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ABSTRACT

CIRCUIT AND MODELING SOLUTIONS FOR HIGH-SPEED

CHIP-TO-CHIP COMMUNICATION

Timothy M. Hollis

Electrical and Computer Engineering

Doctor of Philosophy

This dissertation presents methods for modeling and mitigating voltage

noise and timing jitter across high-speed chip-to-chip interconnects. Channel equal-

ization and associated tuning schemes have been developed to target the distinct

characteristics and signal degradation exhibited in the clock and data signals of multi-

Gigabit/second digital communication links. Multiple methods for generating realis-

tically degraded signals for the purpose of simulation are also presented and used to

verify the proposed equalization and filtering topologies.

Specifically, a new technique for modeling high-speed jittery clocks in the

frequency domain is presented and shown to reduce transient simulation time and

memory requirements, while simultaneously improving the timing resolution and ac-

curacy of the simulation by minimizing the dependence on the transient simulation

time-step. The technique is further developed to provide unprecedented control over

the timing characteristics of the generated signals, and is then extended to the genera-

tion of random data signals with definable jitter statistics. Through these techniques,





realistic clock and data waveforms are constructible, providing for the visualization

of the combined effects of voltage and timing degradation, while at the same time

tracking the phase relationship between the clock and data signals as they pass across

their respective channels and through the receiving circuitry of the communication

link.

New methods for the automated tuning of second-order continuous-time

channel equalizers are proposed based on the simulated or measured single pulse and

double pulse responses of the transmission channel. Using only one degree of freedom,

the methods target the reduction of inter-symbol interference (ISI) as identified in

the single and double pulses. Through tuning either the circuit quality factor (Q),

the peaking frequency, or the frequency zero, the methods are shown to adapt to

a variety of channel lengths and datarates from the same original equalizer transfer

function, implying a good degree of generality, while offering a simple, yet effective,

method for ISI reduction.

Finally, the design of an active 5 Gigahertz (GHz) bandpass filter, em-

ployed for high-speed clock conditioning, is presented and shown to address both

random and deterministic components of the clock signal degradation. The bandpass

transfer function is achieved through a combination of AC coupling and a resonant

LC tank consisting of on-chip interleaved spiral inductors and a tunable capacitor ar-

ray. Through adjusting the load capacitance in parallel with the inductors, the center

frequency of the filter is tunable over a range of nearly 5GHz. The design targets a

supply voltage of 1.2 volts and draws approximately 5.7 milliamps of current.
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Chapter 1

Introduction

As datarates approach and surpass multi-Gigabit/second (Gb/s) levels,

the challenge of maintaining signal integrity across chip-to-chip interconnects grows

due to the introduction of several analog phenomena which impact digital signals in

the Gigahertz (GHz) frequency range. Fortunately, many of the parasitic effects of

the inter-chip channel are not new and neither is the demand for performance and

bandwidth. Over the past century several communication media ranging from the

telegraph to fiber optics have been explored and employed to meet the requirements

of society. In every case bandwidth limitations have been overcome, or at least

mitigated, through the ingenuity of communication engineers, and it is through the

leveraging of proven signal conditioning techniques that datarates have achieved their

current levels.

Today the push toward ever higher operating speeds in consumer electron-

ics is driven, in part, by growing software complexity. To maintain a given level of

perceived performance, added complexity in the underlying software must be bal-

anced or tracked by improvements in processing efficiency. That processing efficiency

is not only a function of the clock frequency of the micro-processor unit (MPU), but

is also highly dependent upon the available system memory and the rate at which the

MPU, memory, and other peripheral components communicate.

One popular prediction of the anticipated growth in software complexity is

attributed to Sun Microsystems’ Greg Papadopoulos who stated that “the mass and

volume of software, (i.e. LOC size1, memory demands, and processor loading) increase

1LOC = Lines of Code
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in an inverse natural logarithm relationship to the available processor resources,”

which, according to Moore’s Law is anticipated to double every two years [1].

Figure 1.1: Trends in computing speed supply and demand.

In other words, even as MPU operating speeds and computational efficiency

increase, the sheer complexity and mass of the associated software obscure much of

the performance enhancement obtained at higher clock frequencies. Fig. 1.1 provides

a visual comparison of Moore’s Law and Greg’s Law, clearly identifying the gap

between the demand for increased computational power and the achieved growth in

computational resources. High definition television, multi-Megapixel digital cameras,

music and image file-sharing, as well as the rapid growth in the complexity and detail

of graphics emerging from the $30 billion electronic gaming industry [2] are just a few

examples of the growing computational load imposed on today’s MPU.

To accommodate the market’s insatiable appetite for bandwidth, MPUs

are forced to share their computational burden with other application specific chips,

including memory controllers, graphics processors, etc. Unfortunately the inter-chip
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communication link has historically been the limiting factor or bottleneck in overall

system performance [3], because while circuits on a single chip are capable of com-

municating at incredible speeds, communication between circuits located on separate

chips is severely impeded by signal-degrading effects inherent in the chip-to-chip sig-

nal path. The third curve in Fig. 1.1 verifies this, as it tracks the growth in memory

bus bandwidth over the corresponding time period. If Greg’s Law may be considered

a representation of the demand for inter-chip communication, then there is a terrible

discrepancy between the demand for and the achieved inter-chip bandwidth.

Yet, obstacles facing digital communication engineers are not limited to the

derivation of signal conditioning circuitry to counter the impact of limited channel

bandwidth, but also include the task of developing models and methodologies suitable

for capturing and characterizing the newly encountered signal degradation as well as

for analyzing and verifying proposed signal conditioning solutions. The cost of initial

development and design prototyping has grown so great that the methodology of

design iteration is no longer acceptable; rather, designs must function with the first

pass. Failing to emulate the true operating conditions, including signal integrity,

guarantees failure at multi-Gb/s rates. Conversely, when circuits are exercised in the

presence of realistic degradation, success in simulation becomes a better predictor of

success within the system.

The challenge associated with simulating channel-affected signals is highly

correlated to the characteristics of the degradation. As will be discussed in greater

detail, signals in any transmission medium experience both random and deterministic

degradation. Random degradation, in the form of random Gaussian distributed volt-

age noise and timing noise or jitter stemming from several sources, requires statistical

quantification. Similarly, deterministic voltage noise and jitter linked to power supply

noise, inter-channel crosstalk, impedance discontinuities, component variance, and at

high frequencies the response of the channel, result in a variety of observable char-

acteristics, from periodicity to uncorrelated-bounded randomness. To model these

noise components correctly requires the ability to designate their probability during

the noise generation stage and consequently inject or superimpose these effects onto
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the underlying signals and power supplies in a way reflecting what occurs in the actual

system.

To date, industry standard simulators do not provide the level of noise and

jitter generation control needed to accurately model a realistic communication link.

While some of the more advanced, and hence expensive, tools provide for an accurate

generation of Gaussian distributed noise and jitter, no simulator in existence allows

for the derivation of signals exhibiting the random, periodic, and aperiodic jitter

encountered in the real world. 2

A second challenge in simulating realistic signaling environments is tied to

the underlying statistical assumption that a sufficient number of samples of the be-

havior to be characterized are available. As such, it is becoming necessary to include

more and more cycles with each simulation. At the same time, the relative size of

each individual noise and jitter component is very small with respect to the overall

signal swing and symbol period or unit interval (UI), implying that fine voltage and

timing resolution are also necessary. When fine simulated resolution is coupled with

a greater number of simulated cycles, the result is an enormous amount of data and

prohibitively lengthy simulation times. It is not uncommon for transistor-level tran-

sient (time-based) simulations to run for hours or even days. It is also not uncommon

for such simulations to fail after several hours due to a lack of memory resources. And

in some circumstances, these incredibly long simulations finish successfully, yet the

results are not viewable due to the enormous amount of data output by the simulator

and the limited capacity of industry standard waveform viewers.

To speed design-to-market time, the growing trend is to compartmentalize

system circuitry during the verification process. Rather than simulate the full system

at the transistor level, smaller circuit blocks are characterized in Spice-based simula-

tors and then those characteristics are used to construct behavioral models that may

be included in simulations at higher levels of abstraction [5]. This methodology is

2Agilent Technology’s Advanced Design System (ADS) provides a square-wave clock with Gaus-
sian distributed random jitter for transient simulation. This jittery clock source may also be used
to trigger a random data source, thereby adding random jitter to the data signal. While the sim-
ulated jitter closely approximates a true Gaussian distribution, other jitter components commonly
encountered in fabricated circuits are not directly realizable in ADS (periodic jitter, etc.) [4].
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very effective when implemented carefully, but has the potential for providing unre-

alistic performance predictions, as much of the nonlinear circuit behaviors are lost in

the translation from transistor-based circuits to behavioral circuits.

In addition to breaking the system down into more manageable blocks, it is

not uncommon for voltage and timing noise to be evaluated independently. One of the

weaknesses in this approach is that it fails to capture the interaction of voltage noise

and timing jitter. As will be shown, voltage and timing noise exhibit a synergistic

relationship, wherein each leads to the other and together they combine to limit

performance wherever they are encountered.

In this dissertation both the need for enhanced signal conditioning cir-

cuitry and the need for improved verification methodologies are addressed. The main

contributions of this work to the prior art include:

1. The development of a signal modeling methodology based on Fourier theory

which allows for the generation of both periodic clock and random data signals

with nearly unconstrained, yet completely controllable, voltage and timing noise

characteristics. Because the techniques derive true signals, with both voltage

and timing dimensions, the full interaction of voltage and timing noise may be

simulated leading to new levels of realism during system verification and signal

integrity analysis.3

2. The development of an alternative signal waveform generation technique which

overcomes some of the limitations of the Fourier-based approach at the cost of

some flexibility.

3. The development of self-calibration algorithms for continuous-time data channel

equalization targeting the suppression of inter-symbol interference (ISI), the

novelty of which is in the simplicity and effectiveness of the techniques, which

take repeated samples of the channel’s single pulse and double pulse responses

3A patent application entitled “Generation and Manipulation of Signals for Circuit and Sys-
tem Verification,” was filed on October 14, 2006. Two additional patents have been approved for
filing covering the jitter phase control provided by the proposed signal generation technique and
an extension of the technique to incorporate finite impulse response pre-filtering of the generated
signals.
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and tune the frequency response of the equalizer to effectively reduce ISI with

only one degree of freedom.4

4. The design and implementation of a fully differential 5 GHz bandpass filter

with associated center frequency tuning circuitry for reducing clock jitter in

source-synchronous serial communications.5

In the chapters that follow, more adequate motivation for the develop-

ment of novel modeling and noise suppression techniques will be provided. Chapter

2 begins by presenting common high-speed electrical signaling topologies and goes

on to describe the signal degradation common to such interconnects. It discusses the

sources of degradation and then further separates the observable noise into voltage

and time-domain components with their many sub-components. With the founda-

tion provided in Chapter 2, Chapter 3 discusses many of the challenges associated

with generating waveforms exhibiting realistic noise in a way suitable for and com-

patible with time-domain simulation. Chapter 3 also discusses the growing problem

of simulator efficiency. Chapter 4 goes on to present a new method for generating

jittery clock and data signals. In the case of the clock generation, the techniques

proposed also facilitate efficient high-speed clock channel simulation. Chapter 5 goes

on to discuss existing techniques for mitigating voltage and timing noise imposed

by band-limited clock and data channels. Chapter 6 takes a continuous-time equal-

izer topology and presents new methods of self-calibration which tune the equalizer’s

frequency response using only one degree of freedom, based on one of two simple

algorithms operating on the single pulse and double pulse responses of the channel.

Chapter 7 presents a fully differential, LC-based, tunable bandpass filter designed to

reduce both random and deterministic degradation of forwarded clock signals. And

finally, Chapter 8 summarizes the contributions of this work and suggests paths for

continued research in the areas presented.

4A patent is being being drafted presently by Micron Technology, Incorporated, covering facets
of the proposed equalizer calibration algorithms.

5A patent application covering the bandpass filter design and one of the center frequency tun-
ing schemes was filed by the Intel Corporation on December 30, 2005, entitled “Forwarded Clock
Filtering.”
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Chapter 2

High-Speed Interconnects - Topologies and Limitations

Before discussing the several performance limiting phenomena encountered

in the high-speed PC board-based communication link, it is helpful to become familiar

with the standard link architectures.

2.1 Common Interconnect Topologies

Today’s high-speed chip-to-chip communication is dominated by two inter-

connect topologies, which are both shown in Fig. 2.1. The upper window presents a

high level diagram of the source-synchronous link, wherein a reference clock signal,

initially in “sync” or phase with the data, is forwarded to the receiver in parallel with

the data across a dedicated channel. At the receiving end, this clock, or one derived

from it, is used to sample the data waveform during the data detection and recovery

process. By routing the clock and data signal paths close together it is hoped that

system and environmental noise will impact both signals equivalently. In addition

to the close proximity of the clock and data signals, the respective paths are also

carefully matched, in terms of length, to insure that commonly experienced noise will

remain correlated and cancel out when the forwarded-clock is used to sample and cap-

ture the transmitted data. The lower window presents the clock-data-recovery (CDR)

architecture, wherein the clock is not forwarded along with the data, but rather is

encoded into the data and extracted prior to data detection within the receiver.

For several reasons, true source-synchronous operation is becoming more

and more difficult to implement. First of all, the demand for increased aggregate

inter-chip bandwidth has been met, in part, through an increase in parallelism or
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Figure 2.1: Simplified diagrams of source-synchronous (top) and clock-data-recovery
(bottom) interconnect topologies.

the number of chip-to-chip connections. As a result it is nearly impossible to match

routing lengths identically when the simultaneous push to lower production cost limits

the number of available PC board layers onto which the signal paths may be laid out.

Incidentally, it is this challenge of route matching between chips that has steered

signaling standards from the true parallel link to a set of parallel running serial

links, as serial communication is less sensitive to propagation delay mismatch between

parallel signals.

In addition to the required off-chip matched routing, there is often some

degree of on-chip clock and data routing that must be matched just as carefully. This

stems from the fact that many data signals are forced to share a common reference

clock. Due to the growing cost of pins on the IC package, a single clock is often

associated with 8-32 data lanes. When this occurs, the clock must be distributed

across the receiving port, which introduces latency in the clock path and potentially

de-correlates noise that was still common to the clock and data signals at the receiv-

ing end of the off-chip channel as the result of careful off-chip routing. In order to
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guarantee that the clock and data signals arrive at the point of data capture simulta-

neously, it is thus necessary to extend on-chip data wiring to match the propagation

delay incurred through the on-chip clock distribution network. The problem with

this approach is not so much the complication of having to match clock and data

paths, but rather the limited achievable bandwidth of input data buffers. The signal

attenuation resulting from the channel, pin, and pad capacitance requires that signals

be amplified before being routed any further on chip, but designing an input buffer

to provide amplification at multi-GHz frequencies is nearly impossible in standard

CMOS technology. Still, the Joint Electron Device Engineering Council or JEDEC

has determined that this approach provides the best performance while still meeting

area and power requirements, and in so doing incorporated the source-synchronous

interconnect with data input buffering for on-chip matched routing into the specifi-

cation of the most recent memory standard, DDR3, which is intended to operate up

to 1.6 Gb/s [6].

To avoid the input buffer dilemma, a growing trend is to capture the data

right at the pad, or right as it enters the chip. The difficulty with this technique is

that it still requires that a centralized clock signal be distributed across the input

port, and in so doing guarantees a path mismatch equal in length to that of the clock

distribution network. This is typically resolved by introducing a delay-locked loop

(DLL) or a phase-locked loop (PLL) into the clock path. The DLL or PLL is then used

to compensate for the inherent path mismatch by realigning the timing of the clock

and data signals at the point of data capture. While this topology is often referred

to as source-synchronous, due to the forwarded-clock, it is more correct to refer to it

as meso-synchronous, as the clock and data paths are not strictly matched. A more

detailed analysis of meso-synchronous links will be treated in the next chapter.

As was mentioned, in the CDR system shown in the lower window of

Fig. 2.1, the transmitted data is still launched onto the channel in the same way,

triggered by the transmit clock, but in this case, the clock is not forwarded to the

other chip. Rather, the clock is embedded into the data bitstream through encoding

at the transmitter, and is extracted at the far end for use in the data recovery process.
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By embedding the clock into the datastream, correlation between the two signals is

guaranteed at the cost of added receive-side complexity. While CDR topologies are

finding increased popularity within the realm of electrical signaling, they are more

often encountered in optical systems where simply laying out a parallel trace for a

forwarded-clock is not possible [7].

2.2 Signal Degradation

As datarates increase, chip-to-chip signaling grows more challenging. Even

in the ideal case (e.g. no signal degradation), the decreasing cycle time or UI demands

faster circuit operation. At some point, even an ideally received data symbol will be-

come impossible to detect correctly when the available sampling window falls below

the setup-and-hold time required by the receiver. Noise, or distortion, only exacer-

bates the issue. Interestingly, it was the inherent immunity of digital communication

systems to noise that made them so attractive in the first place. But as lowpass

channel filters and reshapes the sharp edges of high-speed digital signals, the struggle

to overcome noise and salvage performance becomes an analog design problem.

Fortunately, analog signal conditioning techniques are fairly mature, as

analog communication has always been more sensitive to noise. Yet implementation of

theoretically derived noise mitigation schemes is often not straightforward and many

techniques must be altered through innovation to be useful at the high datarates

presently targeted. In addition, new (previously inconsequential) noise is emerging

directly as a result of higher frequency operation.

And while some signal conditioning techniques may address multiple noise

components, the distinct nature of the various noise sources commonly encountered

in baseband digital communications demands individualized solutions if optimal noise

suppression is to be obtained. Similarly, to realistically represent the variety of noise

components encountered in the typical inter-chip channel environment, it is critical

to account for several unique characteristics including correlation or non-correlation

to the signal swing and frequency, statistical characteristics, spectral content, etc.

Thus before any solutions may be developed, whether addressing noise suppression
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or simply noise modeling, it is first necessary to be familiar with the characteristics

of the specific degradation to be addressed.

Noise, which in the broadest sense is manifested as deviations in the char-

acteristics of a signal from ideal, must be considered in two dimensions: voltage noise

or distortion along the vertical or amplitudinal axis and timing noise or jitter along

the horizontal axis. Amplitudinal deviations in a given signal from ideal levels will be

combined under the term voltage noise or simply noise through the remainder of this

work. Similarly, deviations in the timing of significant signal events (e.g. transitions,

etc.) from ideal are likewise lumped under the term timing noise or jitter. A com-

mon way to observe such cycle-to-cycle variation is through superimposing several

consecutive cycles of simulated or measured waveforms to generate an eye diagram

(see Fig. 2.2). Then by taking a vertical cross section of the eye at a specific point in

time, the variations between the many levels at which the signal crosses that point in

time are considered the voltage noise experienced over the captured cycles. Similarly,

a horizontal cross section, typically taken at the level mid-way between the high and

low binary levels of the signal identifies the signal jitter as the varied time points at

which the transitioning signal passes through the threshold.

Figure 2.2: Example data eye diagram.
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Both voltage noise and jitter are made up of several contributing factors,

and as will be shown later, while noise and jitter may be injected into the signal

independently, by the time the signal has passed through the next system block in

the communication link, the noise and jitter exhibit a strong correlation. Over the

next several pages, both noise and jitter will be decomposed and the sources of the

individual components will be identified.

2.2.1 Voltage Noise

Voltage noise sources may be separated into two categories: proportional

noise sources and fixed noise sources. Proportional noise sources exhibit a dependence

on the signal swing while fixed noise sources are considered independent of the signal.

To understand the implications of this statement it is necessary to introduce the

term signal-to-noise ratio (SNR). SNR quantifies the ratio of the signal power to

the observed noise power. Not only does it provide an intuitive description of the

quality of a given communication link, but it can be used directly to predict both

the achievable bit-error-rate (BER), or the number of bits that may be transmitted

error-free, and capacity of the link when the channel bandwidth is known [8, 9]

To calculate the SNR of a particular link, it is first necessary to identify

all of the contributing noise sources and separate them into the two categories just

mentioned. Then by following the procedure found in [8], the SNR and corresponding

BER may be computed. First, a value representing the total independent or random

noise VN is computed through combining the rms levels of all uncorrelated noise

sources through the expression:

VN =
√∑

i

V 2
Ni (2.1)

where V 2
Ni is the variance of the ith contributing source. The next step is to compute

the signal power. For the purposes of calculating the BER, it is useful to let the signal

value include all deterministic noise sources. Thus the signal level is found as:
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VS =
∆V

2
− VD (2.2)

where ∆V is the peak-to-peak signal swing and VD is the peak bounded noise level.

This value may be generated through the overly pessimistic summation of the peak-

to-peak levels of all deterministic noise sources or through a more elegant technique

referred to as “peak distortion analysis” [10, 11]. By combining (2.1) and (2.2), the

expression:

V SNR =
VS

VN

(2.3)

may be used to calculate the voltage SNR. When considering noise as the only source

of signal degradation, the expression:

Perror = exp

(
−V SNR2

2

)
(2.4)

may in turn be used to compute the probability of error. Then based on the known

bandwidth of the channel, Shannon’s Theorem [12, 13] predicts that the link capacity

is found through:

C = BW log2

(
1 + SNR

)
(2.5)

where BW equals the channel’s 3 dB bandwidth and SNR is considered here in terms

of power rather than voltage.

Based on these expressions, it is clear that the performance of a commu-

nication link is highly dependent on the SNR, both in terms of achievable BER and

capacity. Thus when the noise power grows while the signal power remains constant,

the link performance is expected to degrade. However, when the noise is indepen-

dent of the signal characteristics, then the SNR may be improved by increasing the

signal power or swing. Conversely, when the noise is proportional to the signal, then

increasing signal power simultaneously increases the noise power and the SNR, in

theory, remains constant or may even decrease.
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Two of the more pervasive proportional noise sources common to high-

speed digital links are crosstalk (both inductive and capacitive) and simultaneous

switching output (SSO) noise. SSO noise corresponds to the coupling of noise between

transmit drivers. This noise is not necessarily crosstalk, by the standard definition,

but rather results from imperfect power distribution. Ideally an unlimited amount of

current is available to the circuits on-chip through a zero-resistance, zero-inductance

supply network. In reality, the available current is finite and the supply network

exhibits low resistivity and low inductance at best. The result of these nonidealities

is that when relatively high-power driver circuits draw current from the power distri-

bution, the resulting spikes in current generate short term voltage drops across the

finite resistance between supply-line nodes, resulting in reduced bias conditions for

neighboring drivers.

While crosstalk and SSO noise significantly contribute to the degradation

of high-speed links, they are not the emphasis of this work. They have, however, been

covered extensively in the literature [14, 15, 16, 17]. In addition, while crosstalk is

often suppressed through careful layout and routing techniques, special circuits have

also been developed to reduce its impact on performance [14, 15, 9]. SSO noise has also

been addressed, with most approaches based on modifying driver topologies to reduce

slew-rates and high/sharp current draw from the supply [18, 19, 20]. SSO noise and

crosstalk may also be reduced through special data encoding as well as a technique

known as data bus inversion (DBI). DBI consists of inverting all or some of the parallel

data bits prior to transmission in accordance with an algorithm determined to lower

the potential noise. Such algorithms may be based on minimizing the number of

parallel transitioning bits or may simply seek to reduce the number of transmitted

ones or zeros for power conservation.1 In either case, an additional signal must be

added to the bus to indicate that bus inversion has taken place. The additional

cost of the DBI implementation and parallel interconnect must be weighed with the

noise-suppressing ability of the technique.

1An alternative DBI algorithm based on balancing the number of simultaneously transmitted
ones and zeros across the bus has been approved for patent filing.
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In addition to the proportional noise sources, the two most common noise

components which exhibit little dependence on the signal swing are random noise and

inter-symbol interference (ISI).

Random noise is the result of random effects such as the random thermal

motion of electrons in resistors (thermal noise) or the random fluctuations in current

due to the granularity of electron current flow (shot noise). Its random nature makes

it easily approximated with a Gaussian probability density function (pdf). This type

of noise has probably been studied more than any other. As such, it is only mentioned

here, but a more comprehensive treatment is found in [21].

ISI is a phenomenon associated with both the transmission environment

and the transmitted signal characteristics, though not signal power as just discussed.

Strictly speaking, ISI is the result of overlapping transmitted symbols in the bitstream.

This symbol overlap may be due to the close proximity of the symbols in time or it

may simply be the overlapping of a forward going symbol with some residual signal

reflection. The severity of the distortion is determined by the signal pattern and

frequency.

The key to ISI and other deterministic signal degradation is that, by def-

inition, it is predictable and potentially reversible. Three keys to mitigating deter-

ministic degradation are the use of channel equalization techniques to compensate for

high frequency losses (a focus of this thesis), better channel termination practices,

and the minimization of discontinuities along the chip-to-chip signal path.

For the same reason that the number of routing layers on the board are

limited, namely due to cost, the quality of the board material is also often sacrificed

to increase the profit margin of the end product. As a result, almost all digital board-

based communication is implemented across copper traces on FR4 (flame retardant)

fiberglass PC boards. As will be shown, the combination of the copper trace and

the FR4 medium imposes two forms of high frequency signal loss, which both atten-

uate the signal amplitude and spread the transmitted symbol energy in time. These

two phenomena are known as the “skin effect” and dielectric loss. The bandwidth
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constraints associated with these two effects are accounted for by the following two

transfer function expressions, as presented in [9]. The first expressions:

Hskin(f) = e−(1+j) l
√

πµσf (2.6)

describes the skin effect, or the crowding of current near the surface of the copper

conductor at high frequencies. As the current moves out from the conductor’s center

to its edges, the current density decreases in the core of the conductor, and as a

result the copper appears more resistive. According to the expression, this effect

is proportional to the square root of the frequency f , the permeability µ, and the

conductivity σ of the conductor. Finally the impact of the skin effect grows more

noticeable with the length of the transmission path, as referred to in the expression

by the parameter l. The second expression:

Hdielectric(f) = e−l
√

εr f/c tan δ (2.7)

refers to the frequency dependent losses associated with the dielectric properties of

the board. In this case, the effect is again proportional to the length l of the channel,

but now is also inversely proportional to the wavelength λ = c/f of the signal, where

c corresponds to the speed of light and f is the signal frequency. And finally, the

dielectric loss is proportional to the tangential loss factor of the material tan δ. In

addition, dielectric losses are also proportional to the square root of the dielectric

constant εr. While these two forms of signal loss are dependent on the physical

makeup of the channel and medium (e.g., dielectric thickness, trace thickness and

width, trace routing layer, etc.), the skin effect is consistently observed at lower

frequencies (1-3 GHz), while above 3 GHz dielectric losses dominate the filtering of

the signal.

A good source covering the impact of FR4 on signal integrity is found in

[22]. This paper delineates the nonidealities of the PC board medium, discusses how

the frequency dependent characteristics of the board impact both analog and digital

signals, and then compares standard FR4 with many alternative and more expensive
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board materials, in terms of the specific material parameters discussed. Unfortu-

nately, the high cost of more signal friendly materials makes them unacceptable for

high volume commodity production.

Interestingly, it is not the signal attenuation, resulting from the skin effect

and dielectric losses, which pose the greatest challenge to high-speed digital signaling.

Rather, it is nonuniform group delay that causes the greatest distortion. Group delay,

defined as the derivative of the phase response of a system with respect to frequency,

describes the relative propagation velocities of signals at distinct frequencies. Because

the propagation time across the inter-chip channel is frequency dependent, and be-

cause digital signals are broadband by nature, spectral components of the transmitted

digital pulse arrive at the receiving end of the channel at different times producing a

smearing of the pulse, very different from the typical RC-filtered pulse response. This

factor is not captured explicitly by equations (2.6) and (2.7), but rather is hidden

within the not so constant dielectric constant εr. As will be shown shortly, the pulse

spreading that occurs in high frequency digital signaling can extend over several UI

causing symbols to interfere with one another [23].
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Figure 2.3: Illustration of the impact of ISI on signal amplitude and transition timing.
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When sent across an ideal (lossless) channel, all of the energy in a trans-

mitted pulse will be contained within a single time cell or UI. On the other hand,

as was just discussed, when a square pulse is transmitted across a channel exhibiting

nonuniform group delay, it tends to spread across multiple time cells, as shown in

Fig. 2.3. Here P1 is the simulated 10 Gb/s pulse response of a six inch copper trace

on FR4. P2 represents the same pulse, delayed by one UI. The larger pulse, P3, is

the waveform that results when P1 and P2 are sent across the same channel with no

intermediate delay, a common occurrence in nonreturn-to-zero (NRZ) signaling.

As Fig. 2.3 shows, a significant portion of P1 overlaps the cursor, or center

sample, of P2. Likewise, a similar amount of P2 overlaps the cursor of P1. This

overlap results in the combined waveform, shown here as P3, in which the bit value

sampled at the center of interval T2 will be larger than that at the center of T1. The

contribution that pulse P1 makes to the overall value during time T2 along with the

contribution made by pulse P2 to the overall value during time T1 is an example of

ISI, with the continued voltage accumulation experienced by pulse P3 indicating the

presence of ISI.

In fact, it may be predicted from Fig. 2.3 that the addition of a third

consecutive pulse would result in an even larger value sampled during T3 (the interval

immediately following T2). This is recognized by observing that the post-cursor or

tail of pulse P3 is larger than the tails associated with the individual pulses P1 and

P2. Thus, the contribution of P3 to the trailing pulse will be even greater than the

previous contribution made by P1 to P2 from which P3 was generated. Consequently

the average value of the waveform tends to accumulate with each consecutive pulse.

Fig. 2.4 illustrates this concept. The average of the simulated unequalized

curve, corresponding to received data without any signal conditioning, clearly shifts

from low to high as the majority of the binary data values change from zeros to

ones. One of the problems associated with such a dynamic shift in the average of the

signal is that it eliminates the successful application of a single detection threshold.

