
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2006-07-27

Video Stabilization and Target Localization Using
Feature Tracking with Video from Small UAVs
David Linn Johansen
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Johansen, David Linn, "Video Stabilization and Target Localization Using Feature Tracking with Video from Small UAVs" (2006). All
Theses and Dissertations. 944.
https://scholarsarchive.byu.edu/etd/944

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F944&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F944&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F944&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F944&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F944&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.byu.edu%2Fetd%2F944&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/944?utm_source=scholarsarchive.byu.edu%2Fetd%2F944&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

VIDEO STABILIZATION AND TARGET LOCALIZATION USING

FEATURE TRACKING WITH SMALL UAV VIDEO

by

David L. Johansen

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering

Brigham Young University

December 2006

Copyright c⃝ 2009 David L. Johansen

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

David L. Johansen

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Randal W. Beard, Chair

Date Clark N. Taylor

Date Timothy W. McLain

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of David L.
Johansen in its final form and have found that (1) its format, citations, and bibli-
ographical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date Randal W. Beard
Chair, Graduate Committee

Accepted for the Department

Michael J. Wirthlin
Graduate Coordinator

Accepted for the College

Alan R. Parkinson
Dean, Ira A. Fulton College of
Engineering and Technology

ABSTRACT

VIDEO STABILIZATION AND TARGET LOCALIZATION USING

FEATURE TRACKING WITH SMALL UAV VIDEO

David L. Johansen

Department of Electrical and Computer Engineering

Master of Science

Unmanned Aerial Vehicles (UAVs) equipped with lightweight, inexpensive

cameras have grown in popularity by enabling new uses of UAV technology. How-

ever, the video retrieved from small UAVs is often unwatchable due to high frequency

jitter. Beginning with an investigation of previous stabilization work, this thesis dis-

cusses the challenges of stabilizing UAV based video. It then presents a software

based computer vision framework and discusses its use to develop a real-time sta-

bilization solution. A novel approach of estimating intended video motion is then

presented. Next, the thesis proceeds to extend previous target localization work by

allowing the operator to easily identify targets—rather than relying solely on color

segmentation—to improve reliability and applicability in real world scenarios. The

resulting approach creates a low cost and easy to use solution for aerial video display

and target localization.

ACKNOWLEDGMENTS

This work would not have been possible without the efforts, help, understand-

ing, patience, and wisdom of a lot of people. The help of my committee members,

Dr. Randy Beard, Dr. Clark Taylor, and Dr. Tim McLain, has been invaluable, and

I could not have completed this thesis without all of the opportunities and assistance

that they have given me. I would also like to thank Brigham Young University and

the Electrical and Computer Engineering Department for all of the challenges and

learning opportunities that they have so generously given me.

The helping hands of my lab mates and friends has been the mortar that held

this thesis together, and I truly can say that I have stood on the shoulders of giants.

I would like to thank Derek Kingston for all of the brain storming, debugging, and

just plain old fashioned help that he has so selflessly given me. His willingness to

lend a helping hand is something that I will always strive to have in my life. I would

also like to thank Andrew Eldredge for all of his support. He was always the guy

to bounce an idea off of and his enthusiasm has always kept me motivated. I must

also thank Josh Redding for making me a true ”MAGICC Labber” and for showing

me how awesome UAVs really are. Joe Jackson has always been the eternal optimist

and I’m glad to say that he’s proved me wrong more times than I can count. I would

like to thank Brandon Call for always catching my boneheaded math errors and for

being able to tell me I was wrong, even when I swore I wasn’t. Everyone should

be grateful to James Hall for his willingness to read my thesis more times than any

human should be required to, and his feedback was invaluable. Blake Barber is one

of the few people I’ve met that’s willing to be just as stubborn as me, and I hope

that I can always have a fraction of his drive and a tiny portion of his intelligence. I

would also like to thank all of the other unmentioned lab members that have done so

much in helping me reach this goal.

In conclusion, I would like to give endless thanks to the foundation of this

thesis, my beautiful wife, Jenni. She has supported me and stood by me through

too many long nights, and has always been my biggest fan. This thesis, and my life,

would not be the same without her.

Table of Contents

Acknowledgements xi

List of Tables xix

List of Figures xxii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Description . 2

1.3 Related Work . 4

1.3.1 Video and Telemetry Synchronization 4

1.3.2 Video Stabilization . 5

1.3.3 Target Identification and Localization 10

1.4 Contributions . 10

1.5 Outline . 11

2 Development Platform 13

2.1 Timestamps . 13

2.2 Video Handling Pipeline . 15

2.3 FrameProcessor . 18

2.4 Synchronization Results . 19

2.5 Video Stabilization and Target Localization Architecture 20

xv

2.5.1 Video Stabilization . 20

2.5.2 Target Localization . 22

3 Feature Selection 25

3.1 What Makes a Good Feature? . 26

3.1.1 Identifiable and Unique . 26

3.1.2 Exists from Frame to Frame 26

3.1.3 Provides New Information . 28

3.2 Feature Rating . 28

3.2.1 Gradient Difference . 28

3.2.2 Canny Edge Detector . 29

3.2.3 Forstner Interest Operator . 29

3.2.4 Harris Corner Detector . 29

3.2.5 Binary Corner Detector . 29

3.3 Feature Selection . 30

3.3.1 Region Based Feature Selection 30

3.3.2 Minimum Separation Feature Selection 30

3.3.3 Grid Based Feature Selection 30

3.4 Results . 31

3.4.1 Feature Rating . 31

3.4.2 Feature Selection Method . 35

4 Feature Tracking 37

4.1 Template Matching . 38

4.2 Profile Matching . 39

4.3 Optical Flow . 40

4.4 Results . 40

xvi

4.4.1 Low Noise Levels . 40

4.4.2 High Noise Levels . 41

4.4.3 Pyramidal Template Matching 43

5 Frame Motion Estimation 47

5.1 Frame Motion Models . 48

5.2 Translational Model . 48

5.2.1 Iterative Least Squares . 49

5.2.2 RANSAC . 50

5.3 Properties of Iterative Least Squares and RANSAC 52

5.4 Affine Model . 54

5.4.1 Least Squares . 54

5.4.2 Iterative Least Squares . 55

5.4.3 RANSAC . 55

5.5 Results . 56

5.5.1 Affine Model with Three-Dimensional Motion 57

5.5.2 Iterative Least Squares and RANSAC 58

6 Video Display 63

6.1 PID Camera . 64

6.2 Parabolic Fit Camera . 65

6.3 Results . 70

6.3.1 Intended Video Motion . 70

6.3.2 Unwanted Jitter Removal . 73

7 Target Localization 79

7.1 Operator Input . 80

xvii

7.1.1 Hold and Follow . 80

7.1.2 Selection Area . 80

7.1.3 Click-to-Follow . 80

7.2 Screen to Image Transformation . 81

7.3 Image to World Ray Transformation 82

7.4 World Position from World Rays . 85

7.5 Results . 86

7.5.1 Hold and Follow . 86

7.5.2 Click-to-Follow . 88

7.5.3 Click-to-Follow with Feature Movement 88

8 Conclusions and Future Work 91

8.1 Conclusions . 91

8.2 Future Work . 91

Bibliography 98

xviii

List of Tables

6.1 Stabilization Results with Translational Model 77

6.2 Stabilization Results with Affine Model 78

xix

xx

List of Figures

2.1 Development Platform . 14

2.2 Average Telemetry Delay Estimate 16

2.3 Video Handling Pipeline . 17

2.4 Localization with Synchronization . 21

2.5 Stabilization and Localization Architecture 22

3.1 Feature Selection . 25

3.2 Feature Rating Line Rejection . 32

3.3 Feature Rating Noise Rejection . 34

3.4 Low Noise Level Feature Distribution 36

3.5 High Noise Level Feature Distribution 36

4.1 Feature Tracking . 37

4.2 Feature Tracking with Low Noise Levels 42

4.3 Feature Tracking with High Noise Levels 43

4.4 Pyramidal Template Matching . 45

5.1 Frame Motion Estimation . 47

5.2 Translation Model Biasing . 49

5.3 Translation Model Rotation Rejection 51

5.4 Translation Model Zero Mean Noise Rejection 53

5.5 Translation Model Non-Zero Mean Noise Rejection 53

xxi

5.6 Affine Model with valid 3D motion 59

5.7 Affine Model with invalid 3D motion 60

5.8 Iterative Least Squares and RANSAC rejection of ϕ 61

5.9 Iterative Least Squares and RANSAC rejection of θ 62

6.1 Video Display . 63

6.2 Parabolic Fit . 66

6.3 Estimates of Intended Video Motion 71

6.4 Bode Plot of the Proportional Only PID Camera 72

6.5 Bode Plot of the Full PID Camera 73

6.6 Bode Plot of the Parabolic Fit Camera 74

6.7 Average Out of Band Energy of Parabolic Fit Camera 75

6.8 Unwanted Jitter Removal . 76

7.1 Target Localization . 79

7.2 Hold and Follow Tracking . 87

7.3 Click-to-Follow Tracking . 89

7.4 Click-to-Follow with Feature Movement Tracking 90

xxii

Chapter 1

Introduction

Small Unmanned Aerial Vehicles (UAVs) have attracted increased interest in

recent years due to the advent of small, inexpensive onboard cameras. This new tech-

nology serves several purposes: rapid surveillance of an area by a search-and-rescue

team, performance of a tactical or reconnaissance mission by a military squad without

endangering lives, or helping aid-workers identify problem areas in need of immedi-

ate attention in a disaster torn area. This list will continue to grow as small UAVs

becomes a more robust and effective platform for simple gathering and disseminating

information from aerial video.

1.1 Motivation

Camera-equipped small UAVs present the possibility of obtaining aerial video

where the cost of using other methods may be prohibitive or deployment times may

be excessive. Unfortunately, small UAVs are highly susceptible to atmospheric tur-

bulence which induces jitter and makes the video difficult to watch. Because of the

size and weight constraints of small UAVs, fixed cameras have typically been used.

However, 2 and 3-axis gimbaled cameras have decreased in size, enabling their use

on a small UAV. The availability of gimbaled cameras opens the door for mechanical

video stabilization, but the added weight and power usage make mechanical video

stabilization impossible for small UAVs at the current time. Even without the weight

and power limitations, the sensor noise and actuator delay common on small UAVs

would not allow for complete removal of the jitter. Therefore, stabilization performed

on the ground station is required to create watchable video. Specialized hardware ex-

ists to stabilize video, but is available only as an external device or PCI card meant for

1

use on a standard PC. The ground station used with a small UAV must be compact

and mobile to enable its use by surveillance and reconnaissance teams. Specialized

hardware solutions do not meet these requirements, so a real-time software-based

solution for removing unwanted camera jitter is necessary for a mobile UAV ground

station.

In addition to creating stable footage, video stabilization enables other ap-

plications for UAV video. One such use is localization—the estimation of the world

location—of visible targets in the video. Knowledge of the position of the target

in standard GPS format enables the UAV operator to transmit this information to

other team members. In order to localize a target, it must first be identified. Unfor-

tunately, methods for autonomous recognition of targets requires prior knowledge of

the target based on large training sets and suffer from very high false positive rates.

However, stabilized video allows the operator to more easily identify a target in the

video which can then be localized by the ground station software. The added ca-

pability of video stabilization and localization of operator defined targets assists the

small UAV platform in serving as a powerful tool for surveillance and reconnaissance

teams.

1.2 Problem Description

In order to enable the use of small UAVs in surveillance and reconnaissance

missions, this thesis addresses four major problems: (1) a mobile platform that allows

for the processing of UAV video and communicating with the UAV, (2) synchroniza-

tion of video with UAV telemetry data, (3) video stabilization, and (4) localization

of specified targets. The solutions to these problems can be grouped into two main

categories: (1) a video processing development platform and (2) a stabilization and

localization system.

The development platform acts as the central communication hub between

the UAV, video processing software, and the operator. It must be able to receive

video and telemetry data from the UAV, synchronize this data, efficiently relay this

data to the video processing software, and enable communication of commands from

2

the video processing software to the UAV. Handling of the video and telemetry data

is necessary to allow the operator to make use of the information gathered by the

UAV. Video is received at a constant rate of 30 Hz with a constant transmission

delay. Telemetry data is transmitted at an irregular rate, between 3-5 Hz, with a

variable transmission delay. Because of this, the video and telemetry data must

be synchronized to accurately estimate the location of the identified target. The

development platform also enables operator interaction with the stabilized video and

allows both the video processing software and the operator to issue commands to the

UAV.

The video stabilization and target localization system is built using the de-

scribed development platform. In order to meet the demands of surveillance and

reconnaissance teams, all video processing must occur at real-time rates on a mobile

ground station and all processing must be performed online—while the UAV is in

flight. In order to meet these requirements, feature tracking is used to estimate the

frame-to-frame motion in the video. The intended video motion is then estimated

and removed from the estimated video motion to display the video as if unwanted

motion had not occurred. This requires the online estimation of intended video mo-

tion. Despite the availability of this information in the telemetry data received from

the UAV, the error in attitude estimation combined with the infrequent and delayed

transmission of the telemetry data makes its use impractical for estimating intended

video motion. Therefore, the intended video motion must be estimated from the

video processing. The resulting stabilized video enables the operator to easily iden-

tify targets. The burden placed on the operator must be minimized so as to not

excessively distract from other important tasks. The received operator input must

be transformed to world coordinates to estimate the location of the target in a way

that can be meaningfully transmitted to other team members.

3

1.3 Related Work

An examination of the previous work that is related to this thesis will now be

presented. Three areas of research will be the primary focus: (1) video and telemetry

synchronization, (2) video stabilization, and (3) target identification and localization.

1.3.1 Video and Telemetry Synchronization

Video and data synchronization is a common problem in several areas of re-

search. The details of the implemented solutions depends on the task and available

equipment, but all work in this field shares a common goal: improving the accuracy

of data analysis. This work can be divided into two segments with distinct properties.

The first set of research involves video and data that are recorded directly, where the

synchronization is performed offline—after the entire data stream has been captured.

The second set of research involves video and data that are transmitted with the

synchronization being performed online—during transmission. In UAV applications,

online synchronization is necessary in order to display the video and make use of the

telemetry data while the UAV is in flight. However, the research in both of these

areas is relevant and this thesis builds on the work done in both.

As just mentioned, the research involving offline synchronization is not directly

related to UAVs, but still offers important insights into existing methods of video and

data synchronization. Gaskill [1] shows that video tape can be tagged with a Society

of Motion Picture and Television Engineers (SMPTE) time code while data from

various sensors is tagged with an Inter-Range Instrumentation Group (IRIG) time

code. Commercially available converters are used to convert the IRIG time code

into an SMPTE time code and this allows for video playback with synchronized data

being displayed to the operator. Zeng, Powers, and Hsiao [2] extend the work of

Gaskill by using an SMPTE time code for both video and data. This eliminates

the need for converters when retrieving the data for a given frame, thus simplifying

the synchronization process. Of the offline methods, the most closely related to this

thesis is the work of Anderson and Stump [3], where the UTC time available on GPS

units is used to timestamp data from geological sensors and video of the monitored

4

occurrences. This allows for sensors and video cameras that are separated by large

distances to be synchronized during offline analysis.

The work more closely related to this thesis is the research done with transmit-

ted video involving online synchronization. Rieger [4] encodes telemetry data directly

into the video signal. This method simplifies the synchronization task, but requires

either encoding the telemetry data into the analog video signal or transmitting the

video digitally. Unfortunately, analog video transmission is highly susceptible to

noise, which often makes accurate recovery of the encoded data impossible, and the

weight and power requirements of existing digital modems are beyond the payload

capacities of small UAVs. Zhang [5] shows that specialized communication hardware

can be used to transmit the video and telemetry data on separate channels simulta-

neously. Unfortunately, like Rieger’s solution the weight and power requirements of

existing technology do not allow for this hardware to be used on small UAVs. On

a more encouraging note, Walrod [6] shows that asynchronous transmission provides

for more efficient use of available bandwidth and that the transmitted data can still

be synchronized.

All of the discussed synchronization methods are based on timestampping

the video and data in order to perform synchronization, and they all show that

synchronization can improve the accuracy of data analysis. However, the principles

outlined in the work of Anderson and Stump [3] and Walrod [6] serve as the basis of

the video and telemetry synchronization technique used in this thesis. The details of

our method and its role in the development platform will be discussed in Chapter 2.

