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Utah juniper (Juniperus osteosperma) is a
long-lived, shrubby tree species that is a
native endemic of the western United States
(Loehle 1988). Utah juniper currently covers
an estimated 71,500 km2 in the west central
Rocky Mountains and the Great Basin of the
western United States (Terry et al. 2000b; Fig.
1). This hardy species can withstand severe
drought, extreme temperatures, and rocky soil
(Springfield 1976, Zarn 1977).

Utah juniper has expanded its historical
geographic range in the western U.S. since
European colonization (Betancourt 1987,
Loehle 1988, Tausch 1999). Moreover, stands
that were once open-canopied (i.e., savanna-
like) have become dense, thick forests (Tausch
1999). Utah juniper has also encroached into
other ecological communities (i.e., sagebrush
and grassland communities; Aro 1971, Tausch
1999). Ecological expansion and encroachment
by Utah juniper has occurred in response to
overgrazing (including the reduction of fine
fuels by livestock grazing), fire suppression,
and change to warmer, drier climates (Clary et
al. 1974, Betancourt 1987, Tausch 1999).

Thus, much research on Utah juniper is
aimed at controlling its encroachment (Aro

1971, Springfield 1976, Everett and Clary 1985,
Evans 1988, Stevens 1999). Methods such as
herbicide application, chaining, and controlled
burning have been used to eradicate encroach-
ing Utah juniper populations (Blackburn and
Tueller 1970, Aro 1971, Bunting et al. 1987,
Despain 1987). These methods often result in
subdivision or fragmentation of juniper stands.
The effect of this fragmentation on the integrity
of remaining juniper populations has been
given little consideration. Although the species
is thought to be invasive, one might expect long-
term genetic and reproductive consequences
to result from subdivision or fragmentation of
juniper populations, which is accomplished
through controlled burns (Wilcox 1980, Barrett
and Kohn 1991, Sun 1996, Fahrig 1997, Gaines
et al. 1997, Allphin and Windham 2002).

Populations of Utah juniper that were his-
torically isolated by elevation and distance
have also become further isolated as a result of
recent wildfires, which burn through existing
populations by using invasive Bromus tecto-
rum (cheatgrass) as fuel (Aro 1971, Everett
and Clary 1985). If wildfires or controlled
burns create even further fragmentation and
reproductive isolation of juniper populations, 
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fewer nonrelated individuals may be available
for mating (Levin 1984, Daehler 1999, Soren-
son 1999) and inbreeding might become an
increasing problem in these forest stands
(Charlesworth and Charlesworth 1987, Waser
1993, Allphin et al. 2002). In isolated popula-
tions where inbreeding may ultimately result
in loss of genetic diversity, reproductive suc-
cess may decrease (Danzmann et al. 1986,
Ledig 1986, Levin 1989, Nickrent and Wiens
1989, Daehler 1999, Sorenson 1999).

Decreased reproductive success in inbred
populations may manifest itself as low seed set.
Because outcrossing populations (like monoe-
cious, wind-pollinated Utah juniper) are able to
maintain potentially lethal recessive alleles in
the heterozygous state (genetic load), inbreed-
ing in isolated and/or fragmented populations
may increase the frequency of homozygous
combinations of lethal recessives. Populations
with high levels of deleterious recessive alle-
les may exhibit reduced reproductive success
when lethal alleles are exposed during sexual
recombination, resulting in the abortion of
developing seeds (Hardon 1961, Sorenson
1969, Wiens 1984, Wiens et al. 1987, Allphin

et al. 2002). Moreover, genetic drift in small,
isolated populations could also lead to a fixa-
tion of mildly deleterious alleles that might
also limit reproductive success.

Utah juniper populations persist after fires
because of the survival of a few tall (and usu-
ally very old) trees that reseed the area (Cov-
ington and Debano 1990). Population persis-
tence in Utah juniper after fire may also be
due to recruitment from an existing seed bank
in the soil. Therefore, if Utah juniper popula-
tions have diminished reproductive capacity,
their persistence after future fires becomes
even less probable.

Isolated populations of Utah juniper at Dug-
way Proving Ground (DPG), a U.S. Army test-
ing and training facility in the West Desert of
Utah (est. 1942), appear to suffer from low
recruitment and low population reproductive
success. Initial field surveys of Utah juniper
populations at DPG in spring 2000 revealed
that there were fewer juveniles in the DPG
populations than in nearby nonisolated juniper
populations. We counted only 2 juveniles in a
3-km2 area of a Utah juniper population located
on Granite Mountain at DPG. In contrast, a
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Fig. 1. Distribution of Juniperus osteosperma in Western North America, including a map of Utah indicating the 5 
collection sites of J. osteosperma used in this study.



Utah juniper population located 225 km (air
distance) southeast of DPG had more than 20
juveniles in a similarly sized area. Initial
examination of mature fruits of Utah juniper at
DPG populations revealed high levels of seed
abortion and insect parasitism of seeds.

Historically, Utah juniper populations at
DPG have been geographically isolated from
other populations. Fires, caused by spent
ammunition during army training, have resulted
in the significant loss of the already isolated
Utah juniper populations at DPG. Recently,
natural wildfires have also threatened, de-
stroyed, and/or further isolated many of the
juniper woodlands at DPG.