According to the simulation shown in Fig. 2.4, if the detection threshold were fixed

at 0.5 volts, then the true value of the ones located near 300 ps, 550 ps, and 700 ps,

18



Random 20Gb/s Data Stream

Picoseconds

V
o

lt
s

Figure 2.4: Comparison of transmitted data and the corresponding unequalized re-
ceived data.

as well as the zero at 1950 ps, would not be detected as the signal never crosses the

threshold during those intervals. And clearly there is no constant level to which the

threshold may be adjusted to enable error free detection.

An additional illustration of the detrimental effects of ISI is shown in

Fig. 2.5, where the unequalized 20 Gb/s pulse response shown in the upper win-

dow produces the completely closed eye found below. The single pulse response is

delayed by one UI and included to illustrate the accumulation of ISI through compar-

ing the relative sizes of the single and double pulse tails. The shaded area between

the tails represents an accumulation of ISI, and provides the foundation for one of

the channel equalizer self-calibration schemes proposed in a later chapter.

Now digital communication by way of electrical signaling is not the only

system environment plagued by ISI. In fact, techniques for mitigating ISI have been

developed over decades through several parallel efforts ranging from telephony to

magnetic storage. Even in the low-loss environment of optical communications, ISI

has played a dominant role in limiting bandwidth, and such is the case in all dispersive

communication channels regardless of the transmission medium. When Lucky first

proposed an adaptive equalization topology in 1965, it was in an effort to surpass
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Figure 2.5: The upper window presents the 20 Gb/s single and double pulse responses
of the six inch FR4 channel with no equalization. The lower window presents the
resulting 20 Gb/s eye diagram. The shaded area in the upper window represents
accumulating ISI.

what was then a seemingly unattainable goal of 2400 b/s across telephone lines[24],

while today both electrical and optical signaling aim for data-rates in the tens of Gb/s

[25, 26, 27, 28].

While the underlying cause of the degradation is different from that ob-

served in high-speed electrical signaling, it may still be addressed and mitigated

through similar techniques. In fact, much of the development of the decision feedback

equalizer (DFE), to be discussed, has come from efforts to reduce ISI and pattern-

dependent jitter (PDJ) in magnetic read channels [29, 30, 31, 32].

2.2.2 Timing Noise - Jitter

Jitter is often, though not exclusively, the result of voltage noise. Amplitu-

dinal shifts in the common-mode level of a signal occurring near the transition causes

the signal to pass through the transition threshold at an instant either preceding or

delayed from the expected transition time. As long as the shifts in signal voltage

level remain smaller in magnitude than the underlying signal swing, then the noise to
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jitter translation occurs linearly and is computed by dividing the voltage variation by

the slew-rate of the signal transition or the transition slope near the crossing point as

illustrated in Fig. 2.6. As will be shown, this interdependence of noise and jitter may

be exploited during the signal generation process when signals with explicit jitter are

required for simulation.

Vo
lta

ge
 D

ist
rib

uti
on

Timing Distribution

Vo
lta

ge
 D

ist
rib

uti
on

Timing Distribution

Fast Edge Slow Edge

Figure 2.6: Illustration of the translation of random noise to random jitter through
the slew-rate of the signal transition.

To understand how timing uncertainty plays a more dominant role in the

band-limitation of multi-Gb/s communication links, consider what might be referred

to as the “aspect ratio” of a 10-20 Gb/s data eye. While the vertical or voltage di-

mension of an open eye might be limited to a few hundred millivolts, the horizontal

axis or time dimension cannot exceed 50-100 ps, assuming binary or two-level pulse

amplitude modulation (2-PAM) signaling. This represents an aspect ratio of approx-

imately 1,000,000:1. From a practical perspective, ensuring a receiver sensitivity and

input offset better than tens of millivolts is much simpler than providing phase or tim-

ing control with picosecond resolution. A more scientific explanation for the growing

concern over timing margin is presented in [9].

There are methods, however, which increase the available timing window.

For example, four-level signaling (4-PAM) doubles the symbol period, but simulta-

neously reduces the SNR by a factor of three. In some circumstances, this trade-off
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between timing and voltage margins may be warranted, though 2-PAM signaling

remains the most widely accepted standard. And as 2-PAM is more commonly en-

countered, focus has turned to the eye closure along the time axis.
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Random
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Sinus oidal
Jitter

Periodic
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Duty C ycle
Dis tortion

Data- Dependent
Jitter

Bounded
Uncorrelated

Jitter

Unbounded

Bounded

Figure 2.7: Decomposition of jitter.

In the attempt to obviate the eye-closing effects of jitter, it is important to

identify all of the contributing factors, and recognize that a comprehensive solution

must address the distinct characteristics of the many jitter components. As illustrated

in Fig. 2.7, while jitter may be decomposed into several subcomponents, it is often

useful to separate all jitter into two main categories: bounded or deterministic jitter

(DJ) and unbounded or random jitter (RJ). Both classes of jitter represent a severe

impediment to high-speed communication, but it is the less bounded nature of RJ

that makes it the culprit in long term system failures [33, 34]. The RJ is in fact

bounded in reality, but is unbounded in the stochastic model.

One important distinction between deterministic and random jitter is their

probability distributions. DJ, being bounded in nature, may be quantified with a

peak-to-peak value, while RJ, being unbounded, is typically approximated with a

Gaussian probability distribution and its corresponding standard deviation (rms), in
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accordance with the Central Limit Theorem of statistics. Thus DJ never exceeds a

given limit while the potential magnitude of RJ is unlimited with the caveat that

encountering larger and larger values becomes less and less likely. The total jitter

(TJ), computed through the convolution of deterministic and random components,

is dominated in the short term by DJ and over the long term by RJ. Because the TJ

contains an unbounded random component, the TJ is also unbounded and hence is

most appropriately quantified with respect to a given BER [33].

The remaining subcomponents of DJ, as presented in Fig. 2.7 are periodic

jitter (PJ), which is commonly manifested as a sinusoidal modulation in signal phase,

and data-dependent jitter (DDJ) which most often corresponds to ISI. Duty cycle

distortion (DCD), which will be discussed in more detail, is sometimes treated as a

subcomponent of DDJ. While it is true that DCD can further exacerbate DDJ, as

will be shown, DCD is more accurately described as a periodic component.

As expected, some useful information may be gleaned from the pdfs of

the various individual jitter components. Two well known sources discussing the

specific characteristics of the various jitter components are [35] and [36]. In [36],

the specific jitter pdfs are employed to decompose the total jitter into its individual

components. By so doing, the root causes for any associated link failure become clear

and addressable.

RJ, which as was mentioned is often assumed to exhibit a Gaussian prob-

ability distribution and is consequently quantified with an rms value, is typically

associated with random perturbations in the signal amplitude. Such variations in

amplitude occurring at or near signal transitions lead to a corresponding variation

in the reference voltage crossing time of the signal, due to finite signal risetime and

falltime. As illustrated previously in Fig. 2.6, this translation of voltage noise to jitter

is inversely proportional to the signal slew-rate. As shown in the figure, a voltage

noise distribution is translated into jitter through a fast edge, while the same process

occurs on the right side through a slower edge.
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This gives rise to some important trade-offs in the signaling design: higher

slew-rates limit random noise-to-jitter translation, but lower slew-rates tend to mini-

mize inductive effects, such as ringing in the signal as well as inductive and capacitive

crosstalk, thereby reducing some components of the noise. In addition, because lower

slew-rates are also associated with lower channel bandwidths, noise is filtered by the

channel characteristics and attenuated at higher frequencies just as the signal is. This

does not imply, however, that purposely limiting the channel bandwidth to reduce

noise will simultaneously reduce jitter. In [9], this very circumstance was analyzed

for the simple case of a single pole, lowpass channel. It was determined that while

reducing channel bandwidth did reduce the overall noise magnitude, the consequen-

tial degradation in the slew-rate resulted in a more aggressive translation of noise

to jitter. Specifically it was calculated that a 75% reduction in channel bandwidth

could increase the signal jitter by a factor as large as ten. Therefore, a compromise

is to increase channel bandwidth through whatever means possible, while providing

explicit slew-rate control at the drivers to minimize inductive effects and crosstalk.

The increased RJ resulting from the effects of band-limitations on signal

slew-rate is often referred to as jitter amplification, and increases with datarate for

a given channel. Jitter amplification is not limited to RJ, but rather quantifies the

magnification of all jitter that occurs as slew-rates degrade.

To determine the level of jitter amplification requires the system’s jitter

impulse response, often simulated by a single edge timing deviation within an other-

wise ideal periodic signal. The number of trailing cycles required for the edge timing

to re-settle to the ideal is a distinct characteristic of the system. The jitter impulse

response is found by measuring the difference between the ideal edge timing and the

timing due to the perturbation, which are represented by a train of delta functions

whose individual magnitudes correspond to the jitter magnitudes of the sequential

edges (see Fig. 2.8).

Once the jitter impulse response is acquired, the jitter amplification factor

may be computed through the expression:
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Figure 2.8: Definition of the jitter impulse response.

JAmp =
√∑

i

JIR2
i (2.8)

where JIRi are the sampled values of the jitter impulse response between the initial

occurrence of the perturbation and the final edge settling time. In the case of RJ,

the jitter amplification factor may then be employed as a scaling term by which the

known rms jitter level at the input of a system is multiplied to compute the expected

output rms jitter level.

Based on this principle of noise-to-jitter translation, one potential method

for minimizing RJ is to minimize the random noise. As will be discussed in detail, the

most widely accepted method for addressing and reducing random noise components,

or conversely increasing the SNR, is through matched filtering, in which the impulse

response of the filter is the time reversed, delayed conjugate of the transmitted pulse.

Mathematically it can be shown that the convolution of the transmitted symbol with

the impulse response of the matched filter optimizes the SNR for the case of random

noise, uncorrelated to the signal [10, 37].
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While most RJ is associated with random noise near signal transitions,

some RJ may have origins not as clearly linked to voltage noise. For example, the

phase noise inherent in commonly used oscillators modulates the edges of the oscillator

output with a nonlinear relationship to environmental factors.

As was mentioned DJ, sometimes referred to as systematic jitter, can be

broken down into several sub-categories including DCD, DDJ due to ISI, and various

uncorrelated jitter components injected into the signal through the power supply

and ground paths. In the following pages, the characteristics of DCD and DDJ are

discussed.

DCD is simply duty cycle error quantified in terms of absolute time. DCD

exists when the ratio of the signal pulse-width to the period deviates from 1/2 due

to DC offsets in the signal, rise/fall time discrepancies, device mismatch in the signal

path or any combination of the three. Inequalities between the pulse and space-widths

of clock signals are particularly troublesome in double-data rate (DDR) systems,

where the data stream is sampled with both the rising and falling edges of the clock.

Vref

Duty Cycle Distortion Sampling Clock Jitter

Data
Jitter

Data
Jitter

Data

Clock

Figure 2.9: Eye diagram illustrating the effects of both clock and data jitter on timing
margin. Duty cycle distortion produces the bi-modal sampling clock distribution.
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Alone, the pdf of DCD consists of two Dirac delta functions with heights

of 0.5 each, separated by the peak-to-peak DCD magnitude. When combined with

random, Gaussian distributed jitter, DCD produces a bi-modal jitter distribution,

as illustrated in Fig. 2.9. DCD is not the only jitter component that leads to the

bi-modal jitter pdf. In fact, it is so common for TJ to take on the bi-modal form that

methods for jitter decomposition have been developed based on the assumption that

TJ may always be approximated as bi-modal [36].

With reference to the figure, while the ideal sampling instant (clock edge)

should cross the vertical midpoint at the center of the data eye, the presence of

DCD results in the concentration of clock threshold-crossings around a pair of timing

instants, with the distance between the bi-modal peaks in the TJ pdf corresponding

to the peak-to-peak DCD. Thus, the contribution of DCD to the spreading of the

sampling distribution, and subsequent timing and voltage margin degradation, is

significant.

τPulse τPulse

τSpace

τPulse τPulse

τSpace

Vref

Figure 2.10: Illustration of how the addition of DC offset to a perfectly symmetric,
finite rise/fall time, square wave generates duty cycle error.

The analysis of DCD requires consideration from both low and high fre-

quency perspectives. Recall that one of the effects of the lowpass channel is to degrade

the rising and falling signal transitions. The exaggerated rising and falling transitions

shown in Fig. 2.10 help to demonstrate the dependence of duty cycle on DC offsets.
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The signal shown is nothing more than a symmetric square wave that has been shifted

in the positive vertical direction by a small amount. That small shift, in conjunction

with the finite slopes of the transitions produces a shift in the reference voltage cross-

ing times of the signal, and hence, duty cycle error. For the reference voltage shown,

the duty cycle ( τPulse/(τPulse + τSpace) ) is clearly greater than 50%. And while the

presence of DC offset is not the only source of duty cycle error, an unwanted DC

component tends to accumulate as a result of DCD, regardless of the source of the

error, as illustrated in Fig. 2.11, which demonstrates the effect of lowpass channels

on clock signals with duty cycle greater than 50%.

1

0
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t

Figure 2.11: Illustration of how DCD in a signal accumulates across a lowpass channel.

With regard to the diagram, the mismatch between the positive and neg-

ative pulses results in a non-zero DC or average value due to the integrating nature

of the channel (i.e. the area under the pulses do not cancel completely). Then, in

accordance with the previous discussion surrounding Fig. 2.10, DCD will grow due

to the increased offset. Thus, a cycle is born wherein DCD leads to increasing signal

offset, and signal offset leads to increased DCD, which suggests that the suppression

of low frequency signal components, or at least the DC component, should aid in

the attenuation of DCD. This also implies that DCD amplification imposed by the

lowpass channel will grow faster as the signaling frequency exceeds the bandwidth of

the channel, and the rate of signal integration increases.
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The high frequency nature of DCD can best be understood through Fourier

analysis. A simple Fourier series, which models a clock with controllable levels of

DCD, may be derived as follows:

-T/4 +T/2-T/2 +T/40

+τr +τf

0

1

-τr -τf

Figure 2.12: Waveform used in the derivation of the Fourier series representing a
clock with DCD.

1. The waveform shown in Fig. 2.12 represents a clock signal which alternates

between values of zero and one with period T. By including the variables τr and

τf at the transitions it is possible to simulate the existence of duty cycle error

through the manipulation of the rising and falling edges of the pulse as follows:

Positive τr shifts the rising edge left (early),

Negative τr shifts the rising edge right (delay),

Positive τf shifts the falling edge left (early), and

Negative τf shifts the falling edge right (delay).
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2. The expression into which the Fourier coefficients will be inserted is:

C(t) = A0 +
∞∑

n=1

An cos
(

2nπ

T
t
)

+ Bn sin
(

2nπ

T
t
)

where

C(t) = the resulting clock signal,

t = the timing instant,

T = the signal period, and

n = the integer multiple frequency (harmonic).

3. The A0 term, found by evaluating the integral:

A0 =
1

T

∫ T
4
±τf

−T
4
±τr

dx (2.9)

represents the DC or average value of the waveform.

4. The An and Bn terms are similarly found by evaluating the following integrals:

An =
2

T

∫ T
4
±τf

−T
4
±τr

cos
(

2nπ

T
x
)
dx (2.10)

and

Bn =
2

T

∫ T
4
±τf

−T
4
±τr

sin
(

2nπ

T
x
)
dx (2.11)

and represent the harmonic content of the waveform.

5. The resulting coefficient values are:

A0 =
1

2

(
1 +

2(τr − τf )

T

)
, (2.12)
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An =
1

nπ

[
sin

(
2nπ

T

(
T

4
+ τf

))
− sin

(
2nπ

T

(
τr −

T

4

))]
, and (2.13)

Bn =
1

nπ

[
cos

(
2nπ

T

(
τr −

T

4

))
− cos

(
2nπ

T

(
T

4
+ τf

))]
. (2.14)

Figure 2.13: The upper window presents an ideal clock waveform compared with
a clock exhibiting 25 ps of DCD as generated through the parameterized Fourier
series just derived. The lower window presents the resulting variation in the 10 GHz
fundamental and the first nine higher order harmonics, illustrating the high frequency
nature of DCD.

Fig. 2.13 illustrates the effects of duty cycle error on the high frequency

components of the clock signal. A 10 GHz clock signal, generated by the Fourier se-

ries just discussed, is shown in the upper window. The falling edge is delayed in one

case by 25 ps to compare an ideal clock with one exhibiting DCD. The lower window

shows the resulting shift in the magnitude of the first ten harmonic components. As

these harmonics represent integer multiple frequencies of the fundamental, it can be
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understood that DCD manifests itself at frequencies equal to and above the funda-

mental frequency of the signal. An additional point of interest is the fact that the

even harmonics, which do not exist in the ideal signal, take on nonzero values as the

duty cycle error increases, with the second harmonic appearing to be the dominant

DCD component. This last fact is corroborated in [38].

Moving on to DDJ, it has become acceptable in casual conversation to

use the terms ISI and DDJ interchangeably. This is a mistake, because though they

are related phenomena, they are not equivalent. As was illustrated previously in

Fig. 2.3, ISI refers to the vertical shifting in the signal amplitude that results from

the additional positive or negative impact of neighboring bits in the data stream.

DDJ is the deviation in edge timing that results from the same bit-to-bit interaction

[39, 40, 41, 42, 43].

Interestingly, [41] goes on to show that DDJ may exist even when the

bitrate is well contained within the bandwidth of the system implying that simple

extension of the system or link bandwidth does not guarantee a reduction in DDJ,

whereas channel bandwidth extension has been the long accepted method for reducing

ISI.

The final jitter component, yet to be discussed, is the uncorrelated-bounded

jitter shown in the lower right-hand corner of Fig. 2.7. This jitter is associated with

supply noise, ground bounce, and other bounded environmental effects such as electro-

magnetic interference (EMI). As such, it is bounded, yet unpredictable and therefore

not strictly deterministic.

2.3 Impact of Noise on Link Performance

Having laid a foundation through presenting the most common link ar-

chitectures, as well as the dominant sources of signal degradation, it is now ap-

propriate to discuss how those forms of degradation impact the performance of the

meso-synchronous link, which is the signaling topology targeted in the remainder

of this work. To facilitate the discussion, a more detailed diagram of the typical

meso-synchronous signaling scheme is presented in Fig. 2.14.
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Figure 2.14: Detailed block diagram of the typical meso-synchronous link.

It is important to recognize that circuits contributing to the performance,

or lack thereof, of the meso-synchronous signaling scheme begin a few layers before

the driving circuits launch the clock and data onto the channel. As shown in the

figure, lower frequency, parallel data from elsewhere on the chip is serialized before

being fed to the drivers. The multiplexing operation used to serialize the data is

triggered by clock edges typically generated from a PLL. While great care may be

taken to reduce the signal jitter at the output of the PLL, some jitter is inevitable,

and superimposed onto the data edges through the serialization process.

Following serialization, the driving circuits pull down on the power supply

network generating the SSO noise previously discussed. Across the channel, both

inductive and capacitive crosstalk occur due to the close proximity of the traces

required to accommodate the number of routes. Signal reflections, due to discontinu-

ities presented by connectors, vias, and possibly transitions to the distinct dielectric

properties of additional circuit boards in the transmission path, combine with the

transmitted signal either constructively or more often destructively. Frequency de-

pendent losses in the PC board attenuate and smear the digital symbols causing ISI

and the associated DDJ. At the receiver, the shared clock is distributed out to each

of the data capturing circuits, a process through which the clock is vulnerable to ad-

ditional supply and environmental noise, based on the sensitivity of the distribution
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network. To compensate for the inherent clock-data routing mismatch of this scheme,

a second PLL or possibly a DLL is used in conjunction with phase interpolation (PI)

to realign the clock-to-data timing. The introduction of the PLL/PI into the clock

path further reduces the correlation between noise and jitter that were once common

to the clock and data signals.

Based on this discussion, it is not uncommon for the clock and data signals

reaching the data capture mechanism to resemble the simulated 4 Gb/s signals shown

in Fig. 2.15. To identify the synergistic relationship of clock and data jitter, the rising

and falling edges of the corresponding sampling clock are overlaid. With the signal

concentration accounted for by the shade of the waveform (higher concentration =

lighter shading) it is possible to visualize, albeit crudely, the distribution of the signals

in both the voltage and time dimensions. Ignoring for a moment the exact distribution

of the noise and jitter, their general impact on the system performance can still be

analyzed.

Data Jitter C lock  Jitter

Signal Nois e

Vref

Data Signal
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Figure 2.15: Diagram identifying various forms of signal degradation.
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Even without the signal shading, it is clear that the timing uncertainty of

the data signal is significantly greater than that of the clock. In this particular case,

and in general, the data timing variation is dominated by DDJ stemming from ISI.

In the figure, the closing of the data eye is the combined result of ISI, SSO noise,

crosstalk, and other random noise components. It is the broadband nature of the

data that makes it so sensitive to these “high-frequency” noise sources. While the

clock passes over and is reshaped by a similar if not identical channel, its narrow-

band periodicity is not affected by the high frequency channel losses in the same way.

In fact, while the clock may experience SSO noise and crosstalk, depending on its

proximity to the noisy data signals, it is immune to ISI, though it will experience

both attenuation and jitter amplification.

Yet even though the clock signal integrity is typically superior at the re-

ceiving end of the link, it can no longer be taken for granted, for while clock jitter

directly reduces the timing margin, it also indirectly reduces the voltage margin. To

understand this, consider what happens as the sampling uncertainty or clock jitter

increases. The result is that data sampling can occur further and further from the

horizontal center of the eye. From the figure it is clear that when the rounded data eye

is sampled near the transitions, the value sampled over that region in time will have

less amplitude with respect to the reference voltage, and hence less voltage margin.

Noise on the reference voltage (VREF ), which serves as the detection thresh-

old, also contributes to the perceived eye closure. VREF uncertainty, which often con-

sists not only of explicit noise but finite receiver sensitivity as well, may accumulate

and directly decrease the voltage margin, while simultaneously reducing the timing

margin based on the same argument as that used for the sample timing uncertainty.

Thus it is clear that predicting the probability of error in such systems is

significantly more complicated than simply identifying the bounded and unbounded

noise components of the data signal, and computing the SNR and BER using the

equations presented earlier. Rather, verifying link functionality has become a design
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problem all its own. And as will be discussed in the next chapter, innovative meth-

ods have been developed in an effort to account for the growing complexity of the

verification problem.
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Chapter 3

Current Modeling and Simulation Practices

As was indicated during the introduction, the design of high-speed chip-to-

chip interconnects is not only impeded by the signal degrading effects of band-limited

channels, but also by the difficulty in accurately verifying the interconnect perfor-

mance prior to fabrication, which is critical as the enormous cost of integrated circuit

fabrication prohibits an iterative approach to circuit design and product development.

In fact, depending on the process technology node and the geometric complexity of

the design, fabrication costs for the first prototype may exceed $1 million [44].1

As symbol periods fall into the hundreds of picoseconds range and timing

uncertainty can no longer be ignored, the level of jitter introduced by the transmitter,

channel, and receiver must be accurately predicted through methods accounting for

the interaction of noise and jitter. Thus, the high-speed link verification problem

raises two somewhat incongruent challenges: the need to accurately model signals

exhibiting noise and jitter and the ability to efficiently simulate the interaction of

the resulting noisy signals with the various system components. This chapter dis-

cusses the trade-offs between simulation precision and efficiency in standard model-

ing methodologies, and goes on to present known methods for generating signals with

deterministic jitter.

3.1 Modeling Efficiency versus Precision

At multi-Gb/s data rates, the statistical nature of signal degradation, cou-

pled with the already vanishing voltage and timing margins, has led to advances in

1This estimation was associated with the 90nm process node.
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channel and circuit modeling. Alternative computational algorithms have been in-

corporated into existing simulators to complement traditional circuit analysis, while

at the same time, high-level tools like Matlab and Simulink are finding greater use

in the verification process. To efficiently capture the true impact of the entire com-

munication link on signal integrity with the requisite level of precision requires an

interleaving of simulation at both the transistor and system levels.

3.1.1 Transistor-level Analysis

Transistor-level analysis refers to the schematic entry of specific circuit

blocks into Spice-like tools such as HSpice, PSpice, Cadence, and ADS for AC or tran-

sient analysis; complementary methods for determining signal integrity. AC analysis

computes the frequency response of the channel or circuit and can help identify noise

components and other degradation most visible in the frequency domain. Unfortu-

nately, AC analysis is only carried out for a fixed circuit bias condition, while transient

analysis provides a time domain simulation of the circuit behavior accounting for dy-

namic changes in the circuit biasing resulting from varying input levels and/or supply

noise, thereby presenting the real-time impact of environmental conditions on passing

signals.

During transient analysis, differential equations relating the voltage and

current at each circuit node are solved at specified points in time. The time that

elapses with each computation increases when diodes, transistors, and other compo-

nents exhibiting nonlinear voltage-to-current relationships are included. To control

the simulation run time, the level of precision in both time and amplitude are of-

ten adjustable. For example, the desired level of voltage or current resolution in

Spice-based tools is designated through the AbsTol (absolute tolerance) parameter.

Requiring tighter tolerance leads to a greater number of computational iterations in

order to meet an associated error level while solving the differential nodal equations

at each time step.
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In a similar way, the timing resolution may be enhanced by decreasing the

time span between each calculation. While simulators like HSpice, ADS, Spectre (Ca-

dence), and HSim allow for the designation of a minimum transient step size, PSpice

does not provide direct control over the minimum time step, but rather provides a

maximum time step parameter which constrains the simulator to make at least one

evaluation within the designated interval. Thus, for the purpose of jitter charac-

terization, the timing precision of the industry-wide transient simulator is improved

through a reduction in the simulated time step, the result of which is a simultaneous

increase in both the simulation run time and the memory requirement.

In addition to the requirement of sub-picosecond timing resolution, the sta-

tistical nature of random noise and jitter demands that the signal-system interaction

be computed over several clock cycles in order to provide the necessarily large num-

ber of samples required to properly build up probability distributions. Coupling the

constraints of high resolution (small transient time step) with the need to observe the

behavior over thousands or millions of cycles extends the transistor-level simulation

run time and memory requirements even further.

An attempt to overcome the weaknesses of the general transient simulator

has lead to the development of alternative time domain algorithms including har-

monic balance, circuit envelope, and periodic steady state simulation. While these

techniques have many distinct features, they all seek to avoid or minimize the time

step dependency of transient simulation by operating as much as possible in the

frequency domain.

As long as the circuit element passing the signal can be accurately modeled

as a linear time-invariant (LTI) system, the time-consuming process of convolving the

signal with the circuit impulse response in the time domain may be replaced by simple

vector multiplication in the frequency domain due to the relationship:
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A⊗B = F−1 {F {A} × F {B}}

where ⊗ denotes convolution and F{} is the Fourier Transform and F−1{} is the

Inverse Fourier Transform. The computational efficiency gained through this sub-

stitution is illustrated by considering the time domain convolution of two vectors A

and B, which could represent a signal and the impulse response of the circuit through

which it is passing. Recall first that the process of discrete-time convolution is carried

out through the formula:

C(n) = A⊗B =
∞∑

k=−∞
A(k)B(n− k). (3.1)

Due to the finite length of the vectors under consideration, the sum need

not be carried out to infinity. Thus, the number of computational steps to perform

the convolution is found through:

1 + M + N + 2
N∑

k=0

(
M + N − k

)2

− αM2 (3.2)

where

α =

 1 if M + N is even

0 if M + N is odd

and where M and N are the number of elements in the longer and shorter of the two

arrays, respectively. According to (3.2), the convolution of two vectors of 1000 ele-

ments each would require 4,670,669,001 mathematical steps. This may be contrasted

with the number of steps needed to convert the two vectors to the frequency do-

main, perform an element to element multiplication, and return to the time domain,

a process often referred to as Fast Convolution. When the Fourier Transform and

Inverse Fourier Transform processes are carried out via the FFT and IFFT, the time-

to-frequency and frequency-to-time domain translations require as little as 1
2
N log2 N
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complex multiplications and N log2 N complex addition steps each [45]. For the two

equal length vectors under consideration, this leads to a total number of:

4.5N log2 N + N (3.3)

or 45,846 computational steps to convert both vectors to the frequency domain, multi-

ply them and return to the time domain. To be fair, increased accuracy and efficiency

in the FFT algorithm is insured by padding each data set with zeros to the nearest

power of two greater than the sum of the two data set lengths. Thus for M = N =

1000, the actual number of data points involved in the FFT process will equal 2048,

causing the total number of steps in the overall calculation to increase to 103,424,

still significantly shorter than direct convolution.

Unfortunately, this reduction in computational steps is only realized when

the simulated circuits can be linearized. Thus harmonic balance and the other more

sophisticated simulation algorithms tend to divide the simulated system down into

those parts which can be appropriately modeled as LTI, and those parts which re-

quire nonlinear analysis (e.g., circuits containing diodes and transistors passing large

signals) [46, 47, 48]. In circuit envelope simulation, further efficiency is gained by

only performing frequency domain multiplication over the spectrum of the passing

signal while avoiding unnecessary calculations at unrelated frequencies [48]. The abil-

ity of these more sophisticated algorithms to handle nonlinear circuit elements while

exploiting the speed of frequency domain calculation is somewhat washed out, as

they tend to target radio frequency (RF) circuit design, and in doing so incorporate

functionality (complexity), such as signal mixing and intermodulation analysis, not

typically considered or even applicable in this type of baseband link verification.

Even with highly-efficient simulators, the number of simulated cycles re-

quired to fill in the tails of statistically characterized noise and jitter prohibits a

purely time-domain based link analysis. In [49], trade-offs between several possible

modeling methodologies were considered with reference to a 20 Gb/s serial link. The

proposed solution was to use Verilog rather than transistor-level models to speed up
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simulation time. To regain some of the accuracy lost by moving away from transistor-

based simulation, the behavioral Verilog models were modified to account for analog

phenomena not typically considered. By so doing, modeling time was reduced from

hours to minutes, without incurring significant error.