1.3.2 Video Stabilization

Before discussing work related to video stabilization, it is necessary to note the

differences between the video that has been the focus of previous research—video from

hand-held cameras and ground vehicles—and video from UAVs. There are three main

distinguishing factors: (1) camera motion, (2) properties of foreground objects, and

(3) video noise. Video from a hand-held camera is usually captured from a standing

or slowly-moving platform with slight rotations about the camera’s optical axis. UAV

5

video, however, is captured from a fast-moving vehicle with significant rotation about

all axes. This difference creates larger frame-to-frame motion and adds complexity

to the stabilization process. The second distinguishing factor is the properties of

foreground objects in the video. The foreground objects in footage from a hand-

held camera are typically independently mobile objects that are close to the camera

and whose motion does not match that of the entire scene. However, UAV video is

typically taken from an altitude of at least 50 meters with foreground objects whose

motion is dwarfed by the scene motion. This difference allows for the assumption

that there is a single dominant motion in the video and simplifies the stabilization

process. The final and most challenging difference is the increased signal-to-noise

ratio common in UAV video. Video from a hand-held camera is virtually noise free,

but UAV video often has very high noise levels caused by the analog transmission of

the video. Methods for detecting and rejecting noise will be discussed throughout the

thesis.

The majority of video stabilization techniques are based on two assumptions:

(1) the flat world assumption and (2) the assumption that feature motion is purely

translational. The flat world assumption states that the scene content is predomi-

nantly flat with minor variations in depth and can be reasonably assumed to lie on

a plane. Fortunately, UAV video is taken from altitudes of at least 50 meters, so

real-time video processing allows this assumption to hold in all but the most extreme

cases. The importance of this assumption will be further discussed in regards to

feature selection in Section 3.1.2. The second assumption is that minimal rotation

occurs between frames at the feature level, so that feature movement can be classified

as purely translational. When features are tracked at real-time rates, this assumption

holds and feature motion can be accurately classified as purely translational. Both of

these assumptions simplify the processing necessary to stabilize UAV video and show

the importance of stabilizing the video in real-time.

The primary focus of video stabilization research has typically been on video

from hand-held cameras, with the few exceptions noted throughout this section. Also,

unless specifically noted, these methods cannot run at real-time rates and are therefore

6

post processed. In spite of these facts, many of the techniques can be applied to

stabilization of UAV video. For clarity, previous video stabilization research will

be categorized into three groups: (1) feature tracking-based methods, (2) hardware-

based methods, and (3) other contributions to video stabilization that do not directly

apply to stabilization of UAV video.

Ratakonda [7] was one of the first to research video stabilization. The work

shows that real-time performance on a low resolution video stream can be achieved

through the use of profile matching and sub-sampling. A single, large template win-

dow and a small search window are used and the method is only capable of stabilizing

mild translational motion. Because of the use of a single template match, this method

resembles a simplified version of current mosaicing techniques. Chang, Lai, and Lu

[8] present a novel approach to feature tracking based on optical flow. Optical flow

is calculated on a fixed grid of points in the video. It is of interest to note that the

grid-based optical flow calculation results in invalid feature motion vectors near ho-

mogenous image regions and is similar to the effects of noise in UAV video. Chang,

Lai, and Lu solve this problem with iterative least squares and show that stabiliza-

tion is possible in environments with significant noise levels. In order to estimate

intended video motion, a set of cost functions based on smoothness and the deviation

of intended video motion from measured video motion is applied. This allows for an

intuitive tuning of the camera motion parameters, but requires knowledge of the mo-

tion of the entire video and cannot be used to perform online video synchronization.

However, real-time rates are possible with this method.

Van der Wal, Hansen, and Piacentino [9] presented their work on the Acadia

Vision Processor. It is a custom hardware processing chip mounted on a PCI card that

is used in a common desktop PC and is capable of, among other things, stabilizing

video with motion of up to 64 pixels between frames in real-time. The stabilization

is based on an affine model and handles translation, scaling, and rotation. It also

employs pyramidal techniques to achieve real-time performance. While the use of

a similar solution involving custom hardware on a UAV or in the ground station

would be ideal, the weight and power constraints prevent its use on small UAVs, and,

7

in order to maintain mobility, the current ground station software runs on portable

computers, such as laptops and tablet PCs, which do not have PCI slots. Darmanjian,

Arroyo, and Schwartz [10] present a low cost, hardware solution for video stabilization.

Hardware generated temporal differences are used to detect motion, and features are

tracked along motion edges. The dominant translational motion is extracted from

the feature motion vectors and a damping factor is applied to account for intended

video motion. Even though this hardware is not as feature rich as the Acadia Vision

Processor, it shows that advances are being made towards creating hardware that

can satisfy the power and weight requirements of small UAVs. Cardoze, Collins, and

Arkin [11] use specialized hardware located at the ground station to stabilize video

from a rotorcraft. Motion detection was applied to the stabilized video to identify

moving targets. It should be noted that the primary goals of the work of Cardoze,

Collins, and Arkin are closely related to this thesis. However, video from a rotorcraft

often has characteristics more closely related to video from a hand-held camera than

video from a small UAV, and the size requirements of the added hardware are beyond

those of a small UAV ground station.

Buehler, Bosse, and McMillian [12] introduced the novel approach of applying

Image-Based Rendering techniques to video stabilization. Camera motion is recon-

structed from the video, and the path of camera motion is smoothed. In order to

estimate camera motion in Euclidean distance, knowledge of the scene is required.

This information is unavailable during stabilization, so camera motion is estimated

in the camera frame. Image-Based Rendering is then applied to reconstruct a stabi-

lized video using the original video and the smoothed camera motion. Because of the

estimation of camera motion in the camera frame, this method performs well with

simple, slow camera motion, but is unable to handle complex or fast movement. Jin,

Zhu, and Xu [13] introduce a 2.5D motion model to handle video with large depth

variations. A 2.5D motion model uses an added depth parameter and is referred to

as a depth model. This method requires the use of one of three depth motion mod-

els. None of the three depth motion models can simultaneously handle horizontal

translation, vertical translation, and rotation. The motion in UAV video has both

8

translational and rotational components and so this method cannot be used to stabi-

lize UAV video. Also, the added benefit of the depth motion models with regard to

UAV video is insignificant in almost all scenarios. Duric and Roseneld [14] argue that

smoothing of video, rather than stabilization, is the more appropriate solution. This

argument is based on the human sensitivity to rotational motion and the assump-

tion that most unintended camera motion is rotational. This assumption holds true

with video from a hand-held camera, but unintended camera motion is not confined

to rotational motion in UAV video. Also, in order to remove the rotational motion

from the video, this method relies on the presence of a distant visible object in the

video, such as the horizon. The stabilization is done by maintaining the orientation

of the object in the video. Due to the reliance on a distant object, this method

cannot be applied to UAV-based surveillance video, in which the camera is pointed

downward and a horizon is not visible. However, the technique applied by Duric and

Roseneld presents interesting applications to other UAV research, such as computer

vision assisted attitude estimation. Litvin, Konrad, and Karl [15] apply probabilistic

methods to estimate intended camera motion and introduce the use of mosaicing to

reconstruct undefined regions created by the stabilization process. This method of

estimating intended camera motion produces very accurate results, but requires tun-

ing of camera motion model parameters to match the type of camera motion in the

video. Finally, Matsushita, Ofek, Tang, and Shum [16] develop an improved method

for reconstructing undefined regions called Motion Inpainting. This method produces

results that are free from the smearing and tearing present in previous methods for

reconstructing undefined regions. Motion of foreground objects is detected by apply-

ing optical flow calculations to the stabilized video. Unfortunately, real-time frame

rates are not possible at the current time.

It is important to note that feature tracking has been used by the vast majority

of existing stabilization techniques, but previous work has said very little regarding

feature selection and its role in the stabilization process. This thesis will discuss

feature selection and its impact on the stabilization of UAV video in Chapter 3.

9

1.3.3 Target Identification and Localization

As previously mentioned, localization involves estimating the world position

of an identified target. The first step in this process is identifying the target. The

existing work involved in autonomous target recognition can be grouped into three

categories: (1) template matching [17, 18], (2) edge and vertex matching [19, 20,

11], and (3) neural network-based methods [21, 22]. All of these techniques require

prior knowledge of the target’s appearance and suffer from high false-positive rates.

Ratches, Walters, Buser, and Guenther [23] conducted a survey of the state of the art

in target recognition. The primary conclusion of this work is that autonomous target

recognition of arbitrary targets is not possible in the foreseeable future. However,

they do point out that a robust target identification system does exist, the human

visual system. As previously discussed, the stabilization work in this thesis creates a

watchable video stream, and enables the operator to identify targets to be localized.

Several research projects have addressed the localization problem from both

the target and self-localization perspective. Of interest to this thesis is the work of

Redding [24], which discusses the existing approaches to object localization and how

they relate to UAV-based surveillance and reconnaissance. Redding then presents

techniques for estimating the GPS position of a recognized target in video captured

by a small UAV. The target recognition task was accomplished using threshold-based

color segmentation and unfortunately lacked real-world applicability in all but the

most extreme scenarios. This thesis addresses this limitation by allowing the operator

to identify the target which is then localized by the ground station software using the

techniques presented in [24].

1.4 Contributions

This thesis builds on the methods presented in the previously discussed related

work to enable the use of UAV video by surveillance and reconnaissance teams. The

specific contributions of this thesis can be divided into three groups: (1) development

platform, (2) stabilization, and (3) localization.

10

The development platform provides capabilities to synchronize video and teleme-

try data, allows for the development of new computer vision algorithms using UAV

video, and more easily enables real-time processing of UAV video through the ex-

ploitation of multi-processor and simultaneous multi-threading systems. The second

group of contributions of this thesis involves the use of the development platform to

create an online stabilization system for UAV video. Specific contributions to the

realm of stabilization work encompass enhancements to existing stabilization tech-

niques to correctly handle the high noise levels seen in UAV video and methods to

accurately estimate intended video motion in real-time without knowledge of the

frame-to-frame motion of the entire video. The final group of contributions of this

thesis is the contribution to previous localization work that extends its real-world ap-

plicability. This contribution uses the stabilized video to allow the operator to easily

identify targets in the video, which are then localized by the ground station software.

1.5 Outline

This thesis begins with a description of the computer vision development plat-

form created for processing UAV video in Chapter 2. It outlines the basic video

processing architecture and presents the flow of video and telemetry data through

the system. It also discusses the method of telemetry and video synchronization and

its involvement in the video processing pipeline, and concludes with an overview of

how the development platform is used to create stabilized video that enables the oper-

ator to easily identify targets. Chapter 3 begins the analysis of the video stabilization

process with a discussion of the characteristics of an ideal feature for use during sta-

bilization, and then gives a brief overview of existing feature selection techniques and

discusses possible methods of noise detection during the feature selection process.

These methods of noise detection are extended during an overview of existing feature

tracking techniques in Chapter 4. Models for frame motion are then examined in

Chapter 5 and two methods for detecting incorrectly tracked features during frame

motion estimation are also explored. The discussion of video stabilization is con-

cluded in Chapter 6 with an overview of the processes of estimating intended video

11

motion and displaying the stabilized video. Two novel approaches for estimating in-

tended video motion are also presented in this chapter. The discussion then shifts

to localization. Chapter 7 presents three methods of operator interaction with the

stabilized video and explains the transformations needed to estimate the GPS posi-

tion of a operator identified target. The conclusions of this work and a discussion of

possible future work are then presented in Chapter 8.

12

Chapter 2

Development Platform

Small UAVs have the ability to rapidly obtain information, however, the use

of this information is dependent on effective communication between the UAV and

the operator. The first contribution of this thesis is a description of the enhance-

ments made to the UAV ground station software to create a development platform

that enables interaction between the UAV, video processing software (FrameProces-

sor), and the operator. Figure 2.1 shows the data flow that occurs between each of

these components. The ground station acts as the central hub between the UAV,

FrameProcessor, and the operator. The UAV asynchronously transmits video and

telemetry data to the ground station, which is then synchronized by the ground sta-

tion and sent to the FrameProcessor. The FrameProcessor then sends commands to

the ground station and presents the processed video to the operator. The ground

station transmits the commands received from the FrameProcessor to the UAV. This

system of handling and processing video has three components: (1) timestamping of

video and telemetry data to enable synchronization, (2) the video handling pipeline,

and (3) the FrameProcessor.

2.1 Timestamps

The timestamps used for synchronizing the video and telemetry data can be

generated in two manners: (1) full synchronization and (2) half synchronization. Full

synchronization is based on the in-flight availability of UTC time from the GPS unit

used on the UAV and ground station. Half synchronization generates the timestamps

based on estimating the average delay in the transmission of video and telemetry data

and compensating for these delays in real time.

13

UAV

Ground Station FrameProcessor

Video

Telemetry

Commands

Synchronized Video
and Telemetry

Commands

User

Input Processed VideoTelemetry

Figure 2.1: The ground station acts as the central hub between the operator, UAV,
and video processing software (FrameProcessor), and enables control of the UAV by
the operator and FrameProcessor.

Full synchronization provides more accurate timestamps through the use of

a GPS unit on the UAV and ground station. Each video frame is tagged with the

current UTC time minus the estimated transmission delay, which will be discussed

in the next section in regards to half synchronization, and then buffered for syn-

chronization. Because of the constant delay in video transmission, this results in an

accurate timestamp of when the video frame was originally captured by the camera.

The telemetry data is timestamped on the UAV using the current UTC time. When

the telemetry data is received by the ground station, the timestamp is then used to

synchronize the telemetry data with buffered video.

In order to perform half synchronization, two delays must be estimated to cre-

ate the necessary timestamps. The first is the delay of the transmitted video, which is

the time that it takes for the video to pass through the camera, transmitter, receiver,

and framegrabber before arriving at the ground station. As previously mentioned,

this delay is constant and can therefore be easily estimated and removed from the

generated timestamp. The video transmission delay was estimated using full syn-

chronization and a FrameProcessor created with the currently discussed development

platform. An operator manually rotated the UAV in an oscillatory manner about

14

its roll axis with a camera pointed out the wing facing a colored object, while the

autopilot recorded the roll with the UTC timestamp. The FrameProcessor located

the object in the video and recorded the y pixel coordinate of the center of mass of

the object in the image with the UTC timestamp available on the ground station.

The peaks of the two data sets were found and false peaks were found by enforcing

a one-to-one mapping and throwing out any matches whose phase shift was greater

than two standard deviations from the mean phase shift. The mean phase shift was

then recalculated and was used as the estimate of video transmission delay. Figure 2.2

shows a segment of the plot of the UAV roll and the y pixel coordinate of the center

of mass of the object with matched peaks plotted. The final estimate was found to be

95 milliseconds. The second delay is the average delay of telemetry transmission, and

unfortunately this delay is not constant. This delay was estimated by marking the

telemetry packets with the UTC from the UAV and then calculating the difference

between the current UTC time and the timestamp of the telemetry data when the

telemetry data was received by the ground station. The mean delay of telemetry

transmission was found to be 150 milliseconds with a standard deviation of 35 mil-

liseconds. Therefore, most telemetry timestamps can be estimated to within one to

two frames of the true time, compared to telemetry data being used with a frame

that falls within three to four frames of the true frame when no synchronization is

used, and can improve the accuracy of telemetry based image processing. The full

synchronization method is preferred because of its increased accuracy, but the half

synchronization method is an acceptable alternative when UTC time is not available

in-flight. The effects of both synchronization methods will be discussed in Section 7.5.

2.2 Video Handling Pipeline

Pipelining is a technique that is most commonly used in hardware development

to improve the throughput of a system at the cost of a slight increase in latency. It

is accomplished by dividing the task into subtasks that depend only on the output

of the previous subtask. In modern CPUs, hardware pipelining is performed on

15

230 232 234 236 238 240 242 244

50

100

150

200

250

300

350

400

450

500

Figure 2.2: The solid blue line is the y pixel coordinates and the dotted red line shows
the UAV roll. The circles represent the matched peaks used to estimate the mean phase
shift between the two data sets.

the instruction level and involves complex timing analysis and synchronization to

achieve optimal results. Software pipelining is based on the same principles, but

is done on a macro level to exploit modern multi-processor and simultaneous multi-

threading systems and does not require the same level of scrutiny to yield performance

increases. The video handling system is built on a software pipelining architecture.

Figure 2.3 shows the division of the video handling and synchronization process to

enable software pipelining. Each task is performed in its own thread and outputs the

data to the next task through a queue. This system also adds increased stability to

the ground station software, because the FrameProcessor cannot crash or freeze the

ground station software.

