Hikorocodium Endo is Not an Alga but an Inozoid Sponge

J. Keith Rigby
Baba Senowbari-Daryan

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

Part of the Geology Commons

BYU ScholarsArchive Citation
Rigby, J. Keith and Senowbari-Daryan, Baba, "Hikorocodium Endo is Not an Alga but an Inozoid Sponge" (2007). Faculty Publications. 931.
https://scholarsarchive.byu.edu/facpub/931

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Hikorocodium Endo is not an alga but an inozoid sponge

Baba Senowbari-Daryan and J. Keith Rigby

Abstract: The genus Hikorocodium, with the type species Hikorocodium elegantae from the Permian of Japan, was described originally as a codiacean alga by Endo. It is not a codiacean alga but an inozoid sponge of the family Preperonidellidae. Several fossils described later by Endo and other authors as H. elegantae should be assigned to different inozoid sponge taxa. Specimens of H. fertiliz, described by Endo from the Jurassic of Japan, are also sponge fragments. The taxonomic positions of H. transversum Endo and H. kuramotoi Nakamura, as sponges or algae, remain uncertain.

Introduction

Endo (1951) described a calcareous fossil from the Kitakami Mountains of northeastern Japan that he named Hikorocodium, and assigned it to the codiacean algae. He and other authors later described and illustrated the same or similar fossils as Hikorocodium several times, based on specimens from Japan, Europe, and northern Africa (see synonymy under “Systematic paleontology” later in the text). He later added two more species, H. transversum Endo (1957) and H. fertiliz Endo (1961b), to Hikorocodium. An additional species was described as H. kuramotoi by Nakamura (1994) from the Carboniferous of Japan. H. kuramotoi has also been reported from the Carboniferous of the Cantabrian Mountains, Spain (Mamet and Villa 2004).

Codiaceans are a nodular or blade-shaped group of calcareous algae with aragonitic skeletal mineralogy. The thallus in this group consists of a central zone (medula with siphons arranged parallel to the axis) and a peripheral zone (cortex with smaller branched uricles arranged perpendicular or oblique to the axis or to the medullar zone). Uricles of the cortex zone are clearly branched tubes or pores. However, the internal structure of Hikorocodium has a reticulate structure and not “atubular pores in the peripheral part” as noted by Endo (1951, p. 126; 1961a, p. 29). The spongelike character of Hikorocodium was also evident to him. He observed that “The central stem may be composed of a sponge-like mass of very fine rounded thread-like filaments.” (Endo 1951, p. 126). The totally different internal structures of Hikorocodium and codiacean algae may be the reason that neither Bassoulet et al. (1983) nor Granier and Grgasovic (2000) listed Hikorocodium among the codiacean or dasycladacean algae. However, skeletal characteristics of the type species, H. elegantae Endo, are typical of inozoid sponges. Kochansky and Herak (1960), H.W. Flügel (1963), and Vachard (in Termier et al. 1977) discussed the systematic position of Hikorocodium. They listed it as under “problematica” or “incertae sedis”.

Heterogeneity of fossils known as Hikorocodium

Endo (1951) described H. elegantae in detail, but unfortunately he did not give a summarized diagnosis nor designate a specimen as holotype for the genus. He summarized a diagnosis for Hikorocodium (Endo 1961a, p. 29), “Thallus cylindrical rather straight or somewhat undulating. It is composed of a poorly organized, pith-like, central stem and may be composed of a sponge-like mass of very fine rounded thread-like filaments. The tubular pores are given off from the central stem at about right angles or slightly ascending toward one end of the thallus.” (see also Vachard, in Termier et al. 1977, p. 24).