Therefore, we suggest that loss of genetic
variability and reproductive isolation might be
contributing to decreased reproductive suc-
cess (low recruitment and low reproductive
success) in isolated juniper populations at
DPG. To examine the effects of fragmentation
and isolation on reproductive success in Utah
juniper at DPG, we assessed both reproduc-
tive success (seed set) and genetic diversity in
isolated populations of Utah juniper at DPG.
We examined the contribution of seed abor-
tion and insect parasitism of seed to overall
reproductive success in this taxon. We com-
pared reproductive success and genetic diver-
sity in these isolated populations at DPG with
2 nonisolated, expanding populations of the
same species. We predicted that isolated pop-
ulations of Utah juniper at DPG would exhibit
lower genetic variability and lower reproduc-
tive success than nonisolated, expanding pop-
ulations. We further predicted that small pop-
ulations with reduced genetic diversity would
also exhibit increased abortion of developing
seeds because of familial breeding (inbreed-
ing) and increased insect parasitism of seed
because of decreased resistance.

METHODS

Study Area

We selected 5 study populations in Utah in
which to examine the effects of fragmentation
and isolation on reproductive success in Utah
juniper at DPG (Fig. 1). Three of the study
populations were located on DPG (Granite
Mountain, Cedar Mountain, and Dune; Fig. 1).
The Granite Mountain (Granite) population is
thought to have been isolated from the other

Dugway populations for the last several hun-
dred years by elevation and/or distance. The 
Cedar Mountain (Cedar) and Dune populations
have been more recently isolated by wildfire.

For comparative purposes, we also sampled
2 populations not located on DPG (Fig. 1).
These control populations were large, contin-
uous, encroaching populations growing in
similar soil and climatic conditions at roughly
the same elevation as the DPG populations.
One population (Valley) was located in a valley
~16 km east of DPG. The other control popu-
lation (Nephi) was located at the north end of
Juab County, ~225 km south of DPG, near the
town of Nephi, Utah. Both control populations
were considered isolated from DPG (because
of geographic distance and/or the south-south-
west prevailing wind patterns) and were not
thought to interbreed with the populations at
DPG, either historically or currently.

Field Sampling

We collected leaf tissue and berries for
genetic and reproductive studies from Utah
juniper trees at all 5 of the study populations
(Fig. 1). At each population, we used the point-
quarter method (Cottom and Curtis 1956) to
randomly select ~40 individuals from which
leaf tissue and mature fruits were collected
(Table 1). All leaf tissue and fruit samples were
collected during the fruiting season (March–
April) of 2000 and 2001.

Because the sampled trees were located in
rough mountain terrain, as well as within
areas that were near restricted weapons-test-
ing sites at DPG, we collected samples where
access roads to populations were available.
Five access roads were designated for each
population. From these access roads, we estab-
lished 2 sampling points at 50-m distances in
opposite compass directions and perpendicular
to the access road. These became the sampling
points for the point-quarter method (Cottom
and Curtis 1956).

At each sampling point, we measured the
distance from the point to the nearest tree in
each of 4 quarters and the distance from the
sampled tree to its nearest neighbor within
each quarter. We assigned each sampled tree
and its nearest neighbor to 1 of 3 age classes:
seedling, juvenile (prereproductive), or mature
(Bunderson 1983). From these data we deter-
mined the proportion of measured individuals
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falling into each age class for each population.
We used the point-to-organism and near-

est-neighbor distances to compute an unbi-
ased estimate of juniper density (Diggle 1975).
Diggle’s (1975) estimate of density is a com-
pound estimate based on the geometric mean
of juniper density computed from point-quar-
ter data (point-to-organism distances) follow-
ing Pollard (1971) and the density computed
from nearest neighbor distances following Byth
and Ripley (1980).

Reproductive Analyses

For reproductive analyses, we randomly
collected approximately 40–60 juniper berries
from all parts of each mature tree that we sam-
pled, and then we stored the berries in a cool,
dry place until analysis. For reproductive analy-
sis, these sampled berries were split open and
the seeds were identified as normal, aborted,
or parasitized by larval insects.

From these reproductive data, we calculated
mean seed-per-ovule (S/O) ratio (i.e., the pro-
portion of ovules that mature into seeds), mean
proportion seed aborted, and mean proportion
seed parasitism by insect larvae for each popu-
lation. (We note here that S/O ratios are likely
to be overestimates because we do not take
into consideration berries that might have
fallen from the trees because of the abortions
of premature seeds.) An arcsine transforma-
tion was performed to normalize proportion
data for statistical analyses (Zar 1996). Signifi-
cant differences in population and yearly effects
of these parameters, as well as year-population
interactions, were identified using a 2-way
ANOVA. We ran post hoc Tukey comparisons
to assess significant differences among the
individual populations for these means. All sta-

tistical analyses were performed using SYSTAT
9 (SPSS 1999).

We looked for a potential relationship be-
tween stand density and reproductive success.
In order to determine if these 2 parameters
were correlated, we used SYSTAT 9 to per-
form 3 linear regressions (using mean popula-
tion values across both years of study, n = 5):
stand density against S/O ratio, stand density
against insect seed parasitism, and stand den-
sity against seed abortion.