16

Capture
Thread

Conversion
Thread

Every Frame
Thread

Between
Telemetries

Thread

Record
Video

Thread

ToConvert
Queue

ToProcess
Queue

Processed
Queue

Between
Telemetries

Buffer

ToRecord
Queue

UAV
Telemetry

Figure 2.3: The blue boxes with rounded corners represent the tasks in the pipeline
that are each performed in their own thread. The green boxes with square corners
represent data that flows through the pipeline and that are used to pass data from task
to task. Two separate video streams are displayed to the user. The first is displayed at
a frame rate in the Every Frame thread and the second is displayed when telemetry is
received in the Between Telemetries thread.

The video is initially captured and frames are added to the ToConvert queue.

Three video sources are supported: (1) live video feed from the UAV, (2) video from

the UAV flight simulator Aviones, and (3) video from a saved video file. The live video

feed is used in real world scenarios while the Aviones video feed and video files allow

for testing new methods in a controlled environment. Frames are taken from the To-

Convert queue by the Conversion thread and converted to standard RGB format. The

FrameProcessor can then convert the images to any image format that it requires for

later processing. The frame is then added to the ToProcess queue, Between Teleme-

tries buffer, and the ToRecord queue to be handled by the corresponding threads.

The Every Frame thread takes the frame from the ToProcess queue and performs the

operations required by the FrameProcessor. The FrameProcessor can request that the

frame be stored in the Processed queue for later use. If requested by the operator, the

Record Video thread records the frame to a operator specified video file with the asso-

ciated telemetry. The Between Telemetries buffer behaves differently than the queues

17

which transfer data between tasks. It is a running buffer that stores a fixed number

of frames for synchronizing the stored frames with telemetry data. When telemetry

data is received from the UAV, the Between Telemetries thread extracts the frames

that lie between the timestamp of the previous and current telemetry data from the

Between Telemetries buffer. The FrameProcessor then performs the processing of

synchronized video on the extracted frames. This system allows for handling of video

streams in two manners: (1) immediately when the frames are received and (2) when

telemetry is received. The first method relies solely on image processing techniques

and makes no use of telemetry data. The second method, however, relies on the

telemetry data received from the UAV. The synchronization of telemetry data with

the received video frames allows for more accurate use of the data extracted during

image processing. Without synchronization, the telemetry data would be used with

data extracted from an incorrect frame and can be a significant source of error in any

performed calculations. The effects of synchronization on the accuracy of localization

will be discussed in Section 7.5.

As previously stated, a bug in the FrameProcessor can only stop an individual

task, which can be restarted after failure, and will not crash the ground station

software. Also, computationally intensive processes will slow the pipeline causing

dropped frames, rather than freezing the operator interface of the ground station.

2.3 FrameProcessor

The FrameProcessor is the functional element that performs all vision process-

ing in the ground station software. As previously mentioned, it can perform custom

conversions of video frames, process frames of the video as they are received, and

handle synchronized video frames when telemetry is received. It is also capable of

displaying both of these video streams to the operator simultaneously. A mechanism

for capturing and displaying a paused frame of video for more detailed processing is

also available. The ground station relays all operator input from the mouse and key-

board and allows for operator interaction with all of the displayed video streams. A

18

customized dialog that allows for operator input through standard operator interface

elements is also available to the FrameProcessor.

2.4 Synchronization Results

To demonstrate the added benefits of the presented synchronization method

the localization techniques that were original presented by [24] and that will be dis-

cussed in Chapter 7 will be used. The localization results using no synchronization,

partial synchronization using the estimated delays, and full synchronization using the

UTC time available in flight be be presented.

To demonstrate the benefits of video and telemetry synchronization, Figure 2.4

shows results of localizing a target while loitering with each of the presented methods

of synchronization. To remove the influence of human factors in the localization

process, the threshold-based target localization proposed by [24] is used and all noise is

removed from the state estimation in the simulator. Figure 2.4(a) shows the individual

estimates of target location with no synchronization and has a mean error of 4.1

meters. The estimates are evenly distributed throughout the area with no definite

grouping visible. Figure 2.4(b) shows the individual estimates of target location with

half synchronization and has a mean error of 3.2 meters. The estimates demonstrate

a visible grouping of estimates near the target’s true location, but several invalid

estimates still exist out side of this grouping. Figure 2.4(c) shows the individual

estimates of target location with full synchronization and has a mean error of 2.3

meters. A distinct group of estimates is visible near the target’s true location with

only a few estimates falling outside of the group. Ideally, the full synchronization

method would yield a mean error of 0 meters, but the incorrect estimation of the

target center caused by the skewing of the target in the image results in the error

seen in the estimate. The effects of the error in the individual estimates on the final

estimate of target location are negligible when a target is localized during a loiter,

but when localization is performed in areas where loitering is not possible, such as

urban environments, the accuracy of the individual estimates of target location is

crucial to achieving an accurate final estimate of target location. It has been shown

19

that both synchronization methods improve the accuracy of the individual estimates

of target position. Despite the fact that full synchronization is the preferred method,

half synchronization has been shown to truly be an acceptable alternative when full

synchronization is not possible.

2.5 Video Stabilization and Target Localization Architecture

The second contribution of this thesis is the application of the discussed devel-

opment platform to create a real-time software-based stabilization system built using

that enables the operator to easily identify targets that are then localized by the

ground station software. This section outlines the steps of the stabilization process

and how operator input is used in conjunction with the stabilized video to estimate

the world location of a visible target. Figure 2.5 shows the data required for stabi-

lization and localization and shows how the data flows through the pipeline. Each

of the tasks will be discussed in the following chapters with an accompanying figure

showing its role in the stabilization and localization architecture.

2.5.1 Video Stabilization

The stabilization relies only on image processing techniques and is performed

in the Every Frame thread of the video handling pipeline shown in Figure 2.3. There

are five steps performed on every frame received from the UAV. These steps are (1)

feature selection, (2) feature tracking, (3) frame motion estimation, (4) estimation of

intended video motion, and (5) display of the stabilized video. The first step, feature

selection, is discussed in Chapter 3. It begins with a discussion of the properties

of an ideal feature in UAV video and the influence of noise on these properties.

Methods for quantifying these qualities as a feature rating are then examined and

the method of selecting features based on the assigned feature rating are presented.

Chapter 4 discusses methods of locating the features selected from the previous frame

in the current frame. Also, methods for detecting invalid features are presented.

This results in the generation of a set of feature motion vectors. The use of these

vectors to estimate frame-to-frame motion is then outlined in Chapter 5. Also, two

20

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a) No Synchronization

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(b) Half Synchronization

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(c) Full Synchronization

Figure 2.4: The location of the target is shown as a blue asterisk and the individ-
ual estimates are shown as red asterisks. (a) shows the localization results when no
synchronization is used; (b) shows the localization results when half synchronization is
used; and (c) shows the localization results when full synchronization is used.

21

Feature
Selection

Previous
Video
Frame

Feature
Tracking

Frame
Motion

Estimation

Video
Display

User
Target

Tracking

Target
Location
in Frame

Synchronized
Telemetry

Estimate
Target

Location

Target
Location
in World

Features
in Previous

Frame

Feature
Motion
Vectors

Frame-
to-Frame
Motion

Intended
Motion

Estimation

Intended
Motion

Current
Video
Frame

Stabilization performed in the Every Frame Thread

Localization
performed in
the Between
Telemetries
Thread

Figure 2.5: This architecture is an implementation of the FrameProcessor shown in
Figure 2.1. The feature selection, feature tracking, frame motion estimation, intended
video motion estimation, and video display occur in the Every Frame thread and the
estimation of target location occurs in the Between Telemetries thread shown in Fig-
ure 2.3. The blue boxes with rounded corners represent the tasks in the stabilization
and localization pipeline. The green boxes with square corners represent data that flows
through the pipeline and that is used to pass data from task to task.

frame motion models are discussed and an evaluation of the effectiveness of two noise

detection methods is presented. Chapter 6 discusses the challenges of estimating

intended video motion in real-time and presents two novel techniques of extracting

intended motion from the measured frame-to-frame motion. These four steps result

in a stabilized video stream that enables an operator to identify targets.

2.5.2 Target Localization

Because of its dependence on telemetry data, target localization is performed

in the Between Telemetries thread shown in Figure 2.3. Chapter 7 discusses the

methods used to estimate the GPS location of an operator identified target. Chapter 7

also presents the transformations needed to convert the input received from operator

interaction with the stabilized video to image coordinates. The chapter then discusses

the use of the methods outlined in [24] to generate rays in world frame from the screen

22

coordinates and the use of a series of these rays to estimate the target location. An

examination of the effectiveness of three methods of operator interaction is then

conducted.

23

24

Chapter 3

Feature Selection

Feature
Selection

Previous
Video
Frame

Feature
Tracking

Frame
Motion

Estimation

Video
Display

User
Target

Tracking

Target
Location
in Frame

Synchronized
Telemetry

Estimate
Target

Location

Target
Location
in World

Features
in Previous

Frame

Feature
Motion
Vectors

Frame-
to-Frame
Motion

Intended
Motion

Estimation

Intended
Motion

Current
Video
Frame

Figure 3.1: Feature selection is performed on the previous video frame and outputs a
list of features to be tracked in the current frame.

Techniques exist to track the motion between frames through frame matching,

but they are too computationally intensive to be performed in software at real-time

rates. Feature tracking estimates the motion of the frame by selecting features from

the first frame and finds those features in the second frame, so features that can be

accurately tracked must be selected. As previously stated, very little has been said

about the selection of features during the stabilization process in existing stabilization

literature. Therefore, this chapter will discuss what defines an ideal feature when

stabilizing UAV video and will evaluate methods for determining feature rating in an

attempt to quantify these qualities. A discussion of methods for selecting features

based on calculated feature ratings is also conducted.

25

3.1 What Makes a Good Feature?

The ideal feature has three characteristics: (1) it is identifiable and unique, (2)

it exists from frame to frame, and (3) it provides new information to the stabilization

process. The importance of each of these characteristics is discussed in the following

sections.

3.1.1 Identifiable and Unique

An identifiable feature is most easily defined as a feature with texture. Full

texture analysis techniques involve complex pattern recognition and are computation-

ally intensive. Therefore, areas with high gradient values are defined as identifiable

because of low computational cost. However, an ideal feature is also unique in the

image. Lines are an example of image features that have high gradient values but

are not unique. This is true, because points on the line cannot be distinguished from

other points along the line using image processing techniques. Fortunately, feature

selection techniques have evolved to solve these simple problems and can reject areas

with a strong gradient in only a single direction, such as lines. However, a more

complex form of non-unique features are very common in UAV video. Repeating pat-

terns, such as bricks or dashes on a road, cannot be detected without complex pattern

recognition techniques and pose a significant problem to feature tracking techniques.

This type of non-unique feature is more easily detected during feature tracking and

methods for doing so will be discussed in Section 4.1.

3.1.2 Exists from Frame to Frame

A feature existing from frame to frame is not a characteristic that can be

enforced during the feature selection process. However, understanding the causes of

feature disappearance between frames facilitates the detection of these invalid features

during the entire stabilization process. The primary causes of a feature of this type

being selected are noise in the video, and occlusion. Each of these causes presents a

unique challenge to the stabilization of UAV video.

26

Noise is very common in UAV video and has very high gradient values. There-

fore, noise produces a high feature rating in feature selection techniques. Noise can

be removed with image clean up techniques, but they may also remove valid features

or cause a loss of detail that degrades the accuracy of feature selection and feature

tracking techniques. Certain clean up techniques, like median filtering, minimize the

negative effects, but are computationally expensive. Clean up techniques also require

significant tuning for the type of noise and scene content, so they are not suitable for

general application to stabilization of UAV video. Image analysis techniques can also

be used to remove noise during feature selection, but they rely on scene knowledge

and are too computationally expensive to be applied to real-time software stabiliza-

tion. These facts result in no attractive option for rejecting noise during the feature

selection process. Fortunately, noise that was improperly selected as a trackable fea-

ture can be more easily detected during later steps of the stabilization process than

during feature selection. The details of these detection methods will be discussed in

Section 4.1 and Section 5.1.

Occlusion also presents a challenge that cannot be detected during feature

selection without computationally intensive image analysis techniques. However, if

the flat world assumption holds then the effects of occlusion are minimal and can

be ignored. The need for this assumption to hold can be seen in the fact that an

ideal feature has a high image gradient, which is common at object edges, but occlu-

sion also happens at these same edges. Therefore, if the flat world assumption does

not hold then the feature tracking will not be able to find the feature in the next

frame. Fortunately, the previously mentioned techniques for detecting noise that was

improperly selected as a trackable feature will also detect the problems caused by

occlusion.

Also of note to the discussion of a feature existing from frame to frame is the

concern of a feature leaving the image due to translational motion. Most feature

tracking techniques select a list of features and track these features during the entire

stabilization process. This works well with video from a hand-held camera, since the

video is typically taken from a fixed location and features will not leave the video.

27

However, with UAV video continuous translational motion is very common and causes

features to rapidly leave the video. The translation requires that new features are

selected with each new frame in place of tracking a fixed list of features selected from

the initial video frame. Selecting new features with each frame also simplifies the

feature tracking process by removing the need for image boundary checks.

3.1.3 Provides New Information

The feature also needs to provide new information that is useful to the stabi-

lization process. Tracking a feature directly adjacent to a previously tracked feature

provides no new information that was not available from tracking the original feature.

This can be avoided by distributing the features over the entire image. The meth-

ods for ensuring an even distribution of features throughout the entire image will be

discussed in Section 3.3.

3.2 Feature Rating

In order to quantify the previously mentioned characteristics, a feature rating

is assigned to every pixel in the image. This quantification allows for selecting the

image regions that can be accurately tracked between frames. Several methods for

calculating feature rating will now be discussed.

3.2.1 Gradient Difference

The simplest method of determining feature rating is based on the x and y

gradient images, Ix and Iy respectively. Any derivative operator can be used, but the

Sobel Kernel [25] is used in the results shown in this thesis. The feature rating is

calculated from the gradient images as

R(x, y) = (Ix(x, y) + Iy(x, y))− |Ix(x, y)− Iy(x, y)|. (3.1)

This rating results in high ratings for areas with both high x and y gradients and will

reject horizontal and vertical lines. However, regardless of the derivative operator

28

used, it will not reject diagonal lines. This is a major flaw and leaves room for

improvement.

3.2.2 Canny Edge Detector

Feature rating based on the Canny edge detector [26] is performed by calcu-

lating the Canny edge image and summing the values over a window centered at the

pixel of interest. Like the gradient magnitude method this gives a high rating to areas

of the image with high texture content, but also gives a high rating to straight lines

and does not address the short coming of the gradient based feature rating.

3.2.3 Forstner Interest Operator

The Forstner interest operator [27] is based on the assumption that all images

are made up of points, lines, and segments. Segments are defined by regions which

are divided by lines, and points are defined as the intersection of lines. Points receive

high feature ratings and do not suffer from the problems of the gradient based and

Canny edge detector based methods. However, it is computationally intensive.

3.2.4 Harris Corner Detector

Feature ratings with the Harris corner detector are based on the methods

described in [28]. It gives high ratings to areas that have varying brightness in both

the x and y directions. This solves the problems apparent in the gradient based and

Canny edge detector methods and can be calculated in reasonable time.

3.2.5 Binary Corner Detector

The binary corner detector [29] is most similarly related to the Forstner interest

operator in that it relies on extracting physical properties of corners from the image

rather than relying solely on gradient calculations. Because of this exploitation of the

physical properties of the corner it is more accurate than the Harris corner detector.

29

3.3 Feature Selection

Once the feature ratings for the image have been created the features need to

be selected. A region-based and minimum separation method were tested to ensure

an even distribution of features. The merits of a simple grid-based feature selection

are also presented.

3.3.1 Region Based Feature Selection

The region based feature selection method divides the image into regions and

selects the best feature from each region. This method guarantees that all of the

features will not be selected from a single area in the image, but it may select several

features in very close proximity when an area with high texture value lies close to the

intersection of several regions.

3.3.2 Minimum Separation Feature Selection

The minimum separation feature selection chooses the features with the high-

est rating from the image but guarantees that no two selected features are within

a specified minimum distance. This guarantees that the best possible features are

selected and that no clumping of selected features occurs. It requires more com-

putational time, and Section 3.4 will examine the differences between both feature

selection methods.

3.3.3 Grid Based Feature Selection

Determining feature rating has a relatively high computational cost and select-

ing features based on feature rating is computationally expensive due to the sorting

required to select the best features. Chang, Lai, and Lu [8] instead selected features

on a fixed grid. This requires detection of invalid features during feature tracking

and frame motion estimation, which Chang, Lai, and Lu addressed using iterative

least squares. Although this detection process requires significant computation, it

is less than the computation required to select features using a more sophisticated

selection method. As previously mentioned, invalid feature detection techniques are

30

required to account for the noise common in UAV video, so this method of feature

selection can be used to stabilize UAV video with no added cost. The effectiveness of

this method is dependent on the invalid feature detection techniques, which will be

discussed in the next section.