Another common way to minimize dependency on the transient time step

is to analyze the resulting signal from within the frequency domain, never returning

to the time domain. This is done through the phase noise spectral density. Using

a variety of expressions, time domain jitter may be extracted directly by integrating

the simulated phase noise over the bandwidth of interest [50, 51].

The discrete-time simulation methodology, inherent in Spice-based simu-

lators, not only limits computational efficiency, but also imposes constraints on the

variety of input signals and stimuli derivable from within the tools themselves. While

there are a few exceptions, commercially available simulators typically construct sig-

nals in a piece-wise linear (PWL) fashion; voltage levels being designated for each step

in time. HSpice, PSpice, HSim, Spectre, and ADS all provide for the instantiation

of standardized periodic signals with control over the signal amplitude, period, delay,

risetime, falltime, and pulsewidth. For complete control over the waveform, an arbi-

trary PWL voltage source is also available, wherein each time step and corresponding

voltage may be specified directly. Using this approach it is possible, though terribly

inefficient, to incorporate noise and jitter into the signal model, and for the majority

of the simulators mentioned above, this method is the only commonly known means

for adding pseudo-random noise in the time domain.2

The one exception is ADS, which in addition to the standard square-wave

and PWL sources, also provides a pseudo-random data source and a clock waveform

with an assignable rms jitter level. The jittery clock signal may be used to trigger the

pseudo-random data waveform, thereby injecting Gaussian distributed jitter into the

data signal. But even with the added sophistication, ADS does not provide complete

2Gaussian distributed noise may be crudely approximated by superimposing a carefully selected
set of sinusoids with unrelated frequencies onto the fundamental signal. In accordance with the
Central Limit Theorem, the accuracy of the approximation increases with each additional sinusoid,
and with the length of the simulation [52].
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control over the realized jitter distribution, as there is no utility for generating clock

or data signals with periodic jitter components[4].

3.1.2 System-level Simulation

Because simulation time and memory requirements associated with tran-

sistor level Spice-based evaluation are prohibitive, much of high-speed link design is

carried out at the system level with programs like Matlab and Simulink. These tools

allow the designer to take a more statistical look at the link behavior.

The impact of various system blocks on signal integrity may even be com-

puted by hand once a mathematical representation of the signal has been derived,

assuming a closed-form expression for the response of the transmission channel or spe-

cific system block is known. One commonly adopted mathematical approach models

a transmitted signal x(t) carrying random data as:

x(t) =
∞∑

n=−∞
anptx(t− nT ) (3.4)

where an corresponds to the nth data bit value, ptx(t) represents the pulse response of

the transmitter, and T is the symbol period. Physically this equation states that the

signal amplitude at any time t will equal the sum of the contributions of all previous

and trailing symbols (bit value × transmitter pulse response), leading up to and

including the current symbol, all sampled at time t plus or minus the relative position

of the contributing symbol within the bit stream. This is somewhat uninteresting in

the transmitted signal wherein the symbols have yet to be spread by the channel and

therefore do not contribute much from UI to UI. There are circumstances, however,

when the transmitted signal will exhibit ISI. Such is the case when pre or de-emphasis

equalization (to be discussed) is applied to the signal in an effort to preemptively

counter the degrading effects of the channel.

On the other hand, once the transmitted symbols are distorted by the

response of the band-limited channel, it is not uncommon for the preceding and even

trailing bits to overlap the bit of interest enough to contribute to the signal amplitude
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t=0
5T/2

a-1 a0a-2

t

t=T/2

Figure 3.1: Received pulse train illustrating the contribution of symbols an to the
signal amplitude at time t.

sampled at a specific instant. This ISI is illustrated in Fig. 3.1, which considers the

data sequence a−2, a−1, a0 = 1, 0, 1. In this case, the tail of bit a−2 lingers long

enough to add to the energy of bit a0 when the signal is sampled at time t = T/2.

Mathematically, what is shown in Fig. 3.1 is understood as follows. First

the channel-affected received pulse response prx(t) is computed through the convolu-

tion of the transmitted pulse ptx(t) with the channel impulse response h(t):

prx(t) = ptx(t)⊗ h(t). (3.5)

By substituting the received pulse response found in (3.5) for the trans-

mitted pulse response in (3.4), the received bit stream becomes:

y(t) =
∞∑

n=−∞
anprx(t− nT ). (3.6)

Now with reference to Fig. 3.1, and using (3.6), the received signal ampli-

tude at time t = T/2 is found to be:

y
(

T

2

)
= 1 · prx

(
T

2
− (−2)T

)
+ 0 + 1 · prx

(
T

2
− (0)T

)
(3.7)
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which simplifies to:

y
(

T

2

)
= prx

(
5T

2

)
+ prx

(
T

2

)
. (3.8)

The first term in (3.8) represents ISI or the contribution that symbol a−2

makes to the overall signal energy at the sampling instant, while the second term

corresponds to the symbol of interest, a0. This approach has been extended into

a technique known as peak distortion analysis, through which the worst case eye

diagram corresponding to a specific received pulse response may be constructed [11,

53].

Returning to equations (3.4)-(3.6), not only do these expressions provide for

the quantification of voltage noise in terms of ISI, but they may also be used to predict

the associated DDJ distribution. When the channel response and the transmitted

pulse response are both expressible in closed-form, the value of the received signal

y(t) may be set equal to the detection threshold, and the threshold crossing instants

of the transitioning signal may be found and compared with the ideal crossing times

through the following process developed in [39, 40, 41, 42, 43]:

Beginning with (3.6), the difference between the ideal threshold crossing

time of the nth transition and the deviation that results due to ISI is found through:

∆t = − 1
dy(t)

dt
|t=t0

·
∑
n6=0

anprx(t0 − nT ) (3.9)

where t0 is the ideal crossing instant, the denominator represents the slope or slew

rate of the transition, and the summation accounts for the accumulated ISI due to all

prior and trailing symbols. It may be noticed that this formula closely follows from

the previous discussion on noise-to-jitter translation.
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As it is often the case that one particular previous bit ak will contribute

more dominantly to the overall DDJ, it is possible to simplify the analysis further

by considering only the kth edge (worst case). In this case, the peak-to-peak DDJ is

predicted by:

DDJ ≈

∣∣∣∣∣∣prx(t0 − kT )
dy(t)

dt
|t=t0

∣∣∣∣∣∣ . (3.10)

While ISI and the associated DDJ may dominate the short-term signal

degradation, random noise and jitter must also be accounted for. Voltage noise may

be added to (3.6) as an independent random variable η(t), resulting in an expression

of the form:

y(t) = η(t) +
∞∑

n=−∞
anprx(t− nT ). (3.11)

As the voltage noise causes fluctuations in the signal at each point in time,

the time at which the signal crosses the detection threshold will also vary resulting in

a corresponding change in the observed jitter. In addition, this numerical analysis can

be extended to include explicit jitter as well, but the correlation between noise and

jitter is difficult to account for with these types of expressions. As a result, signals

with noise and edges with jitter are often considered independently.

In fact, it is not uncommon for jitter passing through the system to be

modeled as a signal itself [53, 54]. Then in accordance with the previously determined

jitter transfer characteristics of the various system components, the jitter is filtered,

shaped, and accumulated. Sometimes, the correlation between voltage and timing

noise is approximated through voltage-to-timing translation parameters, by which the

anticipated voltage noise may be scaled through simple multiplication to approximate

an associated jitter level. This jitter component is then combined with the other

anticipated jitter contributions to predict the total accumulated jitter at the output

of the system. While such approximations do provide useful jitter predictions when

designing to meet a required jitter budget, they fail to capture much of the non-

linear noise-to-jitter translation that occurs in realized circuits, as most approaches
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make assumptions regarding the biasing and general performance of the associated

transmit and receive circuitry when deriving the corresponding jitter transfer models.

Thus, where these techniques fall short is that they fail to account for the combined

degradation imposed by simultaneous voltage and timing noise.

Even with the questionable efficiency of standard transistor-level simula-

tion, many of the problems associated with the current modeling techniques could be

overcome with the ability to generate input waveforms exhibiting both controllable

voltage noise and jitter for transient simulation. While this would not resolve the need

for acquiring millions of samples for statistical characterization, it would provide a

more accurate understanding of the response of the system components to realistic

signal degradation over the short term.

Some third party waveform generators provide a greater degree of flexi-

bility in the signal generation process than what is included with currently popular

simulators. Tools such as SynaptiCAD’s WaveFormer Pro allow for graphical signal

construction, which is basically a visual approach to building up PWL waveforms

[52]. The user may begin with either an empty palette and construct arbitrary wave-

forms from scratch, or they may begin with one of several parameterized signals,

and then manipulate the signal’s timing and voltage levels to meet their specifica-

tions. WaveFormer Pro provides for the injection of jitter onto the edges of periodic

clock waveforms, but provides no jitter for aperiodic signals.3 Once the signals are

complete, they may then be imported into simulators like Spice or Verilog in either

analog or digital form. When imported into Spice-based tools, periodic clock and

aperiodic data signals generated with WaveFormer Pro are mapped to the VPULSE

and VPWL voltage sources respectively.

While the methods employed by WaveFormer Pro to add distortion to

waveforms are not readily known, an accepted method for generating jittery signals

is illustrated in Fig. 3.2. Derivatives of this method are presented in [55, 56]. Es-

sentially the methodology exploits the noise-to-jitter translation spoken of repeatedly

3Synapticad makes no claims in their documentation regarding the model-able jitter character-
istics, but only provides for the designation of a jitter “range”.
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Figure 3.2: A known method for generating signals with jittery edges.

throughout this work. By comparing the required bit stream at the upper left of the

figure with noise, the effect is to shift the triggering of the comparison operation in

time. Because the comparator outputs are saturated, the signal variance is only evi-

dent in the transition timing of the output signal. By constraining the magnitude of

the noise, the translation of noise to jitter remains linear and the desired jitter prob-

ability distribution can be achieved by imposing the same probability characteristics

on the comparison noise. The magnitude of the jitter is scaled through the slewrate

of the input bitstream, but herein lies one of the limitations with this approach. The

risetime and/or falltime of the input signal may not exceed 1/2 of the bit period,

if both a rising and falling edge are to occur within the allotted time, and thus the

characteristics or dynamic range of the output jitter is restricted. Because the noise,

to which the input bit stream is compared, cannot exhibit true statistical tails, nei-

ther can the resulting jitter, a second shortcoming. In fact, in order to approximate

the tails of a Gaussian distribution, the rms jitter level at the model’s output may

be severely limited in magnitude. Another potential problem with this approach is

the potential for triggering unwanted pulses. If an instantaneous noise event super-

imposed onto the signal is large enough to cause glitching, or the repeated crossing
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of the comparator threshold during a single transition, then multiple pulses may be

generated where only one pulse was desired.

An example of such jitter limitation is found in [57]. Here a bit-error-rate

tester (BERT) is used to inject both periodic and random jitter into the test data

waveform. At higher frequencies (10-80 MHz) the magnitude of the PJ is limited to

0.5× the symbol period, as expected. Interestingly, at frequencies below 10 MHz,

that jitter magnitude is extended to 2.2× the symbol period. But the rms level of

the RJ component is always limited to 0.04× the symbol period.

A second approach, less limited in terms of jitter magnitude is described

in [58]. In this case, it is proposed that the jittery signal be developed by passing the

bitstream through a voltage controlled delay line and introducing jitter by modulating

the delay control voltage. This provides a signal free from artificial voltage noise and

limited in magnitude only by the timing range of the delay cells.

There are two shortcomings with the approach however. The first is that

the control voltage to delay must be linear across a large range in order to accurately

reproduce the desired statistical jitter characteristics. And if the jitter injection sys-

tem is to function at several datarates, then the linear performance must leave margin

for both the jitter and the static timing difference associated with the various oper-

ating frequencies. Second, it requires the design of a delay line, which will be specific

to a particular process node and not trivially ported from one design to the next. A

better solution, for the simulation environment, would be independent of circuitry.

In the next chapter, new signal models are presented which allow for periodic clock

and random data waveforms to be generated with controllable noise and jitter char-

acteristics, while overcoming many of the limitations that have been discussed. In

addition, some circumstances exist in which one of the models may be used to calcu-

late circuit-signal interactions with improved simulation time and memory efficiency.

Before moving on, however, two additional methods for analyzing link per-

formance through eye diagram generation are presented, both of which avoid lengthy

transient simulation time at the expense of limited flexibility. These two techniques
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have come to be known as “Peak Distortion Analysis” [11, 59] and “Statistical Eye

Analysis” [11, 60].

Early demonstrations of peak distortion analysis illustrated how it could

be used to find the worst case eye opening and voltage margin from the system pulse

response at the ideal sampling instant (pulse peak) [10]. In general, the principle

states that when the pulse response is sampled at nUI intervals, then those samples

which do not correspond to the sample at the pulse response peak constitute ISI and

may be accumulated and subtracted from the value sampled at the peak to represent

the potential difference between an ideal one and the worst case one at that instant.

More formally, the process is expressed as:

RV D(t) =
(

prx(t)

2
−
∑
k 6=0

|prx(t− kT )|
2

)
(3.12)

where RVD is the “received voltage difference”, T = 1UI and k represents bit samples

extending from -∞ to +∞. Additional channel noise terms, such as crosstalk and

SSO noise may also be accounted for in the RVD calculation when their respective

pulse responses are available. By repeating the process at regular time increments t

over the pulse response, a set of sample time versus vertical eye opening values are

generated, which can then be separated into the worst-case opening corresponding

to either a transmitted one or zero. By superimposing the two resulting curves, the

inner eye boundary is derived.

There are a few shortcomings associated with this approach. The first

problem is that the generated inner eye boundary is always symmetric about the hor-

izontal axis, which may not be accurate if asymmetries exist in the transmit circuitry.

This could, of course, be resolved by using both the rising and falling step responses

in the process, though this has not been demonstrated in the literature. A second

issue regards the statistical nature of this approach. The probability of encountering

the absolute worst case pattern required to close the eye to this degree corresponds

to a BER near 10−20, which is pessimistic when the link specification only calls for a

BER of 10−12. Still another limitation of this approach is that the magnitude of jitter
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modeled in this way may not exceed 1UI, eliminating the modeling of periodic jitter

extending over multiple cycles. Finally, the pulse response from which the worst case

eye is derived only corresponds to a specific bias condition of the underlying circuitry.

Dynamic changes in supply levels and other noise sources can only be built in through

assumptions of how that noise would impact the pulse.
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Figure 3.3: Illustration of the BER eye derivation. (a) Probabilistic data eye gener-
ated from ISI pdf at 1 ps intervals. (b) Sampling uncertainty distribution generated
from the products of independent voltage and timing noise distributions. (c) BER
derived from the product of the values from b and c.
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To overcome the inherent pessimism of worst case eye generation, a second

more flexible method for determining the probability of error based on sampling

position within the eye was proposed in [11]. This technique involved the derivation

of a statistical eye, from which the BER could be identified for any sample time -

sample voltage level combination.

The process for deriving the more descriptive statistical eye diagram also

begins with the received pulse response and again steps in time while calculating the

voltage characteristics of the eye. But rather than simply calculate the maximum

voltage attenuation resulting from interfering components at the same point in time,

the method calculates the probability of incorrectly determining the transmitted sym-

bol with respect to all possible reference voltage levels. This is done by calculating

the vertical bathtub curve (cumulative distribution function) corresponding to the

probability distribution of the symbol interference at each time step. Thus a three-

dimensional structure is constructed, as shown in Fig. 3.3a, with the x, y, and z axes

corresponding to the sample time, sample voltage level, and an associated probability

of error, respectively.

With the probability of incorrect symbol detection calculated for each point

in the time-voltage plane, a corresponding probability of each sample point occurrence

must also be generated. By multiplying the anticipated sample timing uncertainty

distribution with the anticipated reference voltage level uncertainty, a combined three-

dimensional sampling uncertainty distribution is built up, as shown in Fig. 3.3b. The

product of the probability of error found in Fig. 3.3a and the sampling probability dis-

tribution then provides the three-dimensional statistical structure shown in Fig. 3.3c.

To calculate the BER of the system, this structure is then integrated along the x and

y or time and voltage axes.

Unfortunately, while this method is an important break through in the ef-

fort to avoid lengthy time-domain simulations, it still suffers from some of the short-

comings of the worst case eye approach. For example, the method is not compatible

with jitter magnitudes in excess of 1UI. It also fails to account for dynamic changes
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in the system environment, being based, as was the worst case eye, on a single pulse

response captured for a specific system configuration and bias condition.
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Chapter 4

Realistic Signal Generation for System Verification

As the previous chapter discussed, the verification of high-speed board-

based interconnects is not only constrained by simulation inefficiency, but also by

an inability to generate realistic input stimuli for transient simulation. This chapter

presents methods for constructing both clock and data waveforms to be used at any

level of the simulation hierarchy. The techniques proposed allow for both periodic

clock and random data signals to be formed with complete control over both the

voltage noise and jitter distributions. In the sections that follow a new set of expres-

sions for generating clock and data waveforms are derived, and several simulations

are presented illustrating the precision and flexibility of the proposed techniques.

4.1 Fourier-Based Waveform Generation

The first methodology for generating jittery clock and data signals is an ex-

tension of the technique presented in [61] and is based on Fourier theory, which states

that any periodic waveform may be represented as a simple DC value combined with

an infinite sum of sine-waves and/or cosine-waves at specific harmonic frequencies,

as expressed in (4.1). The periodic nature of clock signals makes them well suited to

Fourier series representation, while the aperiodic nature of data signals does not lend

itself to Fourier series representation directly. Yet as will be shown, this obstacle is

overcome in the proposed data waveform generation process.
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Figure 4.1: Signal model from which the coefficients of the generic Fourier series are
derived.

4.1.1 Fourier-based Clock Signal Derivation

The first step in the derivation of the general clock signal Fourier series is

to plot out one complete cycle of the periodic waveform to be modeled (see Fig. 4.1).

To increase the flexibility of the model and match the degrees of freedom provided in

Spice, the following parameters are included:

V1 = the minimum voltage,

V2 = the maximum voltage,

T = the period,

τr = the risetime,

τf = the falltime,

tr = the rising edge jitter, and

tf = the falling edge jitter.

To facilitate the Fourier series calculation, the waveform is separated into

four segments where boundaries a-d, which will later serve as the limits of integration,

are defined to be:
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a = −T
4
− τr

2
− tr,

b = −T
4

+ τr

2
− tr,

c = +T
4
− τf

2
− tf , and

d = +T
4

+
τf

2
− tf .

The standard Fourier expression into which the calculated coefficients will

be inserted is as follows:

C(t) = A0 +
∞∑

n=1

An cos
(

2nπ

T
t
)

+ Bn sin
(

2nπ

T
t
)

(4.1)

where

C(t) = the time-domain clock waveform,

t = the timing instant,

T = the signal period, and

n = the integer multiple frequency (harmonic).

The coefficients A0, An, and Bn are found by computing the following

integrals:

A0 =
1

T

[
V2 − V1

τr

∫ b

a

(
x +

T

4
+

τr

2
+ tr

)
dx (4.2)

+V2

∫ c

b
dx +

V1 − V2

τf

∫ d

c

(
x− T

4
− τf

2
+ tf

)
dx

]
,
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An =
2

T

[
V2 − V1

τr

∫ b

a

(
x +

T

4
+

τr
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+V2

∫ c
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τr

(
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T

4
+

τr

2
+ tr

)
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(
nπx

T

)
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+
∫ c

b
V2 sin

(
nπx

T

)
dx

+
∫ d

c

V1 − V2

τf

(
x− T

4
− τf

2
+ tf

)
sin

(
nπx

T

)
dx

]
.

The integrands in the above expressions are simply the set of functions

which numerically describe the various segments of the waveform. By initially setting

V1 to zero, all computations corresponding to the regions outside the boundaries a

and d are avoided. Any nonzero V1 value is later added to the computed value of A0

to account for DC offset.

By substituting A for the full signal swing (V2 − V1), the resulting expres-

sions for A0, An, and Bn are:

A0 =
A

2

(
1 +

2(tr − tf )

T

)
+ V1, (4.5)

An =
AT

n2π2τr

sin
(

nπτr

T

) [
cos

(
nπ

2

)
sin

(
2nπtr

T

)
+ sin

(
nπ

2

)
cos

(
2nπtr

T

)]
(4.6)
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(
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(
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(
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Figure 4.2: (a) One cycle of the generated clock waveform. (b) Magnified rising and
falling edges of the generated clock.

Once the Fourier coefficients have been computed, a time domain represen-

tation of the signal is constructed through the Inverse Fast Fourier Transform (IFFT).
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Fig. 4.2a presents one complete cycle of a clock waveform generated with the first 100

harmonics of the Fourier series based on the following parameters:

V1 = -1 V,

V2 = 2 V,

f = 10 GHz,

τr = 10 ps (risetime),

τf = 5 ps (falltime),

tr = 10 ps (early rising edge jitter), and

tf = -5 ps (late falling edge jitter).

Fig. 4.2b zooms in on the rising and falling edges of the signal to verify

the accuracy of the generated waveform. While the period, minimum and maximum

voltages, risetime, and falltime are all easily observed to be correct, the jitter terms

require some explanation. In this example, a duty cycle of 50% would result in falling

and rising edge crossings at 25 ps and 75 ps respectively. The figure clearly shows the

falling edge crossing to occur at 30 ps (5 ps late), corresponding to the desired jitter

of -5 ps, while the rising edge crossing occurs at 65 ps (10 ps early), corresponding to

the desired jitter of +10 ps.

It should be noted that while the model just derived represents the rising

and falling transitions of the signal through ideal linear ramping, any function ex-

pressible in closed-form that would more accurately emulate the shape of true signal

transitions could be incorporated into the model by replacing the ramps and integrat-

ing over the same limits along the time axis. Replacing the ramping edges with more

rounded transitions may also lower the number of harmonics required for smooth

waveform generation, and as a result, reduce the signal generation time.

Then, based on the current form of the parameterized Fourier series, this

underlying signal generation methodology may be employed to either enhance the
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efficiency of simulating signal-system interaction, or it may be used to construct

signals with unconstrained voltage noise and timing jitter characteristics.

4.1.2 Enhanced Clock Simulation Efficiency

As was discussed in the previous chapter, computing the interaction of a

signal with its environment is mathematically carried out either through convolution

in the time domain or Fast Convolution in the frequency domain.

Because the Fourier series just derived provides the exact harmonic compo-

nents of the clock signal, even more efficiency may be obtained during the simulation

process. By limiting the number of sinusoidal components of the signal, the frequency

representation reduces to a set of scaled delta functions located at the harmonic fre-

quencies (i.e., the Fourier coefficients) as follows:

s(t) = A sin(αt) + B sin(βt) + ... ⇔ S(ω) = Aδ(ω − α) + Bδ(ω − β) + ... (4.8)

where s(t) and S(ω) are the time and one-sided frequency domain representations of

the signal.

This is important because the signal energy at all other frequencies in the

spectrum is zero. Many circuit simulators are not equipped to recognize the periodic

nature of an incoming signal and often compute the Fourier transform by means of

an FFT. Unfortunately, the finite number of points in the signal results in windowing

effects during the FFT process, and rather than producing the true frequency response

as a set of delta functions, the calculated response will exhibit a noise floor and spikes

at the harmonic frequencies. Fig. 4.3 compares the representation of the first 10

harmonic components of a 10 GHz clock signal. In one case, an FFT was computed

in PSpice, while in the other case, the component values were taken directly from

the Fourier coefficients calculated in the proposed signal generation process. Two

important distinctions are illustrated in the figure: first, the spreading at the base

of the 10 GHz fundamental on the FFT curve, a manifestation of the finite data
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Figure 4.3: Comparison of the signal frequency response taken directly from the
Fourier coefficients computed in the proposed signal generation process with those
calculated in PSpice through the FFT.

windowing effect, is compensated for by a decrease in the corresponding peak value;

second, the existence of nonzero values in between the harmonic frequencies requires

a complete point-to-point multiplication of the signal and channel responses during

the simulation to avoid a loss of information.

While the number of multiplications associated with direct convolution and

the Fast Convolution method scale with the length of the signal and the length of

the channel impulse response, the number of multiplications in the proposed method,

up until the point of time domain signal reconstruction, is set by the number of

harmonics in the Fourier representation of the signal and do not increase for longer

signals or more complicated channel frequency responses. In fact, if the transfer

function of the channel is known, the magnitudes and phase shifts of the resulting

wave’s sinusoidal components are found through evaluating the channel frequency

response at the various harmonic frequencies and scaling the harmonic magnitudes

and phases accordingly.

After the scaling process, the resulting magnitudes and phases may then be

used to reconstruct the channel-modified signal. Thus with the exception of modeling
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the incoming signal with a truncated Fourier series, the process of computing the

signal-channel interaction is carried out through simple steady-state analysis.

If a measured frequency response (e.g., S-parameters) is used rather than a

closed form transfer function expression, these formulas only change in the sense that

the magnitude and phase multipliers of the channel response will be found by indexing

the magnitude and phase data points corresponding to the appropriate frequencies.

Of course, the number of harmonics included in the simulation impacts

the accuracy of the result. For the high-speed interconnect environment, the band-

limitations of the lossy channel tend to suppress the higher order harmonics, and sim-

ulations incorporating 50 harmonic components generally produce excellent matching

to the exact signal function.

In comparing the computational demands of this process with convolution-

based approaches, as described previously, the new method requires 2k + 1 steps to

calculate the initial Fourier coefficients (a single DC component, k sine components,

and k cosine components), with k being the number of harmonics included in the

Fourier series. This is followed by 2k+1 steps to calculate the effect of the channel on

the magnitudes of the Fourier components and an additional 2k +1 steps to calculate

the associated phase effects. Generating the final time domain representation of the

signal from the scaled Fourier coefficients may be done in two ways: first, the various

sinusoids may be generated and then summed together, a process which adds an

additional (2k + 1)N computational steps; or the Fourier coefficients may be fed

directly to an IFFT process, adding only N log2 N steps. The later method is more

efficient when the number of harmonics (k) is greater than log2 N−1
2

, which is generally

the case. Combining the number of computations for the entire process leads to:

No. Steps (Proposed Method) =

3(2k + 1) + N log2 N (4.9)

where k equals the number of harmonics in the finite Fourier series.
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For two signals with 1000 data points each and a Fourier representation

including 100 harmonics, the proposed method requires 7,511 steps, compared with

4,670,669,001 and 103,424 for direct and Fast Convolution, respectively.

To verify the positive effect on simulation time, a simulation was con-

structed in which the impact of a first order lowpass filter on 100, 200, and 300 cycles

of a passing clock signal was computed through Fast Convolution and the proposed

technique. With the simulation time step fixed at 50 fs, the simulations were com-

pleted with Matlab 6.5 running on a 900 MHz Pentium III desktop. The results

reported in Table 1 reflect the computational requirements up to the calculation of

the frequency domain representation of the filtered signal. The additional N log2 N

steps incurred by both methods during time domain signal reconstruction were in-

tentionally excluded to better distinguish between the performance and efficiency of

the two techniques.

Table 4.1: Simulation Time and Memory Requirements
No. Cycles Sim. Time (sec) Memory (MB)

Proposed Method 100 7 3.2
Fast Convolution 100 7 21.6
Proposed Method 200 7 3.2
Fast Convolution 200 25 49.6
Proposed Method 300 7 3.2
Fast Convolution 300 27 54.4

While the allocated memory reported does not account for memory re-

quired by Matlab’s internal functions, it does account for all variables and other

memory usage accumulated during the simulation. As expected, the required memory

and simulation time scaled with the number of signal cycles for the Fast Convolution

approach, but no scaling occurred with the newly proposed technique. By way of

comparison, the direct convolution method required 20 seconds to simulate only 10

cycles of the same signal.
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In addition to providing superior efficiency over longer simulation periods,

the benefits of the proposed method are also enhanced with each additional stage

through which the signal must pass, assuming linear operation is maintained through

each. This is understood by considering that the number of additional computational

steps associated with the proposed method is equal to two times the number of stages

times the number of signal harmonics (accounting for magnitude and phase), while

the increase incurred in the Fast Convolution process is equal to the number of stages

times the average number of points in the FFTs of the stages’ impulse responses.

Unfortunately, many of the signal degrading components to be modeled

are not periodic by nature, and therefore do not lend themselves to the proposed

simulation methodology immediately. One such contributor to signal degradation is

RJ. Many circuit designers, whose tool set is limited to Spice-like simulators, find

that random noise, which in turn produces RJ, may be approximated with a set of

sinusoidal signals at independent and unrelated frequencies. As long as the frequencies

of the various noise sources do not factor into one another or into the true signal being

modeled, then they tend to combine to produce a relatively random waveform. Of

course, it is very difficult to control the distribution of the noise and therefore this

technique can not be used to produce a perfectly Gaussian distributed noise source.

Nevertheless, it may be employed to observe the response of the system under test to

nearly Gaussian voltage and timing noise.

Based on the arguments of the previous chapter, even with such a crude

approximation, designers must still wait for several cycles to simulate if they desire

accuracy in characterizing RJ in the time domain. But if the true signal is being

generated from its Fourier components, as proposed, then the many sinusoids con-

stituting the noise source may be handled just as the harmonics of the fundamental

signal, being represented as delta functions and consequently shaped by the channel

in exactly the same way. At the output of the system, the resulting signal may be

reconstructed, including these additional signal components, and all of this can be

done while only increasing the number of multiplication steps in the computation to

account for the increased number of sinusoids making up the signal.
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With DCD
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Figure 4.4: Simulation of random and deterministic jitter using the proposed method
and a minimum time step of 10 ps. The upper window displays the jitter distribution
generated with a set of unrelated sinusoidal noise sources. The lower window adds
0.75 ps of DCD to the total jitter distribution.

To verify this, a set of 6 sinusoids was chosen between the frequencies of

1 GHz and 18 GHz to model a high frequency noise source. Their amplitudes were

chosen to provide for approximately 0.4 psrms of Gaussian-like jitter. Fig. 4.4 presents

the simulation results for a pair 10 GHz signals, each with RJ (derived from the six

sinusoids) and one with an additional peak-to-peak DCD of 0.75 ps passed through

a lowpass filter. The upper window displays the results for the signal with only RJ,

while the lower window presents the results for the signal with both RJ and DCD.