Allozyme Analyses

We determined genetic variability within
and among the sampled populations using
enzyme electrophoresis. Leaf tissue samples
collected from field populations were placed
in moistened plastic bags and stored on ice (or
in a refrigerator) until they could be ground
for electrophoresis (<48 hours). Tissue sam-
ples were ground in a PVP-phosphate grind-
ing buffer (Soltis et al. 1983). The ground
material was absorbed into Whatman 3MM
filter paper wicks and stored at –70°C until
electrophoresis. Each tissue sample was sur-
veyed for genetic variability at 15 enzyme loci
using a variety of gel and electrode conditions
(Soltis et al. 1983, Odrzykoski and Gottlieb
1984). Twelve enzyme loci provided consistent,
variable, and interpretable results (Table 2).

Diversity statistics were calculated for the
12 variable loci following Wright (1943), Weir
(1996), and Hartl and Clark (1997). Genetic
data analysis (GDA) software was used to ana-
lyze allelic data (Lewis and Zaykin 2001). The
following descriptive statistics were computed
to assess the genetic diversity within each pop-
ulation: mean observed heterozygosity (Ho;
direct estimate), Hardy-Weinberg (H-W) 
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TABLE 1. Characteristics of the 5 Utah juniper populations in this study, including population location, estimated pop-
ulation size, number of individuals sampled, proportions of individuals sampled and nearest neighbors in 3 age classes,
and population density.

Estimated Total Population 
Population population individuals Proportion Proportion Proportion density

Population location size sampled seedlings juvenilesa adults (individuals ⋅ km–2)

Granite DPGb 250–300 40 0.056 0.097 0.847 4.8
Cedar DPG 300–350 40 0.058 0.115 0.827 9.9
Dune DPG 100 40 0.035 0.089 0.893 6.4
Valley 20 km east of DPG 1000+ 32c 0.194 0.083 0.722 28.4
Nephi 250 km SE of DPG 1000+ 40 0.194 0.082 0.726 9.5
aJuveniles are prereproductive individuals, not the current year’s seedlings.
bDugway Proving Ground, U.S. Army testing facility in the West Desert of Utah.
cOnly 32 individuals were sampled due to problems associated with access to private property.



expected heterozygosity (He), polymorphic
index (PI = mean proportion of polymorphic
loci), mean number of alleles per locus (A),
and fixation index (f ). We performed a Fisher
shuffling test (exact test) of H-W disequilib-
rium (Fisher 1935, Haldane 1954) for each
locus and each study population using GDA
(Lewis and Zaykin 2001).

The distribution of genetic variation among
the J. osteosperma populations was also deter-
mined using GDA. The following F-statistics
were calculated: FIS, FIT, and FST (Wright
1921, 1943, Weir 1996, Hartl and Clark 1997).
For this study, FIS and FIT were computed us-
ing GDA. We calculated FST among the popu-
lations following Wright (1943).

To further assess the genetic interaction
among populations, gene flow (Nm = effective
number of migrants per generation) was calcu-
lated using methods of Wright (1943; Nm = 
[1 – FST] / 4 ⋅ FST). We computed Nei’s (1978)
genetic distance for each population and gen-
erated a cluster phenogram of the genetic dis-
tance matrix among populations using the un-
weighted pair group method of averaging
(UPGMA) and GDA software. We also per-
formed a Mantel matrix randomization test
(Mantel 1967) to determine if there was a sig-
nificant relationship between geographic dis-
tance and genetic distance (Rohlf 1992).

We ran linear regressions (using population
means for reproductive data averaged across
the 2 years of sampling) to determine if any
correlations existed between genetic variation
(observed heterozygosity) and reproductive
success (S/O, proportion seed abortion, pro-
portion seed parasitism). Regressions were
performed using SYSTAT 9.

RESULTS

Population Density and 
Age Structure

Density (individuals ⋅ km–2) varied among
study populations. The Valley population was
significantly more dense (≥3 times more dense)
than all other populations (28.4 individuals ⋅
km–2; Table 1). The 2 smallest populations at
DPG were the least dense (Granite: 4.8 indi-
viduals ⋅ km–2; Dune: 6.4 individuals ⋅ km–2;
Table 1). The 3 DPG populations had fewer
seedlings and a greater proportion of adults
compared to the nonisolated populations
(Table 1).

Reproductive Success

SEED-PER-OVULE RATIO.—Populations dif-
fered for S/O ratios (P = 0.000; Table 3). Spe-
cifically, the Valley and Nephi (nonisolated)
populations had higher S/O ratios (almost 2-
fold higher) than the isolated DPG popula-
tions (Table 3) in both 2000 and 2001. The S/O
ratios decreased (by ~7%–56%) over the 2
collection years in all study populations (P =
0.007; Table 3). Furthermore, the interaction
between population and year was also signifi-
cant (P = 0.000). We found no correlation be-
tween stand density and S/O (r2 = 0.351, P =
0.394).

SEED PARASITISM.—Populations varied for
seed parasitism by larval insects (P ≤ 0.0005,
range 1%–50%; Table 3). The Granite and
Cedar populations at DPG exhibited the high-
est percentage of seeds parasitized. However,
seed parasitism at the Dune population was
not significantly different from the nonisolated
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TABLE 2. Enzymes and buffer systems used in allozyme population genetic analysis of Juniperus osteosperma.