3.4 Results

The discussed methods of determining feature rating aim to quantify the prop-

erties of an ideal feature discussed in Section 3.1. Two common problems with feature

rating are incorrectly assigning high ratings to a non-unique feature, such as a line,

and improperly rating noise as a valid feature. The ability of the feature rating

methods to reject lines and handle noise will now be examined.

3.4.1 Feature Rating

As previously mentioned, it is impossible to detect all non-unique features at

real-time rates during the feature selection process. However, lines are a very common

type of non-unique feature that can be easily rejected through the use of the proper

feature rating. Figure 3.2 shows the feature ratings assigned to a section of UAV

video footage by each of the proposed feature rating methods with black representing

areas with high feature rating and white representing areas with low feature rating.

It is very apparent that the gradient difference and Canny edge detector assign high

ratings along lines from Figure 3.2(b) and Figure 3.2(c). The Forstner operator

incorrectly assigns high ratings to a few locations on the roof in Figure 3.2(d), but it

does not suffer from the problems apparent in the gradient difference and Canny edge

detector feature rating methods. The Harris corner detector yields the best results

in this image and correctly selects strong features on the corners of the house and

at the intersections of the sidewalk in Figure 3.2(e). The binary corner detector also

performs well and only selects strong features in Figure 3.2(f), but also incorrectly

rejects a few strong features.

The ability to properly handle the high noise levels of UAV video is also

essential to ensure appropriate feature selection. Figure 3.3 shows the effects of noise

31

(a) Original Image (b) Gradient Difference

(c) Canny Edge Detector (d) Forstner Operator

(e) Harris Corner Detector (f) Binary Corner Detector

Figure 3.2: Feature rating is shown in the images as black being the highest rating
and white being the lowest rating. The gradient difference (b) and Canny edge detector
(c) images give high ratings to lines. The Forstner operator (d) incorrectly gives high
ratings on the roof of the house. The Harris corner detector (e) and binary corner
detector (f) give results that satisfy the characteristics discussed in Section 3.1, but the
binary corner detector incorrectly rejects valid features on the corner of the roof and
sidewalk.

32

on the various methods of determining feature rating with black representing areas

with high feature rating and white representing areas with low feature rating. The

gradient difference incorrectly assigns a high rating to the noise in Figure 3.3(b).

Noise that is purely horizontal or vertical would be rejected by the gradient different,

but most noise in UAV video has at least some diagonal component. The Canny edge

detector is heavily biased by the noise in the UAV in Figure 3.3(c) and assigns higher

ratings to the noise than to several valid features in the video. Because of its reliance

on the properties of a point, the Forstner operator does not assign high ratings to the

noise in Figure 3.3(d). However, the Harris corner detector assigns a higher rating to

the noise near the sidewalk than to any of the true features in Figure 3.3(e). Like the

Forstner operator, the binary corner detector is not effected by the noise because of

its reliance on the geometric properties of a corner, as shown in Figure 3.3(f).

These results have shown that the gradient difference and Canny edge detector

feature rating methods are not suitable for use with UAV video because of their

tendency to assign high values to lines and their susceptibility to noise. Despite

having excellent noise rejection properties, the Forstner operator has a fairly high

false positive rate and because of this it does not satisfy the criteria needed to select

features during stabilization of UAV video. This leaves the Harris corner detector

and binary detector as possible candidates for use with UAV video. The Harris

corner detector is negatively effected by noise, whereas the binary corner detector

has excellent noise rejection properties. However, the binary corner detector does

not yield a rating of feature strength, and therefore does not provide a metric for

selecting a single feature from a tightly bunched group. Therefore, the Harris corner

detector is our choice for determining feature rating in UAV video. Because of the

Harris corner detector’s tendency to select noise as features, noise detection will need

to be performed during feature tracking and frame motion estimation. Methods for

handling noise during these steps of the stabilization process will be addressed in

Chapter 4 and Chapter 5.

33

(a) Original Image (b) Gradient Difference

(c) Canny Edge Detector (d) Forstner Operator

(e) Harris Corner Detector (f) Binary Corner Detector

Figure 3.3: Feature rating is shown in the images as black being the highest rating
and white being the lowest rating. The gradient difference (b), Canny edge detector
(c), and Harris corner detector (e) are all negatively affected by the noise. However, the
Forstner operator (d) and binary corner detector (f) reject the noise because of their
reliance on the properties of a corner in determining feature rating.

34

3.4.2 Feature Selection Method

Once feature ratings have been assigned, features must be selected, so that

feature tracking can be performed. Since the grid-based method always gives identical

results, only the region-based and minimum separation methods will be examined.

The primary concern of feature selection is ensuring that each new feature

provides new information, as discussed in Section 3.1.3. Guaranteeing that each

feature provides new information to the stabilization process is done by ensuring

that the features are evenly distributed throughout the image. Figure 3.4 shows

the distribution of features when the minimum separation and region-based feature

selection methods are used in an area of the image with low noise levels. It can be seen

in Figure 3.4(a) that the minimum separation method ensures that no two features

are tightly grouped and selects the best features available in the image. Figure 3.4(b)

shows the improper grouping that can occur when region boundaries fall on an area

with high feature rating. The region-based method also requires a single feature

be selected in each region, so regions with poor overall feature rating result in the

selection of a sub-optimal feature and regions with high overall feature rating can

reject several high quality features. Figure 3.5 shows the feature distribution in an

area of the image with high noise levels. Figure 3.5(a) shows how the areas with

high noise levels are incorrectly selected as features, but several valid features are still

selected on the houses and cars in the image. Figure 3.5(a) shows how the constraint

of a single feature per region reduces the number of features selected in the area with

high noise levels. But, this same constraint results in very few valid features being

selected on the houses and cars in the image. Both of these results show why the

minimum separation feature selection method is our choice for selecting features in

UAV video.

35

(a) Minimum Separation (b) Region-Based

Figure 3.4: The red crosses show the selected features and the blue lines show the
region boundaries in (b).

(a) Minimum Separation (b) Region-Based

Figure 3.5: The red crosses show the selected features and the blue lines show the
region boundaries in (b).

36

Chapter 4

Feature Tracking

Feature
Selection

Previous
Video
Frame

Feature
Tracking

Frame
Motion

Estimation

Video
Display

User
Target

Tracking

Target
Location
in Frame

Synchronized
Telemetry

Estimate
Target

Location

Target
Location
in World

Features
in Previous

Frame

Feature
Motion
Vectors

Frame-
to-Frame
Motion

Intended
Motion

Estimation

Intended
Motion

Current
Video
Frame

Figure 4.1: Using the previous video frame and the list of features that is output from
feature selection, feature tracking is performed on the current video frame. It outputs
a list of feature motion vectors to be used to estimate frame motion.

Feature tracking uses the list of selected features from the previous frame and

estimates their position in the current frame. This creates a set of feature motion

vectors that will then be used to estimate the motion needed to overlay the current

frame on the previous frame to minimize the visible motion. As with feature selection,

the focus of this chapter is not a thorough investigation of existing feature tracking

techniques, but will give a brief overview of several feature tracking techniques that

were evaluated during the development process, along with an evaluation of their

effectiveness with UAV video.

37

4.1 Template Matching

Template matching is accomplished by using a window centered about the

feature in the previous frame that is compared with a search window in the current

frame using sum of squared differences or sum of absolute differences. As previously

discussed, this method assumes that no significant rotation is occurring at the feature

level and that no significant lighting changes are occurring between frames. Both of

these assumptions are valid in all but the most extreme UAV video. Section 3.1

discussed problems that are impossible to detect during the feature selection process

without computationally intensive image analysis techniques—repeating patterns and

noise that is incorrectly selected as a feature. These problems can be detected by

adding constraints to the template matching. Features that are caused by noise will

not be consistent from frame to frame and so a close match will not exist in the next

frame, so these features can be rejected by requiring that the difference between the

template and the matched feature lie below a minimum threshold. This minimum

threshold was found by examining the typical error of correctly tracked features in a

variety of UAV video. A threshold of 1.5% of the maximum possible error was found

to reject most invalid features while rejecting less than 5% of the valid features. The

second constraint is designed to handle features that occur in a problem area, such

as features that are part of a repeating pattern or lie on a line. Features that occur

in problem areas can be detected by requiring that there be only a single close match

in the search window. These methods make use of the data available in the image

without the complex image analysis techniques required to reject them during feature

selection, thus providing accurate invalid feature detection without excessive increases

in computational costs. The specific values of these thresholds were obtained through

the analysis of a wide variety video types; including video from a 2-axis gimballed

camera, a fixed forward looking camera, a fixed downward looking camera, and a

fixed camera looking out the right wing. The determined thresholds were chosen

to be very liberal and worked well on all of the previously mentioned video. These

values represent the only set of pre-determined constants in the stabilization system

and could be removed. Removal of these constraints requires all noise rejection to be

38

done during the frame motion estimation, but still yields equivalent results. However,

the benefits of these constraints will be examined in Section 4.4.

Pyramidal techniques are commonly used to increase the performance of image

processing. Template matching can be done pyramidally by performing a course to

fine template match. A small template window is used to track the feature on the top

level of the pyramid. The feature is then tracked on successive levels of the pyramid

with progressively larger template windows until the feature is tracked on the original

frame. Since the template matches on each of the levels of the pyramid are performed

using the described template matching techniques, the same techniques for detecting

noise during the tracking process can be applied to each match done as the feature

is tracked down the pyramid. However, the dramatic decrease in computational cost

does come at a price, and the disadvantages of using pyramidal template matching

will be discussed in Section 4.4.3.

4.2 Profile Matching

The profile matching technique is done by creating a vertical and horizontal

profile from a window centered about the feature in the previous frame. The same

profiles are generated for every location in the search window of the current frame

and the closest match is found using sum of squared differences or sum of absolute

differences. For a square template window of size m and a square search window

of size n this operation is O(mn2) rather than the O(m2n2) required for template

matching. However, this marked decrease in computational cost does come at a

price. The work done by Ratakonda [7] showed that profile matching is 10 to 15%

less accurate than template matching. The accuracy problems are compounded when

pyramidal techniques are used and the noise detection techniques discussed in the

previous section cannot be effectively applied. These costs outweigh the benefits of

profile matching when considering the high noise levels of UAV video.

39

4.3 Optical Flow

Optical flow estimates the motion that occurred at the pixel of interest and

can be used as an estimate of feature motion. Two methods are most commonly used:

Horn and Schunck [30] and Lucas and Kanade [31]. These methods can only handle

motion of one to two pixels between frames and are not suitable for the high levels

of motion experienced in UAV video. However, a pyramidal version of the Lucas &

Kanade method that can handle large scale motion has been developed [32]. This

pyramidal method requires slightly more computation than the pyramidal template

matching technique, but does not have the same invalid feature detection properties.

Like the work of Chang, Lai, and Lu [8], this method relies on the invalid feature

detection performed during frame motion estimation to remove improperly tracked

features. Methods for detecting improperly tracked features during frame motion

estimation will be discussed in the next chapter.

4.4 Results

Because of the problems with profile matching discussed in Section 4.2, only

the template matching and optical flow methods will be discussed. First the accuracy

of each of the feature tracking methods in areas of the image with low noise levels will

be examined, then the ability of each of the methods to reject features that exist in

areas of the image with high noise levels will be discussed. In conclusion, the effects

of performing a coarse to fine pyramidal template match will be shown.

4.4.1 Low Noise Levels

The most important aspect of tracking features in areas of the image with

low noise level is accurately tracking these features, so that frame-to-frame motion

can be accurately estimated. Figure 4.2 shows the results of the template matching

and optical flow methods on an area of the image with low noise levels. Figure 4.2(c)

shows the feature tracking results from the template matching method. The template

matching method correctly tracks the majority of the features, but incorrectly tracks

the feature on the sidewalk and the previously discussed constraints reject two features

40

at the base of the house and a feature on the car. Figure 4.2(d) shows the feature

tracking results from the optical flow method. The majority of features are correctly

tracked and it is able to track one of the features at the base of the house and the

feature on the car that was rejected by the constraints of the template matching

method. It also incorrectly tracks the same feature on the sidewalk that the template

matching method incorrectly tracked, and incorrectly tracks the other feature at the

base of the house that the constraints of the template matching method rejected.

4.4.2 High Noise Levels

The most important factor of feature tracking in areas with high noise levels is

rejecting features that cannot be accurately tracked, so that the estimate of frame-to-

frame motion is not improperly biased. Figure 4.3 shows the results of the template

matching and optical flow methods on an area of the image with high noise levels.

Figure 4.3(c) shows the features that are correctly rejected in high noise areas by the

template matching constraints. Figure 4.3(d) shows the features that are incorrectly

tracked by the optical flow method. These incorrectly tracked features create the

need for noise rejection during the estimation of frame-to-frame motion.

These results present the strengths and weaknesses of the template matching

and optical flow methods. The template matching method is capable of rejecting

features in high noise areas, but occasionally rejects valid features in areas with low

noise levels. The optical flow method is capable of tracking features in areas with low

noise levels that cannot be tracked by the template matching method, but incorrectly

tracks features in areas with high noise levels. Also, the template matching method is

an order of magnitude more computationally intensive than the optical flow method.

Fortunately, as mentioned in Section 4.1, template matching can be performed in a

coarse to fine manner using pyramidal techniques to reduce the computational cost to

less than the cost of the optical flow method. Unfortunately, this dramatic reduction

in computational cost does come at a price.

41

(a) Original Image (b) Translated Image

(c) Template Matching (d) Optical Flow

Figure 4.2: The feature motion vectors are shown as green lines and the features that
could not be correctly tracked are shown as red dots. With low noise levels, the feature
tracking performed by the template matching and optical flow methods yield almost
identical results with most features. However, the optical flow method is able to track
a feature on the car and a feature below the house that cannot be tracked by template
matching. Both methods incorrectly track the feature on the far right of the image on
the sidewalk, and the optical flow method incorrectly tracks a feature at the base of
the house that is rejected by the non-unique check of the template matching method.

42

(a) Original Image (b) Translated Image

(c) Template Matching (d) Optical Flow

Figure 4.3: The feature motion vectors are shown as green lines and the features that
could not be correctly tracked are shown as red dots. The template matching method
correctly rejects the features in the areas with high noise levels, but the optical flow
method incorrectly tracks all of the features in the areas with high noise levels. The
optical flow method is able to track a feature in the upper left quadrant of the image
that the template matching method is unable to track

4.4.3 Pyramidal Template Matching

The pyramidal template matching technique reduces the average cost of tem-

plate matching from 0.75 milliseconds per feature to 0.05 milliseconds per feature

on a 3.2 GHz Pentium IV processor. This reduction in computational cost allows

for a dramatic increase in the number of features that can be tracked in real-time.

The use of the pyramidal template matching method results in a 10% decrease in the

number of correctly tracked features, but due to the order of magnitude increase in

the total number of features that can be tracked, the pyramidal template matching

method can still be effectively applied to UAV video. Figure 4.4 shows the negative

effects of the pyramidal template matching method. The pyramidal template match-

43

ing method occasionally finds an incorrect match at the lowest level of the pyramid

and generates an incorrect feature motion vector similar to those seen with the optical

flow method in high noise areas in Figure 4.3(d). These incorrectly tracked features

are less frequent than the incorrectly tracked features generated by the optical flow

method in the areas with high noise levels, because they are caused by non-unique

scene content that is not detected by the constraints proposed in Section 4.1, rather

than transmission noise. Despite the decrease in false negative rate and the increase

in false positive rate, the pyramidal template matching method is the least computa-

tionally intensive and inherits the noise rejection properties of the standard template

matching method, so it is our choice for tracking features in the stabilization of UAV

video.

44

(a) Original Image (b) Translated Image

(c) Standard Template Matching (d) Pyramidal Template Matching

Figure 4.4: The feature motion vectors are shown as green lines and the features
that could not be correctly tracked are shown as red dots. The largest problem caused
by pyramidal template matching can be seen in the incorrectly tracked feature on the
left side of the house. The coarsest match identifies the incorrect corner of the house
and the successive refinements up the pyramid cannot correct this problem. Also, the
pyramidal technique rejects several valid features that are correctly tracked by the
standard template matching method.

