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Improving Speech Recognition Learning through Lazy Training 

Michael E. Rimer 
Brigham Young University 

Computer Science Department 
Provo, UT 84602, USA 

mrime@aron.cs. byu.edu 

Tony R. Martinez 
Brigham Young University 

Computer Science Department 
Provo, UT 84602, USA 
martinez@cs. byu.edu 

Abstract - Multi-layer backpropagation, like most learning 
algorithms that can create complex decision surfaces, is prone to 
overfitting. We present a novel approach, called lazy training, 
for reducing the overfit in multiple-layer networks. Lazy 
training consistently reduces generalization error of optimized 
neural networks by more than half on a large OCR dataset and 
on several real world problems from the UCI machine learning 
database repository. Here, lazy training is shown to be effective 
in a multi-layered adaptive learning system, reducing the error 
of an optimized backpropagation network in a speech 
recognition system by 50.0% on the TIDIGITS corpus. 

I. INTRODUCTION 

Multi-layer feed-forward neural networks trained through 
backpropagation have received substantial attention as robust 
learning models for tasks including classification [17]. Much 
research has gone into improving their ability to generalize 
beyond the training data. Many factors play a role in their 
ability to learn, including network topology, learning 
algorithm, and the nature of the problem being learned. 
Overfitting the training data, caused through the use of an 
inappropriate objective function, is often detrimental to 
generalization. In applications such as speech recognition 
where even a small amount of error can be unacceptable it is 
important to generalize as well as possible. 

This work introduces word training (WT), a novel 
technique for training speech recognition networks. Word 
training, inspired by lazy training [15], implements an 
objective function that seeks to directly minimize word 
classification error while discouraging overfitting. Lazy 
training performs successfully on a large OCR dataset and 
several problems selected from the UCI machine learning 
database repository, reducing their average generalization 
error over training of optimized networks by more than 60% 
using 10-fold cross-validation [ 171. An extensively 
optimized, state-of-the-art backpropagation network achieves 
word recognition error of 0.12% on the TIDIGITS speech 
recognition corpus [ 1 11. Word training performs markedly 
better than optimized standard backpropagation training, 
decreasing test set error by half, from 0.12% to 0.06%. 

An overview of related work and a discussion of objective 
functions are provided in Section 11. The lazy training and 
the word training algorithms are presented in Section 111. 
Experiments and results are given in Section IV. Analysis 
and discussion are in Section V. Further work and 
conclusions are presented in Section VI. 

D. Randall Wilson 
Fonix Corporation 

180 West Election Road 
Draper, Utah 84020 

randy@aron.cs. byu.edu 

11. RELATED WORK 

The speech recognition problem is very complex and has 
received much attention in machine learning literature. Many 
learning models have been developed to cope with the 
difficulty of this problem. Often, neural networks have been 
utilized to provide a solution. However, neural networks are 
prone to overfit to the training data, which is detrimental to 
robust generalization. Hidden Markov models (HMMs) 
traditionally perform as well or better than neural networks at 
speech recognition [ 141. Word training achieves results 
comparable to HMMs. 

A. Critique of current training techniques 

To generalize well, a learner must have a proper objective 
function. Most learning techniques incorporate an objective 
function of minimizing sum-squared-error (SSE). The 
validity of using SSE as an objective function to minimize 
error relies on the assumption that sample outputs are offset 
by inherent gaussian noise, being normally distributed about 
a cluster mean. For learning function approximation of an 
arbitrary signal, this presumption often holds. However, this 
assumption is invalid for classification problems, where the 
target vectors are class codings (i.e., arbitrary nominal or 
boolean values representing designated classes). 

Cross-entropy (CE) assumes idealized class outputs (i.e., 
target values of zero or one for a sigmoid activation) [ 131 and 
is therefore more appropriate to classification problems. 
However, error values using SSE and cross-entropy have 
been shown [9] to be inconsistent with ultimate sample 
classification accuracy. That is, minimizing CE or SSE is not 
necessarily correlated to high recognition rates. Numerous 
experiments in the literature provide examples of networks 
that achieve little error on the training set but fail to achieve 
the best possible accuracy on test data [2, 181. This is due to 
a variety of reasons, such as ovet$tting the data or having an 
incomplete representation of the data distribution in the 
training set. There is an inherent tradeoff between fitting the 
(limited) data sample perfectly and generalizing accurately 
over the entire population. 

