bricker et al., 2003). The water resource security indicator system was then set up according to PSR framework and correlation analysis. Entropy method was chosen to establish the weights of evaluating indices. The indicators and weights are listed in Table 1.

<table>
<thead>
<tr>
<th>Object</th>
<th>Guides</th>
<th>Factors</th>
<th>Indices</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index System Of WRSA</td>
<td>Pressure indices</td>
<td>Water resource pressure, P1</td>
<td>Water resource per capital, P11 ((\text{m}^3 \text{ per person}))</td>
<td>0.100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water resource per hectare, P12 ((\text{m}^3 \text{ per hectare}))</td>
<td>0.0621</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water environment pressure, P2</td>
<td>Fertilizer used per hectare, P21 ((\text{kg per hectare}))</td>
<td>0.0416</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Load of waste water discharge, P22 ((\text{ton per square kilometer}))</td>
<td>0.0346</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Society and economy pressure, P3</td>
<td>Water used in daily life per capita, P31 ((\text{liter per capita}))</td>
<td>0.0380</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water used per dd GDP, P32 ((\text{m}^3 \text{ per ten thousand yuan}))</td>
<td>0.0311</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Water resource</td>
<td>Ratio of water supply to water demand, S11</td>
<td>0.0473</td>
<td></td>
</tr>
</tbody>
</table>
The values of ideal and worst solutions were determined by referring to some principles, including the criterion of eco-city in China or values suggested by international organization, e.g., the ideal value of Fertilizer used per hectare; the ideal value in current China or the other countries, e.g., the ideal value of Water used per 10000 yuan GDP according to the most economic value in China 2007; related previous results, e.g., rate of water fare to annual dominative revenue of per-capita; and the ideal or worst values that can be achieved with the current technology, such as proportion of reusable water reused and proportion of water saving instrument.

4. Results and discussions

4.1. Water resource security evaluation of Beijing

The water resource security status of Beijing from 1996 to 2007 is calculated according to the proposed method and listed in Table 2, where \(r^* \) and \(r_0 \) are grey relation degrees with the ideal and worst solution, respectively, and \(q \) is the grey relative closeness degree of water resource security with the ideal solution.

Table 2 Beijing’s water resource security state by TOPSIS based grey relation analysis

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(r^*)</td>
<td>0.528</td>
<td>0.413</td>
<td>0.468</td>
<td>0.429</td>
<td>0.453</td>
<td>0.453</td>
<td>0.452</td>
<td>0.453</td>
<td>0.467</td>
<td>0.501</td>
<td>0.561</td>
<td>0.576</td>
</tr>
<tr>
<td>(r_0)</td>
<td>0.696</td>
<td>0.731</td>
<td>0.678</td>
<td>0.764</td>
<td>0.715</td>
<td>0.701</td>
<td>0.731</td>
<td>0.717</td>
<td>0.650</td>
<td>0.616</td>
<td>0.560</td>
<td>0.518</td>
</tr>
<tr>
<td>(q)</td>
<td>0.431</td>
<td>0.361</td>
<td>0.408</td>
<td>0.360</td>
<td>0.388</td>
<td>0.393</td>
<td>0.382</td>
<td>0.387</td>
<td>0.418</td>
<td>0.449</td>
<td>0.500</td>
<td>0.527</td>
</tr>
</tbody>
</table>

From Table 2, it can be seen that during the evaluation period, \(q \) had been keeping in a quite low position,
with the smallest and largest values in 1999 and 2007, respectively. Meanwhile, r_0 was much larger than r^* in the evaluation period, which demonstrated the water resource was in an awful situation from 1996 to 2007. Generally, water resource situation kept in a steady trend from 1997 to 2001, then, there was an slight increasing trend in q, which indicated water resource situation had been improving slowly from 2002.

From 1999 to 2005, Beijing had suffered a lasting drought period, during which the average water resource volume was only one half of the normal value of accumulated year (Fig. 1.a). Meanwhile, both the population (Fig 1.b) and GDP (Fig.1.c) had experienced a significant increasing time, imposing more pressures on the water resource. Still, the water resource security status of Beijing had achieved gradual improvement instead of prominent deterioration under the severe pressures, which indicated the water resource planning and regulation measures taken by Beijing government had played a positive role for the water resource conservation. In fact, from the tenth five year period (2001-2005), aiming to construct a water saving society, Beijing government had taken a series of measures in view of administration, economy and legislation aspects to alleviate the serious conflict between the water resource supply and demand.

![Graphs of Water resource volume, Population, and GDP](a) (b) (c)

Figure 1 Water resource, population, GDP of Beijing from 1996 to 2007

4.2 Factor analysis

The grey relation degrees of evaluating indices with the ideal solution were selected to analyze the impacts of the indices and their dynamic status from 1996 to 2007, of which the grey relation degrees of 1996, 2000, 2004, and 2007 were given in Fig.2.
Fig. 2 Grey relation degree of the water resource security status of Beijing

5 Conclusions

In this paper, we introduced the method that combining grey relation analysis and TOPSIS for the integrated water resource security evaluation of Beijing city. Results showed that it is a favorable method in the water resource evaluation field. On one hand, the grey relative closeness degree with the ideal solution was used to demonstrate the status of water resource security during a long period. The implement of a comprehensive indicator system on water resource security, combining with the consideration of water resource security from both the ideal solution and the worst solution perspectives enable the evaluation of water resource security carried out comprehensively. The values of ideal and worst solutions, chosen according to the relatively ideal or worst values in the present conditions of natural, economy and society, give an appropriate standard objectively. On the other hand, the grey relation degree of water resource security with the ideal solution can be used to analyze the indices of water resource security, which provides useful information on the efficient water resource management and water resource regulation.

Acknowledgements

This study was supported by National Natural Science Foundation (Grant Nos. 40901269 and 40701023), China Postdoctoral Science Foundation (Grant No. 20090450306), Key Program of National Natural Science Foundation (Grant No. 50939001), and in part by the National Key Program for Basic Research (973 Program, Grants No. 2005CB724204 and 2006CB403303).

References

Bernhard W, Harald V (2008). Evaluating sustainable forest management strategies with the Analytic

He R S, Hwang S F (2007). Damage detection by a hybrid real-parameter genetic algorithm under the assistance of grey relation analysis. Engineering Applications of Artificial Intelligence, 20: 980–992

Li X.B (2008). Study of multi-objective optimization and multi-attribute decision-making for economic and