45

46

Chapter 5

Frame Motion Estimation

Feature
Selection

Previous
Video
Frame

Feature
Tracking

Frame
Motion

Estimation

Video
Display

User
Target

Tracking

Target
Location
in Frame

Synchronized
Telemetry

Estimate
Target

Location

Target
Location
in World

Features
in Previous

Frame

Feature
Motion
Vectors

Frame-
to-Frame
Motion

Intended
Motion

Estimation

Intended
Motion

Current
Video
Frame

Figure 5.1: Frame motion estimation is performed using the list of feature motion
vectors to output the frame-to-frame video motion.

The set of feature motion vectors retrieved during feature tracking are used

to estimate the motion needed to overlay the current frame on the previous frame

to minimize the visible motion. In order to estimate this motion, the feature motion

vectors must be fit to a frame motion model. This chapter will discuss two motion

models, how motion is estimated from the feature motion vectors based on these

models, and two methods of detecting improperly tracked features for both of these

models.

47

5.1 Frame Motion Models

Constraining the motion of the video to a model allows an estimate of frame-

to-frame motion to be retrieved from the feature motion vectors. The two motion

models used are a translational model and an affine model. Both of the models con-

strain the frame motion to two-dimensional motion. Even though the motion in the

video is three-dimensional, the motion occurring between frames can be adequately

estimated using a two-dimensional model. There are two benefits that come from

using a two-dimensional model. The first benefit is that the feature motion vectors

are two-dimensional, causing the estimation to be less prone to error than if a three-

dimensional model were used. Extracting three-dimensional motion with real world,

Euclidean values from a set of two-dimensional feature motion vectors is impossible

without knowledge of the scene or an initial estimate of camera motion. Neither

of these are available during real-time video stabilization and reconstruction of this

information based solely on computer vision techniques is still an unsolved problem.

The second advantage of using a two-dimensional motion model is that mosaicing the

individual frames can be done very simply. This allows for reconstructing undefined

video regions with minimal added cost and will be discussed in the next chapter. The

remainder of this chapter will discuss these models, as well as methods for detecting

incorrectly tracked features in the set of feature motion vectors.

5.2 Translational Model

The translational model allows only for x and y translation. The estimate

is found by taking the average of the feature motion vectors. This method cannot

account for the rotation that is very common in UAV video and can be incorrectly

biased by the distribution of features during the feature selection process. Figure 5.2

shows the biasing that can happen when the translational model is used and the

feature motion vectors are not evenly distributed.

Two methods of detecting incorrectly tracked features will now be presented.

These detection methods tend to incorrectly reject valid features when used with the

48

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

(a) Feature Motion Vectors

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

(b) Iterative Least Squares
Inliers

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

(c) RANSAC Inliers

Figure 5.2: Due to the use of an average in determining the frame-to-frame motion
estimate in the translational model, the distribution of features can incorrectly bias the
estimate. (a) shows feature motion vectors with a 1 degree rotation, an x translation of
10, a y translation of 7. Motion vectors are twice as frequent in the lower right quadrant
of the figure and the resulting estimate is (10.2, 7.2) compared to the exact estimate
of (10, 7) when no biasing is present; (b) shows the points selected as inliers using the
iterative least squares method. A definite biasing towards the lower right quadrant is
apparent and the resulting estimate is (10.2, 7.2); and (c) shows the points selected
as inliers using the RANSAC method. Once again, a biasing towards the lower right
quadrant is apparent and the resulting estimate is (10.3, 7.4).

translational model, but an important intuition regarding the underlying properties

of the detection methods are evident from analysis of the results.

5.2.1 Iterative Least Squares

Iterative least squares refinement is discussed in [33] and it has been employed

during video stabilization by Chang, Lai, and Lu [8]. However, we must first show

that the average used to find the translational model is a least squares method. This

can be seen if we define the average in the following manner,

Ax = b (5.1)

where

A =

 1 0 1 0 . . . 1 0

0 1 0 1 0 1

T , (5.2)

x =
[
Tx Ty

]T
, (5.3)

49

and

b =
[
x1 − x′1 y1 − y′1 x2 − x′2 y2 − y′2 · · · xn − x′n yn − y′n

]T
. (5.4)

(xi, yi) is the location of feature i in the previous frame, (x′i, y
′
i) is the location of

the same feature in the current frame, and the values, Tx and Ty, are the estimated

frame-to-frame motion. This least squares problem can be shown to be equivalent to

the average of the points (xi−x′i, yi−y′i) by noting that the A matrix is independent of

the points (xi, yi) and (x′i, y
′
i) and that for an A matrix of size 2n x 2 that (ATA)−1AT

will be the identity matrix scaled by 1
n
. Therefore, the solution, x, will be the average

of the feature motion vectors.

Iterative least squares refinement is done by determining the least squares

solution, calculating the error statistics of the data set compared to the calculated

motion and then removing any data points that have an error greater than a given

threshold, typically one standard deviation. With the translational model this is

done by calculating the mean and standard deviation of the feature motion vectors

and then removing any that are more than one standard deviation from the mean.

When the dominant motion in the video is purely translational, this works very well.

Unfortunately, the motion in UAV video is rarely confined to translational motion

and this method will either reject several valid feature motion vectors or accept all

feature motion vectors. Figure 5.3(b) shows an example of the improper rejection of

valid features that occurs when the frame motion is not purely translational. Also,

if the features are not evenly distributed, then this method will exaggerate the bi-

asing caused by the grouping of features that was previously discussed in regards to

Figure 5.2(b). An analysis of these effects will be presented in Section 5.5.

5.2.2 RANSAC

RANSAC [34] is another method for rejecting outliers during estimation.

RANSAC requires the use of a model that can be estimated using at least n points.

It is performed by selecting n random points from the data set and estimating the

50

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

(a) Feature Motion Vectors

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

(b) Iterative Least Squares
Inliers

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

(c) RANSAC Inliers

Figure 5.3: The iterative least squares and RANSAC methods improperly rejects
rotation as noise when used with the translational model. (a) shows feature motion
vectors with a 1 degree rotation, an x translation of 10, and a y translation of 7; (b)
shows the points selected as inliers using the iterative least squares method; and (c)
shows the points selected as inliers using the RANSAC method.

model. All other points in the data set are compared to this model and all points

that lie within a specified threshold of the model are defined as inliers. This process

is repeated several times and the largest set of inliers is used as the set of inliers for

determining the final estimate. Applying RANSAC to the feature motion vector data

set with the translational model is done by using a single feature motion vector as

the estimate and then finding the set of inliers by selecting the feature motion vectors

that lie within a threshold of that estimate. This is repeated a fixed number of times

and then the largest set of inliers is used to calculate the final estimate. Rather than

selecting the largest set of inliers as the final estimate, the final set of inliers can be

determined by calculating the estimate from each set of inliers and selecting the set

with the smallest standard deviation. This modification to the RANSAC method

increases its similarities with the iterative least squares method, but a discussion of

the fundamental differences will be done in the next section. When the motion is not

purely translational, the RANSAC used with the translational model will reject sev-

eral valid features as can be seen in Figure 5.3(c). Also, the estimate can be biased by

the grouping of features and worsens the previously mentioned biasing that is shown

in Figure 5.2(c). Like iterative least squares, RANSAC rejects several valid features

and yields worse results than no outlier rejection. An analysis of these effects will be

done in Section 5.5.

51

5.3 Properties of Iterative Least Squares and RANSAC

It has been shown that the iterative least squares and RANSAC rejection

methods are detrimental when used with the translational model, but an important

intuition of the properties of both rejection methods can be gathered from the results

shown in Figure 5.3. This intuition comes from viewing the translation as the signal

and the rotation as the noise. The iterative least squares method is based on the

assumption that the noise is zero mean and outliers will fall outside a threshold

defined by the standard deviation, so the selected points in Figure 5.3(b) lie in a

band in the middle of the data set. RANSAC assumes that the noise is uncorrelated

and that a subset of data that is correlated with respect to the model exists, so the

selected points in Figure 5.3(c) are in a group in the data set. The accuracy of each

method is therefore dependent on the type of noise present in the data set. Figure 5.4

shows the performance of the iterative least squares and RANSAC methods on a data

set with zero mean noise. Due to the high noise levels, a incorrect subset of correlated

feature motion vectors is found by the RANSAC method and an inaccurate estimate

is generated. The iterative least squares method performs well due to the canceling

of the zero mean noise by the averaging. Figure 5.5 shows the effectiveness of the

RANSAC method on non-zero mean noise methods where a correlated subset can be

found. The iterative least squares estimate is biased incorrectly by the non-zero mean

noise and produces an inaccurate estimate. Sensor noise is typically zero mean and

lends itself well to the iterative least squares method. However, noise introduced by

incorrectly tracked features is non-zero mean; making RANSAC the superior choice

for noise detection during frame motion estimation. However, this distinction between

iterative least squares and RANSAC diminishes as noise levels decrease and the size

of the data sets increases.

The translational model has been shown to lack the ability to accurately clas-

sify the motion that occurs in UAV video and the outlier rejection techniques are

unreliable at best, so a more advanced model must be used.

52

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

(a) Feature Motion Vectors

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

(b) Iterative Least Squares
Inliers

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

(c) RANSAC Inliers

Figure 5.4: The iterative least squares method easily reject zero mean noise, but the
RANSAC method is unable to locate a valid set of correlated data in the set of feature
motion vectors. (a) shows feature motion vectors from a translation of (10, 7) with
uniformly distributed zero mean noise in the range [-5, 5]; (b) shows the points selected
as inliers using the iterative least squares method and the resulting estimate being (9.9,
7.6); and (c) shows the points selected as inliers using the RANSAC method and the
resulting estimate being (7.9, 9.1).

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

(a) Feature Motion Vectors

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

(b) Iterative Least Squares
Inliers

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

(c) RANSAC Inliers

Figure 5.5: The iterative least squares method is incorrectly biased by the non-zero
mean noise, but the RANSAC method is able to locate a valid set of correlated data
and results in an accurate estimate of frame-to-frame motion. (a) shows feature mo-
tion vectors from a translation of (10, 7) with three quarters of the data points having
uniformly distributed non-zero mean noise in the range [0, 1] and the other quarter
having uniformly distributed non-zero mean noise in the range [0, 5]; (b) shows the
points selected as inliers using the iterative least squares method and the resulting esti-
mate being (12.3, 8.8); and (c) shows the points selected as inliers using the RANSAC
method and the resulting estimate being (10.7, 7.5).

53

5.4 Affine Model

The Affine Model is defined as x′

y′

 = s

 cos(θ) − sin(θ)

sin(θ) cos(θ)

 x

y

+

 Tx

Ty

 . (5.5)

This model allows for rotation, uniform x and y scaling, and x and y translation.

The parameter θ is the rotation, s is uniform x and y scaling factor, and Tx and Ty

are the respective translations. As previously stated, this model lacks the ability to

represent the true three-dimensional motion occurring in the video, but can be used

to adequately estimate the motion between frames and has the advantages noted in

Section 5.1. The parameters of the affine model can be estimated using least squares.

5.4.1 Least Squares

The least squares method of estimating the parameters of the affine model

from the feature motion vectors is defined as

Ax = b (5.6)

where

A =

x′1 −y′1 1 0

y′1 x′1 0 1

x′2 −y′2 1 0

y′2 x′2 0 1
...

x′n −y′n 1 0

y′n x′n 0 1

, (5.7)

x =
[
a b c d

]T
, (5.8)

and

b =
[
x1 y1 x2 y2 · · · xn yn

]T
. (5.9)

54

The location of the features are defined as follows; (xi, yi) is the location of feature

i in the previous frame and (x′i, y
′
i) is the location of the same feature in the current

frame. Solving this will yield the values a, b, c, and d where a and b are the combined

rotation and scaling, and c and d are the translation. It should be noted that this

method does not inherently constrain the values of a and b to satisfy the relationship

a = s cos(θ) (5.10)

and

b = s sin(θ), (5.11)

but accurate estimates of θ and s can be extracted by the definitions

θ = tan−1

(
b

a

)
(5.12)

and

s =
a

cos θ
. (5.13)

5.4.2 Iterative Least Squares

Iterative least squares is performed with the affine model by calculating the

frame motion estimate using the least squares solution discussed in the previous

section, and by then applying the methods discussed in Section 5.2.1. An analysis

of the effectiveness of iterative least squares when used with the affine model will be

conducted in Section 5.5.

5.4.3 RANSAC

RANSAC is performed with the affine model by randomly selecting two feature

motion vectors and solving for the parameters of the affine model as

a =
(x′a − x′b)xa + (y′a − y′b)ya + (x′b − x′a)xb + (y′b − y′a)yb

det(A)
, (5.14)

55

b =
(y′b − y′a)xa + (x′a − x′b)ya + (y′a − y′b)xb + (x′b − x′a)yb

det(A)
, (5.15)

c =
αxa + βya + γxb + κyb

det(A)
, (5.16)

and

d =
βxa + αya + κxb + γyb

det(A)
(5.17)

where

det(A) = x′2a + y′2a + x′2b + y′2b − 2x′ax
′
b − 2y′ay

′
b, (5.18)

α = −y′ay′b − x′ax
′
b + x′2b + y′2b , (5.19)

β = −y′ax′b + y′bx
′
a, (5.20)

γ = x′2a − x′ax
′
b + y′2a − y′ay

′
b, (5.21)

and

κ = y′ax
′
b − y′bx

′
a, (5.22)

and the feature motion vectors are defined as follows: (xa, ya) is the point of the first

feature motion vector in the previous frame, (x′a, y
′
a) is the point of the first feature

motion vector in the current frame, (xb, yb) is the point of the second feature motion

vector in the previous frame, and (x′b, y
′
b) is the point of the second feature motion

vector in the current frame. The points in the data set are compared to this model

and every point that lies within a specified threshold of the model is selected as an

inlier. As previously mentioned, the largest set of inliers is used to determine the

final estimate. The advantages of using RANSAC during frame motion estimation

with the affine model will be discussed in the next section.

5.5 Results

The results of the translational model have been previously discussed in Sec-

tion 5.2 and Section 5.3, and the effectiveness and properties of the iterative least

squares and RANSAC methods when used with the translational model have been

examined in Section 5.3. The effectiveness of the proposed techniques for estimating

56

frame-to-frame motion in UAV video will not be examined in this chapter, but will be

thoroughly discussed with respect to the display process in Section 6.3. The ability of

the affine model to classify three-dimensional motion and the effectiveness of the itera-

tive least squares and RANSAC rejection methods in regards to the three-dimensional

motion will now be discussed.

5.5.1 Affine Model with Three-Dimensional Motion

The ability of the affine model to represent three-dimensional motion is most

easily examined through the analysis of the motion experienced from a UAV with a

downward looking fixed-camera. Examining the ability of the affine model to accu-

rately estimate the effects of changes in each of the parameters of the standard UAV

six degree-of-freedom model gives valuable insight into the ability of the affine model

to stabilize UAV video. Figure 5.6 shows the three-dimensional motion that can be ac-

curately described using the affine model and Figure 5.7 shows the three-dimensional

motion that cannot be accurately described using the affine model. Figure 5.6(b)

shows that any x and y translation of the UAV can be perfectly estimated using the

x and y translation of the affine model. Figure 5.6(d) shows that any z translation

of the UAV can be sufficiently estimated using the scaling of the affine model. Fig-

ure 5.6(f) shows that any ψ rotation of the UAV can be perfectly estimated using the

rotation of the affine model. Figure 5.7(d) shows that large ϕ rotation of the UAV

cannot be accurately estimated using the affine model and Figure 5.7(b) shows that

large θ rotation of the UAV cannot be accurately estimated using the affine model.

These results have shown that the changes in the majority of parameters of the stan-

dard UAV six degree-of-freedom model can be accurately described with the affine

model. The least squares estimation technique will estimate the parameters of the

affine model that result in the best estimate of the three-dimensional motion that is

possible with the affine model. Fortunately, when frame motion is estimated in real-

time the the rotations experienced during flight are typically small enough that they

can be adequately represented using the affine model, but these results have shown

that the affine model cannot correctly estimate all motion experienced by the UAV.

57

The resulting estimation error will result in inaccurate motion estimation when there

is significant rotation in either ϕ or θ.

5.5.2 Iterative Least Squares and RANSAC

Since x, y, and z translations and the ψ rotation can be accurately estimated

by the affine model, the iterative least squares and RANSAC methods will prop-

erly detect incorrectly tracked features when the dominant motion is confined to

these values. However, the inability of the affine model to account for large ϕ and

θ rotation of the UAV poses significant problems for the iterative least squares and

RANSAC rejection methods. As with the rotational motion and translation model

discussed in Section 5.2.1 and Section 5.2.2, the iterative least squares method and

RANSAC method will result in the rejection of several valid feature motion vectors.