B. Shortcomings of search methodologies 

More hdamentally, the above objective functions provide 
mechanisms that do not reflect the true goal of classification 
learning, which is to achieve high recognition rates on unseen 
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data. In [9], a monotonic objective function, the 
classlfication Jigure-ofmerit (CFM), is introduced for which 
minimizing error remains consistent with increasing 
classification accuracy. Networks that use the CFM as their 
criterion function in phoneme recognition are introduced in 
[9] and further considered in [5]. They are, however, also 
susceptible to overfitting. The question of how to prevent 
overfitting is a subtle one. When a network has many free 
parameters, not only is learning fast, but local minima can 
often be avoided. On the other hand, networks with few free 
parameters tend to exhibit better generalization performance. 
Determining the appropriate size network remains an open 
problem [8]. 

The problem of overfitting has received much attention in 
the literature. Methods of addressing this problem include 
using a holdout set to stop training early [20], cross- 
validation [2], node pruning [7, 81, and weight decay [21], 
among others. These techniques approach optimal solutions 
given the bias of standard backpropagation learning but do 
not consider possible enhancements to the bias itself. Node 
pruning seeks to improve accuracy by simplifying network 
topology, rather than alleviating the problems common to 
larger topologies, for example. Methods for overcoming 
problems in the inductive bias inherent to training with 
backpropagation generally involve forming network 
ensembles. Ensemble techniques, such as bagging and 
boosting [12], or wagging [3], are more robust than single 
networks when the errors among the networks are not 
positively correlated. 

There is evidence that the size of the weights in a network 
plays a more important role to generalization than the number 
of nodes [4]. A simple method of reducing overfitting is to 
provide a maximum error tolerance threshold, d,,, which is 
the smallest absolute output error to be backpropagated. In 
other words, no weight update occurs for a given d,,, target 
value, t k ,  and network output, ok, if the absolute error 1 t k  - ok I 
< dmm. This threshold is arbitrarily chosen to represent a 
point at which a sample has been sufficiently approximated. 
With an error threshold, the network is permitted to converge 
with much smaller weights [ 191. 

111. WORD TRAINING METHOD 

This work addresses overfitting exhibited by previous 
backpropagation solutions by applying lazy training, a 
conservative form of training, to the learning process (see 
Section 1II.C). Similar to CFM, it requires that a reduction in 
error correlate to increasing accuracy. However, CFM does 
not prevent weight saturation, which is often detrimental to 
accuracy [4]. Lazy training only backpropagates an error 
signal from output nodes that endanger classification 
accuracy. This approach allows the model to approach a 
solution more conservatively and discourages overfitting. 

0-7803-7278-6/02/$10.00 02002 IEEE 

A .  Phoneme training algorithm 

Speech recognition is a complex problem, and a standard 
approach involves simplifying the problem by breaking it up 
into smaller, simpler ones. Word recognition is broken into 
the simpler problem of phoneme recognition. The signal is 
divided into small time slices called frames and features 
derived from each frame are input into the recognizer (see 
Figure 1). The recognizer then outputs the probability of 
each phoneme being uttered during that frame. Often, several 
contiguous frames are considered simultaneously, as in the 
multi-layer time-delay neural network in [ 101. Phonemes are 
identified and combined through a proper linguistic model to 
derive words. However, derived features of a speech signal 
are often noisy and speaker dependent. Hence, it is difficult 
to achieve a satisfactorily high phoneme recognition rate at 
each frame and produce a reasonable solution. 