What makes these results impressive is that they were computed with a minimum

transient time step of 10 ps while still providing sub-picosecond jitter resolution. The

large time step, while not affecting accuracy, allowed the simulation of 10,000 clock

cycles to be computed in approximately 20 seconds, with the majority of that time

attributed to the generation and plotting of the histograms.

Matlab’s rand() and/or randn() functions may be used to generate sinu-

soidal noise sources with a controllable standard deviation in amplitude and random-

ness in frequency without reverting to deriving such a set of signals by hand. This
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Comparison of Jitter Obtained through Sinusoid Addition and True Gaussian
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Figure 4.5: Simulated jitter (40 sinusoids) compared with a true Gaussian pdf.

would maintain the periodic nature of all frequency components in the process, al-

lowing the noise to be treated as additional signal harmonics, while still leading to a

better approximation of Gaussian white noise.

As an example, a set of 40 sinusoidal noise sources was generated in Matlab

spanning the frequency spectrum from DC to nearly 25 GHz (frequencies expected

to contribute at the receive end based on the known channel response). Initially the

frequencies were determined by specifying that Matlab select the number of desired

signals along a logarithmic scaling of the required spectrum. To avoid signal beating,

which occurs when two or more signals have a common multiple, the selected frequen-

cies were modified with a random frequency offset generated with the rand() function.

To obtain nearly Gaussian distributed noise, the amplitudes of the 40 sinusoids were

generated with the randn() function. Fig. 4.5 compares the resulting simulated jitter

histogram and a true Gaussian curve with the same mean and standard deviation.

Even when the proposed simulation methodology of computing the signal-

channel interaction through straight multiplication will not suffice, as may be the

case when the impact of nonlinear circuit elements on signal degradation of a passing
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signal must be accounted for, simulation efficiency of commercially available tools

may still benefit when the internal signals provided by the simulator are replaced with

signals generated through the proposed technique. This is because the summation of

the harmonic components in the time domain leads to timing precision far below the

fundamental time step of the waveform but still capturable by the simulator, allowing

for faster simulation.

Simulations have been run in which static timing offsets on the order of

1×10−23 seconds were generated and visible even when the fundamental time step of

the time-voltage vector representing the signal was 50×10−15 seconds. In fact, the

precision of the waveform timing is only constrained by the numerical limits of the

simulator. All of these details imply that a signal generated through this technique

may be passed through the commercial simulator with a larger time step, thereby

lowering the simulation time and simulator memory requirements.

Before discussing the second advantage made possible through adopting

the proposed signal generation technique, the algorithm for efficient computation of

signal-system interaction is summarized here for clarity’s sake:

1. Based on the estimated channel frequency response, select the number of signal

harmonics to carry through the computation.

2. Using equations (4.5) - (4.7), calculate the magnitudes and frequencies of the

Fourier components of the desired waveform.

3. Periodic noise such as DCD may be added and modified through a variation in

the underlying Fourier series.

4. Quasi-random noise may be added through an additional set of sinusoids at

carefully chosen, unrelated frequencies.

5. Scale the sinusoids of the Fourier series and noise by the magnitude of the

channel transfer function evaluated at the corresponding harmonic frequencies.
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6. Shift the sinusoids of the Fourier series by the phase angle of the channel transfer

function evaluated at the corresponding frequencies.

7. Reconstruct the signal from the resulting set of Fourier components.

4.1.3 Unconstrained Waveform Generation

The second application facilitated by the proposed signal generation tech-

nique is the derivation of periodic and aperiodic signals with unconstrained control

over voltage and timing characteristics.

Because the IFFT returns only one time domain cycle for a given set of

Fourier coefficients, rather than copy that one cycle over and over to produce a purely

periodic waveform, allowing for the enhanced simulation efficiency just discussed, sev-

eral different cycles may be generated and pieced together to provide a more realistic

transmitted signal. For example, the transition terms tr and tf from equations (4.5)

- (4.7) may be considered as random variables and a new set of Fourier coefficients

may be calculated for each cycle, implying that both deterministic and random jitter

may be completely controlled during the waveform generation. When implemented

in Matlab, the formation of 100 - 1000 jittery clock cycles takes 3-4 seconds, though

the generation time grows in proportion to the product of the number of cycles and

the number of harmonics incorporated into each cycle.

4.1.4 Fourier-based Data Signal Generation

In the same way that several cycles with varied timing parameters at each

edge may be pieced together to form a jittery clock signal, several distinct data

symbols may be pieced together to produce a random data waveform, though the

aperiodicity of random data adds complexity to the derivation. Rather than comput-

ing the Fourier series for a single periodic waveform, each transition and binary state

of the desired signal requires a separate symbol to insure continuity at each cycle

edge.
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“00”

0       T/2      T      3T/2     2T

(a)

“01”

0       T/2      T      3T/2     2T

(b)

“10”

0       T/2      T      3T/2     2T

(c)

“11”

0       T/2      T      3T/2     2T

(d)

Figure 4.6: Four data symbols used to represent binary NRZ signaling.

Fig. 4.6 presents the four symbols needed to generate binary NRZ data:

• “00” implies two consecutive transmitted zeros;

• “01” implies a zero followed by a one;

• “10” implies a one followed by a zero; and

• “11” implies two consecutive transmitted ones.
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The Fourier series derivation is then very similar to what was carried out

for the clock signal. While the “00” and “11” symbols are trivial, expressions for the

parameterized Fourier coefficients of the “01” and “10” symbols must be computed.

To overcome the non-periodic nature of each data symbol, the Fourier series is cal-

culated assuming periodicity. Because the IFFT process returns one cycle at a time,

the data waveform may be pieced together not only with specific edge information

defined for each cycle, as was the case with the clock, but the symbol itself may also

change from cycle to cycle. Thus, once the desired bit stream has been encoded with

these four symbols, the data signal is pieced together without discontinuity.

Those familiar with Fourier series may recognize a flaw in this approach.

Because the IFFT returns only one cycle at a time, and because the Fourier series

is designed to repeat after each cycle, the end points of the “01” and “10” symbols

shown in Fig. 4.6 will tend to bend inward toward the vertical midpoint. To over-

come this, the algorithm is modified slightly by cutting the user-defined frequency

in half to spread out the symbol in time. When the time domain representation is

returned by the IFFT, intentionally constructed with twice as many time points, the

symbol is truncated symmetrically about the horizontal midpoint down to the desired

period length, thereby eliminating the unwanted tail curving at the endpoints and

guaranteeing continuity between successive symbols.

4.1.5 Signal Generation Summary

From the discussion presented in the preceding sections, a summary of

the proposed method for generating realistic clock and data signals with controllable

noise and jitter characteristics is as follows:

1. Based on the desired jitter distribution, generate a vector of timing values rep-

resenting the jitter at each sequential edge.

2. Based on the estimated channel frequency response or system bandwidth, select

the number of signal harmonics to carry through the computation.
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3. If generating a clock, use equations (4.1) - (4.7) to calculate the magnitudes

and frequencies of the Fourier components of each cycle, convert to the time

domain through the IFFT, and piece the cycles together.

4. If generating data, encode the bit stream using the four symbols shown in

Fig. 4.6 and then use a set of similar equations to calculate the magnitudes and

frequencies of the Fourier components of each cycle, convert to the time domain

through the IFFT, and piece the cycles together.

5. Based on the desired voltage noise distribution, generate a vector of voltage

values representing the noise at each time step and add these noise values to

either the clock or data signals at the corresponding step in time.
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Figure 4.7: Demonstration of the time-domain precision of the proposed waveform
generation. (a) The upper window shows a 1 GHz clock waveform generated through
the proposed method. The lower window presents an incremental jitter of 0.5 fs
generated with a time step of 10 ps. (b) Demonstration of DCD successfully simulated
down to 1×10−23 with a time step of 50 fs.
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4.1.6 Verification

To verify the precision of the proposed method, in terms of jitter reso-

lution and distribution approximation, several Matlab simulations were completed.

In Fig. 4.7a, five 10 GHz clock cycles were simulated with specified jitter (each cy-

cle constructed from 50 harmonic components). For edges 1-5, the designated jitter

magnitudes were -1E-15, -0.5E-15, 0, 0.5E-15, and 1E-15 seconds. The upper window

of the figure presents the superposition of the five clock cycles. By zooming in on the

falling edge it is not only possible to distinguish the five edges, but it is observed that

the edges cross the midway point with the designated timing. It is important to note

that the underlying code plots these signals out with 100 time steps per cycle. In

other words, the simulation demonstrates a resolution of better than 0.5E-15 seconds

with a simulated time step of 1E-11 seconds. Similarly, Fig. 4.7b demonstrates the

successful simulation of DCD down to 1×10−23 with time step of 5E-14 seconds, more

than nine orders of magnitude larger.

(a) Random Jitter (b) Random Jitter + DCD

Figure 4.8: Comparison of generated jitter and theoretical jitter distributions. (a)
Rising clock edge exhibiting RJ. (b) Clock exhibiting both RJ and DCD.
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Fig. 4.8a, Fig. 4.8b, and Fig. 4.9 demonstrate the ability of the proposed

technique to approximate specific jitter distributions. In the first case (Fig. 4.8a), a

signal was generated to exhibit only Gaussian distributed jitter. After producing the

signal, the edge timing was extracted and binned in the histogram shown. A true

Gaussian curve was then overlaid for comparison. In the second case (Fig. 4.8b), the

RJ was combined with 50 ps of DCD and the true distribution was again superim-

posed. Fig. 4.9 displays the jitter distribution extracted from a signal generated with

a single sinusoidal jitter component.

Figure 4.9: Clock jitter distribution indicating the presence of sinusoidal jitter.

4.2 Jitter Injection

To inject jitter into an existing signal with both time and voltage dimen-

sions is complicated. The proposed method for executing this operation is to:

1. Measure the mean “0” and “1” values of the existing signal.

2. Measure the mean risetime and falltime of the existing signal.

74



½ Incoming Signal ½ Jitter Signal Outgoing Signal

Outgoing s ignal =  ½ incoming s ignal +  ½ jitter  s ignal

Figure 4.10: Method for injecting jitter into an existing signal.

3. Extract the transition timing of the existing signal. This might be done by

interpolating when the signal crosses a designated threshold.

4. Derive a second signal whose voltage swing was determined in step one, whose

risetime and falltime were found in step two, whose initial phase is in sync with

the mean phase of the original jittery signal, and whose jitter characteristics

represent the additive jitter.

5. Scale the two signals by a factor of 1/2 and then use vector addition to combine

them. Steps one and two minimize the reshaping of the original signal during

this averaging process.

This procedure is illustrated in Fig. 4.10. As can be seen, at some edges

the injected jitter adds constructively to the total timing deviation of the transition,

while at other edges it may reduce the final jitter value.

4.2.1 Additional Applications

While the target use of the proposed waveform generation techniques is to

build up input stimulus with controllable jitter for transient simulation, the ability to

alter the waveform’s characteristics on a cycle to cycle basis also facilitates other forms

of circuit and system characterization. A short list of additional possible applications

is provided here:
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1. Not only does the ability to simulate combinatorial jitter (e.g., RJ + DCD +

Sinusoidal) provide an additional degree of freedom in signal modeling, but it

also proves useful in the characterization of core communication circuits, such

as PLLs and DLLs. Typical analysis of PLL and DLL control loops consists of

stepping the frequency of the input signal and then observing the convergence

of the control signal as the PLL/DLL locks to the new frequency through the

phase comparison process. This technique provides information regarding the

overshoot, settling time, and stability of the control loop.

Figure 4.11: Signal derived from Fourier components while the frequency is modulated
from 1 MHz to 20 MHz.

In a realized system, however, the phase offset between the input signal and the

reference signal will vary continuously as both the oscillator and the delay line

contribute additional jitter to the equation. In the case of the PLL’s VCO, small

drifts in the free-running oscillator frequency manifest themselves as jitter in

the reference voltage, which tends to accumulate and pass to the output until

the control signal offers compensation, resulting in a phenomena referred to

as jitter peaking. By employing a voltage-controlled-delay-line (VCDL) rather

than a VCO, the DLL avoids significant jitter accumulation, but still displays
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a moderate translation of power supply noise to output jitter as a result of

delay element sensitivity. Thus to truly model the phase-locking and tracking

ability of PLLs and DLLs requires the application of signals with continuously

varying phase, potentially including sinusoidal variation, at the circuit input.

Only in this way can the true jitter transfer and jitter peaking of the circuits

be characterized.

Along these same lines, to provide an even more accurate representation of

PLL behavior requires an accounting for the oscillator frequency drift. Simple

modulation of the reference signal’s frequency is accomplished by specifying

the period of each cycle during the initial signal generation process. Fig. 4.11

presents a frequency modulated signal derived from Fourier components, where

the cycle-to-cycle frequency follows a linear ramp, but the change in frequency

could be allowed to vary randomly or in accordance with understood oscillator

phase noise behavior [50].

2. The jitter control may also be used to study the setup-and-hold time of latching

circuits. This procedure often entails comparing two periodic waveforms, one of

which is assumed to trigger the capture of the other. The timing of one of the

waveforms is then slipped or delayed incrementally while observing the output of

the comparator. When the transitions of the two waveforms occur close enough

in time, the output of the comparator will behave erratically. The window over

which this behavior occurs is the minimum setup-and-hold time required for

proper comparator operation. Constructing such waveforms by hand is time

consuming, and so the temptation is to sacrifice timing resolution in terms of

the slipping increment, in order to speed up the simulation setup time. But

through the techniques presented, the ramping of the edge timing only requires

that the input jitter vector represent a linear ramp, and the resolution of the

time-slip can be made arbitrarily small.

3. The ability to adjust the common-mode level of the waveforms can be exploited

in input common-mode range simulations. One approach to characterizing input
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common-mode range is to ramp the common-mode level of both the reference

voltage and the signal to which it is being compared. At the extreme common

mode levels, the comparison operation will fail. By adjusting the swing of

the signal being compared, the sensitivity of the input common-mode range to

signal swing may also be observed. Using the proposed techniques, it is trivial

to generate a pair of waveforms that track each other while ramping in their

respective common-mode levels, a task that would again be time consuming if

done by hand.

4. Finally, the input sensitivity of comparator circuits can be studied by incremen-

tally decreasing the swing of the input signal while observing the comparator’s

output for the point at which the output fails to resolve to the correct level.

This is again a trivial operation as the high and low voltages of the signals

generated through the proposed approach can be designated at the beginning

of each new cycle.

4.2.2 Limitations

There are two main limitations associated with the proposed signal gen-

eration techniques. The first is related to the time needed for waveform generation.

In order to avoid Gibbs phenomenon, or signal ringing in the presence of fast edges,

the number of harmonics must be increased. As a new set of harmonics is computed

for each cycle, the computation time increases at a rate proportional to N(2k + 1)

where N is the number of cycles and k is the number of harmonics. So while 1000

cycles of the waveform may be generated in a matter of a few seconds, 10,000 cycles

could require up to a minute, and so on. To a degree, the computation time is also

hindered by the required memory allocation needed to store the harmonics associated

with each cycle.

The second limitation, which applies only to the data waveform, is that to

maintain continuity from symbol to symbol requires that the peak-to-peak jitter does

not exceed 1/2 of the bit period.
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4.3 Alternative Signal Generation Algorithms

To overcome these limitations, a pair of alternative algorithms, presented

here, take a more straightforward approach to the signal generation process, while

insuring a computation time approximately proportional to N .

The clock generation is carried out as follows:

1. Build a vector v, equal in length to the required number of cycles, where each

indexed point is assigned a value of zero.

2. Build a second vector t of equal length, whose values range from zero to the

value cycles−1
datarate

in 1
datarate

increments. This second vector represents the locations

of the ideal edges.

3. Add the desired jitter sequence directly to the vector defined in the previous

step. The jitter sequence is in the form of a signal itself, and may take on any

realizable distribution.

4. Upsample both vectors by 3 in order to insert two empty place holders between

existing values.

5. Starting with index i=1 of vector v, every third index point is assigned the value

midway between the low and high voltages of the waveform (V1 and V2).

6. Starting with index i=2 of vector v, every sixth index point is assigned the value

of V1.

7. Starting with index i=3 of vector v, every sixth index point is assigned the value

of V1.

8. Starting with index i=5 of vector v, every sixth index point is assigned the value

of V2.

9. Starting with index i=6 of vector v, every sixth index point is assigned the value

of V2.

79



10. Starting with index i=2 of vector t, every sixth index point is assigned the value

of t(i-1) + falltime/2.

11. Starting with index i=3 of vector t, every sixth index point is assigned the value

of t(i+1) - risetime/2.

12. Starting with index i=5 of vector t, every sixth index point is assigned the value

of t(i-1) + risetime/2.

13. Starting with index i=6 of vector t, every sixth index point is assigned the value

of t(i+1) - falltime/2.

14. The final signal voltage and timing vectors are found by resampling the vectors

v and t at with the desired timestep, while computing the associated signal

levels through a “nearest neighbor” interpolation algorithm.

The algorithm for generating a random data waveform is similarly as follows:

1. Build a vector v, equal in length to the required number of cycles, where each

indexed point is assigned a value of zero.

2. Build a second vector t of equal length, whose values range from zero to the

value cycles−1
datarate

in 1
datarate

increments. This second vector represents the locations

of the ideal edges.

3. Add the desired jitter sequence directly to the vector defined in the previous

step. The jitter sequence is in the form of a signal itself, and may take on any

realizable distribution.

4. Upsample both vectors by 3 in order to insert two empty place holders between

existing values.

5. Build a third vector r, equal in length to the required number of cycles, where

each indexed point is randomly assigned a binary zero or one value.

6. Starting with index i=1 of vector v, every third index point is assigned the value

midway between the low and high voltages of the waveform (V1 and V2).
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7. Starting with index i=2 of vector v, every third index point is assigned the

values contained in vector r.

8. Starting with index i=3 of vector v, every third index point is assigned the

values contained in vector r.

9. Starting with index i=4 of vector v, remove unwanted transitions at every third

index point by comparing the values found at index points i-1 and i+1. If these

values are equal, v(i) is assigned value found in v(i− 1).

10. Starting with index i=2 of vector t, every sixth index point is assigned the value

of t(i-1) + falltime/2.

11. Starting with index i=3 of vector t, every sixth index point is assigned the value

of t(i+1) - risetime/2.

12. Starting with index i=5 of vector t, every sixth index point is assigned the value

of t(i-1) + risetime/2.

13. Starting with index i=6 of vector t, every sixth index point is assigned the value

of t(i+1) - falltime/2.

14. The final signal voltage and timing vectors are found by resampling the vectors

v and t at with the desired timestep, while computing the associated signal

levels through a “nearest neighbor” interpolation algorithm.

The capability of the proposed algorithms are illustrated in Fig. 4.12, where

Fig. 4.12a corresponds to a jittery clock signal and Fig. 4.12b corresponds to a random

bit stream. Using the algorithms just presented, both clock and data signals are

constructed to exhibit the following jitter characteristics: 2 psrms Gaussian distributed

jitter plus two sinusoidal jitter components at frequencies of 10 MHz and 50 MHz with

magnitudes of 50 ps and 25 ps, respectively. In each case, the upper windows present

several cycles of the waveform in the time-domain, the middle windows present the

jitter (in picoseconds) extracted at each signal transition, and the lower windows

present histograms of the extracted jitter pdfs.
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(a) Clock Signal (b) Data Signal

Figure 4.12: Periodic clock and random data signals exhibiting both random jitter and
sinusoidal jitter components as generated by the proposed algorithm with associated
time-domain extracted jitter and associated histograms. (a) Jittery clock signal. (b)
Jittery random data signal.

These alternative algorithms are significantly faster, and unlimited in terms

of jitter magnitude in both clock and data waveforms, with the constraint that the

signal edge timing must increase monotonically to maintain causality. In addition,

because the mathematics of this second pair of algorithms do not require the FFT or

IFFT, implementation of this form of signal generation in other, less computationally

friendly, programming languages is more feasible. This does not negate the value

of the preceding techniques, however, as a degree of flexibility is lost with the new

methods. For example, while jitter is designate-able on a cycle to cycle basis, all other

waveform parameters remain fixed, implying that with the exception of setup-and-

hold simulation, the new algorithms are not compatible with the remaining circuit

characterization processes previously listed. In addition, this alternative approach

requires the entire signal to be built up at once, while the previous methodology

allowed for the designation of signal characteristics on a cycle-to-cycle basis, implying

that it can be placed into models where the signal may be controlled or manipulated

over time (e.g., by the control loop of a PLL).
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Chapter 5

Mitigating Noise and Distortion in the Channel

The preceding chapters, with the exception of Chapter 4, laid out the

fundamental problem statement of this thesis, namely that high-speed chip-to-chip

communication is restricted by the deterministic noise or distortion and jitter associ-

ated with the physics of the PC board channel, the random noise and jitter generated

from within the I/O circuits themselves, all coupled with an inability to simulate

system performance with the requisite level of realism. In Chapter 4, methods for

enhancing link verification through realistic jittery signal generation were presented.

This chapter explores methods for reducing degradation due to noise and distortion,

and specifically considers the impact of matched filtering, transmit pulse shaping,

and channel equalization on the performance of the link.

To discuss the evolution of signal conditioning techniques, it is helpful to

separate all known methods into two main categories: attenuation of random noise

through filtering and minimization of signal distortion through pulse shaping and/or

equalization. Interestingly, a similar separation between techniques specifically tar-

geting clock integrity and those aimed at data conditioning can also be made due

to spectral distinctions between the two types of signals. The narrowband nature

of clock signals makes them somewhat immune to the distortion associated with the

channel (e.g. nonuniform group delay, frequency dependent attenuation, etc.). On the

other hand, clocking signals are sensitive to SSO noise, crosstalk, and other forms of

uncorrelated noise, particularly when they are not isolated from noisy data lines. And

while clocking signals are not degraded by ISI, slewrate and amplitude degradation

at high frequencies does tend to magnify the impact of uncorrelated noise.
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Conversely, the broadband nature of random data makes these signals very

susceptible to channel distortion, including ISI and DDJ. Data signals are also sensi-

tive to uncorrelated noise, but as will be shown, the prohibitive cost of simultaneously

addressing both noise and distortion in data signals typically results in the high-level

design choice to address only the more dominant short term problem of distortion

in practice. This does not mean that the study of reducing uncorrelated noise in

data signals has been forsaken. On the contrary, methods to reduce SSO noise and

crosstalk are regularly published [14, 15, 62], but power/area limited products, when

choosing between minimizing random noise and pulse distortion, typically adopt ISI

targeting channel equalization.

5.1 Filtering Noise

As mentioned repeatedly throughout this work, random noise not only

closes the received data eye in the vertical direction, but also, as the result of noise-

to-jitter translation through the signal slewrate, contributes to the horizontal eye

closure as well. But before timing uncertainty was ever considered problematic, the

need to suppress amplitudinal noise in communication systems had motivated signal

processing research for decades.

In the late 1940s, the problem of estimating signals in the presence of ran-

dom noise experienced a breakthrough as the result of Wiener’s work and subsequent

publication on what is now referred to as the Optimal Wiener Filter [63]. One in-

terpretation of the Wiener filter operation is that it identifies a signal’s frequency

content and in turn only provides amplification at those frequencies, thus avoiding

the simultaneous amplification of noise. Unfortunately, the mathematical techniques

proposed by Wiener can be difficult to implement, and the Wiener-Hopf equations,

which produce the impulse response of the “optimal” filter, are often unrealizable in

hardware. As a result, it is not uncommon for only suboptimal approximations of the

true Wiener filter to be feasible.

Follow-up work by Kalman overcame several of the difficulties inherent in

the Wiener filter through the use of conditional distributions and expectations. By
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redefining the problem in terms of states and state transitions, the Kalman filter

employs feedback to approach the Wiener filter from a Controls point of view, and

in doing so reaches a more readily implementable solution without the mathematical

complexity [64].

5.1.1 Matched Filtering

In the digital communication systems considered here, however, it is not

necessary to retrieve or rebuild the signal as it was originally transmitted. While

the received signals appear very analog in character, the only requirement of the link

is to identify the intended binary value of each received bit. Thus, the problem of

signal conditioning across the high-speed interconnect is more a question of detection

rather than estimation. As a result, a more appropriate solution for mitigating un-

correlated noise in digital transmission channels is through matched filtering [10, 37].

Interestingly, the output of the matched filter may not look at all like the transmitted

signal (i.e., the output of a filter matched to a square pulse produces a triangle), but

rather exaggerates the differences between the transmitted symbols, thereby making

it easier to distinguish between the symbols themselves, and between the symbols as

a group of deterministic waveforms from the surrounding noise.

By definition, the impulse response of the matched filter is the time-

reversed, conjugate of the transmitted pulse, as illustrated in Fig. 5.1. To insure

causality, the impulse response of the matched filter also includes some time delay.

Mathematically, it can be shown that the convolution of a transmitted symbol with

the impulse response of the associated matched filter maximizes the SNR [10, 37].

Intuitively, this is understood by considering the convolution operation that takes

place as the signal passes through the filter. Due to the well defined relationship be-

tween the transmitted symbol and the matched filter, the convolution of the received

symbol with the filter impulse response actually computes the cross-correlation of the

noisy received symbol with the ideal symbol, a process which tends to average out

randomness. In [65], the process was described in the following way.
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Transmit Pulse Response
Matched Filter Response

Figure 5.1: The six inch channel - 10 Gb/s pulse response and corresponding, artifi-
cially delayed, matched-filter impulse response.

When a transmitted pulse is represented by hp(t) for 0 ≤ t ≤ T , the

impulse response of the matched filter over the same range (assuming real signals)

will take the form:

hm(t) = hp(T − t), (5.1)

and for a symbol s(t) passing through the matched filter, the output waveform y(t)

is computed through the convolution integral:

y(t) =
∫ 0

T
s(t)hm(T − t)dt, (5.2)

and by replacing hm(t) in (5.2) with expression (5.1), the convolution takes the form:

y(t) =
∫ T

0
s(t)hp(T − (T − t))dt, (5.3)

which may be reduced to:

86



y(t) =
∫ T

0
s(t)hp(t)dt, (5.4)

which is simply the cross-correlation of the received symbol with the ideal transmitted

symbol. Consequently the output of the matched filter grows as the symbol enters the

filter and peaks at the instant in time when the noisy symbol most closely “matches”

or resembles the ideal symbol. It is this integration of the incoming symbol energy

that increases the SNR. While at any one moment, the instantaneous noise magnitude

may be greater than that of the signal, when averaged or integrated over time, zero-

mean random noise tends to cancel while the symbol energy continues to accumulate.

For the NRZ data transmission, typical in high-speed wireline intercon-

nects, this operation is often implemented through the “integrate and dump” pro-

cess, in which the symbol energy accumulates through integration, and following the

sampling, which ideally occurs when the cross-correlation between the transmitted

pulse and the filter response is maximized, the accumulated energy is eliminated as

quickly as possible in preparation for the next symbol. Inherent in this approach is a

sensitivity to sampling uncertainty. If the sampling clock exhibits jitter, it becomes

impossible to guarantee sampling at the optimal point, and as a result, SNR is no

longer maximized by the process.

The claim that matched filters optimize SNR also assumes that the noise

to be removed is Gaussian or at least uncorrelated with the data, and it is the or-

thogonality of Gaussian noise with most signals of interest that enables the matched

filtering technique to be so effective [10, 37, 66]. On the other hand, the pattern and

channel dependence of ISI implies that it is not orthogonal to the underlying signal

and therefore the matched filter is not expected to suppress it effectively. In fact,

depending on the severity of the ISI, matched filtering has the potential to initially

magnify the degradation. Fig. 5.2 verifies this by comparing a few cycles from a sim-

ulated 10 Gb/s random bit sequence after traversing a severely band-limited channel

and consequently passing through either an ideal matched filter or the second order

continuous-time equalizer discussed in the next chapter. As expected, the equalizer,
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Figure 5.2: Comparison of raw, match-filtered , and equalized 10 Gb/s data at the
receiving end of a six inch FR4 PC board channel.

which is designed to extend the bandwidth of the transmission channel, provides a

clear improvement over the raw received data. But it is also interesting to compare the

matched filter output with the raw data. Here it is observed that the matched filter

output tends to be even slower to respond to data transitions, due to the integration

process, and as a result, increases the ISI and the corresponding DDJ.

This comes as no surprise, as the frequency response of matched filters in

this type of application must be lowpass to coincide with the band-limited transmit

pulse response. One solution might be to combine matched filtering with alternative

techniques to be discussed shortly, but in a cost sensitive design, area, power, and

complexity constraints force a choice to be made between the competing conditioning

circuits in practice. Thus, the decision to incorporate matched filtering hangs on

which source of degradation most limits the link performance: uncorrelated noise or

distortion in the form of ISI. As will also be discussed in the next chapter, the noise

floor of the typical PC board channel may be as low as -100 dB, though additional

uncorrelated noise may be coupled to the signal from other sources. At the same time,

the ISI alone resulting from the dispersive effects and frequency dependent attenuation

produced by even channels of modest length, is enough to close the received eye
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completely during multi-Gb/s operation. Thus, focus is consistently placed on the

reduction of signal distortion, and matched filters are rarely found in high-speed

chip-to-chip interconnects.

5.2 Minimizing Distortion

The two most commonly employed methods for countering the pulse dis-

tortion imposed on the signal by the channel are transmit pulse shaping and channel

equalization.

5.2.1 Transmit Pulse Shaping

While channel equalization is perhaps the more common solution, it is

possible to minimize ISI without equalizing the channel, and this may be accomplished

with or without matched filtering [67, 68, 69, 70, 71, 72]. In fact, it is well known

that a set of pulse shapes exist, often referred to as the “generalized Nyquist pulses,”

that ensure the received symbols will not interfere in a degrading manner, even after

crossing the unequalized channel [10, 37, 70, 71, 72]. At a high level, pulse shaping is

understood to reduce the signal energy at frequencies most effected by the channel,

and hence the pulse distortion incurred across the channel is minimized.