Enzyme Acronymn EC numbera Buffersb Loci scored

Aldolase Ald 4.1.2.13 11, M 1
Esterase Est 3.1.1.1 6 1
Fructose-1,6-diphosphatase f1,6dp 3.1.3.11 11, M 1
Isocitrate dehydrogenase Idh 1.1.1.42 1, 11, M 1
Leucine-aminopeptidase Lap 3.4.11.— 6, 8 2
Malate dehydrogenase Mdh 1.1.1.37 11, M 2
Malic enzyme Me 1.1.1.40 11 1
Phosphoglucomutase Pgm 2.7.5.1 6 1
6-phosphoglucodehydrogenase 6-pgd 1.1.1.44 M 1
Shikimate dehydrogenase Skdh 1.1.1.25 M 1

TOTAL LOCI 12
aEnzyme commission number
bSystems 6,8,11 after Soltis et al. (1983); system M, a 7.5 pH version of the morpholine citrate system after Odrzykoski and Gottlieb (1984).



populations. Seed parasitism also varied be-
tween years (P ≤ 0.0005). For example, seeds
from the Granite population were heavily par-
asitized in 2000 (53%) but less parasitized in
2001 (32%). The Cedar population (DPG pop-
ulation) was also highly parasitized but exhib-
ited the opposite pattern (31% in 2000 and 52%
in 2001). Thus, the interaction between popu-
lation and year was significant for percent
seed parasitized (P ≤ 0.0005). In addition, we
found no relationship between stand density
and seed parasitism (r2 = 0.232, P = 0.412).

SEED ABORTION.—We observed differences
among populations for percent seed aborted (P
≤ 0.0005; Table 3). The Dune population at
DPG exhibited the highest seed abortion rates
(56% in 2000 and 50% in 2001; Table 3). The
nonisolated populations, Valley and Nephi, had
significantly lower seed abortion over the 2
collection years (Table 3). We observed differ-
ences among years for percent seed aborted (P
≤ 0.0005) and an interaction between popula-
tion and year (P ≤ 0.0005). Percent seed abor-
tion significantly increased (about 2-fold) in

the Granite population from 2000 to 2001,
while it decreased in the Cedar population
between years. In addition, we found no sig-
nificant correlation between stand density and
percent seed aborted (r2 = 0.008, P = 0.888).

Allozyme Data

GENETIC VARIATION WITHIN POPULATIONS.—
Genetic diversity statistics for each of the
studied populations are summarized in Table
4. The 2 nonisolated populations had the high-
est observed heterozygosity (Ho) of the 5
juniper populations we studied (Table 4). The
3 Dugway populations had significantly lower
genetic variability. Of the 3 Dugway popula-
tions, Cedar, the largest and least fragmented
population, was the most variable (Ho = 0.171).
The Dune population, the smallest population,
was the least genetically variable (Ho = 0.094;
Table 4).

For each of the 5 juniper populations, the
proportion of polymorphic loci (P) was 1.0.
Thus, all 12 loci had allelic variability in each
of the sampled populations. The mean number

328 WESTERN NORTH AMERICAN NATURALIST [Volume 67

TABLE 3. Reproductive results indicating significant differences in S/O ratios, proportion insect parasitism of seeds,
and proportion seed abortion in Utah juniper populations. Means in a column that share the same letter within a year do
not differ significantly at P ≤ 0.05. Each year is considered separately in this table and is thus represented by a different
suite of letters.

Population Year S/O ratio Parasitized seed Aborted seed

Granite 2000 0.276 a 0.526 a 0.228 a
Cedar 2000 0.447 b 0.307 b 0.261 a
Dune 2000 0.355 b 0.098 c 0.562 b
Valley 2000 0.743 c 0.104 c,d 0.130 a
Nephi 2000 0.654 c 0.150 d 0.232 a
Mean 2000 0.495 0.237 0.283
Granite 2001 0.178 f 0.321 f 0.498 f
Cedar 2001 0.417 g 0.515 g 0.061 g
Dune 2001 0.196 f 0.293 f 0.510 f
Valley 2001 0.416 g,h 0.194 h 0.379 h
Nephi 2001 0.488 h 0.266 f 0.247 i

MEAN 2001 0.339 0.318 0.328

TABLE 4. Descriptive statistics of genetic variability within Utah juniper populations.

Mean observed Mean expected Polymorphic Mean number of Fixation
Population heterozygosity (Ho) heterozygosity (He) index (P) alleles/locus (A) index (f )

Granitea 0.140 0.441 1.00 2.92 0.686
Cedara 0.171 0.359 1.00 2.83 0.527
Dunea 0.094 0.393 1.00 2.83 0.764
Valley 0.307 0.504 1.00 2.83 0.394
Nephi 0.256 0.477 1.00 2.92 0.466

ALL POPULATIONS 0.194 0.435 1.00 2.87 0.558
aDugway populations exhibiting reduced fecundity



of alleles per locus (A) was 2.83 for the DPG
populations, and it was slightly higher for the
nonisolated populations (A = 2.92; Table 4).

DEVIATION FROM HARDY-WEINBERG EXPEC-
TATIONS.—Expected heterozygosity (He) was
lower than observed heterozygosity for each 
juniper population (Table 4). The smallest
populations at DPG, Granite and Dune, exhib-
ited the largest deviations from H-W expecta-
tions. The Granite population exhibited signif-
icant H-W disequilibrium at all surveyed loci
(Table 5). The Dune population showed signif-
icant H-W disequilibrium at 11 of the 12 loci
surveyed, and Cedar at 9 loci. However, the
nonisolated populations also deviated signifi-
cantly from H-W expectations for most loci
(Valley at 9 loci and Nephi at 10 loci; Table 5).