Therefore, a decoder is stacked onto the phoneme 
recognizer to provide a more holistic solution. The decoder 
receives the outputs of the phoneme recognizer and combines 
the outputs over time to make a more educated guess as to 
what word or phrase has been spoken. Pairings of adjacent 
possible phonemes are validated or prohibited according to 
the linguistic model, and the overall most-likely sequence of 
phonemes is output as the response. Additional elements 
such as a lexicon can be incorporated into the decoder to 
constrain possible responses to produce more intelligent 
solutions. The decoder can be made even more sophisticated 
to combine probable words together into entire utterances 
according to a language model. 

n Wordoutuut 

I I- I 1 9 11 I phoneme 
outputs 

1.1.- . . - . - - - . - 1.19. 
I.. . 

T 
Error Signal 

Input Layer 
time delays + 

Mel- 
Cepstral 
Coefhients 

SpeechSignal - 
Figure 1. Word training system with neural network and decoder. 
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Phoneme training involves presenting a series of utterances 
to the network. Each utterance is divided into temporal 
frames and features derived from the signal that are input into 
the network. Each frame is labeled with the phoneme being 
spoken during that time. The network is often trained using 
backpropagation with a cross-entropy objective function. 

B. Lazy training paradigm 

Due to the reasons stated in Section 11, a neural network 
classifier often overfits the training data. The tendency to 
overfit is further aggravated because labeled data points in 
this problem space are sparse. The problem is compounded 
since phonemes blend together, and it is problematic to label 
minute time slices accurately. It is therefore desirable to 
incorporate a recognizer that will overfit as little as possible 
in order to produce the highest possible generalization 
accuracy. 

Overfitting a neural network is often equated with 
saturating the weights. It follows that overfit is reduced by 
letting the weights be as small as possible in the solution. 
This ideal can be approached through the following method. 

For each fiame considered by the recognizer during 
training, only those outputs that are credited with 
classification errors are updated through backpropagation. 
The result is training without idealized target outputs of 0 and 
1, providing a learning mechanism that is reminiscent of 
constraint satisfaction and reinforcement learning, where the 
network outputs learn to interact with their (changing) 
environment (the behavior of the decoder based on the values 
of the output nodes). As this forces networks to learn only 
when explicit evidence is presented that their state is a 
detriment to classification accuracy, we have dubbed this 
technique lazy training (not to be confused with lazy learning 
approaches [ 13). Backpropagation training often uses an 
objective function that tends to a saturation of the weights. 
That is, it tends to encourage larger weights in an attempt to 
output a value approaching the limits of 1 or 0. The 
ramifications of this are discussed further in Section V. Lazy 
training is biased toward simpler solutions, meaning that 
smaller weights (even approaching zero) can be used to 
provide an acceptable solution. 

Two or more output nodes can in effect collaborate 
together to decide how learning is to proceed at any given 
point. More specifically, interaction among outputs allows a 
dynamic error threshold to be implemented. That is, when 
one output presents a sufficient solution in an area of the 
problem space, other outputs do not need to work at 
redundantly modeling the same local data. Consequently, 
they are able to specialize and break a complex problem up 
into smaller, simpler ones. This provides for a more 
conservative form of training that converges with smaller 
network weights, hence with less overfitting and greater 
generalization accuracy. 

The lazy training methodology has been successfully 
utilized to significantly reduce error on OCR data and on 
several problems from the UCI repository of machine 
learning databases [6,15]. We implement it here for speech 
recognition to show further advantages of this training style. 
In past experiments, lazy training was performed on N 
separate single-output networks (one for each class in the 
problem). Here we show how it can successfully be used on 
a single N-output network. A single network provides a more 
compact, simpler, faster solution than many separate 
networks in learning a problem with several output classes. 

Also, we illustrate that lazy training learns effectively 
when there is a level of indirection necessarily involved in 
arriving at a solution. In this case, while the network learns 
to output phoneme confidences, these confidences do not 
provide the actual solution, but are used by the phoneme 
decoder to derive the words spoken. High phoneme accuracy 
is therefore not necessarily the goal of training, but instead 
high word recognition rates. Word training (WT) is the name 
we give to training with an objective of directly increasing 
word recognition accuracy (possibly at the expense of 
phoneme accuracy). The method for deducing the network 
phoneme error from word error is presented in the following 
sub-section. 