Unfortunately, to realize the maximum benefits of pulse shaping tech-

niques, two specifications which are difficult to achieve in high-speed environments,

must be met. First the claim of ISI free transmission assumes ideal mid-point sam-

pling of the received symbols, and thus intolerance to sampling clock jitter, much like

the matched filter. And as has been discussed, clock jitter is a growing problem in

high-speed links. While methods, such as the bandpass filter presented in Chapter 7,

exist for suppressing clock jitter, total jitter elimination is an impossibility.

The second requirement is that the circuits used to implement the pulse

shaping are realizable. In [73, 74, 75, 76], methods for analog pulse shaping circuit

realization are proposed. Unfortunately, cutting edge CMOS technology does not

produce the transistors needed to implement elegant pulse shaping at the requisite

frequencies. In fact, most transmitters struggle to simply drive the load of the channel
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itself and rely on brute force to generate enough pulse energy to reach the far end of the

channel. The only capability vaguely resembling pulse shaping in current systems is

the inclusion of slewrate control, produced by sequentially turning on parallel output

stages of the driver. Thus, as was the case with matched filtering, pulse shaping could

be incorporated by reducing the target bandwidth of the link, but as bandwidth is

the over-riding goal, this has yet to happen in the multi-Gb/s regime.
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Figure 5.3: Illustration of the basic channel equalization concept.

5.2.2 Channel Equalization

Having concluded that the benefits of matched filtering will be minimal due

to the low noise floor of the PB board channel, and that the maximal benefits provided

by pulse shaping are unattainable without relaxing the link bandwidth requirement,

the next alternative to consider is the method of channel equalization. The goal of

channel equalization, as depicted in Fig. 5.3, is to compensate for high frequency

signal loss incurred across the band-limited channel. This is typically accomplished

by realizing or approximating the inverse of the channel frequency response with

some form of variable gain amplification and/or filtering. Thus, by either preceding
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or following the channel with the equalization circuitry, the signal degrading effects

of the channel are canceled, leaving a “flat” channel-equalizer response. For the

example shown, the insertion loss of a six inch copper channel in FR4 produces the

lowpass transfer characteristic tracked by the solid downward curve, the dash-dot

upward curve represents the equalizer transfer function needed to compensate for

the channel loss, and the straight dashed line at 0 dB represents the ideal equalized

channel response. The fictitious white noise floor and subsequent equalized noise

spectrum are also shown to illustrate the potential problem of high frequency noise

amplification. As will be discussed, the level of noise amplification is dependent on

both the equalizer topology and the equalizer coefficient tuning algorithm.

Channel equalization may be implemented at either end of the channel,

and the trade-offs between transmit and receive-side equalization are well known.

The main advantages of transmit equalization are their ease of implementation and

their relative effectiveness with respect to receive side counterparts of the same com-

plexity. Transmit equalization may be incorporated into the pipeline prior to the

serialization process, allowing it to be carried out at lower frequencies, which in turn

increases achievable precision and possibly decreases power consumption. At the

same time, mitigating signal degradation prior to transmission minimizes sensitivity

to the noise exaggerating effects of the channel. For example, jitter injected into the

signal prior to transmission, through noisy PLL-triggered serialization circuits, is of

great concern in that it modulates the transmitted pulse width (and possibly height)

and has the tendency to reduce the received data eye in both the voltage and timing

dimensions, whereas jitter injected through the components of the receiver typically

only impact the width of the data eye opening [54, 59]. In fact, the impact of trans-

mit jitter may warrant additional resources in addition to channel equalization, which

typically does not reduce random noise components. These additional efforts most

often take the form of more carefully designed transmit clocking. For example, to

achieve 20 Gb/s communication, three independent projects sacrificed on-chip area

and clock tunability to incorporate LC-based low phase noise PLLs in the transmitter

[27, 28, 77], thus reducing the injected clock jitter during the serialization process.
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There are two main drawbacks associated with transmit equalization. First,

because the signal prior to transmission is likely at or near CMOS levels, there is not

much room for the boosting of any portion of the pulse. Rather, transmit equal-

ization usually consists of de-emphasizing certain characteristics of the transmitted

pulse. Second, in order to calibrate the response of the transmit equalizer to com-

pensate for the channel requires some form of feedback to identify how changes in

the equalizer affect the quality of the received signal. That feedback most often is

sent back over a dedicated transmission channel, requiring at least one additional pin

for each bus. To avoid the added pin and routing cost, one alternative is to time-

multiplex the feedback information onto the link being adapted, but this limits link

bandwidth when data must be held up to allow for the feedback transmission. A sec-

ond approach, which only applies to differential links, is to feedback equalizer update

information on a common-mode backchannel [49, 78]. It is the theoretical immunity

of the differential forward link to common-mode noise that makes this possible. By

generating feedback in the form of common-mode level shifting, information regarding

the equalizer performance may be transmitted back across the same channel without

interfering with the forward-going data transmission. In single-ended links, however,

common-mode signal variation is considered eye-closing noise. And because the cost

of an additional feedback pin and channel is too expensive, transmitter equalization,

if implemented at all, usually takes the “fixed by design” approach, in that the design

is based on the anticipated response of the channel and is fixed, thereby requiring no

feedback.

On the other hand, because signals arriving at the receiver are attenuated

by the channel, the allowable gain of receive-side equalizers is only limited by the

capabilities of the underlying circuit components. At the same time, receive-side

equalizers are more easily adaptable as they experience the signal degradation and

require no feedback from the opposite end of the channel. Rather, they rely on the

minimization of some error metric, generated from within the receiver, to tune the

response of the equalizer. This error term may be the difference between measured

received data and the known true data values previously stored in static memory for
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the purpose of I/O circuit training, or it may simply be the difference between the

input and output of the decision operation within the equalizer. What distinguishes

one tuning algorithm from the next is the way in which it uses the error term to

manipulate the equalizer transfer function.

One tuning method, often referred to as zero-forcing is designed to force

all ISI terms to zero. While relatively simple to implement, this approach has the

potential to degrade the system SNR. This is understood by referring back to Fig. 5.3,

wherein the white noise floor was spectrally shaped by the highpass characteristics

of the equalizer. The equalization shown in the figure is an example of the zero-

forcing algorithm, which results in the flat channel-equalizer bandwidth over the

frequency range of interest. Not only does zero-forcing have the potential to amplify

high frequency white noise, but it will amplify any noise corresponding in frequency

to dips or nulls in the channel spectrum. The channel shown in Fig. 5.3, though

lossy at high frequencies, would be considered relatively well behaved over most of

its frequency response, indicating that the number of discontinuities in the channel

(e.g. connectors, vias, and other impedance variations) have been minimized. If one

or two connectors were added to the transmission path, then a corresponding null

in the channel frequency response would likely be observed. To compensate for the

signal attenuation produced by the null, the zero-forcing algorithm would adjust the

equalizer coefficients in such a way as to produce a peak in the equalizer frequency

response over the corresponding null frequency, and this may turn problematic if the

SNR is degraded through the resulting amplification of noise over the frequency band

of the null.

The minimum mean squared error (MMSE) algorithm avoids these prob-

lems by only seeking to minimize the mean-squared error of the residual ISI terms.

While the error metric may be derived identically for zero-forcing and MMSE imple-

mentations, the MMSE equalizer tends to produce a smoother composite spectrum,

less affected by nulls. As will be shown, however, the low noise floor of the PC

board channel may lead to significant similarities between the optimal zero-forcing

and optimal MMSE equalizers.
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In addition to the method of adaptation, the frequency of adaptation may

also affect system performance. Specifically, the question of whether or not a single-

pass calibration is sufficient for long periods of operation must be answered. In [79]

a comprehensive study of the effects of design (channel routing, board materials,

etc.), manufacturing (etching, etc.), and environmental (temperature, humidity, etc.)

variance on channel performance was carried out leading to the following conclusions

that:

1. Channel sensitivity to manufacturing and environmental variations increased

with operating frequency, and hence channel equalizers must be adaptable at

higher frequencies to compensate for higher levels of variation in the channel

behavior.

2. Without continual equalizer adaptation, the BER of the link under considera-

tion was observed to degrade from 10−12 to 10−4 depending on the temperature,

a parameter likely to change over time.

3. Channel performance was degraded more severely by environmental variance

than by manufacturing variance, and thus limiting adaptation to a single pass

designed to tune out manufacturing variance, leads to suboptimal performance.

In a similar study, [80], it was determined that while at least one round

of “set and forget” coefficient tuning significantly improves link performance over

a “fixed by design” approach, on-going coefficient adaptation leads to even more

performance enhancement. Thus, the recent trend has been to design these circuits

in such a way as to dynamically adapt the equalizer response to counter or reverse

the undesirable time-varying characteristics of the channel [81], but the challenges

associated with such cycle to cycle calibration grow with the operating frequency,

and less frequent retuning may soon be the best alternative.

While the need for channel equalization was noticed at least as far back as

Morse during his work with the telegraph [82], efforts to mitigate bandwidth limita-

tions in electrical communication can be traced back to the 1920s and 1930s, when
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several patent applications were filed with the United States Patent and Trademark

Office disclosing a variety of channel equalizer topologies [83, 84]. The earliest equal-

izer topologies were inherently continuous-time, commonly employing passive filtering

techniques to compensate for the high frequency loss of the targeted channel. Discrete-

time equalization, such as finite impulse response (FIR) filters [24, 25, 26, 85] and

decision feedback equalization (DFE) [30, 31, 32, 86, 87, 88] came later, with first

evidence being the transversal filter proposed in a 1953 paper from MIT [89]. As the

architecture and underlying theory of discrete-time and continuous-time equalizers

are distinct, they will be covered separately.

5.2.3 Discrete-Time Equalization

Perhaps the simplest discrete-time equalizer is represented by the block

diagram in Fig. 5.4. In the z-domain, the corresponding transfer function may be

expressed as:

H(z) = 1− z−1 (5.5)

which is translated to the s-domain through the substitution z = esT resulting in:

H(s) = 1− e−sT . (5.6)

To quantify the filtering behavior of this function, the Fourier transform of the s-

domain expression is computed and found to be:

H(ω) = 2− 2 cos
(

π

T

)
(5.7)

which is a highpass function over frequencies ranging from 0 → π
T

seconds.

Intuitively, when an ISI-degraded signal fails to breach a given detection

threshold, as shown earlier, there may still be a measurable difference between the

present and past samples. This is captured through the process of differentiation, as

implemented by the “delay and subtract” architecture shown in the figure.
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In Out

Figure 5.4: “Delay and Subtract” discrete-time channel equalizer, which differentiates
the passing signal, identifying signal transitions.

∆ ∆ ∆

+

ω0 ω1 ω2 ω3

In

Out

Figure 5.5: Block diagram of a 4-tap finite impulse response or transversal filter.

The common feature of discrete-time equalization topologies is that they

employ regularly sampled values of the signal to be filtered, or the post-filter decision,

to shape the signal prior to the decision point. In the case of the FIR filter, sometimes

referred to as the feed-forward or transversal equalizer, shown in Fig. 5.5, the incoming

signal is sampled or tapped at symbol-spaced intervals. Those sampled values are

then weighted while passing through a set of independently controlled variable gain

amplifiers. And finally the tapped values and original signal are recombined through

the summing node at the input of the decision device (comparator). By weighting

the taps appropriately, any residual pulse response (ISI) occurring at symbol-spaced

intervals from the pulse peak or cursor, may be zeroed out, as illustrated in Fig. 5.6.

Adaptive tuning of transversal filter coefficients for discrete-time channel

equalization was first proposed in 1965 [24]. This initial proposal implemented the
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(a) (b)

Figure 5.6: Effect of discrete-time equalization on degraded pulse response. (a) Un-
equalized. (b) Equalized.

zero-forcing algorithm discussed previously, while a later proposal presented in [85],

implemented MMSE adaptation.

∆ ∆ ∆+

ω0 ω1 ω2 ω3

In

Out

Figure 5.7: Block diagram of a 4-tap decision feedback equalizer.

Within the following year, a revolutionary equalizer topology was proposed

in the form of the decision-feedback equalizer (DFE), as illustrated by the block

diagram in Fig. 5.7 [86]. By using a linear combination of past decisions (noiseless

values if the decisions were correct) to reshape the signal, the DFE compensates

for the band-limited channel response while minimizing, and often eliminating, the

amplification of noise inherent in corresponding linear equalization techniques, while
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providing greater immunity to sampling phase noise [31]. Because the DFE inherently

only addresses post-cursor ISI, it is often combined with feed-forward equalization for

more comprehensive signal conditioning.

At high frequencies, FIR filters are more commonly employed, as their for-

ward path topology makes them better suited for high-speed applications. DFEs, on

the other hand, are more difficult to implement in the multi-GHz frequency range due

to their reliance on feedback from past decisions, though techniques such as coefficient

look-up tables [30] and loop-unrolling [32, 90, 91, 92] have proven to increase DFE

throughput. It is the nonlinear functionality of the DFE, with its avoidance of high

frequency noise amplification, that keeps it in competition with the inherently faster

FIR-based topologies.

While the calibration or adaptation of discrete-time equalizers has enjoyed

decades of refinement, there are still some drawbacks to employing such topologies

when addressing both voltage and timing degradation simultaneously. To begin,

discrete-time filters, whether they be FIR-based or DFE-based, are designed to reduce

or remove ISI at a particular sampling instant enforcing no constraint on the signal

condition at adjacent timing instants within the available sampling interval in a way

similar to the matched filter. Thus a weakness of discrete-time equalizers is their

inherent sensitivity to sampling variance or clock jitter.

Fig. 5.8a and Fig. 5.8b illustrate the sensitivity of discrete-time equalizers

to sample timing uncertainty. Two sets of rectangles are placed within the unequal-

ized (left) and equalized (right) eye openings. The narrow rectangles correspond to

minimal sampling jitter, while the wider rectangles represent increased sample timing

uncertainty. The fact that the narrow rectangle is taller in the equalized case is evi-

dence that for small timing uncertainty, the SNR is improved through discrete-time

equalization. On the other hand, the wider rectangle is taller in the unequalized eye,

implying that the equalization may actually degrade receiver voltage margin, were

the sampling jitter to increase.

To reduce the sensitivity of discrete-time equalizers to sampling jitter, frac-

tionally spaced equalizers were introduced. As the name implies, fractionally spaced

98



Moderate Noise

Moderate�DDJ

(a)

SNR�Ma�imized
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Figure 5.8: Eye diagrams used to illustrate the simultaneous impact of discrete-time
equalization on SNR and jitter, and the sensitivity of discrete-time equalized signals
to sampling uncertainty. (a) Unequalized (b) Equalized.

equalizers operate on the signal not once per symbol but at multiple points in time

within the detection interval. The result is to smooth the equalized signal around

the optimal sampling instant, thereby providing a greater level of tolerance to timing

deviation in the sampling mechanism [93].

5.2.4 Continuous-Time Equalization

For decades, the fundamental FIR and DFE architectures dominated the

area of channel equalization due to their tunability and relative simplicity, and the

fact that digital signals, until recently, could be treated as purely digital. Yet parallel

research led to the maturity of continuous-time equalization techniques, whether in

the form of passive filtering, gm-C filtering or more sophisticated methods [94, 95, 96].

The challenge of implementing channel equalization through continuous-time, analog

circuits is in their limited tunability. In addition to the requirement of correlating

with a specific channel response, analog-based equalizers must also be tuned simply to

cancel out the high level of variability in the integrated passive and active components.

The inherent lack of tunability in continuous-time analog equalizers often leads to

designs which are fixed, in terms of their circuit parameters, with an associated hope
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that careful design and layout will minimize process variations and the need for tuning.

Even today, a commodity 6.4 Gb/s equalizer is available constructed completely from

passive, non-adaptable components, with the exception of a CMOS level restoring

limiting amplifier at the output [97].

Yet even though continuous-time equalizer adaptation is more challenging,

there have been several successful designs. In [29] and [30], the continuous-time equal-

izer shown in Fig. 5.9 is proposed to work in conjunction with a DFE in a magnetic

dispersive channel. The continuous-time equalizer replaces the more standard FIR

filter in addressing pre-cursor ISI and is shown to perform better than a five-tap FIR

filter over a certain range of channel dispersivity.

d/dtIn

Out

ακ=1

±

Figure 5.9: The continuous-time magnetic read channel equalizer.

The differential equation describing this particular architecture is:

y(t) = x(t)± α
dx(t)

dt
(5.8)

where x(t) and y(t) represent the input and output of the circuit and α is a weighting

factor by which the derivative of the input is scaled before being summed with the

true input. Using s-domain analysis, the corresponding transfer function is found to
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be:

H(s) =
Y (s)

X(s)
= 1± αs. (5.9)

(a) 1− α d
dt (b) 1 + α d

dt

Figure 5.10: Application of the 1±α d
dt

equalizer to the magnetic read channel pulse.
(a) Pre-cursor Equalization. (b) Post-cursor Equalization.

From the frequency domain perspective, the transfer function represents a

zero at the frequency 1
α

rad/s, or in other words a high pass filter. For the specific

characteristics of the typical magnetic read channel, this simple transfer function may

be very effective in reducing either the pre or post-cursor ISI, but never both. This is

possible because the derivative of the magnetic read pulse response follows the true

(Lorentzian) pulse response very closely over one half cycle and then inverts over the

second half, as illustrated in the upper windows of Fig. 5.10a and 5.10b. The lower

windows of the same figures show the pre-cursor (left) and the post-cursor (right) ISI

completely eliminated through the equalization process.

As a side note, a seemingly obvious enhancement to this topology is to

combine the achievable pre and post-cursor cancellation by passing the incoming

signal through both formats in parallel and taking the product of the two outputs,
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as demonstrated in Fig. 5.11a. Then as shown in Fig. 5.11b, the resulting pulse

response is free from both pre and post-cursor ISI simultaneously without the need

for DFE post-cursor cancellation. Unfortunately, it is the specific characteristics of

the magnetic read pulse that allows for such comprehensive ISI cancellation, while

direct application of this form of equalization to PC board channels was seen in

simulation to be ineffective.

d/dt

In

α1

κ1

d/dt

Out α2

κ2

 x

(a) Enhanced Read Channel Equalizer (b) Equalized Pulse Response

Figure 5.11: (a) Enhanced magnetic read channel equalizer topology for canceling
both pre and post-cursor ISI. (b) Application of the pre/post cursor equalizer to the
magnetic read channel pulse.

A second example of successful continuous-time equalizer design is reported

in [98], where Cherry-Hooper amplifiers implemented in a SiGe process are used to

improve the uniformity of group delay in optical channels. The quality factor (Q)

of the second order amplifiers was adjustable, and used to minimize the group delay

variation, thereby reducing ISI significantly. In [99], an adaptive cable equalizer

was used to enable 400Mb/s communication. The transfer function of the equalizer

consisted of three frequency zeros, each providing +20 dB/Decade rise in the equalizer

frequency response. The position of the zeros was controlled through an RC network
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and adapted by comparing extracted high frequency signal content at the input and

output of the equalizer, and subsequently tuning the filter to provide the requisite

level of high frequency boost.

Another example is the continuous-time graphic equalizer proposed in

[100]. In this design, several bandpass filters, with offset center frequencies, were

placed in parallel, with their outputs summed together. The center frequencies and

Qs of the respective filters were designed to span the frequency range of the passing

data. By controlling the contribution or gain of each filter individually, the high fre-

quency peaking needed to compensate for the channel loss was achieved without the

need for frequency tuning of the filters.

Two of the most recently proposed continuous-time equalization methods

use ISI monitoring circuitry to direct the coefficient adaptation process [101, 102]. In

one case, the equalizer approximated a pair of independently tunable frequency zeros,

which could be combined to compensate for as much as +20 dB of loss at 10 Gb/s

[101]. The cross-correlation between past decisions and an error term generated the

gradient of the adaptation. The second design included a 5-tap transmit equalizer

as well as a tunable second order continuous-time receive-side equalizer providing a

combined compensation of up to 35 dB at 6.4 Gb/s [102]. In this approach, the logic

and other supporting circuitry required to perform the adaptation was large enough

to require a second chip just for calculation purposes.

Continuous-time equalizers, though not as flexible do offer some advan-

tages. To a degree, continuous-time equalization may be thought of as the limiting

case of fractionally spaced discrete-time equalization, with the delay tap spacing re-

duced to zero. The result is a smoother shaping of the passing waveform and often

less susceptibility to sampling clock jitter. Continuous-time filtering is also attractive

in that, compared with their discrete-time counterparts, such circuits contribute very

little in terms of noise, jitter, and potentially power dissipation to the system.

As chip area dedicated to integrating passive components decreases in-

versely with rising clock rates, passive continuous-time filter implementation becomes
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more feasible. In fact, one recent paper reported a 30 Gb/s equalizer based on dis-

tributed LC delay taps [103]. Similarly, in [104], a passive RLC filter was used to

enable 20 Gb/s data communication.

5.2.5 Disruptive Equalizer Technologies

While most of the advancement in data equalization is tied to incremental

improvements, there have been some revolutionary designs which have stepped off

the common path. This section identifies a few such technologies.

To overcome the inherent sensitivity of discrete-time equalizers to sampling

uncertainty, a feed-forward equalizer was proposed that not only provides adjustable

tap weights, but adjustable delay cells as well [105]. The intra-tap delay of 2-tap

and 4-tap equalizers is controlled by an 8-bit digital-to-analog converter (DAC) and

allows for tap delays to varying from 25-50 ps.

In [106], variable tap delay is also employed, but in this case the delays

are not necessarily regularly spaced in time. As implemented in a DFE format, by

allowing for irregular delay spacing, it is possible to make better use of the number

of available taps. For example, with only a few taps, the equalizer may still address

reflections and interference occurring several cursors out.

With the growing concern over jitter, equalizers specifically targeting de-

terministic phase degradation have been proposed [107]. This particular paper points

out that it is impossible to target both ISI and DDJ by simply addressing amplitude

distortion. The proposed solution is dedicated phase compensation to reduce jitter,

in addition to standard equalization.

Based on similar concepts an equalizer which modulates the transmitted

symbol pulse-width was presented in [108] and shown to exceed the performance

of 2-tap FIR-based equalizers in many respects. Perhaps the greatest advantage

obtained through this architecture is that it neither de-emphasizes nor boosts the

signal amplitude to compensate for channel loss, implying that it may be applied

directly to rail-to-rail signals prior to transmission.
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Recognizing the need to account for both amplitude and timing degrada-

tion in the equalizer design, calibration schemes which consider the whole eye rather

than just the vertical opening, as is done in the zero-forcing and MMSE cases, have

been introduced. “Eye Opening” monitor circuits have been designed to work with

the standard discrete-time equalizer topologies while imposing a smaller load on the

signal path between taps [109].

5.2.6 Future Equalization

As has been shown, there are several flavors of channel equalization: trans-

mit versus receive-side equalization, discrete-time versus continuous-time, fixed ver-

sus adaptable, etc. Clearly the ability to tune the equalizer response in realtime

to compensate for environmental changes is critical. At the same time, the more

tuning-compatible discrete-time equalizers are becoming more difficult to realize. At

multi-GHz frequencies, the prospect of closing the adaptive feedback loop is limited

by the delay through the weighting circuits, the summation node, and the decision

circuit. As the challenge of tuning discrete-time equalizers grows comparable to that

of continuous-time equalizers, the low power, low noise characteristics of continuous-

time equalizers makes them more attractive, and efforts may need to be re-directed

toward deriving reliable methods for continuous-time equalizer calibration.

In the chapter that follows, two new algorithms are proposed and shown

to be effective in calibrating second-order continuous-time equalizers, using only one

degree of freedom. While several potential compatible equalizer topologies are sug-

gested, the focus of the contribution is the simple nature of the algorithms and the

limited amount of supporting circuitry.
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Chapter 6

Continuous-Time Equalizer Calibration

Over the course of several decades, channel equalization has attracted reg-

ular attention due to the fact that, regardless of the communication medium, the

time inevitably arrives when physical bandwidth limitations must be overcome to

exploit the capacity of the transmission channel. In the previous chapter, several

forms of discrete-time and continuous-time equalization were presented for this pur-

pose. While the flexibility and tunability of discrete-time equalization has lead to

their dominance for decades, current technology does not permit their application in

multi-Gb/s wireline environments has spurred interest in continuous-time equaliza-

tion [98, 101, 102, 104], even though these circuits are often less flexible. But the

argument was made that the “end of life” for cycle to cycle discrete-time equalizer

adaptation may be approaching, and as a result, some level of effort should be di-

rected at studying the problem of continuous-time equalizer tuning. The goal of this

chapter is to advance a simple, yet effective, methodology for tuning continuous-time

equalizers, as they are becoming more commonplace in high-speed environments.

While possible circuit implementations are proposed, emphasis is placed

on the tuning theory with the assumption that physical realization of the theory

will become easier as transistor speed increases. This statement does not imply that

the proposals experience the same limitations associated with closing the adaptive

feedback loop in discrete-time equalizers, because the methods presented here are

meant to provide periodic, yet less frequent, recalibration and thus the delay through

the feedback loop may be made arbitrarily long. The value of this work is in its

simplicity and generality rather than in performance measurements associated with
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a specific communication link. That said, as a point of reference, the performance of

the proposed equalization is compared with that of the optimal zero-forcing equalizer,

the optimal MMSE equalizer, and the best possible MMSE approximation to the two

optimal responses achievable with the given second-order architecture, as applied to

two target channel responses.

6.1 The Linear Equalizer

Before discussing the equalizer topology and associated calibration meth-

ods, it is useful to first identify the respective frequency responses of the two intercon-

nects targeted in this experiment. Fig. 6.1 presents the insertion loss or transmission

gain of the six inch and twenty inch FR4-based PC board channels to be addressed.

The equalizer used to verify the calibration techniques put forth in this

chapter is made up of a single zero and a complex pole resulting in a second-order

equalizer transfer function of the form:

F (s) =
s + a

s2 + bs + c
, (6.1)

or in terms of more physical quantities:

F (s) =
s + z

s2 + ω0

Q
s + ω2

0

(6.2)

where z is the frequency of the zero, Q is the circuit’s quality factor, and ω0 is the

filter’s natural resonant, or peaking, frequency.

To reverse high frequency losses, frequency zeros are commonly built into

the equalizer transfer function [99, 101], and in this case a single zero is employed to

produce a +20 dB/Decade rise in the filter frequency response. Unfortunately the

zero alone is not enough to completely reverse the high frequency losses of the two

target channels. A second zero could be introduced to compensate for an additional

+20 dB/Decade, but as the channel responses do not fall off at such a logarithmic

rate, a second-order denominator was included to generate some exponential shaping
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Figure 6.1: Channel frequency responses for the target six inch and twenty inch copper
traces across an FR4 PC board.

of the filter response. The denominator contains two poles, which may be real and

distinct (overdamped), real and equal (critically damped), or a complex conjugate

pair (underdamped). Thus by changing the ”b” coefficient in the denominator of the

equalizer transfer function (6.1), or simply the circuit Q in (6.2), significantly differ-

ent behavior may be achieved. Such tuning of the transfer function to produce high

frequency peaking not only provides for more aggressive high frequency loss compen-

sation, but also reduces high frequency noise amplification through the inherently

sharp roll-off in the equalizer response above the resonant frequency.

While the tuning approaches, to be described, were observed to work for the

adjustment of any of the three parameters in the equalizer transfer function, emphasis

within this explanation is placed on Q-tuning. But, if in practice the specific equalizer

architecture favors the independent tuning of z or ω0, then the algorithms presented

here still apply after slight modification. Fig. 6.2 shows the variation in equalizer

frequency response that can be achieved through adjusting either the zero, the Q,

or the peak frequency ω0. When considered in light of the target lowpass channels,

it is clear that each form of tuning has the potential for providing at least coarse

improvement in the combined channel-equalizer response.
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Figure 6.2: Comparison of equalization through adjusting (a) the zero (b) the Q (c)
the peak frequency (ω0).

6.1.1 Equalizer Coefficient Placement

As has been mentioned several times, the greatest challenge associated

with analog continuous-time equalizer implementation is the issue of tuning. While

simultaneous tuning of multi-tap discrete-time equalizers is well understood, and

their performance is easily predicted when the basic channel response and number

of equalizer taps are known, methods for finding the optimal coefficient values in

continuous-time equalizers are channel and equalizer specific. The methods proposed
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in this chapter explore the effectiveness of a simple calibration method which consists

of fixing two of the three coefficient values in the second-order transfer function while

tuning the third.

To illustrate how the fixed coefficients may be chosen, consider the response

of the six inch channel found in Fig. 6.1. If the circuit Q is designed to be the variable

parameter, then both the z and ω0 terms must be intelligently selected. To find a

reasonable frequency location for the zero, a horizontal line may be drawn across the

channel response curve at the -20 dB level. Knowing that the zero will produce a

+20 dB/Decade boost in the response, it may be assumed that placing the zero a

decade below the intersection of the channel response with the -20 dB line should

lead to reasonable compensation up to that crossing frequency.

Choosing the appropriate location for ω0 is a bit more challenging. When

placed too low, over-equalization may occur if the effects of the zero and the peaking

of the complex denominator overlap significantly. If placed too high, then the peaking

may not contribute to the equalizer response over the frequencies of interest. However,

this second possibility will likely not be a problem, as the parasitic loading associated

with physical circuit implementation will certainly limit the maximum value of this

term. For the six inch channel response shown in Fig. 6.1, and the goal of 20 Gb/s, f0,

or ω0/2π, was placed at two times the data bandwidth or 20 GHz (assuming half-rate

clocking), to insure that the circuit, when tuned correctly, would flatten the overall

response over the bandwidth of the data. With these parameters in place, the Q is

then tuned to adjust the frequency response of the equalizer between the zero and

the resonant frequency.