The estimate of the fixation index (f ) was
lower for the control populations than for the
DPG populations (Table 4). The fixation index
was lowest for the Valley control population (f
= 0.394). The 2 smallest populations, which
were at DPG, had the highest fixation indices
(Dune f = 0.763 and Granite f = 0.686; Table
4). However, all populations exhibited fixation
indices >0. The mean value of FIS across all
12 loci was 0.566. This positive value indicates
that there were fewer heterozygotes than ex-
pected within each of the populations (Table 6).

GENETIC VARIATION AMONG POPULATIONS.—
The mean FIT was 0.597 for these populations,
indicating that there are fewer heterozygotes
than expected among the study populations
(Table 6). The mean FST was 0.071, indicating
that the degree of genetic differentiation among

the populations was moderate (Wright 1951).
The estimated rate of gene flow (Nm), com-
puted using FST, among the sampled popula-
tions was high for J. osteosperma (Nm = 2.52
migrants per generation).

Nei’s (1978) genetic distances (D) ranged
from 0.007 to 0.152, and geographic distances
ranged from 10,393 m to 584,942 m (Table 7).
The Mantel matrix randomization test showed
no relationship between geographic and genetic
distance among populations (r2 = 0.004, P =
0.863).

While no relationship existed between geo-
graphic and genetic distance, the DPG popu-
lations appeared more closely related to one
another than to the 2 nonisolated comparative
populations (Fig. 2). In the UPGMA cluster
phenogram, which was generated from genetic
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TABLE 5. P-values for a Fisher’s shuffling test of Hardy-Weinberg disequilibrium (Fisher 1935, Haldane 1954) for each
Utah juniper population and locus generated using GDA. Significance was determined at P ≤ 0.05.

Population________________________________________________________________________________
Locus Granitea Cedara Dunea Valley Nephi

Me-1 0.000 0.000 0.000 0.000 0.000
Lap-1 0.000 0.000 0.000 0.000 0.000
Lap-2 0.000 0.000 0.000 0.014 0.000
Idh-1 0.000 0.001 0.000 0.000 0.000
6pgd-1 0.000 1.000 0.041 0.181 1.000
Skdh-1 0.001 0.000 0.241 0.556 0.032
Pgm-1 0.000 0.106 0.000 0.001 0.043
Mdh-1 0.005 0.014 0.000 0.013 0.010
Mdh-2 0.000 0.000 0.000 0.001 0.000
Ald-1 0.000 0.001 0.000 0.712 0.009
f16dp-1 0.000 1.000 0.000 0.002 0.002
Est-1 0.038 0.002 0.000 0.001 1.000
aLocated at Dugway Proving Ground, Utah

TABLE 6. F statistics for individual loci of Utah juniper.

Locus FIS FIT

Me-1 0.705 0.740
Lap-1 0.682 0.701
Idh-1 0.709 0.712
6pgd-1 0.201 0.348
Skdh-1 0.216 0.237
Pgm-1 0.473 0.471
Mdh-1 0.533 0.596
Mdh-2 0.770 0.805
Ald-1 0.514 0.564
f1,6dp-1 0.702 0.749
Lap-2 0.519 0.525
Est-1 0.298 0.311

OVERALL 0.566 0.597



distances, the 3 DPG populations clustered
together (Fig. 2).

RELATIONSHIP BETWEEN GENETIC AND RE-
PRODUCTIVE DATA.—We found a significant
relationship between genetic variation and 
reproductive success. Mean observed hetero-
zygosity was positively correlated with S/O
ratios for both years of the study (2000: r2 =
0.892, P ≤ 0.05; 2001: r2 = 0.632, P ≤ 0.05).
Each data point in the analysis represents a
mean S/O ratio for the sampled individuals in
each study population. We found a negative
correlation between observed heterozygosity
and percent seed abortion in 2000 (r2 = 0.624,
P < 0.01), but no relationship in 2001 (r2 =
0.098, P = 0.607). However, we found no rela-
tionship between observed heterozygosity and
percent insect parasitism of seeds (r2 = 0.218,
P = 0.427).

DISCUSSION

Reproductive success varied significantly
among study populations. Specifically, S/O
ratios were significantly lower in the isolated
populations than in the nonisolated popula-
tions (with the exception of the largest DPG
population, Cedar, in 2001). Moreover, the DPG
populations exhibited S/O ratios at or signifi-
cantly below the average for woody perennial
plant species (0.327; Wiens 1984). The noniso-
lated encroaching Utah juniper populations
exhibited S/O ratios much higher than average
for woody perennials (Wiens 1984, Wiens et
al. 1987). Unusually high S/O ratios in these
large, nonisolated populations might contribute
to their success and ability to encroach.