Figure 5.8 shows the improper rejection that occurs when the iterative least squares

and RANSAC methods applied to feature motion vectors containing large ϕ rota-

tion of the UAV. Figure 5.8(b) shows that the iterative least squares method accepts

all of the feature motion vectors, and Figure 5.8(c) shows the set of feature motion

vectors selected by the RANSAC method that are grouped together in the bottom

half of the image where the highest correlation of feature motion vectors exists. Fig-

ure 5.9 shows the improper rejection that occurs when the iterative least squares and

RANSAC methods applied to feature motion vectors containing large θ rotation of

the UAV. Figure 5.9(b) shows that the iterative least squares accepts features near

the center of motion that was seen in Figure 5.7(b), and Figure 5.9(c) shows the set

of feature motion vectors selected by the RANSAC method that are near the center

of the image where the highest correlation of feature motion vectors exists.

58

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) True X and Y Translation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Estimated X and Y Translation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) True Z Translation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) Estimated Z Translation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(e) True ψ Rotation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(f) Estimated ψ Rotation

Figure 5.6: The feature motion vectors shown in the left hand column are the true
feature motion vectors after the specified three-dimensional transformation is performed
and they have been converted to two-dimensional feature motion vectors. The feature
motion vectors in the right hand column are the plotted two-dimensional feature motion
vectors from estimating the movement in the image in the left hand column using the
affine model. All of the estimated feature motion vectors match the true feature motion
vectors exactly to working numerical precision. (a) shows the feature motion vectors
from an x translation of 5 m and a y translation of 4 m at an altitude of 50 m; (b)
shows the correct estimate of translation as (0.1, 0.08); (c) shows the feature motion
vectors from a z translation of 5 at an altitude of 50 m; (d) shows the correct estimate
of a scalar factor of 0.91; (e) shows the feature motion vectors from a ψ rotation of 5o

at an altitude of 50 m; and (f) shows the correct estimation of a rotation of 5o.

59

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) True θ Rotation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Estimated θ Rotation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) True ϕ Rotation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) Estimated ϕ Rotation

Figure 5.7: The feature motion vectors shown in the left hand column are the true
feature motion vectors after the specified three-dimensional transformation is performed
and they have been converted to two-dimensional feature motion vectors. The feature
motion vectors in the right hand column are the plotted two-dimensional feature motion
vectors from estimating the movement in the image in the left hand column using the
affine model. (a) shows the feature motion vectors from a θ rotation of 5o at an altitude
of 50 m; (b) shows the incorrect estimate of a scaling of 0.92 and a translation of (0,
-0.08); (c) shows the feature motion vectors from a ϕ rotation of 5o at an altitude of 50
m; and (d) shows the incorrect estimation of a scaling of 1.2, a rotation of 4.98o, and a
translation of (0.1, -0.2).

60

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Feature Motion Vectors

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Iterative Least Squares

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) RANSAC

Figure 5.8: The incorrect rejection that occurs with large ϕ rotations of the UAV. (a)
shows the feature motion vectors from a ϕ rotation of 5o at an altitude of 50 m; (b)
shows that all feature motion vectors are selected by the iterative least squares method;
and (c) shows the incorrectly selected group of features selected at the bottom of the
image where the correlation is the strongest.

61

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Feature Motion Vectors

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Iterative Least Squares

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) RANSAC

Figure 5.9: The incorrect rejection that occurs with large θ rotations of the UAV. (a)
shows the feature motion vectors from a θ rotation of 5o at an altitude of 50 m; (b)
shows the group of features that are incorrectly selected by the iterative least squares
method in the upper left quadrant of the image near the center of the rotation seen in
Figure 5.7(b); and (c) shows the group of features selected by the RANSAC method,
which performs better than the iterative least squares method, but still incorrectly
rejects several features in the lower left hand corner.

62

Chapter 6

Video Display

Feature
Selection

Previous
Video
Frame

Feature
Tracking

Frame
Motion

Estimation

Video
Display

User
Target

Tracking

Target
Location
in Frame

Synchronized
Telemetry

Estimate
Target

Location

Target
Location
in World

Features
in Previous

Frame

Feature
Motion
Vectors

Frame-
to-Frame
Motion

Intended
Motion

Estimation

Intended
Motion

Current
Video
Frame

Figure 6.1: Video display first estimates the intended video motion and then renders
the stabilized video using the frame-to-frame motion and intended motion. The stabi-
lized video display then allows the operator to identify a target to be localized by the
localization process.

Displaying the video frames based on the estimated frame-to-frame motion

is the final step of the stabilization process. The frame-to-frame motion consists of

two components: intended video motion and unwanted jitter, which can be viewed as

the low-frequency intended video motion and the high-frequency deviation from the

intended motion. Ideally, only the high-frequency deviation from intended motion is

used to display the stabilized video, so the intended video motion must be isolated

and removed from the frame-to-frame motion. The motion used to display the video

will create undefined regions in the display and the presence of undefined regions

is worsened by error and lag in the estimation of intended video motion. The cost

63

functions presented by Chang, Lai, and Lu [8] solved the problems of error and lag

associated with estimating intended video motion in an intuitive manner but require

knowledge of the frame-to-frame motion of the entire video. However, during real-

time stabilization, the frame-to-frame motion of the entire video is not available,

so an online method of accurately estimating intended video motion with minimal

lag is necessary. Beuhler, Bosse, and McMillian [12] demonstrated that intended

video motion can be determined by estimating camera motion, but were only able to

estimate the camera motion in the camera frame and were unable to handle complex or

fast motion that is present in UAV video. Complex and fast motion could be handled

by estimating camera motion in the world frame, but this requires knowledge of the

scene and the current UAV state, which is unavailable during the stabilization process

without excessive delays and would require complex, inaccurate filtering techniques in

order to be properly used during stabilization. This thesis presents two novel solutions

for the online estimation of intended video motion: (1) the PID camera and (2) the

parabolic fit camera. Each of the four video motion parameters—scale, rotation, and

x and y translation—are treated as an independent state, and the intended motion

of each of these states is estimated and removed from the frame-to-frame motion to

render a stabilized video with minimal undefined regions.

6.1 PID Camera

The PID camera estimates intended video motion by treating the estimation

process as a control problem and applying the concepts of PID control. It treats the

path of the video as the desired path and adjusts the intended camera motion based

on the calculated effort from the PID controller. A momentum term is also applied to

the effort to remove high-frequency motion. This method yields promising results, but

the gains must be tuned to match the specific type of video being stabilized. A simple

proportional controller could be used to avoid the overshoot and instability problems

that are common with mistuned PID controllers, but this is simply a low-pass filter

and results in large undefined regions. To solve this problem a set of gains could be

gathered for each type of video experienced during standard UAV flight and then gain

64

scheduling could be performed using telemetry data or operator input. However, the

PID camera depends on the quality of the gain tuning and gain scheduling and has

the potential to make the video less watchable in non-ideal scenarios. Fortunately,

all of these problems can be adequately addressed with the parabolic fit camera.

6.2 Parabolic Fit Camera

The parabolic fit camera estimates intended video motion by adding a delay

to the display of received video frames. The added delay allows for the use of esti-

mates of frame-to-frame motion that occur in the future—relative to the currently

displayed frame—in conjunction with past estimates of frame-to-frame motion, when

performing the parabolic fit. The value of the parabola at the point of the current

frame is then used as the intended camera motion when displaying the video. This

creates a filter that rejects the high-frequency content of the video movement, min-

imizes undefined regions, and runs in real-time. Figure 6.2 shows an example of a

parabolic fit of data taken from stabilizing UAV video. The properties of the filter

can be controlled by the size of the window and the position of the current frame

in the window. The tuning of these parameters and their effects will be discussed

later in this section, but at the cost of a slight increase in video display latency, the

parabolic fit camera solves the problems apparent in the PID camera and is able to

be performed online, unlike previous solutions.

The parabolic fit is accomplished using the standard least squares method

initialized in the follow manner,

A =

x21 x1 1

x22 x2 1
...

x2n xn 1

 , (6.1)

x =
[
a b c

]T
, (6.2)

65

110 120 130 140 150 160

−35

−30

−25

−20

−15

−10

−5

Frame

P
ix

el
s

Figure 6.2: The solid, green line shows the x position of the video motion. The
dashed, blue line shows the parabolic fit of the data for frame 147. The red asterisk
shows the estimate of the x position of the intended camera motion for frame 147.

and

b =
[
y1 y2 · · · yn

]T
, (6.3)

where xi is the frame number and yi is the value of the state being estimated–scale,

rotation, x translation, or y translation. This will result in a, b and c being the

coefficients of the parabola,

y = ax2 + bx+ c, (6.4)

that fits the motion of the video over a window of size N . Since this is an overdeter-

mined system we can solve for x using the least squares solution,

x = (ATA)−1AT b. (6.5)

66

For the parabolic case, we can solve for x analytically:

ATA =

s4 s3 s2

s3 s2 s1

s2 s1 n

 (6.6)

where

s4 =
N∑
i=1

x4i , (6.7)

s3 =
N∑
i=1

x3i , (6.8)

s2 =
N∑
i=1

x2i , (6.9)

s1 =
N∑
i=1

xi, (6.10)

and

n =
N∑
i=1

1 = N. (6.11)

Inverting ATA yields

(ATA)−1 = adj(ATA)/det(ATA) (6.12)

where

adj(ATA) =

s2n− s21 −s3n+ s2s1 s3s1 − s22

−s3n+ s2s1 s4n− s22 −s4s1 + s3s2

s3s1 − s22 −s4s1 + s3s2 s4s2 − s23

 (6.13)

and

det(ATA) = s4s2n− s4s
2
1 − s23n+ 2s3s2s1 − s32. (6.14)

Before continuing with the remainder of the analytic derivation, an assumption

can be made that simplifies the required calculations. The points xi are centered

67

about the current point of interest, xc, yielding

x′i = xi − xc. (6.15)

So we are actually solving the equation

y(x) = a(x− xc)
2 + b(x− xc) + c, (6.16)

which implies that the filtered camera position is simply the value c. This means

that the filtered position can be retrieved from the inner product of the last row of

(ATA)−1AT and b. Also it is important to note that A is no longer dependent on the

position of the window in the data set xi, and the estimation process can be viewed

as the weighted sum of the data vector b or as a finite impulse response (FIR) filter.

As previously stated the weights are the last row of the pseudo-inverse of A and are

defined as

[
αx′21 + βx′1 + γ αx′22 + βx′2 + γ · · · αx′2n + βx′n + γ

]
(6.17)

where

α =
s3s1 − s22
det(ATA)

, (6.18)

β =
−s4s1 + s3s2
det(ATA),

(6.19)

and

γ =
s4s2 − s23
det(ATA)

. (6.20)

However, a more intuitive definition is possible. If we instead define the window

as a given number of points before the current point of interest, Nbefore, and a given

number of points after the current point of interest, Nafter where Nbefore+Nafter+1 =

N , then the values of x′i will be defined by the set [Nbefore, Nafter] for the estimate xc.

68

This means that s4, s3, s2 and s1 can be determined by

q4(n) =
n∑
i=1

x4i =
n(2n+ 1)(n+ 1)(3n2 + 3n− 1)

30
, (6.21)

q3(n) =
n∑
i=1

x3i =
n2(n+ 1)2

4
, (6.22)

q2(n) =
n∑
i=1

x2i =
n(n+ 1)(2n+ 1)

6
, (6.23)

q1(n) =
n∑
i=1

xi =
n(n+ 1)

2
, (6.24)

s4 = q4(Nbefore) + q4(Nafter), (6.25)

s3 = q3(Nbefore)− q3(Nafter), (6.26)

s2 = q2(Nbefore) + q2(Nafter), (6.27)

s1 = q1(Nbefore)− q1(Nafter), (6.28)

and the determinant of ATA can be redefined as

det(ATA) =
(N + 2)(N − 2)(N + 1)2(N − 1)2(N)3

2160
(6.29)

where N assumes the previously stated definition of

N = Nbefore +Nafter + 1. (6.30)

.

These new definitions can be used to calculate the values of α, β, and γ from

Equations 6.18, 6.19, and 6.20 and can then be used to derive a new set of weights

69

that depend only on Nbefore and Nafter,

α(−Nafter)
2 + β(Nafter) + γ

α(−Nafter + 1)2 + β(Nafter + 1) + γ
...

α(Nbefore − 1)2 + β(Nbefore − 1) + γ

α(Nbefore)
2 + β(Nbefore) + γ

T

. (6.31)

This creates a filter whose output does not lag the input, and that can be tuned

in an intuitive manner using the parameters Nbefore and Nafter. The effects of the

parameters Nbefore and Nafter on video display will be discussed in the next section.

6.3 Results

The video display is the final step of the stabilization process, so the results

of the effectiveness of the PID camera and parabolic fit camera and the ability of

techniques discussed in this and the previous three chapters to remove the unwanted

jitter from UAV video will be examined.

6.3.1 Intended Video Motion

As discussed earlier in this chapter, intended video motion must be estimated

and then removed from the frame-to-frame motion so that only unwanted jitter is

removed during the stabilization process. Figure 6.3 shows how the methods of esti-

mating intended video motion presented in this thesis perform on a segment of UAV

video. The PID camera with only proportional control has acceptable high-frequency

noise rejection properties shown in Figure 6.4, but also has a significant phase de-

lay that results in the lag seen in Figure 6.3. The full PID camera does not suffer

from the same problems with lag seen with the proportional only PID camera, but

has a significant phase delay in the low-frequency range, shown in Figure 6.5, which

results in large fluctuations in Figure 6.3. The parabolic fit camera has noise rejec-

tion properties similar to the proportional-only PID camera, but does not have the

lag problems seen in the proportional controller because of the ideal high-frequency

70

rejection and phase delay properties shown in Figure 6.6. This makes the parabolic

fit camera our choice for estimating intended video motion.

480 500 520 540 560 580 600
−600

−590

−580

−570

−560

−550

−540

−530

−520

−510

−500

Frames

y
tr

an
sl

at
io

n
in

 P
ix

el
s

Figure 6.3: The solid red line shows the y translation of a segment of UAV video, the
dash-dotted blue line shows the estimated intended video motion from the proportional
only PID camera, the dotted black line shows the estimated intended video motion
from the full PID camera, and the dashed green line shows the estimate intended video
motion from the parabolic fit camera.

The parabolic fit camera solves the problems with lag and high-frequency noise

rejection seen in the PID camera without requiring specific tuning for the type of

video being stabilized, but it does require tuning of the Nbefore and Nafter parameters

described in Section 6.2 to achieve optimal results. As was previously shown through

the derivation of Equation 6.17, the parabolic fit camera can be viewed as an FIR filter

and existing filter analysis techniques can be applied. The bode plot of the resulting

71

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

M
ag

ni
tu

de
 (

ab
s)

Bode Diagram of Low Pass Filter Camera

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

−150

−100

−50

0

50

100

150

P
ha

se
 (

de
g)

Frequency (rad/sec)

Figure 6.4: Bode plot of the proportional only PID camera, which shows the pass
band ending at 0.82 rad/sec and the stop band beginning 18.0 rad/sec, and phase delay
of at least 15o occurring between 0.46 and 82.0 rad/sec.

filter can be used to analyze the frequency rejection properties of the parabolic fit

camera and the phase delay is 0 in all cases. Figure 6.7 shows the average energy

between 1 and 100 rad/sec of the parabolic fit camera with the given values of Nbefore

and Nafter. The goal is to find the set of Nbefore and Nafter to minimize the energy

in the specified frequency range to receive the best high-frequency noise rejection

properties. Analysis of the data in Figure 6.7 shows that for a specified Nbefore there

is a Nafter that minimizes the energy in the specified frequency range. Therefore, the

parameters Nbefore and Nafter can be selected by determining the number of frames

to be used in the parabolic fit before the currently displayed frame, Nbefore, which is

72

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

M
ag

ni
tu

de
 (

ab
s)

Bode Diagram of PID Camera

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

−150

−100

−50

0

50

100

150

P
ha

se
 (

de
g)

Frequency (rad/sec)

Figure 6.5: Bode plot of the full PID camera, which shows the pass band ending at
0.00047 rad/sec and the stop band beginning 0.024 rad/sec, and phase delay of at least
15o occurring between 0.0003 and 0.039 rad/sec.

the resulting delay in displaying the video, and then selecting the appropriate value

of Nafter.