C. Word training algorithm 

In word training the network decoder is involved in the 
training process. The decoder gathers the network outputs on 
all the fiames of an utterance. When the decoder outputs a 
recognized word sequence, the output is compared against the 
target word sequence. If the output utterance matches the 
target, no error signal is propagated through the network at all 
(see Fig. 1, Error Signal). The network performs adequately 
within the system, and refraining from updating the weights 
discourages overfitting. When a discrepancy between the 
output and target exists, then the network weights are updated 
only on those time frames where the word errors occur. 

Let N be the number of network output nodes (distinct 
class labels). Let ok be the output value of the rzh output node 
of the network (0 < o 2 1, 1 < k I N ) .  Let T designate the 
target output class for a given frame and c k  signify the class 
label of the kth output node. For target output nodes, ck = T, 
and for non-target output nodes, ck # T. Non-target output 
nodes are called competitors. Let 0Tmax denote the highest- 
outputting target output node. Let ocmm denote the value of 
the highest-outputting competitor. The error, &k, back- 
propagated from the kth output node of the network is defined 
as 
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where q, and rL are upper and lower target values such that 
0 S q < Ok < ru I 1. Thus, the target output generates an 
error signal only if there is some competitor with an equal or 
higher value than oTmaX, signaling a potential 
misclassification. Non-target outputs generate an error signal 
only if they have an output equal to or higher than ormax, 
indicating they are responsible for the misclassification. 

The rate of convergence is partly dependent on the values 
used for ru and rL. Note that changing either r is effectually 
equivalent to altering the learning rate. A 7 closer to the 
current output value ok implies a smaller error signal and will 
result in slower, but steadier convergence that more closely 
approximates the true error gradient than values near 0 or 1. 

Word training of a network proceeds at a different pace 
than with standard backpropagation phoneme training. 
Training only the nodes that directly contribute to 
classification error of a word allows the model to relax more 
gradually into a solution, learning only as much as it needs to 
and thereby discouraging overfitting. This approach is 
reminiscent of training with an error threshold; however 
whereas a fixed error threshold causes training to stop at a 
pre-specified point, word training dynamically halts at the 
first possible point for a given frame at a given point in time. 
Weights are updated only through necessity. Without the 
decoder, a phoneme can be considered "learned" with any 
output value, providing competitors output lower values. 
Using a decoder, even more flexibility is possible, since the 
target output on a phoneme can be lower than its competitors 
and a word still be correctly identified. 

Additionally, overfitting is minimized in a word trained 
network because outliers (noisy frames) have minimal 
detrimental impact to the decision surface's accuracy. This is 
because the target output is only required to output a value 
that is negligibly higher than the output representing the 
neighboring class, as illustrated in Figure 2b. This is in 
contrast to classical gradient descent training, where hard 
target values of 0 and 1 are required (translating to pushing 
the decision surface as far away as possible) even for outliers 
as illustrated in Figure 2a. Hence, in testing, samples close to 
the outlier belonging to the competing class (represented by 
the question mark) have a much better chance of being 
correctly classified. 

I I 
Figure 2: Overfit decision surface (a) and lazy-trained surface @). 

D. Enlarging the margin 

When lazy training, it .is common for the highest outputting 
node in the network to output a value only slightly higher 

than the second-highest-firing node (see Figure 3). This is 
true for correctly classified samples (above 0 in Figure 3), 
and also for incorrect ones (below 0). This means that most 
training samples remain physically close to the decision 
surface throughout training. An error margin, p, can be 
introduced during the training process that serves as a 
confidence buffer between the outputs of target and 
competitor nodes. Under the sigmoid function, the error 
margin is bounded by [-1, 11. For no error signal to be 
backpropagated from the target output, an error margin 
requires that ocma < 0Tma - p. Conversely, for a competing 
node k with output Ok, the inequality ok < 0Tma - p must be 
satisfied for no error signal to be backpropagated from k. 

During the training process, p can be increased gradually 
and might even be negative to begin with, not expressly 
requiring correct classification at first. This gives the 
networks time to configure their parameters in an even more 
uninhibited fashion. Then p is increased to an interval 
sufficient to account for the variance that appears in the test 
data, allowing for robust generalization. The value of ,U can 
also be decreased, and remain negative as training is 
concluded to account for noisy outliers (see Section V.A). 