Low S/O ratios in the DPG populations
were primarily due to high degrees of insect
parasitism of seeds and/or high levels of abor-
tion in developing seeds. Both environmental
and genetic factors may contribute to high
seed abortion and/or seed parasitism in nat-
ural populations of conifers and other woody

perennials (Carter 1939, DeBarr 1957, Hard
1963, Crane 1964, Krugman 1966, Dickmann
and Kozlowski 1969, Bollard 1970, Goyer and
Nachod 1976, Mattson 1978, Stephenson 1980,
1981, Bunderson 1983, Levin 1984, Wiens et
al. 1987, Nakamura 1988, Charlesworth 1989,
Oritz et al. 1998, Daehler 1999, Sorenson
1999, Garcia et al. 2000). Although this study
focused primarily on genetic factors rather
than environmental factors, we did show sig-
nificant differences in reproductive data be-
tween the 2 years of our study. Specifically, all
study populations but the Cedar population
exhibited reduced reproductive success in 2001.
In some populations, this reduction was due
to an increase in seed abortion, while in others
it was due to increased insect parasitism of
seeds.

Precipitation might explain the decrease in
reproductive success that we observed between
years. Annual precipitation was higher at DPG
in the year 2000 (21.9 cm) than in 2001 (5.45
cm; U.S. Army unpublished data, weather sta-
tion at DPG). This difference in annual pre-
cipitation was partly due to high precipitation
during the month of February 2000. Late win-
ter and/or early spring precipitation might be
particularly important for seed production in
Utah juniper because this is the time when
seeds are maturing on the trees.

Other environmental factors (i.e., light,
water, soil nutrients, temperature, etc.) might
affect the amount of insect parasitism of seeds
in a population (Bunderson 1983, Cates and
Redak 1986, Cochran 1998, Garcia 1998, Gar-
cia et al. 2000). In a study of 17 J. osteosperma
sites, Bunderson (1983) found a positive corre-
lation between insect parasitism and higher
levels of phosphorous and magnesium in the
soil. However, Bunderson demonstrated that
increased parasitism of Utah juniper seeds
could not be explained by environmental fac-
tors alone (Bunderson 1983).
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TABLE 7. Geographic distances and genetic distances between sampled populations of Utah juniper. Geographic dis-
tances (m) are given above the diagonal, and Nei’s (1972) genetic distances (D) are given below the diagonal.

Populations Granite Cedar Dune Valley Nephi

Granite — 33134.2 37683.3 59661.4 284921.4
Cedar 0.059 — 22279.8 31785.9 257045.9
Dune 0.008 0.063 — 24234.5 249494.5
Valley 0.062 0.152 0.092 — 225260.0
Nephi 0.060 0.127 0.078 0.048 —



The influence of environmental factors on
seed set in the Utah juniper was not the focus
of our study and merits further examination.
Yet it is difficult to explain high levels of abor-
tion with environmental factors alone, since
the Dune population suffers greatly from
abortion but has a very similar environment to
other DPG populations. These data are consis-
tent with other studies that have demon-
strated a lack of correlation between resource
availability and embryo abortion (Wiens et al.
1987, Lalonde and Roitberg 1989, 1994, Her-
rera 1991, Allphin et al. 2002, Wiens et al.
2002).

Studies of other conifers have suggested a
relationship between susceptibility to insect
parasitism and stand density (Ferrell et al.
1933, White 1974, Sturgeon 1979, Gambliel
and Croteau 1984, Horner et al. 1987, Cochran
1998). Some have suggested that insect para-
sites are better able to track their hosts in less
dense populations (Fauss and Pierce 1969,
Sturgeon 1979) while others argue that tree age
is a factor of resistance (Kennedy and Booth
1951, Dickman 1978, Wagner et al. 1989). How-
ever, in this study, we found no correlation
between juniper stand density and predisper-
sal insect parasitism of seeds. Though this find
is interesting, we recognize the lack of robust-
ness for this regression due to the small sam-
ple size.

Stand density has also been shown to affect
fruit set and pollination success in conifers
(Arista and Talvera 1994, 1996, Oritz et al.
1998). However, we found no significant rela-
tionship between stand density and S/O ratio
or percent seed abortion. Therefore, stand
density does not likely explain our observed
patterns of reproductive success in isolated
populations of Utah juniper at DPG. Once
again, we recognize that the lack of relation-
ship might be a consequence of the small
number of stands measured.

Because we found a significant relationship
between observed heterozygosity and both
S/O ratio and percent seed abortion, low
reproductive success in the isolated popula-
tions of Utah juniper at DPG might also be
explained by genetics. Populations at Dugway
have been historically isolated and are becom-
ing increasingly more isolated from one another
because of fire. We found that the 3 isolated
Dugway populations have lower genetic vari-
ability than the nonisolated comparative popu-
lations. The DPG populations also exhibited
higher fixation (f ) indices than the nonisolated
populations.

However, all the Utah juniper populations
in this study exhibited significant deviations
from Hardy-Weinberg equilibrium at most
loci. Moreover, all the populations had lower 
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Fig. 2. UPGMA cluster phenogram showing genetic relationships of sampled populations based upon Nei’s (1978)
genetic distances among populations calculated by GDA, using allele frequencies computed from ~40 randomly sam-
pled individuals in each study population.



observed heterozygosity (Ho) than H-W ex-
pected heterozygosity (He). Because the ob-
served heterozygosity in the populations is less
than predicted, it may be assumed that the
populations are increasing in homozygosity, a
characteristic of inbred mating systems. Popu-
lations that become progressively fragmented
until they are isolated from one another may
ultimately lose genetic variability (Wright 1943,
Loveless and Hamrick 1984, Barrett and Kohn
1991, Godt et al. 1995, Allphin et al. 1998, All-
phin and Windham 2002). Therefore, inbreed-
ing due to isolation could result in the lower
heterozygosity that we observed for the DPG
populations.