6.3.2 Unwanted Jitter Removal

The removal of unwanted jitter is the final goal of the stabilization process,

but due to the lack of truth data to verify the accuracy of the various methods, a

metric must be created. The metric most closely related to the visual appearance

of the stabilized video is the mean movement per feature per frame (MMPFPF) of

features that are tracked in successive frames. This metric quantifies the movement

of features that are continuously visible to the user and accurately represents the

73

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

M
ag

ni
tu

de
 (

ab
s)

Bode Diagram of Parabolic Fit Camera

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

−150

−100

−50

0

50

100

150

P
ha

se
 (

de
g)

Frequency (rad/sec)

Figure 6.6: Bode plot of the parabolic fit camera, which shows the pass band ending
at 2.25 rad/sec and the stop band beginning 19.3 rad/sec, and phase delay of at least
15o occurring at 0.21 rad/sec and beyond.

motion seen by the user. Both the translational and affine models, along with the

effects of applying iterative least squares and RANSAC noise rejection methods, will

now be examined.

Figure 6.8 shows the MMPFPF and Table 6.1 shows the statistics of the

MMPFPF before stabilization and after stabilization when the translational model

discussed in Section 5.2 and associated noise rejection methods discussed in Sec-

tion 5.2.1 and Section 5.2.2 are used to estimate frame-to-frame motion. Figure 6.8(a)

shows a marked reduction in the visible motion of the video, but, as described in Sec-

tion 5.2, the translational model is not fully capable of representing the motion seen in

UAV video. As seen in Figure 5.3, the iterative least squares method with the trans-

74

0
2

4
6

8
10

0 10 20 30 40 50 60

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
before

N
after

A
ve

ra
ge

 e
ne

rg
y

be
tw

ee
n

1
an

d
10

0
ra

d/
se

c

Figure 6.7: The average energy between 1 and 100 rad/sec of the parabolic fit camera
with the given values of Nbefore and Nafter.

lational model selects the middle of the region and has no significant effect on the

estimated frame-to-frame motion. Figure 6.8(e) shows the MMPFPF when RANSAC

is used with the translational model. As shown in Figure 5.4, the RANSAC method

improperly selects a group of feature motion vectors with high correlation and neg-

atively effects the frame-to-frame-motion estimate and results in less jitter removal

than when the standard translational model is used with no noise rejection.

The standard affine model is capable of representing motion in UAV video that

is not possible with the translational model. Figure 6.8(b) shows the MMPFPF for

a sequence of UAV video and Table 6.2 shows the statistics of the MMPFPF when

the affine model discussed in Section 5.4 is used with the noise rejection methods

discussed in Section 5.4.2 and Section 5.4.3 are used. Figure 6.8(b) shows better jit-

75

400 410 420 430 440 450 460 470 480 490 500
0

5

10

15

Frames

P
ix

el
s

(a) Translational Model

400 410 420 430 440 450 460 470 480 490 500
0

5

10

15

Frames

P
ix

el
s

(b) Affine Model

400 410 420 430 440 450 460 470 480 490 500
0

5

10

15

Frames

P
ix

el
s

(c) Translational Model with Iterative Least
Squares

400 410 420 430 440 450 460 470 480 490 500
0

5

10

15

Frames

P
ix

el
s

(d) Affine Model with Iterative Least Squares

400 410 420 430 440 450 460 470 480 490 500
0

5

10

15

Frames

P
ix

el
s

(e) Translational Model with RANSAC

400 410 420 430 440 450 460 470 480 490 500
0

5

10

15

Frames

P
ix

el
s

(f) Affine Model with RANSAC

Figure 6.8: The dashed red line is the mean movement per feature per frame before
stabilization and the solid blue line is the mean movement per features per frame after
stabilization using the specified motion model. All frame-to-frame motion estimates are
calculated using the same feature motion vectors and therefore share the same mean
movement per feature per frame before stabilization.

76

Table 6.1: The mean and standard deviation of the mean movement per feature per
frame (MMPFPF) of the results shown in Figure 6.8 when the translational model is
used.

Method µ of MMPFPF σ of MMPFPF
No Stabilization 6.66 2.49
Translational Model 2.56 0.58
Translational Model with ILS 2.51 0.57
Translational Model with RANSAC 2.62 0.91

ter removal than all of the methods based on the translational mode. Figure 6.8(d)

shows the MMPFPF when iterative least squares is applied to the affine model and

further improves the jitter removal properties. The use of iterative least squares re-

sults in an almost 10% improvement over the jitter removal when the standard affine

model is used and does not result the improper biasing that can occur when a noise

rejection technique is used with the translational model. Figure 6.8(f) shows the

results achieved when the RANSAC method is applied with the affine model, which

also improves on the standard affine model. From the properties of iterative least

squares and RANSAC discussed in Section 5.3, it would seem that RANSAC should

significantly outperform iterative least squares during the frame motion estimation

process, but the large number of tracked features and relatively low percentage of

outliers results in equivalent results from the RANSAC and iterative least squares

methods with the affine model. These results combined with the lower lower compu-

tational cost of less than 1 millisecond for the affine model with iterative least squares

noise rejection, compared to 4 milliseconds for the affine model with RANSAC noise

rejection, make the affine model with iterative least squares our choice for use in sta-

bilization of UAV video. However, it should be noted that in cases where the optical

flow feature tracking method is used, the benefits of the correlation based noise rejec-

tion of the RANSAC method would outweigh the added computational cost, because

of the tendency of the optical flow feature tracking method to generate invalid feature

motion vectors in areas of the image with high noise levels.

77

Table 6.2: The mean and standard deviation of the mean movement per feature per
frame (MMPFPF) of the results shown in Figure 6.8 when the affine model is used.

Method µ of MMPFPF σ of MMPFPF
No Stabilization 6.66 2.49
Affine Model 1.97 0.5
Affine Model with Iterative Least Squares 1.81 0.42
Affine Model with RANSAC 1.82 0.41

78

Chapter 7

Target Localization

Feature
Selection

Previous
Video
Frame

Feature
Tracking

Frame
Motion

Estimation

Video
Display

User
Target

Tracking

Target
Location
in Frame

Synchronized
Telemetry

Estimate
Target

Location

Target
Location
in World

Features
in Previous

Frame

Feature
Motion
Vectors

Frame-
to-Frame
Motion

Intended
Motion

Estimation

Intended
Motion

Current
Video
Frame

Figure 7.1: Localization is performed using the input received from operator inter-
action with the stabilized video, which must be transformed from screen coordinates
to image coordinates. Each image coordinate is then transformed into a ray in world
coordinates on which the identified target lies. A series of these rays is then used to
estimate the location of the target in world coordinates.

The work of Ratches, Walters, Buser, and Guenther [23] has shown that com-

pletely autonomous target recognition is not possible in the foreseeable future. How-

ever, stabilized video allows the operator to more easily identify objects. Using the

operator input and telemetry data, the ground station software performs the neces-

sary transformations to generate a ray on which the target lies and estimates the world

location of the target using a series of these rays. This chapter presents three methods

of operator interaction and discusses the necessary transformations to convert from

screen coordinates to an estimate of GPS location.

79

7.1 Operator Input

Three methods of operator input are explored in this section: (1) hold and

follow, (2) selection area, and (3) click-to-follow.

7.1.1 Hold and Follow

The hold and follow method involves the operator continually identifying the

target by holding the mouse button down while following the target in the video. The

operator is continuously making adjustments to compensate for the movement of the

object that does not match the movement of the frame. Due to the continuous use

of the human visual system, this method is the most accurate, but requires the most

operator involvement and demands all of the operator’s attention.

7.1.2 Selection Area

The selection area method involves the operator selecting a box that encloses

the target. This method allows for the use of the feature motion vectors in the

selected area in order to achieve an accurate estimate of target motion. Unfortunately,

this method requires the operator to perform a target identification process that is

typically both difficult and frustrating. Also, methods for the user to account for

error in the tracking or change in size and orientation of the target are complicated

and un-intuitive at best. This method does allow for the use of iterative least squares

or RANSAC to achieve a more accurate estimate of the target’s motion, but the

challenges associated with operator interaction outweigh the added benefits.

7.1.3 Click-to-Follow

The click-to-follow method requires the operator to click on the target and

then the estimated video motion is used to follow the target on the screen. The

standard version of the click-to-follow method assumes that the motion of the object

will match that of the frame. Unfortunately, this assumption is not always true. To

account for drift in the tracking, the operator can re-click on the target to adjust the

estimate. This method can be enhanced through the use of feature motion vectors

80

near the identified target by assuming that the feature motion vectors in the area close

to the target will be predominantly translational motion. This assumption holds true

more often than the assumption of the first case and the estimate can be further

enhanced using the RANSAC rejection method previously discussed in Section 5.2.2.

The resulting motion estimate is not as accurate as the motion estimate that could

be possible with a functional version of the selection area method, but the simpler

identification process and decrease in demand on the user’s attention outweighs the

small decrease in tracking accuracy. The effectiveness of all three methods of operator

interaction will be examined in Section 7.5.

7.2 Screen to Image Transformation

In order to estimate the GPS location of the identified target, the received

operator input must be converted from screen coordinates to image coordinates. The

initial transformation from screen coordinates to image coordinates is done by the

video handling pipeline and is defined by T Is as

T Is =

sR 0 0

0 sR 0

0 0 1

sI 0 tx

0 sI ty

0 0 1

 =

sI 0 sRtx

0 sI sRty

0 0 1

 , (7.1)

where sR is the scale factor between the screen size in pixels and the size of the

rendering context, sI is the scale factor between the rendering context and the ren-

dered image size and tx and ty are the position of the image in the rendering context.

The screen, rendering context, and image are all referenced from the upper left-hand

corner and so no transformation of the axes is necessary. The resulting coordinates

must be transformed to compensate for the stabilization. This is done by finding the

transformation between intended video motion and the frame-to-frame motion. As

discussed in Chapter 5, both of these motions are two-dimensional transformations

involving scaling, rotation, and x and y translation. The transformation between the

81

intended video motion, TI , and the measured video motion, TM , can be found by

TMI = TMTI
−1. (7.2)

This can be shown by assuming that

xI = TIx (7.3)

and

xM = TMx. (7.4)

The necessary operations are then performed on Equation 7.3

x = TI
−1xI , (7.5)

to substitute x into Equation 7.4 so that xM can be defined as

xM = TMTI
−1xI . (7.6)

Therefore, TMTI
−1 transforms points from TI to TM and since TI is removed from

TM during the display process, TI can be treated as the origin and TMI is the trans-

formation used to map the received operator input from the image coordinate frame

to the stabilized coordinate frame. After this transformation the operator input can

be used to find the ray in world coordinates on which the target lies.

7.3 Image to World Ray Transformation

The transformations used to generate a world ray from the operator input

image coordinates are based on the transformations derived in [24]. The ray consists

of two components: (1) the origin of the ray and (2) the vector defining the direction

of the ray. The origin is the current location of the camera in the world, which is

found using four transformations: (1) inertial frame to vehicle frame, T vI , (2) vehicle

82

frame to body frame, T bv , (3) body frame to gimbal frame, T gb , and (4) gimbal frame

to camera frame T cg . The definitions of these rotations will now be given.

The first rotation is from inertial to vehicle frame and is defined as

T vI =

1 0 0 xUAV

0 1 0 yUAV

0 0 1 −zUAV

0 0 0 1

 , (7.7)

where xUAV is the north component of UAV GPS location, yUAV is the east component

of UAV GPS location, and zUAV is the altitude component of the UAV GPS location.

The rotations between vehicle and body frame must then be performed and are defined

as

T bv = RϕRθRψ, (7.8)

where

Rϕ =

1 0 0 0

0 cosϕ sinϕ 0

0 − sinϕ cosϕ 0

0 0 0 1

 , (7.9)

Rθ

cos θ 0 − sin θ 0

0 1 0 0

sin θ 0 cos θ 0

0 0 0 1

 , (7.10)

Rψ =

cosψ sinψ 0 0

− sinψ cosψ 0 0

0 0 1 0

0 0 0 1

 , (7.11)

83

and ϕ, θ, and ψ are the roll, pitch and yaw of the UAV. The transformation from

body to gimbal frame must then be performed and is defined as

T gb = Rθ,gimRψ,gimTr
g
b , (7.12)

where

Rθ,gim

cos θgim 0 − sin θgim 0

0 1 0 0

sin θgim 0 cos θgim 0

0 0 0 1

 , (7.13)

Rψ,gim =

cosψgim sinψgim 0 0

− sinψgim cosψgim 0 0

0 0 1 0

0 0 0 1

 , (7.14)

Trgb =

1 0 0 xgim

0 1 0 ygim

0 0 1 zgim

0 0 0 1

 , (7.15)

and θgim is the pitch of the gimbal relative to the body frame, ψgim is the yaw of the

gimbal relative to the camera frame, and xgim, ygim, and zgim are the offset of the

gimbal from the center of mass of the UAV. The offset of the camera in the gimbal

must also be accounted for and is defined as

T cg =

0 0 −1 xcam

0 1 0 ycam

1 0 0 zcam

0 0 0 1

 , (7.16)

where xcam, ycam, and zcam are the offset of the camera from the center of mass of

the gimbal. T cg also flips the x and z axis to allow for the more intuitive definition

84

of x and y being the coordinates of the image and z being the depth into the image.

The translational component of the resulting transformation matrix is the current

location of the camera in the world and can be easily extracted for use as the origin

of the ray during localization.

Obtaining the direction of the ray requires knowledge of the camera being used

to capture the video. The Camera Calibration Toolbox [35] allows for obtaining the

values needed to estimate the ray direction. The camera calibration matrix is defined

as

C =

0 fx ox 0

−fy 0 oy 0

0 0 1 0

0 0 0 1

 , (7.17)

where fx and fy are the focal length of the camera and ox and oy are the optical

center of the camera in pixels. More complicated camera calibration matrices can be

used to account for skewing and tangential distortions, but these effects are negligible

and can be ignored if a narrow angle lens is used. The direction of the ray can now

be defined as

Vray = T vc Cu (7.18)

where

T vc = (T bvT
g
b T

c
g)

−1, (7.19)

u =
[
ux uy 1 1

]T
, (7.20)

and ux and uy are the image coordinates of the operator input. This results in a ray

in world coordinates on which the target lies. A series of these rays can now be used

to estimate the GPS location of the target.

7.4 World Position from World Rays

Estimating three-dimensional locations from a single two-dimensional image

is impossible without previous knowledge of the scene. However, a series of the rays

extracted during the previous step can be used to estimate the three-dimensional

85

position of the target. A least squares solution could be used to estimate the three-

dimensional location from the rays, but the significant error in the altitude estimate

of current state estimation techniques employed on the UAV makes this solution

impractical. Instead the individual rays are intersected with terrain data of the area,

or with the altitude of the ground station if no terrain data is available, and the

individual estimates are averaged to determine the GPS location of the target. This

method has been shown to yield accurate results [24] and future improvements to

altitude estimation could further improve these results by allowing for the use of

more sophisticated filtering techniques.

7.5 Results

The benefits of synchronization were shown in Section 2.4 and the effectiveness

of the presented localization techniques have been thoroughly covered in [24], so this

section will discuss the effectiveness of the hold and follow and click-to-follow target

identification and tracking methods. For the analysis, truth data is generated by

manual identification of a target in a UAV video and then the estimated position of

the target using each of the presented techniques is shown.

7.5.1 Hold and Follow

The hold and follow tracking method has the advantage of the feedback of the

human visual system, but this advantage places an added burden on the operator.

This tracking method requires the operator’s full attention throughout the entire

localization process, as can be seen in Figure 7.2. Tracking small objects, like the

one used in Figure 7.2, can be very difficult to correctly follow through the video and

this results in the largest mean error of the three tracking methods. This method is

best suited for tracking large targets, and is the ideal technique for use during target

prosecution missions when few features are available near the center of the feature or

when the motion of the target does not match the motion of the video.

86

50 100 150 200 250 300 350
0

100

200

300

400

500

600

Frames

P
ix

el
s

(a) x Component of Target Location

50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

400

450

Frames

P
ix

el
s

(b) y Component of Target Location

Figure 7.2: The solid red line is the manual identified location of the target in the
UAV video and the dashed blue line is the location of the target identified by the
operator in real-time. The green bar at the base of the figure shows when there was
user interaction. The mean error of the hold and follow target identification method
with this video is (7.78, 10.3).

87

7.5.2 Click-to-Follow

The first version of the click-to-follow tracking method relies on the initial

identification of the object by the operator which is then updated using the estimate

of the frame-to-frame motion. The user can then account for drift in the tracking by

re-clicking on the target in the image. Figure 7.3 shows the tracking achieved by the

click-to-follow tracking method, and shows a marked improvement in mean error and

dramatic reduction in required operator interaction compared to the hold and follow

tracking method. The click-to-follow tracking method works well for stopped and

slow moving targets, but fails to properly handle moving targets that are traveling at

a high velocity.