The “type material” of H. elegantae described by Endo includes three specimens he illustrated (Endo 1951, pl. 10, figs. 1–3). Figures 1 and 2 illustrate specimens with longitudinal sections that exhibit a relatively wide axial canal (called “central stem” by Endo) surrounded by an irregularly
arranged, loose fibrous structure characteristic of sponges. The endowall (wall of the axial canal) is not distinct. The third specimen, illustrated as fig. 3, is a cross-section that exhibits two axial canals surrounded by relatively coarse and densely packed fibrous structure. The axial canals are separated from one another by a thin wall and each canal has a distinct wall. Endo explained this figure as “a specimen of cross-section showing the division point of bifurcating central stem, coated with dark layers of some kind of sponge” (Endo 1951, p. 129).

In our opinion, the specimens illustrated in figs. 1 and 2 by Endo (1951) are of the same species, but the specimen shown in fig. 3 does not belong to this species. Therefore, two different sponge species were assigned to *H. eleganatae* by Endo (1951).

Endo did not designate a holotype for *H. eleganatae*. However, he noted (Endo 1951, p. 127) “Genotypes:-L.E.S., Saitama Univ., Slides No. 41, 59, 60, Specimen, 10769”. Because the description of *H. eleganatae* by Endo (1951) was based mainly on the longitudinal sections of specimens illustrated in figs. 1 and 2, we designate the specimen shown in fig. 2 as the “lectotype” (Fig. 1B) and that in fig. 1 as a “paralectotype” (Fig. 1A) for *H. eleganatae*. Figure 3 in Endo (1951) represents an inozooid sponge with two axial spongocoels (Fig. 1C), a feature characteristic of the genera *Bisiphonella* Wu (1991); *Bicoelia* Rigby, Senowbari-Daryan, and Liu (1998); or *Imperatoria* de Gregorio (1930). However, these three genera cannot be distinguished in transverse sections (see Rigby and Senowbari-Daryan 1996, p. 81; Rigby et al. 1998).

Endo (1953, pl. 12, fig. 8, p. 124) later described and illustrated another example of *H. eleganatae* from the Lower Permian of the Iwaizaki Limestone, from about 80 km northeast of Sendai. This poorly preserved specimen also seems to be a sponge, like the type material of Endo (1951), and could be assigned to *H. eleganatae* Endo.

Specimens described and illustrated as *H. eleganatae* by Endo (1954b, pl. 19, figs. 1–3, p. 218) seem to be a different form. The specimens shown in figs. 1 and 3 differ markedly from the type material of Endo (1951) and also from another specimen he later illustrated (Endo 1954b, fig. 2). All three of these specimens are sponges, however, and are not algae.

Endo (1957, pl. 42, figs. 5, 6, p. 297) described and illustrated two additional specimens as *Hikorocodium eleganatae* (Figs. 1D, 1E). These specimens, particularly the one shown in cross-section in Endo’s figure 6, have an axial canal surrounded by a coarse fibrous skeletal structure. These specimens are also inozooid sponges. Such sponges are known from the Carboniferous and Permian, and were described as *Maeandrostia* by Girty (1908) (see Finks and Rigby 2004, p. 644). Wray (1977, fig. 87, p. 84) described and illustrated as *Hikorocodium* two transverse sections of sponges from the Upper Permian of Tunisia that could be *Maeandrostia* (Fig. 1G).

A specimen from the Carboniferous of the Hida Massif, Japan, was described and illustrated as *Hikorocodium eleganatae* by Endo and Horiguchi (1957, pl. 14, fig. 3, p. 176) (Fig. 1F). It also seems to be different from the type specimens illustrated by Endo (1951). The structure of this later specimen is comparable with that of the sponge described as *Vermispongia spiniforms* Wu 1991 (= *Vermispongilla spiniforms* Finks and Rigby 2004, p. 607) from the Permian of China.

In addition, Endo (1961c, pl. 7, p. 135) described and illustrated a specimen as *H. eleganatae* from the Permian of Honshû Island, Japan. This specimen is differentiated from all other specimens described by Endo in earlier publications by its large axial canal and five (six?) collateral vertical canals located near the periphery of the skeleton. This specimen belongs to the preperonidellid inozooid sponge genus *Heptatubispiongia*, and the same sponge species was described as *H. symmetrca* by Rigby and Senowbari-Daryan (1996) from the Upper Permian of Tunisia and by Senowbari-Daryan et al. (2005) from the Permian of Iran.