The DPG populations typically exhibit sig-
nificantly higher seed abortion rates than the
nonisolated populations. Low reproductive
success due to high abortion in DPG popula-
tions might be explained by inbreeding/genetic
load (Wiens 1984, Wiens et al. 1987). Because
outcrossing species, like Utah juniper, are able
to maintain more potentially-lethal alleles in
the heterozygous state (genetic load), inbreed-
ing in isolated/fragmented populations may
cause the frequency of homozygote combina-
tions of lethal alleles to increase (Hardon 1961,
Sorenson 1969, Levin 1984, Wiens 1984, Wiens
et al. 1987, Nickrent and Wiens 1989, Allphin
et al. 2002).

Reduced seed set in the isolated popula-
tions at DPG may be a result of low genetic
diversity and inbreeding (familial breeding) in
these small populations (Ellstrand and Elam
1993, Godt et al. 1997). The positive correlation
between reproductive success (seed per ovule)
and genetic variability in both years of the study
supports this idea. The Dune population has
the lowest Ho, the highest f, and the highest
percentage of aborted seed of the studied pop-
ulations. Dune also exhibits the highest per-
centage of aborted seed and is currently the
smallest and 1 of the least dense of all the
sampled populations. Therefore, the effects of
low genetic diversity are likely most pronounced
in the Dune population because of its small
size.

The Granite and Cedar populations also have
low genetic diversity and low population repro-
ductive success. In the Granite population,
these results might also be a consequence of
small population size and low population den-
sity. However, the Cedar population is still

large and relatively dense. Moreover, this pop-
ulation has the highest reproductive success of
the 3. It is also important to note that it is dif-
ficult to establish the true number of aborted
seeds in the Granite and Cedar populations
because of their higher parasitism rates. It is
likely that many of the aborted seeds in these
populations were categorized as parasitized
because it was impossible to differentiate if a
parasitized seed was once viable or if it was a
late abortion.

Loss of genetic variability also often results
in a loss of resistance to a variety of insects
and other pathogens (Eidt and MacGillivary
1972, McDonald 1985, Cates and Redak 1986,
Barret and Kohn 1991). The lack of correlation
between heterozygosity and insect parasitism
of seeds in our study populations is primarily
due to the high level of abortion in the Dune
population. If this population is removed from
the analysis, there is a significant correlation
over both years of our study (r2 = 0.877; P <
0.01). Therefore, high predispersal insect par-
asitism of seeds might also be explained by a
loss of genetic variability in small, isolated pop-
ulations of Utah juniper. However, the Cedar
population has higher levels of parasitism than
expected for a relatively large, dense popula-
tion. We suggest that this population may be
experiencing genetic drift due to its relative
isolation, and it is thus beginning to lose resis-
tance to insect parasitism as it loses genetic
diversity.

The historical genetic diversity and the
degree of historical isolation of these popula-
tions are unknown. We note that historical,
long-term isolation of these populations might
best explain the loss of reproductive success
and genetic variability in these populations.
Moreover, little is known regarding the dis-
tance of pollen dispersal and seed dispersal in
this species. Dispersal factors might also play
a role in the degree of isolation in these
stands. Additional study will be necessary to
examine how dispersal and long-term isolation
contribute to low reproductive success and
genetic diversity in Utah juniper at DPG.

Low genetic diversity for DPG populations
might also be explained by a more recent
founder event (invasion) of Utah juniper into 
a marginal, more ephemeral habitat at DPG.
These populations appear to be at the west-
ernmost extension of the species’ range in Utah
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(Fig. 1). However, further genetic studies need
to be performed in a broader geographic con-
text to explore this hypothesis.

While many genetic diversity studies have
been conducted on conifers in the family Pina-
ceae, few have been conducted in the family
Cupressaceae (Nowak et al. 1994, Zhang et al.
1997, Huh and Huh 2000, Terry et al. 2000a,
Van der Merwe et al. 2000). However, we
compared our genetic diversity data for Utah
juniper with a synthesis paper by Hamrick
and Godt (1990), which summarized levels of
diversity across a wide sampling of gym-
nosperms and other plant species with similar
life history traits. In addition, we compared
our allozyme data with data observed for 2
other juniper species (Table 8; Huh and Huh
2000).

Our populations of Utah juniper exhibited
a higher percentage of polymorphic loci than
that observed for other gymnosperms, long-
lived woody perennials, regional plant species,
widespread plant species, outcrossing wind-
pollinated species, or other junipers (Table 8).
However, J. rigida and other gymnosperms
were highly polymorphic. Our sampled popu-
lations of Utah juniper had a significantly
higher mean number of alleles per locus than
other gymnosperms and woody perennials,
but they had values of the mean number of
alleles per locus that were consistent with
other junipers (Table 8; Hamrick and Godt
1990, Huh and Huh 2000). Finally, our Utah
juniper populations had significantly higher

genetic diversity (Hes) than the other junipers,
gymnosperms, and species with similar life
histories (Table 8; Hamrick and Godt 1990,
Huh and Huh 2000). We make general com-
parisons among allozyme data between similar
species and note the inherent problems due to
variation in loci analyzed for each species (see
Hamrick and Godt 1990).