At the extreme value of p equal to 1, lazy training becomes 
standard SSE training, with target values of 1.0 and 0.0 
required for all positive and negative samples, respectively. 

Correct Incorrect I 

6000 I A 

5000 

$ 4000 
n 5 3000 
tn 
*t 2000 

1000 

0 

- 

-0.1 0 0.1 0.2 0.3 0.4 
0 Tmax - 0 c max 

Figure 3: Network output margin of error after lazy training. 

IV. EXPERIMENTS 

The performance of phoneme versus word training models 
has been evaluated on a subset of the TIDIGITS data corpus 
consisting of over 17,000 utterances and sampled at 11 kHz, 
containing 50,000 spoken digits, partitioned into roughly 
15,000 training samples, 1,000 validation samples and 1,000 
test samples. Each sample is partitioned into 10 ms frames. 
The features generated for input to the network are standard 
mel-cepstral coefficients and their derivatives. 
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A.  Parameters responsible for word accuracy, more network parameters are 
free to learn a better solution. 

We compared fully connected feed-forward network 
trained through on-line backpropagation maximizing cross- 
entropy on single frames against word-trained networks 
trained on utterances. In the experiments presented, networks 
contained a single hidden layer comprised of 50, 100, or 200 
hidden nodes. Weights were initialized to small random 
values. The same initiFl weights were used for each training 
method. The learning rate began at 0.05 and a harmonic 
decay frequency of 5 epochs was used. In these tests a r ,  of 
1 and rL of 0 were used for faster lazy training, and ,U was 0. 
Training was halted after 150 epochs, many epochs after 
training error ceased to decrease. 

The backpropagation network used is state-of-the-art. Its 
topology, objective function and learning parameters were 
optimized through extensive experimentation over a period of 
several years. 

B. Results 

Table I displays the test results of standard CE back- 
propagation training (BP) versus word training (WT). 
Accuracies are shown in percent. Highest column values are 
shown in bold, with the highest value for the other learning 
technique italicized. Note that high word accuracy is our 
prime goal. High sentence accuracy is a desired 
consequence, and phoneme accuracy is ultimately irrelevant. 

TABLE I 
RESULTS ON SUBSET OF TIDIGITS DATA CORPUS 

I Method, I Phoneme I Base [ Word [ Sentence 1 

V. ANALYSIS AND DISCUSSION 

Table I shows that networks generated through word 
training have the capability of cutting word error in half from 
0.12% for standard phoneme backpropagation training to 
0.06% for word training. These tests show that, although 
word training experienced much lower phoneme accuracy, 
word accuracy was increased and the amount of overfit was 
reduced (see Section V.C). The highest accuracies were 
achieved with a 200-node hidden layer. Larger networks 
show no further improvement. Interestingly, as smaller 
hidden layers are used, word and phoneme accuracy degrades 
more gracefully for word training than for CE training. 
When the training process concentrates directly on word 
accuracy instead of on learning phonemes, not directly 

A. Lazy training analysis 

When networks are lazy-trained, instead of pushing the 
sample outputs to one end of the output range or the other, 
the vast majority remains spread out just slightly above the 
decision boundary. Output distribution is roughly gaussian, 
reflecting an actual gaussian data distribution, with a larger 
variance than appears from standard backpropagation, but 
only a fraction of the classification error. This suggests that 
the decision surface is much smoother and that network 
weights are not saturated. 

Training set accuracy is largely preserved on the test set. 
Since the outputs learn together, their solutions are highly 
correlated and their solution transfers well to unseen data. 
Error is 50.0% less than with phoneme-trained networks, 
presenting a strong case for lazy training on complex data 
sets where backpropagation networks tend to overfit. 

Lazy training also assists in the case of noisy data and 
inaccurate or uncertain phoneme labeling. In this case, the 
output representing the more accurate phoneme can fire 
roughly equal to the falsely labeled phoneme, rather than 
forcing it all the way down at 0. Eveq though the correct 
phoneme does not fire the highest value among the outputs, it 
fires nearly that high, enabling the decoder to more easily 
produce the correct answer. 