6.1.2 Equalizer Coefficient Tuning

With the fixed coefficients selected focus is shifted to the variable term. As

discussed in the previous chapter, equalizer coefficient adaptation is directed by the

minimization of a predetermined error metric. In theory, reducing the error coincides

with approaching the optimal equalizer frequency response, thus the error term in

general takes the form:
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e(n) = s(n)− y(n) (6.3)

where s(n) represents the desired signal and y(n) corresponds to the actual signal at

the equalizer output. One of the most common methods for minimizing the error in

practice is through the “steepest descent” or “gradient descent” algorithm, which in

theory drives the coefficient update along the “steepest” path to the minimum error

solution. To understand how this takes place, it is necessary to identify what the

minimum error solution is. For the general case of the optimal transversal Wiener

filter, the minimum error is associated with the mean-squared error criterion, often

symbolized as:

ξ = E
[
|e(n)|2

]
, (6.4)

where E[·] denotes statistical estimation.

The following derivation of the general adaptive coefficient update is taken

from the presentation found in [110]. When following the well known least mean

squared (LMS) adaptation algorithm, the coefficient update is expressed as:

w(n + 1) = w(n)− µ∇ξ, (6.5)

where w(n) and w(n+1) are the present and future coefficient weights, µ is a scaling

factor used to balance the trade-off between the rate of convergence and the residual

error, and ∇ξ represents the gradient of the mean-squared error, or the derivative of

the mean-squared error with respect to the coefficient weighting:

∇ξ =
d(ξ(n))

dw
. (6.6)

In practical implementations, the statistical error estimate is often replaced

with the instantaneous error estimate:

ξ̂(n) = e2(n), (6.7)
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and following this substitution, the error gradient may be calculated through:

∇ξ̂(n) = ∇e2(n) =
d(e2(n))

dw
= 2e(n)

d(e(n))

dw
, (6.8)

with further substitution of the error value from equation (6.3) leading to:

∇e2(n) = 2e(n)
d(s(n)− y(n))

dw
. (6.9)

Considering that the desired signal is independent of the coefficient weight-

ing, the expression further simplifies to:

∇e2(n) = −2e(n)
d(y(n))

dw
, (6.10)

and because for the general case of the single-tap transversal filter:

y(n) = w(n)x(n) (6.11)

with x(n) corresponding to the signal at the input of the equalizer, the final estimate

of the error gradient takes the form of:

∇e2(n) = −2e(n)x(n), (6.12)

and hence the final LMS update follows:

w(n + 1) = w(n) + 2µe(n)x(n). (6.13)

Of course, because this derivation is based on the tuning of an FIR-based

discrete-time filter, it may not apply directly to the adaptive equalizer under consider-

ation. For that assumption to be valid, a similar relationship between the error term

and the update must hold true. Fortunately, as will be shown, the LMS adaptation

does translate well to the second-oder transfer function proposed.

With the update established, the method for estimating e(n) in practice

must be identified. For the equalizer in question, where the low and high signal levels
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are zero volts and one volt respectively, one choice for the error is to compute the

difference between the ideal high voltage and the peak of the pulse response for a lone

one (single pulse preceded and followed by long strings of zeroes.):

e(n) = 1− SSP (n), (6.14)

where SSP (n) is the sampled single pulse peak value at each iteration. The drawback

to this approach is that it focuses on the single pulse response, while ISI is a multi-

pulse problem. Thus a more appropriate error term would account for the relationship

between multiple pulses. Fig. 6.3 presents two new error terms used to calibrate the

variable equalizer coefficient, both of which account for multi-pulse interaction. The

upper window illustrates what might be called the symmetric pulse error, while the

lower window might be referred to as the reduced tail approach.
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Figure 6.3: New error terms proposed for filter coefficient calibration.

114



“Symmetric Pulse” Equalization

The assumption of the symmetric pulse equalization method is that if a

double pulse (two ones in a row) is sent, and the sampled cursor values from the

two corresponding time cells are equal in magnitude, then the two pulses must be

contributing equally to the overall pulse shape. Based on this assumption, it was

thought that if two pulses contribute equally to the overall response, then even when

ISI is not eliminated, at least it is made more consistent from bit to bit. It is this very

fact that leads to the notion that there is no ISI in clocking signals, which is of course

not technically true. Rather, the ISI is constant because the alternating nature of the

clock results in a very consistent pattern, unlike the unpredictable patterns inherent

in random data signals which result in the accumulation of ISI.

T1 T2

V
o
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s

V
o
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s

Pulse Response and Resulting Eye Diagram for Equalized Channel - 20Gb/s

Picoseconds

Figure 6.4: The upper window presents the 20 Gb/s single and double pulse responses
of the six inch FR4 channel after applying the symmetric pulse tuning algorithm. The
lower window presents the resulting 20 Gb/s eye diagram.

Unfortunately, this theory is not completely founded as there is often a

difference between the pre and post-cursor tails of the individual pulse response. Thus

the contribution of two consecutive pulses to the double pulse may not be distributed
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Figure 6.5: Comparison of the transmitted data and the received data after symmetric
pulse equalization.

equally even when the resulting waveform appears symmetric. Hence, there may

still be an accumulation of ISI even after symmetric pulse equalization. This can

be observed in Fig. 6.4 where even with the error forced to zero in the double pulse

response, there is still ISI build up as the post-cursor of the double pulse is larger than

that of the single pulse (the difference is identified by the shaded area between the

tails). Still, the resulting data eye is open as shown in the bottom window of the same

figure. By comparison, the unequalized pulse response of this same channel produced

the completely closed eye shown back in Fig. 2.5 used to illustrate the impact of

ISI. Additionally, the simulated equalized signal found in Fig. 6.5, corresponding to

the same unequalized data set shown in Fig. 2.4, identifies some improvement in

that every bit transition breaches the detection threshold by at least 50 mV, whereas

previously a large number of bits failed to even reach the threshold. While this does

not represent significant voltage margin, the technique does produce favorable results,

as evidenced by the open eye in Fig. 6.4, and can certainly be combined with transmit

equalization for even more aggressive signal conditioning. Thus the associated tuning

algorithm is worth presenting.
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Figure 6.6: Block diagram of the symmetric pulse tuning algorithm. ST1 and ST2 are
sample and holds taken during the T1 and T2 intervals respectively.

After fixing all but one of the filter coefficients, according to the method

discussed, the remaining coefficient is tuned in such a way as to minimize the difference

between the cursor samples from intervals T1 and T2, as shown in the upper window

of Fig. 6.3. To achieve this, the variable coefficient is updated in accordance with the

LMS algorithm, carried out as follows:

1. Initialize the e(n) and Q(n) terms.

2. For iteration n = 0,1,2,...

Two consecutive pulses are sent and samples ST1 and ST2 are taken at the center

of the corresponding time cells, as illustrated in Fig. 6.6. The new error term

is calculated as:

e(n) = ST2(n)− ST1(n) (6.15)

where ST1 and ST2 are the samples of the double pulse taken at the center of

intervals T1 and T2 respectively. One of the attractive attributes of this method

of calibration is that the time between the double pulses may be made arbitrarily
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long (limited only by the ability of the sample and hold circuitry to store an

accurate measurement), allowing the tuning circuitry to operate much slower.

By lowering the bandwidth requirements of the calibration circuits it may be

possible to bias the active devices in the weak inversion region where more linear

multiplication and other advantages (low noise, low power dissipation, etc.) are

attainable [111, 112, 113, 114, 115]. The longer period between measurements

also allows this technique to extend to higher datarates without the issue of

adaptive loop stability, as experience by the established methods of discrete-

time equalizer adaptation.

3. The new coefficient value is calculated as:

Q(n + 1) = Q(n) + µe(n)ST2(n) (6.16)

where µ is the scaling factor discussed previously and ST2(n) represents the

LMS approximation to the gradient of the squared-error or the system input.
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Figure 6.7: Effect of symmetric pulse calibration on the single and double pulse
responses. (a) Starting from an overdamped condition. (b) Starting from an under-
damped condition.
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The case e(n) > 0 occurs when the overall channel-equalizer response is

somewhat overdamped with ST2 > ST1 . The update then increases the Q term in the

denominator, thereby leading to a more underdamped filter response. This behavior

of adjusting from an initially overdamped condition is illustrated in Fig. 6.7a, which

presents the single and double pulse responses at several intermediate points along the

symmetric pulse calibration process. If, on the other hand, e(n) < 0, some overshoot

would be observed in the double pulse with ST1 > ST2 , and the algorithm responds

by decreasing the Q, creating a more overdamped filter response, thereby leveling out

the pulse, as shown in the process illustrated in Fig. 6.7b. It is observed that the

process leads to the same solution regardless of the direction of the initial offset.

From this discussion, it might be questioned why the error estimate is not

taken in the standard way, as the difference between the ideal signal level and the

sampled equalized signal level. The response to this concern has two parts. First it

must be argued that the goal of realtime adaptation (on a cycle to cycle basis) at

multi-Gb/s datarates is unrealistic, and hence, periodic retraining through a simple

data pattern as presented here is a better solution. As was just mentioned, this

method avoids adaptive loop instability, because the bit period associated with the

datarate may be several orders of magnitude shorter than the training period. Once

it is agreed that the training sequence presented is a more reasonable, and perhaps,

superior approach to the adaptation process, then the standard error of the ideal

signal level minus the equalized level of the single pulse, in this case 1− ST1(n), may

be proven problematic.

Based on this error metric, and considering the nature of the training

pattern, the sign of the error can not change, implying that the coefficient update

will continue indefinitely until shut off by some other mechanism. On the other hand,

when the error is taken as the difference between two non-ideal levels as proposed,

the sign of the error may change, identifying the minimum error and fixing the tuned

coefficient value.

In addition, it was claimed that the proposed methods allow for the tuning

of any of the three coefficients, thus making the technique compatible with a greater
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number of equalizer topologies. If the zero is chosen to be the tuned parameter rather

than the Q, then step three in the algorithm may be changed to:

z(n + 1) = z(n)
(
1− µe(n)ST2(n)

)
, (6.17)

and similarly if ω0 is to be the tuned parameter, then the update would be:

ω0(n + 1) = ω0(n)
(
1 + µe(n)ST2(n)

)
. (6.18)

It should be pointed out here that the sign of the update changes when

the frequency zero is tuned. Intuitively this is understood by looking again at the

effect that tuning this coefficient has on the second-order response (see Fig. 6.2a).

While raising the Q and/or peaking frequency leads to a more underdamped re-

sponse, raising the zero actually increases the damping by shifting the high frequency

compensation out to frequencies where it no longer matters.
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Figure 6.8: The upper window presents the 20 Gb/s single and double pulse responses
of the six inch FR4 channel after applying the reduced tail tuning algorithm. The
lower window presents the resulting 20 Gb/s eye diagram.
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“Reduced Tail” Equalization

In the reduced tail equalization approach, the post-cursor of the double

pulse is reduced in such a way as to produce relatively constant ISI over a series

of successive pulses. In this case, the error term is generated from the difference

between the sampled values of the second cursor of the double pulse and the cursor of

the single pulse, as shown in the lower window of Fig. 6.3. The result is to force down

the T2 cursor value and consequently the tail of the double pulse thereby lowering the

contribution of ISI to the following bit (see Fig. 6.8). Then when the pre-cursor of a

third pulse is combined with the tail of the double pulse, the accumulation of ISI or

the increase with each successive pulse is minimized. An alternative interpretation of

that the reduced tail error zeros out the instantaneous ISI of the double pulse.

The resulting data waveform is presented in Fig. 6.9. The reduced tail

response produces overshoot during the first of a train of pulses, but the level then

remains relatively constant for the duration of the pulse train. The fast rise time that

produces the initial overshoot is critical in cases where only a single one follows a long

string of zeros. The simulation results presented in Fig. 6.9, based on the previous

data set, show the equalized signal crossing the threshold by at least 150 mV with

every bit transition.

Of course the double pulse tail could be attenuated even further for the-

oretically increased ISI suppression, but this would actually come at the expense of

voltage margin. By forcing the second cursor of the double pulse to equal the cursor

of the single pulse, a constraint is placed on the filter that allows for some overshoot

while still guaranteeing a minimum steady-state level as demonstrated by the equal-

ized waveform in Fig. 6.9; thus maintaining sufficient voltage margin. Another option

would be to compare the cursor sample at the end of several consecutive pulses with

the peak of the single pulse, but in simulation this led to varying levels of improve-

ment. Were the number of transmitted pulses to span the duration of the unequalized

channel impulse response, then the resulting error would account for all ISI. But the

practical limitations of the sample and hold circuitry prohibits such an implementa-

tion. Thus, the original two pulse method provides the simplest, yet still effective,
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Figure 6.9: Comparison of the transmitted data and the received data after reduced
tail equalization.

error metric. The reduced tail update algorithm, incorporating only two transmitted

pulses, is as follows:

1. Initialize the e(n) and Q(n) terms.

2. For iteration n = 0,1,2,...

Two consecutive pulses are sent as with the previous approach. Once the signal

has re-settled to zero, a single pulse is sent. The new error term is calculated as:

e(n) = ST2DP (n)− ST2SP (n), (6.19)

where ST2DP and ST2SP are the sample of the double pulse taken at the center

of the interval T2 and the center sample of the single pulse as illustrated in

Fig. 6.10.

3. The new coefficient value is calculated as:

Q(n + 1) = Q(n) + µe(n)ST2DP (n), (6.20)
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Figure 6.10: Block diagram of the reduced tail tuning algorithm. ST2SP and ST2DP

are sample and holds taken during the T2 interval of the single pulse and double pulse
respectively.

where µ is again included to balance the speed/error trade-off and ST2DP (n)

represents the LMS approximation to the error gradient.

Similar adjustments may be made, as discussed previously, if either of

the other two equalizer parameters is chosen as the variable. By way of comparison,

Fig. 6.11 illustrates that error minimization is indeed achievable through the variation

of any of the three parameters, with the assumption that the values of the remaining

coefficients allow it. For the three simulations shown, the fixed coefficients were chosen

to insure that calibration would lead to the same solution.

To understand how the second-order equalizer counters the effects of the

channel, it is helpful to compare it with the optimal zero-forcing equalizer and

the optimal MMSE equalizer. The discussion that follows compares three equal-

izer responses for the target six inch and twenty inch channels: the optimal zero-

forcing response (EQOPT,ZF ), the best approximation of the second-order equalizer

(EQBEST,ZF ) to the optimal zero-forcing response in the MMSE sense, and the re-

sponse of the second-order equalizer calibrated through the reduced tail methodol-

ogy, simply referred to now as the “adaptive” equalizer. Following that, the process
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Figure 6.11: Error minimization achieved through the variation of each of the three
equalizer parameters.

is repeated to compare the adaptive equalizer with the optimal MMSE topology

(EQOPT,MMSE).

To compare the relative performance of the three equalizers, it is first neces-

sary to explain how the optimal zero-forcing equalizer and the corresponding MMSE

approximation to the optimal equalizer are derived. To begin with, the frequency

response of the optimal zero-forcing equalizer is the inverse of the channel, or:

EQOPT,ZF (ω) =
exp−jωτ0

H(ω)
, (6.21)

where H(ω) is the known channel response and e−jωτ0 is included to ensure linear

phase at the equalizer output, with the constant τ0 accounting for the time delay

imposed by the equalizer circuit.

The best fit to the optimal zero-forcing equalizer is found by tuning the

coefficients of the second-order adaptive equalizer to minimize the mean-squared error

in the difference between the equalizer transfer function and EQOPT,ZF (ω) using the

expression:
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ω0, Q, z, τ0 = arg min

{∫ ∞
−∞

∣∣∣∣EQOPT,ZF (ω)− EQBEST,ZF (ω)
∣∣∣∣2dω

}
, (6.22)

or in terms of the coefficients to be computed:

ω0, Q, z, τ0 = arg min
ω0,Q,z,τ0


∫ ∞
−∞

∣∣∣∣H(ω)
z + jω

ω2 − ω2
0 + jω ω0

Q

− e−jωτ0

∣∣∣∣2dω

 , (6.23)

where the variables ω0, Q, and z represent the frequency dependent coefficients of the

second-order equalizer and τ0 again represents the delay through the equalizer. What

this expression seeks to do is tune the equalizer coefficients such that the product of

the channel response H(ω) and the equalizer response EQBEST,ZF (ω) approaches one

over the limits of integration, while at the same time, the combined phase response of

the channel-equalizer product is also forced toward the linear phase behavior described

by e−jωτ0 .

Due to the limited order of the proposed equalizer, the MMSE approxima-

tion to the optimal zero-forcing response must be bound to a limited frequency range

in order to optimize the fit. If the equalizer were forced to match the ideal response

in its entirety, the error between the two would be distributed over the whole range,

and significant error would occur over the bandwidth of the data. By limiting the

range, however, the equalizer is allowed to adapt more closely over the bandwidth

of the data, while pushing the error out to frequencies where the spectral energy of

the data is minimal. Thus the limits of integration shown in equation (6.23) are

reduced to range from DC to 20 GHz for the six inch equalizer and DC to 8 GHz

for the twenty inch equalizer, with the higher end chosen through trial and error. In

addition, due to the nature of the measured channel responses, for which no closed

form expression is available, the integration required in (6.23) is actually carried out

through the summation:
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ω0, Q, z, τ0 = arg min
ω0,Q,z,τ0

∑
i∈B

∣∣∣∣H(ωi)
z + jωi

ω2
i − ω2

0 + jωi
ω0

Q

− e−jωiτ0

∣∣∣∣2
 , (6.24)

where:

B = {i|ωi < 2π × 20 rad/sec} (6.25)

for the six inch channel and:

B = {i|ωi < 2π × 8 rad/sec} (6.26)

for the twenty inch channel, corresponding to 20 GHz and 8 GHz respectively.

Fig. 6.12 and Fig. 6.13, summarize the comparison between the optimal

zero-forcing equalizer, the best fit approximation and the adaptive equalizer, with

fixed coefficients chosen through the method suggested in Section 6.1.1, for the six

inch and twenty inch channels.

In Fig. 6.12a and Fig. 6.13a, the three distinct equalizer frequency re-

sponses are superimposed. While both figures show the best fit equalizer closely

following the optimal zero-forcing curve, the adaptive equalizer gain appears too high

at times, implying that the zero was initial chosen too low. This is understandable

considering that the frequency of the zero was initially chosen without accounting for

the potential compensation overlap provided by the resonant peaking. In a similar

way, the peaking frequency of the adaptive equalizer is also observed to be too high.

As a result, the best fit equalizer tends to provide a flatter response out to a higher

frequency. This is more clearly observed in the six inch case presented in Fig. 6.12b,

and as a result, the equalized eye, shown in Fig. 6.12c, exhibits less ISI at the sam-

pling instant. Interestingly, however, the over-equalization provided by the adaptive

equalizer still opens the eye a comparable amount, at least over the 10,000 symbols

captured in the diagram.
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(a) Equalizer Response (b) Channel Response

(c) Data Eyes

Figure 6.12: Zero-forcing equalization comparison for the six inch - 20 Gb/s intercon-
nect.

Further comparison of the relative performance of the three equalizers, was

carried out by replacing the optimal zero-forcing equalizer with the optimal MMSE

equalizer. As was discussed in the previous chapter, MMSE equalizers tend to pro-

vide better performance both in the presence of random noise and when the channel

response is poorly behaved. The main difference between the computation of the

MMSE equalizer and the optimal zero-forcing equalizer, is the inclusion of the noise

floor N0. As a result, the optimal MMSE equalizer is found through:
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(a) Equalizer Response (b) Channel Response

(c) Data Eyes

Figure 6.13: Zero-forcing equalization comparison for the twenty inch - 10 Gb/s
interconnect.

EQOPT,MMSE(ω) =
exp−jωτ0

H(ω) + N0

, (6.27)

where e−jωτ0 is again included to ensure linear phase at the equalizer output. The

value of N0 was chosen based on careful analysis of Fig. 6.1. In the figure, the

noise floor was observed to reside between -105 dB and -110 dB, based on where the

twenty inch channel measurement leveled off. Thus, this value was taken to represent
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N0. With that value established, the second-order approximation is then computed

through the expression:

ω0, Q, z, τ0 = arg min
ω0,Q,z,τ0

∑
i∈B

∣∣∣∣(H(ωi) + N0)
z + jωi

ω2
i − ω2

0 + jωi
ω0

Q

− e−jωiτ0

∣∣∣∣2
 , (6.28)

where ω0, Q, z, and τ0 again represent the peaking frequency, the filter Q, the fre-

quency zero, and the delay through the equalizer, and where the summation is again

taken over:

B = {i|ωi < 2π × 20 rad/sec} (6.29)

for the six inch channel and:

B = {i|ωi < 2π × 8 rad/sec} (6.30)

for the twenty inch channel.

Table 6.1: Equalizer Coefficient Values - EQADAPT / EQBEST,ZF / EQBEST,MMSE

Rate Length Fixed Zero (GHz) Tuned ”Q” Fixed f0(GHz)

10 Gb/s 6 inches 1.00 / 2.04 / 2.07 0.19 / 0.83 / 0.80 20.00 / 16.61 / 16.88
10 Gb/s 20 inches 0.40 / 0.37 / 0.37 0.45 / 0.47 / 0.47 10.00 / 9.66 / 9.66
20 Gb/s 6 inches 1.00 / 2.04 / 2.07 0.33 / 0.83 / 0.80 20.00 / 16.61 / 16.88

Table 6.1 compares the zero, Q, and peaking frequency of the adaptive

equalizer calibrated through the reduced tail technique with the best fit coefficient

values computed for the zero-forcing and MMSE cases. As expected, the relatively

low noise floor led to nearly identical solutions for the optimal zero-forcing and optimal

MMSE equalizers. The analysis was carried further to study the adaptive equalizer
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(a) Equalizer Response (b) Channel Response

(c) Data Eyes

Figure 6.14: MMSE equalization comparison for the six inch - 20 Gb/s interconnect.

performance when starting from the best fit coefficient values. It was observed that

the adaptive equalizer tended to settle closer to the MMSE approximation than to

the zero-forcing approximation, yet a conclusion on which of the two equalizers it is

approximating was difficult to determine.

Once confident that the equalizer coefficients will converge through the

proposed technique, it becomes prudent to look for additional points of simplification.

In general, the LMS adaptation algorithm may be simplified by relying upon the sign

of the error and/or the sign of the sampled pulse value rather than on the actual

130



(a) Equalizer Response (b) Channel Response

(c) Data Eyes

Figure 6.15: MMSE equalization comparison for the twenty inch - 10 Gb/s intercon-
nect.

analog values themselves. Thus the Q coefficient update can take on any one of the

following four forms:

1. The error-data or standard LMS update:

Q(n + 1) = Q(n) + µe(n)ST2DP (n); (6.31)
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2. The sign(error)-data or simply “sign” algorithm:

Q(n + 1) = Q(n) + µsign(e(n))ST2DP(n); (6.32)

3. The error-sign(data) or “signed-regressor” algorithm:

Q(n + 1) = Q(n) + µe(n)sign (ST2DP(n)); (6.33)

4. The sign(error)-sign(data) or “sign-sign” algorithm:

Q(n + 1) = Q(n) + µsign(e(n))sign (ST2DP(n)). (6.34)

In terms of circuitry, this implies that the error may be computed through

the straight comparison of the two sampled pulse values rather than through a true

analog subtraction circuit. In addition, subsequent scaling of the error term by the

second sampled pulse value may be avoided altogether, as the sign of the sampled

data always equals +1, based on the proposed training sequence, thus avoiding the

need for true high-speed analog multiplication.

Sacrifices must be made, however, to enjoy this reduced complexity. The

first trade-off is a higher average number of iterations needed to complete the calibra-

tion process. The second is an increased residual noise in the final tuned coefficient

value that occurs as the computed error dithers around zero. These two points are

illustrated in Fig. 6.16, which compares the performance of the calibration loop when

implemented with the LMS, sign, signed-regressor, and sign-sign updates. To observe

a comparable level of residual error, the µ factor of the two updates incorporating the

sign(error) term was initially set two orders of magnitude below the µ associated with

the methods using the true analog error values. But to insure complete calibration

within one hundred iterations, a final value of 0.01 was chosen for the sign(error)

µ, while the µ of the remaining two methods was left at 0.1. As a result, all four
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(a) Error Convergence (b) Error Convergence Zoom

Figure 6.16: Simulations tracking the coefficient adaptation from both overdamped
and underdamped initial conditions, when driven by the LMS, sign, signed-regressor,
and sign-sign algorithms. (a) Zoomed out to show relative convergence time. (b)
Zoomed in to show relative residual error.

algorithms are shown to converge in a comparable number of cycles, but as illustrated

in Fig. 6.16b, the residual error of the sign(error) updates is measurably larger.

6.1.3 Additional Simulation Results

To further verify the effectiveness and generality of the calibration tech-

niques, equalizers were designed not only for 20 Gb/s data across the six inch channel

and 10 Gb/s across the twenty inch channel, but also for 10 Gb/s across both the six

inch channel. Fig. 6.17a shows the 10 Gb/s data eye wide open after traversing the

six inch channel, while Fig. 6.17b shows a clear eye opening after applying 10 Gb/s

data to the twenty inch channel, which when unequalized resulted in a completely

closed eye. In both cases, the equalizers were calibrated according to the reduced tail

algorithm.
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Figure 6.17: (a) Pulse response and resulting eye diagram for a 10 Gb/s data stream
(a) transmitted across the six inch channel (b) transmitted across the twenty inch
channel.

6.2 Performance Summary

In addition to comparison with the optimal equalizer responses, the second-

order adaptive equalizer performance may be assessed in terms of the pre and post-

equalizer eye opening and the achievable BER as derived through the methods pre-

sented in Chapter 3.

Fig. 6.18 provides a summary of the impact of the equalization on the

six inch channel at a datarate of 10 Gb/s. In Fig. 6.18a, the single and double

pulse responses (equalized through the reduced tail algorithm) and the corresponding

simulated and worst-case eye opening are shown again for comparison. The eye

captured through simulation approaches the worst-case boundary as expected, and

with enough cycles passed through the system, the inner eye boundary would converge

on the worst-case prediction. Fig. 6.18b contrasts the worst-case inner eye boundaries,

for the same link condition, with and without equalization. As shown, equalization

extends the received eye height and width from 148 mVpp to 559 mVpp and 58 ps

to 85 ps, respectively. While an increased horizontal eye opening of 27 ps may not
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Figure 6.18: Various illustrations of the impact of the reduced tail calibrated equalizer
on the six inch channel at 10 Gb/s. (a) Single and double pulse responses and resulting
eye diagram. (b) Worst case unequalized and equalized inner eye boundaries. (c)
Unequalized statistical data eye. (d) Equalized statistical data eye.

seem significant, it is when considered in light of the total available bit time. The

time enhancement reported here implies a jitter reduction from 0.42UI to 0.15UI.

Fig. 6.18c and Fig. 6.18d provide a more descriptive view of the received data eyes

(unequalized and equalized respectively) by shading the eye contour according the

probability of error for any given sampling coordinate.

Fig. 6.19 provides a similar summary of the impact of the equalization

on the twenty inch channel, again at 10 Gb/s. Fig. 6.19a again presents the single
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Figure 6.19: Various illustrations of the impact of the reduced tail calibrated equalizer
on the twenty inch channel at 10 Gb/s. (a) Single and double pulse responses and
resulting eye diagram. (b) Worst case unequalized and equalized inner eye boundaries.
(c) Unequalized statistical data eye. (d) Equalized statistical data eye.

and double pulse responses (equalized through the reduced tail methodology) and the

corresponding simulated and worst-case eye openings are shown again for comparison.

In this case, the fact that the worst-case unequalized eye boundaries fail to intersect,

as shown in Fig. 6.19b, indicates that the eye is initially closed. This same figure

then shows equalization extending the received eye height and width from 0 mVpp

to 99 mVpp and 0 ps to 23 ps respectively. Similar conclusions regarding the impact

of equalization may be gleaned from the perspective of achievable BER. According
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to the statistical eye presented in Fig. 6.19c, sampling directly in the center of the

unequalized eye still corresponds to a probability of error near 10−0.9 or approximately

12.5%, while sampling in the center of the equalized eye shown in Fig. 6.19d, results

in a BER of less than 10−12.
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Figure 6.20: (a)-(b) Impact of the reduced tail calibrated equalizer on the twenty inch
channel at 10 Gb/s. In this case, the frequency zero in the equalizer transfer function
is initial set 3x higher than in Fig 6.19. (c)-(d) impact of the reduced tail calibrated
equalizer on the six inch channel at 20 Gb/s.

Finally, Fig. 6.20 presents the eye opening achieved across the twenty inch

channel at 10 Gb/s, as well as across the six inch channel at 20 Gb/s. The take-away
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from these last figures is that only minor modification, if any, of the fixed equalizer

coefficients was required to reach these levels of compensation over a variety of link

configurations, implying a high level of generality in the calibration methods.

To calculate the full link BER, it is first necessary to assume a specific

distribution of uncertainty in both the sample timing and the reference voltage, as

discussed in Chapter 3. For the purpose of this presentation the sample timing uncer-

tainty was assumed to follow a bimodal distribution consisting of a 5 psrms Gaussian

component and a 20 pspp DCD component combined through convolution with a

20 pspp uniformly distributed jitter component. Similarly the voltage uncertainty was

assumed to follow a distribution comprising a 5 mVrms Gaussian component and a

60 mVpp uniformly distributed component.

Figure 6.21: BER versus datarate for the six inch and twenty inch channels before
and after equalization.

With these values selected, the BER of each link was calculated with and

without equalization at several datarates. The results, presented in Fig. 6.21, show

equalization consistently increasing the achievable BER at datarates ranging from

3 Gb/s to 10 Gb/s by two or three orders of magnitude. For a target BER of 10−12 at
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10 Gb/s, equalization proves to enable the six inch link, while the achieved datarate

without equalization is greater than 10−10. While the figure also shows a drastic

improvement in the BER achieved across the twenty inch link, it is clear that either

additional transmit equalization or reduced sampling uncertainty are required to reach

10−12 functionality at 10 Gb/s over this length. A second way to interpret Fig. 6.21

is to consider that for a specified sampling uncertainty, equalization improves the

achievable datarate on the six inch channel from less than 8 Gb/s to greater than

10 Gb/s. An even more impressive claim can be made for the twenty inch channel,

whose datarate is increased from approximately 3.7 Gb/s to 8.7 Gb/s through the

equalization process.