For Utah juniper in this study, the FST was
0.071, which indicated moderate genetic dif-
ferentiation among populations (Wright 1943).
Other wind-pollinated, long-lived, conifer pop-
ulations exhibit FST values higher than our
Utah juniper populations (Hamrick and Godt
1996). For example, FST values obtained for
pine species in conservation studies range be-
tween 0.161 and 0.300 (Conckle 1981, Schiller
et al. 1985, Hamrick et al. 1994).

Estimated gene flow among these Utah
juniper populations was relatively high (Nm =
2.52). However, some conifer species have
shown even higher rates of gene flow (Nm =
4.48; Parker et al. 1997). Although there was a
moderately high estimate of gene flow between
populations of the juniper based upon genetic
distances, we could find no correlation between
geographic and genetic distance in this species.
This is not as expected under the isolation-by-
distance model (Wright 1943, 1946). One might
expect a lack of correlation between geo-
graphic and genetic distance if panmixia (or
regular random mating) were occurring among
populations (Wright 1946). This explanation
seems unlikely for these populations of Utah
juniper because of the historical isolation and
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TABLE 8. Levels of allozyme variation at the species level for species with different characteristics or categories. The
data on broad categories were extracted from Hamrick and Godt (1990). The data for Juniperus rigida and J. coreana
were extracted from Huh and Huh (2000). Means followed by the same letter in a column do not differ significantly at P
≤ 0.05. Standard errors are in parentheses.

Mean no. of Mean no.
Categories N* populations of loci Ps

† As
‡ Hes

§

Gymnosperms 55 8.5 (0.9) 16.1 (1.3) 70.9 (3.6) a 2.35 (0.12) a 0.173 (0.011) a
Long-lived woody 

perennials 110 9.3 (1.4) 17.0 (0.9) 64.7 (2.7) a 2.19 (0.09) a 0.177 (0.010) a
Regional species 193 10.4 (1.1) 16.7 (0.7) 52.9 (2.1) ab 1.94 (0.06) b 0.150 (0.008) b
Widespread species 105 25.5 (5.2) 14.6 (0.9) 58.9 (3.1) a 2.29 (0.13) a 0.202 (0.015) a
Outcrossing wind- 

pollinated species 105 10.7 (1.6) 16.7 (0.9) 66.1 (2.7) a 2.40 (0.13) a 0.162 (0.0009) ab
Juniperus rigida — 12 22 72.7 (0.029) 2.63 (0.002) c 0.224 (0.00) c
Juniperus coreana — 6 22 54.6 (0.006) 2.42 (0.005) ac 0.199 (0.00)a
Juniperus osteosperma — 6 12 100 2.87 (0.002) c 0.435 (0.003) d

*Number of taxa represented
†Percentage polymorphic loci
‡Number of alleles per locus 
§Expected H-W diversity or genetic diversity



long distances separating many of these popu-
lations. Yet Lyford et al. (2003) has suggested
that historically, populations of Utah juniper 
became established through long-distance dis-
persal events.

We suggest that Nm may not be reflective
of actual gene flow events in the juniper, but
possibly reflective of alleles shared through
common ancestry or historic gene flow events.
We used a variant of FST to estimate Nm.
Though studies have shown FST to be an ex-
cellent measure of the extent of population
structure, it is rare that FST can be translated
into accurate Nm estimates (Whitlock and
McCauley 1999). Therefore, low FST values
among DPG populations may be responsible
for the high Nm estimates, rather than actual
migration between the DPG populations
(Whitlock and McCauley 1999). Moreover, our
lack of correlation between geographic and
genetic distance might be a consequence of
our limited data set with its limited range of
distances among populations.

The findings of this study serve to compare
only the 3 stagnant DPG populations with 2
continuous, encroaching Utah juniper popula-
tions. However, more information regarding
the historical isolation of the DPG population
is needed to aid data interpretation. Moreover,
we included only 2 years of reproductive data
in our analysis. Considering that this study
occurred over abnormally dry years for DPG,
additional years of reproductive data would
provide more insight into the role of fecundity
for long-term persistence of these juniper
stands. Therefore, to provide a more definitive
statement on the role of habitat fragmentation
and isolation in the loss of reproductive suc-
cess of Utah juniper populations, additional
studies should be conducted on isolated popu-
lations and encroaching populations across the
western U.S., over multiple years and across
varying environmental regimes.

Conclusions

The populations at Dugway have been his-
torically separated by elevation and distance,
but they are becoming progressively frag-
mented as a result of fire. As populations be-
come fragmented, there is an increased chance
that gene flow will be reduced and that inbreed-
ing may occur. The 3 Utah juniper populations
located at Dugway appear to be suffering from

reduced seed set and a loss of genetic variabil-
ity compared to the control populations.

These data have important implications for
conservation officials and land managers.
Management decisions regarding Utah juniper
typically deal with the control of its encroach-
ment. However, we have demonstrated some
of the long-term effects of isolating popula-
tions of Utah juniper. Land managers should
be careful to prevent isolation and maintain
gene flow to preserve reproductive success
and long-term persistence of Juniperus osteo-
sperma, particularly at DPG.
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