7.5.3 Click-to-Follow with Feature Movement

The second version of the click-to-follow method is designed to allow for track-

ing of moving targets that are traveling at a high velocity and reduce the tracking

errors caused by drift. Rather than rely on the frame-to-frame motion, the sec-

ond version of the click-to-follow method uses the feature motion vectors near the

identified target to update the location of the target in the image. This reduces the

drift caused by the errors introduced from estimating the video motion using an affine

model. Since the exact size and shape of the target is not known, an arbitrary rectan-

gle is used to select the features used in the estimate. This means that a valid motion

cannot be determined from the feature motion vectors and the frame-to-frame motion

must be used. Figure 7.4 shows the improved tracking achieved by the click-to-follow

with feature movement tracking method. It should be noted that the increase in

tracking comes at the cost of a slight increase in required operator interaction and in

many cases yields identical results to the standard click-to-follow tracking method.

88

50 100 150 200 250 300 350
0

100

200

300

400

500

600

Frames

P
ix

el
s

(a) x Component of Target Location

50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

400

450

Frames

P
ix

el
s

(b) y Component of Target Location

Figure 7.3: The solid red line is the manual identified location of the target in the
UAV video and the dashed blue line is the location of the target identified by the
operator in real-time using the click-to-follow target identification method. The green
bar at the base of the figure shows when there was user interaction. The mean error of
the click-to-follow target identification method with this video is (5.66, 3.97).

89

50 100 150 200 250 300 350
0

100

200

300

400

500

600

Frames

P
ix

el
s

(a) x Component of Target Location

50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

400

450

Frames

P
ix

el
s

(b) y Component of Target Location

Figure 7.4: The solid red line is the manual identified location of the target in the UAV
video and the dashed blue line is the location of the target identified by the operator in
real-time using the click-to-follow with feature movement target identification method.
The green bar at the base of the figure shows when there was user interaction. The
mean error of the click-to-follow with feature movement target identification method
with this video is (4.22, 4.47).

90

Chapter 8

Conclusions and Future Work

8.1 Conclusions

The first contribution of this thesis is a development platform that is well suited

to expanding the uses of UAV technology while making use of multi-core and simul-

taneous multi-threading architectures to enable real-time processing of UAV video.

This thesis also outlines two new methods for estimating intended video motion in

real-time and demonstrates their effectiveness in stabilizing UAV video. Enhance-

ments to existing feature tracking techniques were developed to allow for the use of

these techniques during the stabilization of UAV video. Additional methods for han-

dling noise throughout the stabilization process were also introduced. All of these

enhancements have been shown to enable the stabilization of UAV video in real-time

on a mobile ground station.

The resulting stabilization enables the extension of previous localization work

[24] and allows the user to identify targets in the video until automatic target recogni-

tion techniques become more mature. In addition, the novel Hold-and-Follow object

tracking method allows for high-level control of the UAV based on the feedback of the

human visual system. However, the most important contribution of this thesis is the

demonstration that small UAVs are capable of handling complex, real-time computer

vision tasks and that the small UAV platform can meet the needs of surveillance and

reconnaissance teams in both capability and mobility.

8.2 Future Work

The development platform presented in this thesis enables the development

and application of a wide array of computer vision techniques with a small UAV

91

platform. These applications include vision based attitude estimation and vision

based obstacle avoidance, to name only two of the many possibilities. Also, the feature

tracking presented in this thesis could be used as an advanced optical flow sensor to

enhance existing attitude estimation techniques and could be used to estimate the

world position of obstacles in the video through the integrated use of feature tracking

and telemetry data.

As with the work of Cardoze, Collins, and Arkin [11] and Matsushita, Ofek,

Tang, and Shum [16], the stabilization could be used to detect moving targets in the

video. The application of RANSAC rejection techniques presented in this thesis could

be further extended to extract the feature motion vectors associated with the moving

objects in the video in order to perform video stabilization and object tracking, further

reducing the reliance on human input. Active contours [36] and CONDENSATION

[37] present the possibility of improving the target tracking performed in this thesis,

but requires an initially identified model that is difficult for the operator to create

using a real-time video stream.

The use of a full three-dimensional motion model could more accurately de-

scribe the motion seen in UAV video, but requires a paradigm in the display of UAV

video that does not rely on the two-dimensional mosaicing that has been used by this

thesis and all previous work. Estimating video motion using a full three-dimensional

model is inhibited by the estimation lag in existing intended motion estimation tech-

niques. The properties of the presented parabolic fit camera present the possibility of

greatly simplifying the display of video using a three-dimensional model and removes

the problems associated with the lag introduced by other estimation techniques. Inte-

gration of telemetry data into the process of estimating intended video motion would

improve the accuracy of the estimation of intended video motion and would also al-

low for reliable estimation of three-dimensional intended video motion with Euclidean

distance, but would require a filtering technique to account for the transmission de-

lay and to estimate the UAV’s position between received telemetry samples. Kalman

filtering techniques are capable of solving the delay and interpolation problems asso-

92

ciated with telemetry data, and present the possibility of significant enhancement to

the estimation of intended video motion.

93

94

Bibliography

[1] D. M. Gaskill, “Techniques for synchronizing thermal array chart recorders to
video,” in International Telemetering Conference, vol. 28, Astro-Med, Inc. San
Diego, CA: International Foundation for Telemetering, October 1992, pp. 61–64.
4

[2] S. Zeng, J. R. Powers, and H. Hsiao, “A new video-synchronized multichan-
nel biomedical data acquisition system,” in IEEE Transactions on Biomedical
Engineering, vol. 47, no. 3, Gainesville, FL, March 2000, pp. 412–419. 4

[3] D. P. Anderson and B. W. Stump, “Synchronization of video with seismic
and acoustic data using gps time signals,” Internet, 2003. [Online]. Available:
http://www.geology.smu.edu/∼dpa-www/gps video/index.html 4, 5

[4] J. L. Rieger, “Encoding of telemetry data in a standard video channel,” in Inter-
national Telemetering Conference, Instrument Society of America. Los Angeles,
CA: International Foundation for Telemetering, October 1977, pp. 151–155. 5

[5] J.-G. Zhang, “Using advanced optical multiple-access techniques in high-speed
avionic local area networks for future aircraft applications. Part II: Optical time-
division multiple-access networks,” in Instrument Society of America Transac-
tions, vol. 36, no. 4, Asian Institute of Technology. Instrument Society of
America, 1997, pp. 321–338. 5

[6] J. Walrod, “Using the asynchronous transfer mode in Navy communications,” in
Sea Technology, vol. 38, no. 5. Compass Publications Inc, May 1997, p. 6. 5

[7] K. Ratakonda, “Real-time digital video stabilization for multi-media applica-
tions,” in ISCAS ’98: Proceedings of the 1998 IEEE International Symposium
on Circuits and Systems, vol. 4, IEEE. Monterey, CA, USA: IEEE, May 1998,
pp. 69–72. 7, 39

[8] H.-C. Chang, S.-H. Lai, and K.-R. Lu, “A robust and efficient video stabilziation
algorithm,” in ICME ’04: International Conference on Multitmedia and Expo,
2004, vol. 1, IEEE. IEEE, June 2004, pp. 29–32. 7, 30, 40, 49, 64

[9] G. V. der Wal, M. Hansen, and M. Piacentino, “The arcadia vision processor,” in
CAMP ’00: Proceedings of the Fifth IEEE International Workshop on Computer
Architectures for Machine Perception. Washington, DC, USA: IEEE Computer
Society, 2000. 7

95

http://www.geology.smu.edu/~dpa-www/gps_video/index.html

[10] S. Darmanjian, A. A. Arroyo, and E. M. Schwartz, “An alternative real-time
image processing tool,” in Florida Conference on Recent Advances in Robotics,
2003. 8

[11] D. E. Cardoze, T. R. Collins, and R. C. Arkin, “Visual tracking technologies for
an autonomous rotorcraft,” Image and Vision Computing Journal, 2005. 8, 10,
92

[12] C. Buehler, M. Bosse, and L. McMillian, “Non-metric image-based rendering for
video stabilization,” in CVPR 2001: Computer Vision and Pattern Recognition,
2001, vol. 2, 2001, pp. 609–614. 8, 64

[13] J. S. Jin, Z. Zhu, and G. Xu, “Digital video sequence stabilization based on 2.5D
motion estimation and inertial motion filtering,” Real-Time Imaging, vol. 7, no. 4,
pp. 357–365, August 2001. 8

[14] Z. Duric and A. Rosenfeld, “Shooting a smooth video with a shaky camera,”
Machine Vision and Applications, vol. 13, no. 5-6, pp. 303–313, 2002. 9

[15] A. Litvin, J. Konrad, and W. C. Karl, “Probabilistic video stabilization us-
ing Kalman filtering and mosaicking,” in IS&T/SPIE Symposium on Electronic
Imaging, Image and Video Communications and Proc., IS&T/SPIE. Santa
Clara, CA, USA: IS&T/SPIE, January 2003. 9

[16] Y. Matsushita, E. Ofek, X. Tang, and H.-Y. Shum, “Full-frame video stabiliza-
tion,” in CVPR ’05: Proceedings of the 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05) - Volume 1. Wash-
ington, DC, USA: IEEE Computer Society, 2005, pp. 50–57. 9, 92

[17] A. Mahalanobis, B. V. K. V. Kumar, and S. R. F. Sims, “Distance-classifier cor-
relation filters for multiclass target recognition,” in Optical Society of America,
vol. 35, no. 17, June 1996, pp. 3127–3133. 10

[18] J. Villasenor, B. Schoner, K.-N. Chia, C. Zapata, H. J. Kim, C. Jones, S. Lans-
ing, and B. Mangione-Smith, “Configurable computing solutions for automatic
target recognition,” in Proceedings of the IEEE Symposium of FPGAs for Cus-
tom Computing Machines. Napa, CA, USA: Electrical Engineering Department,
University of California, Los Angeles, April 1996, pp. 70–79. 10

[19] C. F. Olson and D. P. Huttenlocher, “Automatic target recognition by matching
oriented edge pixels,” in IEEE Transactions on Image Processing, vol. 6, no. 1.
Department of Computer Science, Cornell University, Ithaca, NY, January 1997,
pp. 103–113. 10

[20] A. J. Lipton, H. Fujiyoshi, and R. S. Patil, “Moving target classification and
tracking from real-time video,” in WACV ’98: Workshop on Applications of
Computer Vision, 1998. Washington, DC, USA: IEEE Computer Society, Oc-
tober 1998, pp. 8–14. 10

96

[21] Y. Won, P. D. Gader, and P. C. Coffield, “Morphological shared-weight networks
with applications to automatic target recognition,” in IEEE Transactions of Neu-
ral Networks, vol. 8, no. 5. Department of Computer Engineering & Computer
Science, Missouri University, Columbia, MO, September 1997, pp. 1195–1203.
10

[22] M. W. Roth, “Survey of neural network technology for automatic target recogni-
tion,” in IEEE Transactions on Neural Networks, vol. 1, no. 1, Applied Physics
Lab of Johns Hopkins University. IEEE Computational Intelligence Society,
March 1990, pp. 28–43. 10

[23] J. A. Ratches, C. P. Walters, R. G. Buser, and B. D. Guenther, “Aided and
automatic target recognition based upon sensory inputs from image forming sys-
tems,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19,
no. 9, pp. 1004–1019, September 1997. 10, 79

[24] J. Redding, “Vision-based target localization from a small fixed-wing unmanned
air vehicle,” Master’s thesis, Brigham Young University, August 2005. 10, 19,
22, 82, 86, 91

[25] K. R. Castleman, Digital Image Processing. Upper Saddle River, NJ, USA:
Prentice Hall Press, 1996. 28

[26] J. Canny, “A computational approach to edge detection,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679–698, November
1986. 29

[27] W. Förstner, “A framework for low level feature extraction,” in ECCV ’94:
Proceedings of the third European conference on Computer Vision (Vol. II). Se-
caucus, NJ, USA: Springer-Verlag New York, Inc., 1994, pp. 383–394. 29

[28] C. G. Harris and M. Stephens, “A combined corner and edge detector,” in 4th
Alvey Vision Conference, 1988, pp. 147–151. 29

[29] P. Saeedi, P. D. Lawrence, and D. G. Lowe, “Vision-based 3D trajectory tracking
for unknown environments,” in IEEE Transactions on Robotics and Automation,
February 2006, vol. 22, no. 1. IEEE, February 2006, pp. 119–136. 29

[30] B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Massachusetts
Institute of Technology, Cambridge, MA, USA, Tech. Rep., 1980. 40

[31] B. D. Lucas and T. Kanade, “An iterative image registration technique with an
application to stereo vision,” in Proceedings of the 1981 DARPA Image Under-
standing Workshop, April 1981, pp. 121–130. 40

[32] J.-Y. Bouguet, “Pyramidal implementation of the Lucas Kanade feature tracker,”
2000. 40

97

[33] Å. Björck, Numerical Methods for Least Squares Problems. Philadelphia, PA:
SIAM, 1996. 49

[34] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography,”
Communications of the ACM, vol. 24, no. 6, pp. 381–395, June 1981. 50

[35] J.-Y. Bouguet, “Camera Calibration Toolbox for MATLAB,” 2004. 85

[36] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active countor models,”
International Journal of Computer Vision, vol. 1, no. 4, pp. 321–331, January
1988. 92

[37] M. Isard and A. Blake, “Condensation-conditional density propagation for visual
tracking,” International Journal of Computer Vision, vol. 29, no. 1, pp. 5–28,
August 1998. 92

98

	Brigham Young University
	BYU ScholarsArchive
	2006-07-27

	Video Stabilization and Target Localization Using Feature Tracking with Video from Small UAVs
	David Linn Johansen
	BYU ScholarsArchive Citation

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Problem Description
	1.3 Related Work
	1.3.1 Video and Telemetry Synchronization
	1.3.2 Video Stabilization
	1.3.3 Target Identification and Localization

	1.4 Contributions
	1.5 Outline

	2 Development Platform
	2.1 Timestamps
	2.2 Video Handling Pipeline
	2.3 FrameProcessor
	2.4 Synchronization Results
	2.5 Video Stabilization and Target Localization Architecture
	2.5.1 Video Stabilization
	2.5.2 Target Localization

	3 Feature Selection
	3.1 What Makes a Good Feature?
	3.1.1 Identifiable and Unique
	3.1.2 Exists from Frame to Frame
	3.1.3 Provides New Information

	3.2 Feature Rating
	3.2.1 Gradient Difference
	3.2.2 Canny Edge Detector
	3.2.3 Forstner Interest Operator
	3.2.4 Harris Corner Detector
	3.2.5 Binary Corner Detector

	3.3 Feature Selection
	3.3.1 Region Based Feature Selection
	3.3.2 Minimum Separation Feature Selection
	3.3.3 Grid Based Feature Selection

	3.4 Results
	3.4.1 Feature Rating
	3.4.2 Feature Selection Method

	4 Feature Tracking
	4.1 Template Matching
	4.2 Profile Matching
	4.3 Optical Flow
	4.4 Results
	4.4.1 Low Noise Levels
	4.4.2 High Noise Levels
	4.4.3 Pyramidal Template Matching

	5 Frame Motion Estimation
	5.1 Frame Motion Models
	5.2 Translational Model
	5.2.1 Iterative Least Squares
	5.2.2 RANSAC

	5.3 Properties of Iterative Least Squares and RANSAC
	5.4 Affine Model
	5.4.1 Least Squares
	5.4.2 Iterative Least Squares
	5.4.3 RANSAC

	5.5 Results
	5.5.1 Affine Model with Three-Dimensional Motion
	5.5.2 Iterative Least Squares and RANSAC

	6 Video Display
	6.1 PID Camera
	6.2 Parabolic Fit Camera
	6.3 Results
	6.3.1 Intended Video Motion
	6.3.2 Unwanted Jitter Removal

	7 Target Localization
	7.1 Operator Input
	7.1.1 Hold and Follow
	7.1.2 Selection Area
	7.1.3 Click-to-Follow

	7.2 Screen to Image Transformation
	7.3 Image to World Ray Transformation
	7.4 World Position from World Rays
	7.5 Results
	7.5.1 Hold and Follow
	7.5.2 Click-to-Follow
	7.5.3 Click-to-Follow with Feature Movement

	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work

	Bibliography