To avoid the possibility of incorrect sampling assumptions, another way to

compare the impact of equalization on system performance is by looking at the un-

certainty tolerance of the link by manipulating the sampling uncertainty distribution

while monitoring the BER. Fig. 6.22 shows the results of such a simulation on the

six inch channel at 10 Gb/s. The peak-to-peak reference noise and sampling jitter

were incremented in 50 mV and 5 ps steps, respectively, while the achieved BER was

recorded. In the figures, diamonds were used to indicate when the link BER remained

below 10−12.

Based on the resulting data, shown in Fig. 6.22a, it is observed that the

reference noise and jitter levels may never exceed 150 mVpp and 45 pspp, respectively

across the unequalized link. But more importantly, when the reference noise reaches

150 mVpp, the sampling jitter may not exceed 15 pspp. And when the sampling jitter

reaches the 45 pspp level, the reference noise may not exceed 50 mVpp. Conversely,

for the equalized case shown in Fig. 6.22b, the tolerable reference noise and sampling

jitter combinations are extended to 500 mVpp - 30 pspp and 100 mVpp - 70 pspp.

In addition to the clear improvements evident in the simulated eye dia-

grams and BER simulations, a final approach to qualifying the equalizer’s effect on

ISI is to observe the autocorrelation of the equalized versus unequalized data sets. The

expected autocorrelation of a truly random data set (white noise) would be a delta

function, with zero values for all positive and negative time lags. Correlated noise,
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(a) Unequalized (b) Equalized

Figure 6.22: Tolerable sampling uncertainty levels in terms of sampling jitter and
reference voltage noise. (a) Unequalized. (b) Equalized.

on the other hand, would produce more spreading of the nonzero correlation values.

Fig. 6.23 presents the autocorrelation of the transmitted data (pseudo-random), the

unequalized received data, and the equalized received data. These particular data

sets correspond to the transmission of 10 Gb/s data across the twenty inch channel.

The minimum values shown are nonzero due to the windowing effect of calculating

the autocorrelation from data sets of finite length. The grid lines represent single

UI time lag increments. As expected, the transmitted data generated with Matlab’s

rand function shows a clear spike at the zero lag, with theoretically zero values at

all other points, supporting the claim of uncorrelated data. The unequalized data is

widely spread, implying a large amount of correlation from bit to bit. The equalized

data is spread, but not as severely as the unequalized set, implying that the equalizer

tends to decorrelate the data, or in other words, remove the interaction or ISI between

neighboring data bits.

6.2.1 Possible Circuit Implementation

All of the discussion leading to this point has been based on an ideal

transfer function. This section presents several circuit implementations which are

140



Symbol-Spaced Time Lags

N
o

rm
al

iz
ed

 A
u

to
co

rr
el

at
io

n

Correlation Comparison - 10Gb/s Data - 20in Channel

Figure 6.23: Comparison of the calculated autocorrelations of the transmitted, re-
ceived, and equalized data sets.

capable of realizing the required equalizer response, with the understanding that

obtaining the necessary amplification bandwidth in standard CMOS processes may

still be challenging:

1. Sallen-Key amplifiers which provide for tunable Q factors are one possibility,

though these circuits are highly sensitive to process variations [116].

2. Phase-shift filters, wherein the Q is set by the ratio of a pair of resistors [117]

could also provide adaptable Qs were the resistors implemented with MOS de-

vices or as a selectable resistive network.

3. The Cherry-Hooper amplifier designed in [118] for the purpose of reducing group

delay variation across band-limited channels. The circuit is shown to be effec-

tive in restoring signal integrity in degraded signals through another Q-tuning

scheme based on resistor relationships. While originally the tuning of the circuit

was manual and static, flexibility could be designed in.

4. The Q-enhanced active lowpass filter proposed in [119]. This particular archi-

tecture allows for the independent tuning of Q with a single gate bias voltage.
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Figure 6.24: Equalizer with tunable inductive peaking.

5. One last possibility is the LC-based differential equalizer circuit discussed in

[120] and shown in Fig. 6.24. This architecture provides tunable inductive

peaking through the variation of the equivalent capacitive load produced by a

pair of binary weighted capacitor arrays.

The corresponding filter transfer function is:

F (s) =

Cgd

Cgd+CL

(
s + Rs

L

)(
s− gm

Cgd

)
s2 +

(
Rs

L
+ 1

rds(Cgd+CL)

)
s + 1

L(Cgd+CL)

(6.35)

where Cgd, gm and rds are the gate-to-drain parasitic capacitance, transconduc-

tance and drain-to-source resistance of the input devices respectively. CL is the

combined capacitive loading selected through the array switches, Rs is the series

resistance of the inductor, and L is the inductance. When the right-half plane

parasitic zero is ignored, a reasonable approximation as it occurs far beyond

the bandwidth of interest, the filter transfer function exactly matches the form

assumed throughout this work.
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Figure 6.25: Frequency response of the suggested equalizer for various levels of tuned
load capacitance.

While the transfer function implies some interdependence between the Q and

ω0 terms, the normalized circuit frequency response shown in Fig. 6.25 matches

the desired equalizer response well and should provide a similar level of equal-

ization in practice. This is because the third term in the denominator changes

more quickly with variations in CL, while the Q, which is dependent on both the

second and third terms, remains relatively constant, approximating the inde-

pendent tuning of the circuit’s natural resonant frequency. As was mentioned,

this may be accomplished by a simple modification of step three in the coeffi-

cient update algorithm. Two potential weaknesses of the implementation are

the tuning resolution, which is determined by the unit capacitance in the load

and limited by the parasitic capacitance of the switches, and the tuning range,

which is limited by the area required to layout both on-chip spiral inductors

and the required capacitor arrays.

This chapter concludes by presenting Table 6.2, which compares the maxi-

mum datarate enabled by the suggested second-order equalizer topology, when tuned

with the reduced tail calibration algorithm, with previously reported achievements.
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Table 6.2: Comparison of Equalizer Performance with Previously Published Work

Reference DataRate Channel Equalizer BER Gain
[99] 270 Mb/s 200m Cable CTLE(3) n/a 40 dB
[121] 3.125 Gb/s Optical 2-T FIR 4.5×10−15 n/a
[108] 5 Gb/s 25m Cable PW Modulation 10−12 33 dB
[88] 6.25 Gb/s 30in FR4 4-T DFE 10−15 20 dB
[102] 6.4 Gb/s 18cm FR4 5-T FIR + CTLE(2) 10−13 20 dB
[25] 10 Gb/s Optical 7-T FIR 10−12 21 dB
[27] 20 Gb/s 7in FR4 4-T FIR + CTLE(1) 10−12 16 dB
This Work 8.75 Gb/s 20in FR4 CTLE(2) 10−12 22 dB
This Work 10 Gb/s 6in FR4 CTLE(2) 10−12 16 dB

In the table, the term CTLE(n) refers to a continuous-time linear equalizer of order n.

While several additional high-speed systems could have been chosen for comparison,

the list presented is limited to systems implemented in a standard CMOS technology,

thereby insuring a comparable level of difficulty in circuit realization. While the BER

of the proposed system is highly dependent on the sampling uncertainty, if anything,

the values chosen exceed the noise measured in the comparison systems. For example,

the 20 Gb/s performance claimed in [27] corresponded to a total link timing uncer-

tainty of 820 fsrms. In addition, that system incorporated differential signaling to

eliminate the problem of reference voltage uncertainty.

Based on the table, it is observed that the proposed algorithms perform

to a similar standard, but do so with minimal complexity. For example, two of

the links reported required both transmit and receive-side equalization to reach a

similar datarate [27, 102]. At the same time, most of the discrete-time equalization

implementations required several taps to reach a comparable level of performance

[25, 27, 88, 102]. In terms of topologies, the third-order continuous-time equalizer

presented in [99], most closely resembles the second-order response presented here,

and still only achieves 270 Mb/s communication.
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Chapter 7

High-Speed Clock Filter

Over the years, data channel signal integrity has enjoyed a disproportion-

ately greater degree of attention, as the data signal’s broadband nature makes it in-

herently more susceptible to degradation associated with limited channel bandwidth.

Clock signal integrity, on the other hand, has received relatively little attention, as

the clock’s periodic nature side-steps pattern dependent degradation, and as a re-

sult, clock quality or lack thereof has contributed relatively little to I/O performance

limitation in the past. At multi-Gb/s datarates, however, new phenomena including

jitter amplification, in conjunction with stricter timing budgets to cope with vanishing

margins, have raised interest in clock signal integrity.

As the high-speed clock finds use at more and more nodes within the sys-

tem, as is the case with the source-synchronous and meso-synchronous topologies,

the impact of clock signal integrity on link performance becomes more serious, as

uncertainty in the timing of the clock, or clock jitter, rapidly degrades the maxi-

mum achievable datarate. Referring back to the source-synchronous link at the top

of Fig. 2.1, and assuming multi-Gb/s communication, it is reasonable to expect the

total clock jitter observed at the point of data capture to contain some, if not all, of

the following components: jitter generated by the PLL used during the transmit-side

serialization process; jitter generated by the transmit drivers, the majority of which

stems from SSO noise; jitter amplification imposed by the band-limited, frequency-

dependent characteristics of the transmission channel; jitter generation within the

receive-side clock buffer, including DCD resulting from non-ideal DC signal levels
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at the input buffer and rise/fall time asymmetries; jitter resulting from clock multi-

plication or phase interpolation circuits used to realign the phase of the associated

clock and data signals; residual periodic jitter that results even after the static timing

offset between the clock and data paths is minimized (This jitter component is ampli-

fied in the meso-synchronous link as intentional mismatch between on-chip clock and

data routing lengths insures greater discrepancy between the phase of periodic clock

and data jitter even after static timing offset has been eliminated.); jitter induced

by power and ground noise at either end of the link; and finally jitter amplification

incurred through the clock distribution network.

Interestingly, the CDR topology shown at the bottom of the same figure

does not avoid much of the degradation just described simply by leaving out the

forwarded-clock: jitter from the transmit-side system clock is still injected into the

data during serialization; the resulting data jitter is exacerbated by the transmit driver

circuitry; and jitter amplification across the band-limited channel still occurs. There

are some differences at the receiving end of the link however. Mismatch between

clock and data paths is not an issue as the clock path does not exist. But where

some performance is regained through the avoidance of clock-data mismatch, it is

quickly lost again due to the jitter generating characteristics of the clock recovery

circuit. Finally, unless the clock is extracted on a per lane basis, it must still be

distributed throughout the receiving port to capture the incoming parallel data, a

process through which jitter again accumulates.

While it may not be a completely fair comparison, the performance achieved

by the systems presented in [27] and [28], built from many identical circuit compo-

nents, claimed achieved datarates of 20 Gb/s and 18.85 Gb/s over a similar channel

for source-synchronous and CDR topologies, respectively.

This chapter describes a fully differential tunable bandpass filter fabricated

in 90 nanometer CMOS technology intended for jitter reduction in the forwarded-

clock signal employed in [27]. As will be shown, the filter serves to enhanced high

frequency clock signal integrity through suppressing jitter-producing voltage noise

and by attenuating several specific components of jitter directly.
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Figure 7.1: High-level frequency domain illustration of the impact that a bandpass
filter should have on the spectral components of clock degrading noise.

Before proceeding, however, an intuitive argument for the use of bandpass

filters in high-speed clock signal conditioning is provided. Fig. 7.1 presents the spec-

tral components of an ideal clock waveform, with fundamental frequency fc, along

with the corresponding spectral characteristics of several forms of signal degradation

previously discussed. The frequency response of a bandpass filter is superimposed

for the sake of the discussion. The first thing to notice are the arrows pointed up

and down at each harmonic component of the clock, representing harmonic distor-

tion, which often includes DCD. Thermal noise, power supply noise, crosstalk, and

ISI are also overlaid, though admittedly the noise levels are not to scale. Regardless,

by identifying the spectral characteristics of the various noise sources with respect

to the bandpass envelope, it becomes clear that sifting the dominant component of

the signal through a bandpass filter will suppress noise occurring beyond the filter’s

bandwidth.

It may be argued that the filtering of the higher-order clock harmonics

will further degrade rather than improve the condition of the clock signal. While it

is true, that the slow transitions resulting from lost harmonics can result in greater

peak-to-peak jitter, as was discussed in a previous chapter, those harmonics will
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already be attenuated in the received signal when it arrives at the filter input, due to

the band-limited nature of the interconnect. Thus no further slewrate degradation is

imposed by the filter, only noise and jitter reduction. To further reduce the peak-to-

peak jitter, the clock edges may be enhanced by following the filter with a carefully

designed limiting amplifier.

7.1 Review of Clock Jitter

To appreciate the favorable impact that clock filtering provides to high-

speed link performance, it is helpful to review the components of clock degradation.

7.1.1 Suppression of Random Jitter

As was discussed previously, RJ is the result of random noise or signal

amplitude shifts translated into timing error at each signal transition. This, often

linear, translation is inversely proportional to the slewrate, with faster edges reducing

the jitter. This is one reason for the apparent jitter amplification that occurs incurred

across the band-limited channel. As fast transmit edges are degraded by signal loss

and irregular group delay, the slow edges observed at the receiving end of the line

exhibit a measurably larger amount of jitter.

Earlier the concept of matched filtering was introduced as the optimal way

for enhancing link SNR. Interestingly, according to the definition of the matched filter,

a bandpass filter could be considered a sub-optimal “match” to a band-limited clock

signal. Recall first that the impulse response of the matched filter is the time-delayed

conjugate of the transmit pulse response. Then consider that the impulse response of

a bandpass filter, with center frequency tuned to the clock’s fundamental frequency

component, is a damped sinusoid oscillating at the clock frequency, while the clock

itself is not much more than a sinusoid after its edges are rounded by the harmonic

attenuation of the channel.

For the measured channel response shown in Fig. 7.2, corresponding to a

six inch copper trace in an FR4-based printed circuit board (the target channel for
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Figure 7.2: Target clock channel frequency response for a six inch FR4-based printed
circuit board interconnect.

this chapter), the associated RJ and DCD amplification factors are presented versus

clock frequency in Fig. 7.3.

These graphs identify some important characteristics of high frequency

clock transmission. From Fig. 7.3 it is observed that RJ amplification tends to in-

crease with operating frequency, and thus the frequency of the forwarded-clock should

not be chosen lightly. The even faster increase in DCD amplification at higher fre-

quencies was previously explained in light of the DCD accumulation that occurs due

to the integrating nature of the channel. In the 20 Gb/s link presented in [27], two

of the major factors driving the choice of clock frequency were the channel loss at

the frequencies under consideration and the jitter amplification at those frequencies.

Based on data like that found in Fig. 7.2 and Fig. 7.3, a quarter-rate clock (5 GHz)

was chosen rather than the more commonly employed half-rate clock. Not only did

this decision avoid the additional 10.5 dB of loss predicted in Fig. 7.2 to occur at

10 GHz, but it also avoided a random jitter amplification of nearly 2×, versus the

jitter amplification anticipated at 5 GHz of just over 1×, as predicted by Fig. 7.3.

For comparison, the jitter amplification factors of two different bandpass

filter configurations are presented in Fig. 7.4. Here again, the clock frequency is
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Figure 7.3: Anticipated RJ and DCD amplification at various clock frequencies for a
six inch FR4-based printed circuit board interconnect.

swept, while the two filter’s maintain a fixed center frequency of 5 GHz but distinct

Qs of 2.5 and 5. Based on this figure, bandpass filtering should actually reduce the

RJ present in a signal, as its jitter amplification factor is less than one. The figure

also demonstrates that the jitter suppression provided by bandpass filtering improves

with the filter Q, supporting a previous claim that bandpass filters may reduce cyclic

phase noise and jitter by a factor of π
2Q

[122].

A final observation based on these last three figures is that even a relatively

low-Q filter may not only counter the jitter amplification experienced across the

channel, but may also remove much of the jitter that was present in the signal prior

to the point of transmission, as will be demonstrated. Such is the case when the

frequency response of the channel shown in Fig. 7.2 is followed by the response of

the relatively low-Q bandpass filter to be presented shortly. The result is a combined

jitter amplification of approximately 0.5, or the product of the channel and subsequent

filter jitter amplification factors.
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Figure 7.4: Anticipated RJ and DCD amplification for two bandpass filters with Qs
of 2.5 and 5.

7.1.2 Suppression of DCD

Attenuation of DCD present in clock signals can be approached in two

ways: attacking the source of the jitter (duty cycle error) and/or attacking the re-

sulting jitter itself. Application of these two approaches may be separated into distinct

operations on the low and high frequency components of the signal. As was discussed

in Chapter 2, DCD results in a growing DC signal component through the integrat-

ing behavior of the lowpass channel. Yet at the same time, it was shown that DCD

manifests itself as harmonic distortion, with the second harmonic being the dominant

DCD component.

Thus, suppression of DCD requires the simultaneous attenuation of both

the signal’s DC component and frequencies equal to and greater than the second

harmonic. One implication of this is that the common remedy of countering high

frequency channel losses through highpass equalization not only fails to target DCD,

but in fact tends to amplify this jitter component by amplifying the distorted higher

order harmonics of the signal. A better solution would be a filter capable of ampli-

fying the fundamental clock frequency while filtering off the corresponding harmonic
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components. This could be accomplished with inductive peaking (high-Q, low-pass

filtering) at the clock fundamental frequency, yet this would still fail to completely

suppress the DC component of the signal, and therefore would sacrifice some potential

attenuation of the duty cycle error as previously discussed. On the other hand, the

inherent ability of a bandpass filter to amplify a narrow band of the signal’s frequency

spectrum, while completely removing the DC and unwanted higher order harmonic

components, makes this filter an attractive candidate in the effort to mitigate DCD.
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Figure 7.5: Power spectral densities at the transmitter, the receiver and following the
bandpass filter.

The impact of bandpass filtering on the clock spectrum is illustrated in

Fig. 7.5, where a clock initially exhibiting RJ and DCD is simulated passing over

the six inch channel and then through a generic bandpass filter with a Q of five. As

predicted by the earlier discussion on the harmonic components of DCD, it is observed

that most even harmonics are comparable in magnitude to the odd harmonics at the

point of transmission. After the channel, the received signal exhibits both a significant

DC component and an attenuated, but still existing, second harmonic, implying the

presence of DCD at the receiver. Following the bandpass filter, however, the DC
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component of the clock is attenuated and the second harmonic is eliminated leaving

a relatively pure and jitter-free sinusoid.

7.1.3 Periodic and Sinusoidal Jitter

While DCD has been shown to exhibit periodicity at frequencies 2× and

above the clock fundamental, other lower frequency periodic jitter components are

often observed in high-speed clock signals as well. For example, spread-spectrum

clocking, which is simply a low frequency modulation of the transmitted clock phase

used to reduce electro-magnetic emissions, is manifested in the time domain as a

low frequency periodic jitter. For the most part, this particular jitter component is

rarely a problem in that the modulated clock signal is used as the trigger for data

serialization and transmission and cancels out during data capture at the receiving

end, assuming reasonable channel matching. Even with the peak magnitude of the

spread spectrum clock jitter specified in terms of nanoseconds, significantly greater

than the fundamental clock period, its slow oscillation (≈ 33kHz) provides tolerance

to clock-data path mismatch. Periodic jitter components at higher frequencies, stem-

ming from PLL jitter peaking or the excitation of IC package resonant frequencies,

may be less tolerant to skew and must be addressed.

Fig. 7.6 provides an example of three sinusoidal jitter components which

may result from the on-chip clock and data routing mismatch in the meso-synchronous

topology. Even when the static timing offset is eliminated through adjusting the signal

launch times at the transmitter, the propagation delay experienced by the clock, as it

is distributed across the data port, can cause clock and data edges that were originally

transmitted together to be several UI apart at the point of data capture, leaving a

residual skew between the relative phases of clock and data periodic jitter components.

As shown in the figure, the low frequency of the spread spectrum edge modulation

contributes very little residual jitter even with a few nanoseconds of skew between

the clock and data routing. On the other hand, higher frequency periodic jitter

components can become completely out of phase or negatively correlated through the
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Figure 7.6: Residual sinusoidal jitter components that may result from on-chip clock
and data routing mismatch.

same skew and directly add to the peak-to-peak jitter that must be tolerated by the

capture operation.

To understand the bandpass filter’s impact on periodic jitter, it is helpful

to refer to the long-held approximation that “it takes Q cycles for a circuit to respond

to changes at its input.” Thus if a jitter event appears at the input of a high-Q filter,

but is reversed within Q cycles, then the perturbation should not be observed at the

circuit output. Such was the rebuttal found in [123] to criticism of the claim originally

published in [122] that a bandpass filter could be incorporated into the feedback loop

of a PLL to reduce cyclic phase noise and jitter by a factor of π
2Q

. If this assumption

holds, it would imply that clock jitter at frequencies above fc/Q will be attenuated,

and potentially eliminated, by a bandpass filter centered over the clock’s fundamental

frequency.

To verify this assumption, a sinusoidal jitter component with a peak-to-

peak magnitude of 20 ps was superimposed onto a 5 GHz clock and passed through the

bandpass filter to be presented, while sweeping the jitter frequency from 100 MHz

to 10 GHz. Fig. 7.7 shows the results, with the simulated jitter amplification of

the filter represented by the “*” symbols. Due to numerical issues the simulation
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Figure 7.7: Sinusoidal jitter amplification of the proposed bandpass filter with clock
frequency fixed at 5 GHz and sinusoidal jitter frequency swept from 100 MHz to
10 GHz.

produced several spikes depending on the phase relationship of the jitter and the

underlying clock signal. To improve the read-ability of the data, best-fit curves are

included. From the solid black line it appears that sinusoidal jitter amplification

is symmetric about the clock frequency. This is due to the frequency relationship

of the oscillating jitter and the underlying clock, which modulates the edge timing

according to the ratio of the two frequencies, in other words, aliasing. When the

clock and oscillating jitter frequencies are equal, the magnitude of the jitter will be

the same at each clock edge and therefore will appear as a static phase shift or zero

cycle-to-cycle jitter. Because the same jitter-to-clock frequency ratio exists at the

output of the filter, the same static phase shift is observed in the output signal and

the corresponding jitter amplification (jitterout/jitterin) equals unity. This does not

imply that jitter amplification is worse at the bandpass filter’s center frequency, but

that the input jitter, and consequently the output jitter are both minimized at that

point.

At the relative frequencies of 1/2fc and 3/2fc, the filter reduces the peak

sinusoidal jitter amplitude by as much as 40%, which is close to the predicted value
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of π
2Q

, or 0.5991 for this particular circuit implementation. It is actually possible to

find frequencies at which the filter suppresses the sinusoidal jitter magnitude even

further, as will be demonstrated near the conclusion of this presentation.

To further verify that the simulated results were not purely a numerical

phenomenon, the simulation was repeated using the six inch channel response shown

in Fig. 7.2, in place of the bandpass filter response. The data from this simulation

is also included in Fig. 7.7 represented by the “o” symbols and the corresponding

best-fit curve. Clearly the lowpass channel has a consistently negative impact on the

magnitude of the sinusoidal jitter, regardless of frequency, though it does exhibit a

similar symmetry. From these observations, it is clear that bandpass filters reduce

unwanted periodic jitter over a range of frequencies, in which other filtering operations

are likely to amplify the peak-to-peak jitter.

7.2 Existing Solutions for Reducing Clock Jitter

As was mentioned previously, PLLs are often employed within receivers

to realign clock and data signals at the point of data capture and compensate for

clock-data chip-to-chip routing mismatch and latency introduced by clock distribu-

tion networks. PLLs also commonly find their place in Process, Voltage and Tem-

perature (PVT) compensation circuitry. One of the potentially positive side-effects

of incorporating a PLL into the clock path is that when designed correctly the clock

signal leaving the PLL may exhibit less high frequency jitter than the clock signal

that was originally fed into the circuit.

This potential for high frequency jitter attenuation is associated with the

PLL’s phase tracking capability. One of the major considerations of the PLL design

is the bandwidth of the control loop, which defines the frequency range over which

changes in the input signal phase may be tracked by the circuit. Physically, the

tracking bandwidth of the PLL is set by the cutoff frequency of an internal lowpass

filter. Transition timing or phase variation at the PLL’s input falling above the cutoff

frequency of the loop filter are untrackable, and from the perspective of the tracking
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mechanism, high frequency jitter is no different. Thus timing jitter beyond the band-

width of the system is filtered off resulting in a lowpass jitter transfer characteristic

from PLL input to output.

Unfortunately, jitter from the input signal is not the only component of

timing error that may pass to the output of the PLL. Power supply noise and VCO

phase noise both contribute to the total output jitter after being shaped by the jitter

transfer characteristics of the system. According to [124], the jitter transfer of VCO

phase noise through the output buffer is highpass in nature, while jitter stemming

from the power supply sensitivity of the output buffer itself is bandpassed by the

combination of lowpass and highpass functions associated with the loop filter and the

output buffer respectively. Additionally, the phase detector, charge pump, and any

frequency division circuitry will also contribute to the jitter reaching the PLL output.

Thus it is possible for the PLL output to exhibit more jitter than the input, despite the

I/O jitter filtering provided by the control loop. While several techniques to reduce

the jitter generated from within the PLL have been studied, including a recently

published work in which injection locking the reference clock to a slave oscillator

was proposed and shown effective [125], most new methods under consideration add

complexity to an already complicated circuit.

In addition to the possibility of contributing more jitter to the system than

it removes, the very filtering nature of the PLL could prove detrimental to the com-

munication system. For even though the jitter suppressing behavior of PLLs is often

deemed essential, a case may easily be derived in which the jitter transfer character-

istics of the PLL actually degrade the performance of the overall interconnect. For

example if both the clock and data signals contain periodic jitter components, such

as spread spectrum clocking or deterministic jitter resulting from the excitation of

certain modes in the package resonance, then it would be critical to maintain the

correlation between those components in both signals.

To apply numbers to this qualitative explanation, suppose both clock and

data signals are transmitted exhibiting periodic jitter components at 500 kHz and

50 MHz. If the clock signal passes through a PLL with a loop bandwidth of 25 MHz
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then the 50 MHz jitter on the clock will be filtered away and no longer correlated to

the corresponding component of the data jitter. In addition, it is possible that the

PLL will introduce new periodic components and certainly additional random jitter

around the loop filter cutoff frequency due to a phenomenon known as jitter peaking.

Thus it is reasonable to assume that the PLL will not only remove the 50 MHz jitter

needed to match the data path, but it may also introduce jitter near 25 MHz that has

no correlation to the data jitter, further degrading the performance sought through

careful routing in the first place. In this particular case, the system performance may

be improved by avoiding the inclusion of the PLL.

More often, the PLL designer must address the trade-off between filtering

input signal jitter and tracking deterministic jitter components in the signal, through

the selection of the loop bandwidth. If the loop bandwidth in the previous example

was raised above 50 MHz to track the anticipated jitter component at that frequency,

then additional random jitter between the original 25 MHz loop bandwidth and the

current 50 MHz bandwidth would consequently pass to the output as well. In [27],

the solution was to increase the loop bandwidth to 500 MHz to facilitate better jitter

tracking, while at the same time filtering the incoming clock to compensate for the

increased jitter passed by the high bandwidth PLL.

When maintaining jitter correlation between the clock and data signals is

more important, a better solution may be to replace the PLL with a delay-locked

loop (DLL), whose jitter transfer characteristics are very different. It is well known,

and at times considered a negative characteristic, that DLLs pass jitter from input to

output without attenuation. The jitter passing behavior of DLLs occurs because the

waveform at the output is simply a delayed version of the input rather than a signal

generated from within the system, as is the case with the VCO output of the PLL.

In cases like that described above, such an allpass type of jitter transfer might be

advantageous, as it maintains more of the clock-to-data jitter correlation while still

providing for phase alignment and timing compensation.

To counter the increased random signal jitter which results with the DLL,

a bandpass filter may be incorporated into the signal path to provide jitter filtering
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above fc/Q, where fc is the center frequency of the filter, and ideally the frequency

of the clock’s fundamental component. This technique passes the lower frequency

sinusoidal jitter, while reducing the high frequency jitter that has no correlated com-

ponent in the data signal. The trade-off is that random jitter at frequencies between

the alternative PLL bandwidth and fc/Q will pass, though the noise filtering char-

acteristics of the filter should provide additional benefit not accounted for in this

discussion.
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Figure 7.8: Schematic of the proposed bandpass filter.

7.3 Design of the Clock Filter

The design of a high frequency bandpass filter in standard CMOS requires

several degrees of consideration. At the highest level, the trade-offs between digital

and analog filter topologies are compared. In this case, the target center frequency

of 5 GHz precludes the use of strictly digital techniques, due to the required circuit

bandwidth. Even within the analog domain, the decision between discrete-time and
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continuous-time architectures must be made. While discrete-time filters are routinely

used at high frequency, for this implementation they are less attractive based on the

large number of taps required to realize the filter response and the high level of noise

expected from discrete-time implementation. At the next level, active versus passive

filtering is considered. Based on the anticipated channel loss at 5 GHz (the target

clock frequency), providing some gain within the circuit is desirable and implies that

active filtering will be superior. The decision to achieve the filter frequency response

through an LC-tank resulted from the need to minimize jitter generation from within

the filter itself.