B. Network complexity 

The network outputs the majority of values at about 0.5. 
At first, it seems counter-intuitive that networks outputting 
only around 0.5 will generalize so well. Ordinarily, training 
networks together allows a classifier to become more 
complex, prone to overfitting. According to Occam’s razor, 
adding parameters to a network, beyond the smallest correct 
solution for a given problem, can be a detriment to the 
generalization ability of the network. This is similar to the 
claim that a network with higher learning capacity tends to 
“memorize” noise in the data, which is an undesirable trait. 

Recently, however, it has been illustrated how the number 
of nodes in a network is not as influential as the magnitude of 
the weights [4]. The topology, rather, serves more as a 
mechanism that lends itself to solving of certain problems, 
while the weights represent how tightly the network has fit 
itself to the (admittedly incomplete) training data distribution. 
Network complexity is fiuther defined in [20] as the number 
of parameters and the capacity to which they are used in 
learning (i.e., their magnitude). In light of this, it is 
understandable why complex networks and lazy training, 
which allows networks to have small weights, perform so 
well together. Although the WT network has a high number 
of parameters, lazy training prevents further weight updates 
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once frames are correctly classified and results in low 
complexity. Hence, the possibility of overfitting is reduced 
in the training process. 

The networks used in our experiments had 130 inputs, 50, 
100, or 200 hidden nodes and 199 output nodes, with 16,450, 
32,900, and 65,800 weight parameters, respectively. The 
rows of Table I1 list the average magnitude of the weights in 
networks initialized with small random weights, during 
phoneme training, and during word training, respectively. 
The particular values shown are taken following the epoch 
with the highest word accuracy on the holdout set. The 
columns denote the average weight from input to hidden 
nodes, and from hidden to output nodes, respectively. The 
word-trained network has weights that are twice as large as 
the initial random values, while standard training produces 
weights four times larger. The lazy-trained network is a 
simpler solution than the network produced by standard 
backpropagation training. 

TABLE I1 
AVERAGE NETWORK WEIGHTS 

Initial 
Standard 
Laz .280 .256 

VI. CONCLUSION AND FUTURE WORK 

Word training reduces overfitting in gradient descent 
backpropagation training, increasing the probability of 
discovering better solutions. Its advantages in word 
recognition over standard backpropagation phoneme training 
have been demonstrated in a speech recognition system. A 
word-trained network reduces word recognition error by half 
over an optimized backpropagation network on the 
TIDIGITS corpus, a large real world application. 

For the word training nets presented, the learning 
parameters of the optimized backpropagation network were 
used. No attempt was made to optimize them for lazy 
training. Since standard backpropagation and lazy training 
vary significantly in their search technique, it would be 
expected that different parameter values would perform 
optimally with each objective function. Different settings on 
parameters such as ru, rL, and ,U will be tested to further 
improve generalization accuracy. Word training will be 
applied to other problems that are broken into smaller pieces 
and then merged together, such as text recognition, using 
networks for OCR. 

ACKNOWLEDGEMENTS 

This research was funded in part by a grant fromfonix Corp. 

VII. REFERENCES 

0-7803-7278-6/02/$10.00 02002 IEEE 2573 

David W. Aha, editor, Lazy Learning, Kluwer Academic Publishers, 
Dordrecht, May 1997. 
Andersen, Tim and Tony R. Martinez, “Cross Validation and MLP 
Architecture Selection”, Proceedings of the IEEE International Joint 
Conference on Neural Networks IJCNN’99, CD Paper # I  92, 1999. 
Andersen, Tim and Martinez, Tony, “Wagging: A learning approach 
which allows single layer perceptrons to outperform more complex 
learning algorithms”, Proceedings of fhe IEEE Infernational Joint 
Conference on Neural Networks IJCNN’99, CD Paper # I  9 1,1999. 
Bartlett, Peter L., “The Sample Complexity of Pattern Classification 
with Neural Networks: The Size of the Weights is More Important than 
the Size of the Network”, IEEE Trans. InJ Theory, 44(2), 1998, pp. 
525-536. 
Barnard, Etienne, “Performance and Generalization of the 
Classification Figure of Merit Criterion Function”, IEEE Transactions 
on Neural Networks, 2(2), March 1991, pp. 322-325. 
Blake, C.L. & Mea,  C.J. (1998). UCI Repository of machine learning 
databases, http://www.ics.uci.edu/-mleam/MLRepository.html. Irvine, 
CA: University of California, Department of Information and Computer 
Science. 
Castcllano, G., A. M. Fanelli and M. Pelillo, “An empirical comparison 
of node pruning methods for layered feed-forward neural networks”, 
Proc. IJCNN’93-I 993 Int. J. ConJ on Neural Networks, Nagoya, Japan, 