Table 7.1: Final Filter Component Values
Device Width Length
M1-M2 20µm 90nm
M3 50µm 250nm
M4 1µm 250nm
M5-M6 10µm 90nm
M7-M8 20µm 90nm
M9-M10 40µm 90nm
M11-M12 80µm 90nm
M13 10µm 250nm
M14 50µm 250nm

Component Value Units
C1-C2 0.06 nF
C3-C4 0.12 nF
C5-C6 0.24 nF
C7-C8 0.48 nF
Cc1-Cc2 0.05 nF
Rc1-Rc2 40 Ω
Rs1-Rs2 13.8 Ω
L1-L2 1.92 nH

Fig. 7.8 presents the proposed fully differential, LC bandpass filter and

corresponding component values are listed in Table 7.1. Prior to adding the input
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AC coupling, formed by components RC1, RC2, CC1, and CC2, the corresponding filter

transfer function is:

F (s) =

Cgd

Cgd+CL

(
s + Rs

L

)(
s− gm

Cgd

)
s2 +

(
Rs

L
+ 1

rds(Cgd+CL)

)
s + 1

L(Cgd+CL)

(7.1)

where L, Rs, gm, Cgd, and CL are the inductance, the parasitic inductor resistance, the

transconductance of the input devices, the parasitic gate-to-drain capacitance of the

input devices, and the equivalent load capacitance created by various combinations

of a 4-bit binary weighted capacitor array, respectively.

The transfer function in (7.1) represents a second-order lowpass filter with

frequency zeros in both the left and right-half planes. The right-half-plane zero results

from the parasitic gate-to-drain capacitance of the differential input devices M1-M2

and occurs above 50 GHz allowing it to be ignored for the remainder of the analysis.

The addition of the coupling capacitors and pull-up resistors to the circuit

input produces two favorable results. First the full circuit transfer function becomes

truly bandpass due to the pre-filtering of the input signal according to the expression:

G(s) =
s

s + 1
RCCC

. (7.2)

By setting 1
RCCC

= Rs

L
and cascading the AC coupling circuitry with the

DC coupled amplifier, the full transfer function becomes:

H(s) = F(s)G(s) =

Cgd

Cgd+CL
s

s2 +
(

Rs

L
+ 1

rds(Cgd+CL)

)
s + 1

L(Cgd+CL)

. (7.3)

A second favorable condition provided by the AC coupling is that the

common-mode bias voltage of the input devices may be optimized without any de-

pendency on the DC level of the incoming signal, providing the highest gain for the

lowest bias current.
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Figure 7.9: Comparison of the bandpass filter’s frequency response with the expression
found in (7.3).

The MOS-CAP (M13) connecting the gate of the tail device M3 to ground

serves to improve the circuit’s common-mode noise rejection by as much as 12 dB

at higher frequencies by shunting noise from the current mirror and noise coupled

through the parasitic gate-to-drain capacitor of the tail device to ground. In a similar

way, the device M14 filters off high frequency noise on the common-mode bias node.

To reduce power dissipation, the positive power supply was set to 1.2V,

while the bias current supplied by the current mirror is 100µA and is stepped up by

the ratio of M3/M4 to provide a tail current of 5mA.

Devices M5-M12 are employed as switches to connect various combinations

of the capacitor array in parallel with the inductor at the circuit output, thereby

providing tuning of the filter’s center frequency. MOS-CAPs were considered for finer

tuning resolution, but were ruled out as the large voltage swing applied to the load

would lead to nonlinear capacitance, and potential signal asymmetry.

Tuning resolution was improved by decreasing the unit capacitance of the

capacitor array to 60fF, but this required an additional branch or 4-bits to achieve

the same tuning range. Reducing the unit capacitance further provided no benefit in

simulation, as the parasitic capacitance on the output node increases with each new
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Figure 7.10: 4-bit tuning range of the proposed bandpass filter.

branch of the array and quickly becomes comparable in size to the least significant

tuning bit. Due to the relatively low-Q value of the final filter (2.622) and the cor-

respondingly wider passband, the required resolution in the center frequency tuning

was relaxed. In the final implementation, with the unit load capacitance of 60fF, the

frequency step from the ideal 5 GHz center frequency to the nearest settings above

and below were on the order of 200-400 MHz, while the overall tuning range covered

through the 16 steps was 3.8-8.53 GHz.

The differential inductive load was designed using Momentum, a 2-D solver

available within ADS, and implemented in the form of a pair of interleaved spiral

inductors, shown in Fig. 7.11a. Because the circuit was expected to provide good noise

and jitter filtering even with a modest Q value, it was possible to approximate the

target inductance of 2 nH and Q of 5 within a relatively small area (85 µm × 85 µm).

However, achieving these values, while maintaining a self-resonant frequency 3x above

the intended operating frequency of the inductor, was not trivial. Using similar values

for the trace widths and the inter-trace spacing (1.8 µm and 1.5 µm respectively)

resulted in lower parasitic capacitance at the expense of a slightly larger parasitic

resistance, limiting the Q. After 2.5 interleaved loops, the simulated inductance was
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Figure 7.11: (a) Micro-photograph of the 85 µm × 85 µm differential, interleaved
spiral inductors. (b) Simulated impedance response identifying an inductance of
1.92 nH at 5 GHz and a self-resonant frequency of 16.63 GHz.

only 1.5 nH, or 75% of the target value. To increase the inductance with an additional

interleaved loop raised the inductance to 3.1 nH, but simultaneously reduced the

self-resonant frequency to 11.5 GHz. The compromise was to follow the initial 2.5

interleaved loops with a pair of carefully matched individual loops within the left

and right halves of the structure. This topology resulted in a final inductance of

1.92 nH, a Q of 4.38, and a self-resonant frequency of 16.63 GHz as presented in

Fig. 7.11b. When placed within the circuit, the overall filter Q was reduced to 2.622,

as mentioned, due to the switching devices and additional parasitics not associated

with the inductor layout.

7.4 Bandpass Clock Filter Tuning Schemes

Perhaps the greatest challenge associated with implementing an analog

filter is in the calibration or tuning of the filter frequency response. Fabrication

process variation insures that the initial filter response will not match the intended

or target response. Three of the more pervasive ways that process variation could

impact the filter under consideration are:
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1. Variations in trace widths and spacing, due to optical and feature etching phe-

nomena, will impact the target inductance and parasitic resistance and capaci-

tance of the spiral inductors and hence the center frequency and Q of the filter.

2. Variations in dielectric constants and thickness, due to irregular doping and

layer growth, will effect parasitic resistance and capacitance, again altering the

filter center frequency and Q.

3. Variations in the transistor characteristics (e.g. transconductance, drain-to-

source resistance.) will effect the gain of the filter.

Thus, analog filters require tunability, and ideally self-calibration, if they

are to be incorporated into high volume products. As bandpass filters are common

in RF systems, several tuning techniques have already been proposed and explored.

7.4.1 Existing Tuning Solutions

In [126], it was suggested that two sinusoids, symmetrically offset about

the desired filter center frequency, be passed through the filter and compared at

the filter output. Measurable mismatch between the relative amplitudes of the two

filtered signals would then correlate to an offset between the desired and actual center

frequency. The filter response could then be adjusted until the amplitudes of the two

filtered signals match, at which point the filter would be considered calibrated.

In [127], this signal balancing approach was enhanced by adding a third

sinusoid at the desired center frequency, with the offset signals placed at frequencies

where the signals were expected to be attenuated by a factor of two. The calibration

circuitry was designed to keep track of the relative amplitudes of the three signals at

the output of the filter. Calibration would be complete when the amplitude of the

center signal equaled the sum of the two offset signals.

There are at least two difficulties inherent in these proposals. First, while

they work well for high-Q filters, the asymmetric frequency response of a low-Q band-

pass filter could lead to a systematic offset between the signals being balanced, making

it difficult to judge when calibration is complete. A second issue, which is more a
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problem for the first proposal, is that the uncalibrated filter center frequency must fall

between the two offset signals, such that a measurable amount of each signal exists,

otherwise the filter adjustment could be triggered in the wrong direction. By adding

the third signal at the ideal center frequency, the uncalibrated center frequency con-

straint is relaxed to a degree, depending on the filter Q, because in this case, only

two out of three signals must be present at the output.

To avoid this issue a third approach was proposed in [128]. In this case,

however, several signals offset in frequency were passed through the bandpass filter.

At the output of the filter, the frequency of the signal with the largest amplitude was

identified and used to adjust the filter settings until the largest output signal resided

at the desired filter center frequency. Thus, this technique would sift the many input

signals through the filter and identify and adjust the filter’s current tuning based on

which signal passed through most easily. While this approach increases the amount

of required circuitry, through operating with many signals rather than two or three,

the result is better tolerance to the initial uncalibrated filter response.

In a similar approach, a technique was proposed in which white noise be

passed through the filter, then passed through a limiting circuit, after which the

dominant frequency component at the output could be measured. Filter tuning is

continued until the frequency of the output align with the desired center frequency

[129].

A still more radical tuning approach was proposed in [130], in which a fifth-

order lowpass Bessel filter was to be tuned. In this case, the known phase response of

the filter was incorporated into the calibration scheme. Initially, the authors consid-

ered passing the signal to be filtered through the uncalibrated filter, and then adjust

the filter response until the appropriate I/O phase relationship was achieved. After

further consideration it was recognized that, while the phase relationship between

a sinusoidal input and a sinusoidal output could be accurately measured, the phase

relationship of the harmonics of the full squarewave signal to be filtered, would be

more difficult to track. Thus, rather than pass the actual signal through the filter,

a sinusoidal VCO was designed to serve as a temporary input to the filter. Then
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through measurement of the I/O phase relationship of the sinusoidal signal, the filter

was tuned accurately.

An additional approach incorporating both phase information and signal

balancing was suggested in [131]. In this case the signal phase angles being compared

were not the I/O phases, but rather the phase difference between signals at low and

high offsets from the center frequency. Through sophisticated signal processing, down

converters tuned to offset frequencies above and below the target center frequency

are used to derive a phase angle error metric based on the phase relationship which

should occur when that filter is tuned correctly.

Still another example of filter calibration based on phase-locking is found

in [132], in which the authors tuned a bandpass filter through zeroing out the phase

difference between the current entering the LC tank and the voltages at the terminals

of the tank.

7.4.2 Proposed Filter Tuning Schemes

For the bandpass clock filter being presented, three self-calibration schemes

were considered based on phase-locking, LC current cancellation, and peak amplitude

detection.

The phase-locking topology, as shown in Fig. 7.12a, exploits the same prin-

ciples used in [130], namely that the signal phase shift through the filter has a known

value, which in the case of the bandpass filter is ideally zero as the reactive compo-

nents of the filter transfer function cancel at the center frequency. In the physical

realization of this circuit, however, there will be some residual signal phase skew due

to propagation delay through the filter. To avoid a systematic phase offset at the

phase detector, the reference path incorporates a delay cell intended to match the

latency through the filter. The clock to be filtered is input to the system and passes

through both the filter and the delay path. Then by comparing the phase at the out-

put of the delay cell with the phase at the output of the filter, feedback is generated

and used to zero out the phase discrepancy, which should ideally occur when the filter

center frequency has reached the desired setting.
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Figure 7.12: Phase Tuning: (a) Block diagram of a center frequency tuning scheme
based on phase-locking. (b) Simulated filter phase response identifying the residual
phase offset at the center frequency due to the signal propagation delay through the
filter circuitry and the impact of the inductor’s series resistor.

Fig. 7.12b presents the simulated phase response the filter. In this particu-

lar example, the observed residual phase offset at the desired center frequency results

from the propagation delay spoken of and is canceled by the explicit delay placed in

the reference path.

This phase-locking approach is attractive for several reasons. First, both

signals compared by the phase detector, the filtered clock and the reference clock, are

derived from the incoming signal avoiding the need for additional signal generation

(extra VCOs, etc). Second, once the initial calibration is complete, the tuning cir-

cuitry does not negatively impact the quality of the clock signal and therefore may

be left connected to provide continuing adjustments of the filter response to compen-

sate for environment changes (temperature, etc.). Finally, the phase-locking system

employs a standard PLL, with the exception of the reference signal derived from the

input rather than provided by a VCO. With insignificant circuit modifications, the

PLL which likely would already be included into the clock distribution network, could

be optioned in a way to serve double-duty by also meeting the needs of the tuning
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system, thereby resulting in increased system efficiency. Interestingly, the greatest

drawback to this approach is that it requires the design of a full PLL, which if not

needed for other reasons, is an added system complexity to be avoided if possible.
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Figure 7.13: LC Tuning: (a) Block diagram of a center frequency tuning scheme
based on inductive/capacitive current comparison. (b) Waveforms corresponding to
the calibration algorithm.

The LC current cancellation technique presented in Fig. 7.13a, similarly

takes advantage of signal phase characteristics, but in this case it is the 180 degree

phase shift between the inductive and capacitive currents circling within the LC
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tank that is exploited. A sinusoid at the desired center frequency is passed through

the filter and the current from the inductive and capacitive paths are converted to

voltages across carefully matched resistors. The resulting AC voltages are then fed

through peak detection circuitry to simplify the comparison process. A subtraction

circuit computes the net voltage difference, if one exists, and scales the computed

value to provide a control signal for subsequent filter tuning. The direction of the

filter adjustment depends on which current is larger. As illustrated in Fig. 7.13b

when the center frequency of the filter is lower than the frequency of the input signal,

capacitive current will dominate as the capacitive reactance of the filter is smaller

than the corresponding inductive reactance in that condition. Conversely, when the

filter is tuned too high, the inductive current should dominate. The feedback loop

attempts to zero out the net current extracted from the tank circuit, at which point

the filter center frequency should be set correctly.

The final approach considered, and the one chosen for the prototype sys-

tem, is based on the peak amplitude of the filtered signal. The nature of the bandpass

filter response predicts that the amplitude of a passing signal will be greatest when

the frequency of that signal is aligned with the filter’s center frequency. The block

diagram shown in Fig. 7.14a demonstrates how a single clock signal could be used to

dial in the filter response.

The clock signal is first passed through the filter and consequently driven

down two paths. In the first path, the filtered clock encounters a buffer, which

isolates the circuitry to follow from the output of the bandpass filter. This insures

that the additional tuning circuitry will not impact the quality of the final clock

output negatively. Following the buffer, the signal is fed into a frequency divider

circuit which outputs three lower frequency non-overlapping clock signals φ1, φ2, and

φ3 with 90 degrees of phase shift between them to be used for the sampling of the

filtered clock amplitude. These signals are also shown at the bottom of the timing

diagram found in Fig. 7.14b.

The second path taken by the filtered clock signal passes through a peak

detection circuit which produces a DC voltage whose DC level is relative to the
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Figure 7.14: Peak Tuning: (a) Block diagram of a center frequency tuning scheme
based on peak detection. (b) Waveforms corresponding to the calibration algorithm.

peak voltage of the alternating filtered clock signal. The signals φ1 and φ2 are then

alternately used to sample the peak level of the filtered clock. The timing diagram

in Fig. 7.14b provides and example of how the calibration might proceed.

1. First the peak detector output is sampled on the rising edge of φ1 and stored

on capacitor C1.

2. The Up/Down counter, which is initially set to zero, corresponding to the high-

est center frequency setting, is increased by one and signal φ2 samples the new

peak level and stores it on capacitor C2.
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3. The two comparators shown in the schematic then compare the two sampled

levels on the falling edge of signal φ3 and the output of the upper comparator

passes its value to the counter which consequently steps the tuning setting up or

down accordingly. A high comparator output signifies that the second sampled

value was greater and therefore the last adjustment brought the filter response

closer to the desired response.

4. The counter is incremented and the new peak level is sampled by signal φ1 and

stored on C1.

5. The two samples are again compared and the output of the lower comparator

is passed to the counter on the rising edge of φ3.

6. The process continues until the most recently sampled value is lower then the

previous sample, indicating that the filter is diverging from the optimal setting,

at which point the counter is decremented once to return to the previous tuning

setting and calibration is disabled.

The resolution of this approach is somewhat limited by the fact that the

difference in signal amplitude from setting to setting is relatively smaller for the few

steps just on either side of the desired center frequency. Thus it is possible that the

calibration will disable prematurely. This is not of great concern, however, considering

the low-Q nature of the filter, where a center frequency tuning error of a few hundred

Megahertz is significantly overshadowed by the wide bandwidth of the filter.

7.5 Performance of the Clock Filter

To verify the filter’s response to common noise events, simulations were run

in which power supply and common-mode noise were superimposed onto the passing

clock signal and the peak-to-peak output jitter was noted.1 The worst-case common-

mode noise sensitivity occurred near 250 MHz, and resulted in approximately 30 fs

of jitter per millivolt of input common-mode noise. Power supply noise sensitivity

1All of the simulations reported correspond to the extracted characteristics of the circuit, includ-
ing an s-parameter representation of the inductor layout.
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peaked at the filter’s center frequency, and led to approximately 6 fs of jitter per

millivolt of power supply noise. As an additional experiment, an artificial input offset

of 50 mV along with a peak-to-peak power supply noise of 25 mV at the frequency

of maximum sensitivity was applied to the circuit. Simultaneously a 5 GHz clock

exhibiting 25 mV of common-mode noise at the frequency of maximum sensitivity was

passed through the filter and the simulated peak-to-peak output jitter was observed

to be 2.043 ps.

By integrating the simulated thermal noise at the output to derive an

equivalent rms noise level, and following the discussed approach of scaling the rms

noise level by the inverse of the signal slewrate to approximate the rms value of the

jitter, the anticipated RJ generated by the circuit was 40.49 fs.
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Figure 7.15: Simulated jitter amplification versus filter center frequency tuning.

Jitter amplification was also studied. Fig. 7.15 presents the jitter amplifi-

cation of the circuit for several input clock frequencies, with each curve corresponding

to a distinct 4-bit center frequency tuning setting. When the filter center frequency is

tuned to 5 GHz, the peak jitter amplification around 3 GHz, as seen in the diagram,

results from an amplification of the clock’s second harmonic through the filtering
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(a) RJ Attenuation (b) DCD Attenuation

(c) Sinusoidal Jitter Attenuation

Figure 7.16: Simulated impact of the proposed bandpass filter on various clock jitter
components. (a) Gaussian distributed RJ. (b) DCD. (c) Sinusoidal jitter.

process. Conversely, when the clock frequency equals the filter’s center frequency of

5 GHz, the random jitter and DCD amplification are predicted to be 0.45-0.5 and

0.25 respectively.

Fig. 7.16 illustrates the impact of the bandpass filter on specific components

of the overall clock jitter. In Fig. 7.16a the bandpass filter is shown to reduce the

rms level of the RJ by a factor of 3.77. In a similar way, Fig. 7.16b and Fig. 7.16c
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Table 7.2: Simulated Filter Characteristics and Performance
Feature Value
Center Frequency (fc) 5 GHz
Power Dissipation 5.695 mW
Gain at fc 7.924 dB
Tuning Range 3.8-8.53 GHz
On-chip Spiral Inductor Value 1.92 nH
Inductor Dimensions 85 µm × 85 µm
Inductor Quality Factor 4.38
Total Filter Quality Factor 2.622
RJ Jitter Amplification Factor 0.45
DCD Jitter Amplification Factor 0.25
Jitter Generation 40.69 fs
Common-mode Noise Sensitivity 30 fs/mV
Power Supply Sensitivity 6 fs/mV

show the filter reducing peak-to-peak DCD and sinusoidal jitter at a given frequency

by factors of 3.57 and 4.29, respectively.

Table 7.2 presents the final characteristics of the bandpass filter and Ta-

ble 7.3 compares the filter performance with on-chip bandpass filter designs previously

published. According to the data reported in Table 7.3, the design presented here,

while claiming the lowest Q factor, provides the highest center frequency and a wider

tuning range than any of the previous designs with minimal power consumption. The

low Q factor is not considered a negative quality as it was initially predicted that a

bandpass filter exhibiting a Q of 2-5 would be very effective in reducing jitter, a fact

that was corroborated by the many simulation results presented.

175



Table 7.3: Comparison of Filter Performance with Previously Published Work
Reference Technology fC Tuning Filter Q VDD ISupply

[133] Bipolar 1 GHz 4-400 5 V 13.6 mA
[134] SiGe 1.6-2 GHz 3-350 2.8 V 8.7 mA
[135] SiGe 1.882 GHz 12.5467 2.7 V 18 mA
[136] CMOS 194-203 MHz 2.3-∞ 3V 2.94 mA
[137] CMOS 829.6 MHz 3.4-629 2 V 22.9 mA
[138] CMOS 850 MHz 47.2222 2.7 V 77 mA
[139] CMOS 2.14 GHz 35.6667 2.5 V 2 mA
[140] CMOS 2.19 GHz 40 1.3 V 4 mA
This Work CMOS 3.8-8.53 GHz 2.62 1.2 V 5.695 mA
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Chapter 8

Conclusion

This dissertation represents the culmination of an effort to provide practical

yet novel enhancements to “state of the art” high-speed electrical signaling. With

few exceptions, the proposals detailed here have either been published in respected

engineering journals [115, 141], been presented at international conferences [120, 142],

or have led to patent filings [143, 144]. In addition, two corresponding journal papers

are currently in review [61, 145], four patent disclosures have been approved for filing,

and at least one more potential article is awaiting submission.

As chip-to-chip signaling reaches and exceeds the physical bandwidth of

the commodity PC board channel, interconnect designers not only face the challenge

of restoring signal integrity through noise filtering and channel equalization, but must

also address the difficulties associated with modeling the growing impact of timing

jitter. This dissertation addresses both challenges by providing algorithms for gen-

erating jittery signals with statistical precision, new algorithms for channel equalizer

calibration, and the design of an LC bandpass forwarded clock filter.

8.1 Summary of Contributions

1. Methods for generating realistic clock and data waveforms with sta-

tistically definable jitter characteristics.

The steady rise in chip-to-chip signaling frequency has turned the focus of signal

integrity from the vertical data eye-closing effects of ISI and other amplitudinal

noise sources to the horizontal eye closure associated with timing uncertainty

or jitter. As a result, recent signal integrity publications have focused on jitter,
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while failing to recognize or account for the synergistic way in which noise

and jitter cooperate to close high frequency data eyes along both dimensions.

Overcoming the tendency to model and simulate noise and jitter independently

required the capability to generate signals with simultaneous voltage and timing

degradation.

A technique is presented here which provides the needed functionality through

applying Fourier theory to the signal generation problem. Both periodic clock

signals and aperiodic data signals may be derived with complete control over the

noise and jitter characteristics of the waveforms. By constructing the waveforms

from their respective frequency components, sub-femptosecond jitter resolution

is achieved even when the simulation time step is several orders of magnitude

larger.

A second pair of signal generation algorithms was also developed to overcome

the constraints on data jitter magnitude inherent in the first approach, while sig-

nificantly increasing the speed of the signal generation process, at the admitted

cost of flexibility.

Both methodologies allow the derived signal to exhibit any combination of sta-

tistical characteristics. To combine the precision of these realistic signals with

transistor level simulation requires only a few additional lines of code to write

the time versus voltage waveform values to the appropriate format of the target

simulation engine. By so doing, timing critical circuits may be more readily

identified, characterized, and compensated for to produce more robust designs.

2. Simple and novel methods for calibrating continuous-time data chan-

nel equalizers.

The study of channel equalization has been motivated for decades by the in-

evitable clash between performance demands and available channel bandwidth.

To compensate for both manufacturing tolerance and environment changes over

time, most equalizers require a corresponding calibration scheme. Continuous-

time equalizers are particularly sensitive to environmental changes, and are
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unfortunately difficult to tune. It is not uncommon for more complexity, on-

chip area, and power draw to be associated with the adaptation circuitry than

with the equalizer itself.

A new calibration scheme, initially targeting second-order continuous-time equal-

izers, has been presented, wherein two new error terms, derived from the mea-

sured or simulated pulse response of the channel during a training sequence, are

used to calibrate and fix the equalizer coefficients. The results show dramatic

improvement in data eye quality following equalization, which in turn translates

to higher achievable datarates for a given channel and BER specification.

3. The design of a high frequency, tunable bandpass forwarded clock

filter.

Past and present approaches to reducing clock jitter in digital communication

systems have typically relied on the inherent high frequency jitter filtering pro-

vided by PLLs. Unfortunately, the assumption that incorporating a PLL into

the clock path will enhance signal integrity is not an absolute, as the jitter

filtering characteristics of the PLL may reduce the correlation between jitter

events initially common to both the data signals and their associated forwarded

sampling clocks. In addition, the PLL may actually contribute more uncorre-

lated jitter to the passing clock than it removes, due to oscillator phase noise

and supply noise sensitivity.

In some cases, the use of a relatively low-Q bandpass filter may serve to re-

duce clock jitter significantly without the complexity of the PLL, as the slow

transient response of such filters has an averaging effect on the incoming edge

timing, reducing both random and high frequency deterministic jitter compo-

nents. To verify these assumptions, a fully differential, tunable bandpass filter

with on-chip spiral inductors was designed. Compared with previously pub-

lished designs, the current approach draws minimal power while achieving both

a high center frequency and a wider tuning range. In addition to suppressing
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RJ and PJ, as anticipated, the filter proved effective in reducing the DC and

high frequency components of DCD.

8.2 Areas of Future Interest

Without detracting from the value of the contributions just discussed, there

are several ways in which the material presented in this thesis might be built upon,

through extension to other applications, enhancements, etc.

• Waveform Generation

While the signal generation techniques presented here provide functionality cur-

rently unavailable in industry standard tools, several enhancements to the meth-

ods could be made. First of all, the generality of the methods can be improved

by extending the models to alternative modes of signal encoding. While 2-PAM

encoding is the standard for high-speed electrical interconnects, other signaling

methodologies exist and some, including multilevel pulse amplitude modulation

(M-PAM) are popular. The methods may also be extended to RF communica-

tion systems by addressing phase-shift keying (PSK) and other forms of signal

modulation.

As was discussed earlier, the value of the Fourier-based signal generation method-

ology may also be improved by incorporating a more realistic waveform into the

underlying model. Exponential functions may be built into the derivation to

round the corners of the signal in an effort to more realistically model the RC

and RLC filtering experienced by the signal and reduce the number of harmonic

computations.

In addition, while the current waveform generation process introduces voltage

noise and jitter independently, counting on noise-to-jitter correlation to develop

as the signal passes through the various blocks of the system, it should be

possible to build a controlled level of noise-to-jitter correlation directly into the

model.
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Again as was suggested within the text, the ability to simultaneously vary the

characteristics of the generated signals on a cycle-to-cycle basis may allow for

more accurate modeling of oscillators and PLLs. One of the challenges associ-

ated with PLL modeling is to account for the random walk in output phase that

occurs during the pause between feedback-controlled phase adjustments. Using

the Fourier-based signal generation technique, it should be possible to let the

signal transition timing vary with each cycle, based on a specified variance, and

periodically apply a control signal to zero out the absolute phase offset. This

would allow for jitter peaking and other important PLL characteristics to be

simulated and not just discussed in terms of jitter transfer functions.

• Channel Equalization

As high-speed data communication becomes the standard, rather than the goal,

channel equalization will likely become a common part of every chip-to-chip

interconnect. While the theory of equalization is well understood and archi-

tectures are mature, there is always room for improvement. One of the best

forms of improvement is simplification. If the method of tuning an equalizer’s

frequency response based on single pulse and double pulse amplitude measure-

ments, as presented here, can be extended to other equalizer topologies, then the

ominous task of equalizer realization may be alleviated. Specifically, it would be

interesting to study the extension of the calibration algorithms presented here

to analog discrete-time FIR-based equalizers and continuous-time equalizers of

higher order. It may also be prudent to study the response of the proposed

tuning methods to simultaneous classical adaptation of discrete-time transmit

equalizer circuits to see if the two distinct methods interfere with each other

during training. And finally, while the methodology presented here did not

specifically provide for dynamic or continuous adaptation, it may be possible to

employ either data encoding or the time-multiplexing of training patterns into

the data path to facilitate continuous equalizer recalibration and account for

changing environmental conditions without degrading link throughput.
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Figure 8.1: (a) Impact of narrowband filtering broadband data signals. (b) Simulated
eye diagrams of band-limited NRZ data and Manchester encoded data followed by a
bandpass filter.

• Bandpass Clock Filtering

For years DLLs have been considered less attractive than PLLs in high-speed

clock distribution networks as DLLs offer no jitter filtering. Yet at high datarates,

the allpass jitter transfer of DLLs may provide better link performance, as clock-

to-data jitter correlation is maintained. Based on a preliminary study, it may

be possible to balance the trade-offs between jitter matching and jitter filtering

by following the DLL with a bandpass filter. If designed correctly, this combi-

nation will provide a level of noise and jitter filtering comparable to that of the

PLL, while maintaining a greater degree of correlation between jitter common

to both clock and data signals.

An additional area of interest is the application of bandpass filtering to data

channels. Intuitively, such filtering of the broadband data would be destructive,

but based on an earlier study of AC coupled interconnects [146], intentional
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attenuation of low frequency signal content can be exploited to reduce ISI.

Fig. 8.1a summarizes the findings of the previous study. According to the figure,

a reduction in coupling capacitance shifts the frequency zero of the system

transfer function to higher frequencies, the result of which is a simultaneous

reducing in ISI and signal swing. To regain lost signal power, the capacitor may

be increased, thereby shifting the zero lower, at the cost of additional ISI.

A preliminary study has shown that broadband data may be narrowbanded

through data encoding techniques, such that passage through a narrowband

filter should only attenuate out-of-band noise and ISI, as previously observed,

rather than the low frequency components of the signal. Manchester encoding is

one method for narrowbanding the data, but leads to a 2× reduction in datarate

for a given clock frequency. Still, as demonstrated in Fig. 8.1b, by bandpass fil-

tering Manchester encoded data at the receiving end of a band-limited channel,

the data eyes are well defined (lower window), while a corresponding NRZ en-

coded signal, at half the frequency, exhibits a tremendous amount of ISI (upper

window). Alternative narrowband encoding techniques exist, and new encoding

may be developed, to facilitate the application of bandpass filtering to data

channels while minimizing the impact on link throughput.

If adopted, the technology presented within this work, as well as the pursuit

of the areas suggested for further consideration, should enhance the performance

and robustness of developing interconnect systems and extend the life of electrical

signaling.
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