Castellano, G., A. M. Fanelli, and M. Pelillo, “An iterative pruning 
algorithm for feed-fonvard neural networks”, IEEE Transactions on 
Neural Networks, Vol. 8 (3), 1997, pp. 519-531. 
Hampshire 11, John B., “A Novel Objective Function for Improved 
Phoneme Recognition Using Time-Delay Neural Networks”, IEEE 
Transactions on Neural Networks, Vol. 1, No. 2, June 1990. 
H. Hild and A. Waibel. “Connected Letter Recognition with a Multi- 
State Time Delay Neural Network.” Neural Information Processing 
Systems (NIPS-5), 1993. 
R. Gary Leonard and George Doddington. (1993). TIDIGITS speech 
corpus, http://morph.Idc.upenn.edu/Catalog/LDC93S1O.hhnl. Texas 
Instruments, Inc. 
M a c h ,  R and Opitz, D, “An empirical evaluation of bagging and 
boosting”, The Fourteenth National Conference on Artificial 
Intelligence, 1997. 
Mitchell, Tom, Machine Learning. McGraw-Hill Companies, Inc., 
Boston, 1997. 
Rabiner, Lawrence and Juang, Biing-Hwang, Fundamentals of Speech 
Recognition. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1993. 
Rimer, Michael E., Anderson, Timothy L. and Martinez, Tony R., 
“Improving Backpropagation Ensembles through Lazy Training”, 
Proceedings of the IEEE Infernational Joint Conference on Neural 
Networks IJCNN’OI, pp. 2007-21 12,2001. 
Rimer, Michael, E., “Lazy Training: Interactive Classification 
Learning,” Masters Thesis, Brigham Young University, 2002. 
Rumelhart, David E., Hinton, Geoffrey E. and Williams, Ronald J., 
“Learning Internal Representations by Error Propagation”, Institute for 
Cognitive Science, University of California, San Diego; La Jolla, CA, 
1985. 
Schiffmann, W., Joost, M. and Werner, R., “Comparison of Optimized 
Backpropagation Algorithms”, Artificial Neural Networks, European 
Symposium, Brussels, 1993. 
Schiffmann, W., Joost, M. and Werner, R., “Optimization of the 
Backpropagation Algorithm for Training Multilayer Perceptions”, 
University of Koblenz: Institute of Physics, 1994. 
Wang, C., Venkatesh, S. S., and Judd, J. S., “Optimal stopping and 
effective machine complexity in learning”, in Cowan, J. D., Tesauro, 
G., and Alspector, J., editors, Advances in Neural Information 
Processing Systems, vol. 6, Morgan Kaufmann, San Francisco, 1994, 

Werbos, P., “Backpropagation: Past and fi~ture”, Proceedings of fhe 
IEEE International Conference on Neural Networks, IEEE Press, 1988, 

1993, pp. 321-326. 

pp. 303-310. 

pp. 343-353. 

http://www.ics.uci.edu/-mleam/MLRepository.html
http://morph.Idc.upenn.edu/Catalog/LDC93S1O.hhnl

	Brigham Young University
	BYU ScholarsArchive
	2002-05-17

	Improving Speech Recognition Learning through Lazy Training
	Tony R. Martinez
	Michael E. Rimer
	See next page for additional authors
	Original Publication Citation
	BYU ScholarsArchive Citation
	Authors


	Improving speech recognition learning through lazy training - Neural Networks, 2002. IJCNN '02. Proceedings of the 2002 International Joint Conference on