Two specimens of sponges from the Lower Permian of the Kitakami Mountains, northeastern Japan, were described and illustrated as *H. eleganatae* by Horiguchi (1958, pl. 27, fig. 3; pl. 28, fig. 7; pp. 137–138; see later in the text under “Systematic paleontology” for an explanation of plate and figure numbering). Figure 3 in plate 27 illustrates transverse section of a sponge with an axial spongocoel surrounded by skeletal fibers without exhalant or inhalant canals, and it may be a *Preperonidella*. The oblique transverse section of the specimen illustrated by fig. 7 in plate 28 clearly shows a large axial spongocoel and nine (or 10?) collateral peripheral canals that are characteristic features of *Heptatubispiongia symmetrca* Rigby and Senowbari-Daryan (1996).

Kochansky and Herak (1960, pl. 10, figs. 9–13, p. 90) described and illustrated different sponges from the Permian of several localities in the former Yugoslavia as *Hikorocodium eleganatae* Endo. For example, the specimen shown in their fig. 13 has two axial canals, like the specimen illustrated by Endo (1951, pl. 10, fig. 3), and should be assigned to *Bisiphonella* Wu (1991) or to *Bicoelia* Rigby, Senowbari-
Daryan, and Liu (1998). None of the specimens illustrated by Kochansky and Herak are comparable to other specimens illustrated by Endo (1951, pl. 10, figs. 1, 2). Kochansky and Herak (1960, p. 90) interpreted *Hikorocodium* as a problematic organism. They wrote that “In our slides from various localities we find numerous specimens which are identical with those published by Endo (1954a, 1957), Endo and Horiguchi (1957), and Horiguchi (1958) as *Hikorocodium elegantae*. However, it is necessary to note that in our opinion the organization can not be regarded as doubtlessly typical dasycladacean. A slight general similarity with Hydrozoa was the reason that some of our specimens were first published as ‘cf. *Carterina* sp.’ or ‘*Stromatoporidae* gen. et sp. indet.’.”
H.W. Flügel (1963) described sponge-like fossils from the Permian of Dizdere bei Julfa, Iran, and from Ala Dag, Taurus Mountains, Turkey, as *Hikorocodium elegantae* Endo, and attributed them to problematic organisms. He noted that *Hikorocodium* could be a sponge.

H.W. Flügel (1963, p. 92) synonymized the fossils described as “Carta sp. n. sp A and n. sp. B” (Hydrozoa) by E. Flügel (1959) from the Permian of Slovenia and Crna Gera, Montenegro. E. Flügel (1959, fig. 1) illustrated only the species “Carta sp. n. sp. A”. There is no illustration of “Carta sp. n. sp. B” from the Crna Potok locality, Montenegro.

The cross-section of “Carta sp. n. sp. A” illustrated by E. Flügel (1959) in fig. 1 shows an axial cavity. Apparently E. Flügel (1959, p. 90) interpreted this cavity as a “Fremdkörper” (extraneous object). The skeletal structure of his “Carta” is totally different from *Hikorocodium*. The taxonomic position of E. Flügel’s *Carta* sp. n. A and B as hydrozoans or sponges is doubtful.

Hikorocodium was listed as a genus of “uncertain affinities” by Johnson (1964). He reillustrated (Johnson 1964, pl. 45, fig. 1) an enlarged view Endo’s original material (Endo 1951, pl. 10, fig. 1). He gave Endo’s original description of the genus and type species (Johnson 1964, p. 38) and noted that “The description and original illustration do strongly suggest a rather poorly preserved green alga.” (Johnson 1964, p. 39). However, later descriptions (Endo 1953, pl. 12, fig. 8, p. 124; pl. 4, fig. 3, p. 176; Endo 1957, pl. 42, figs. 5–7, pp. 297–298) add little information, whereas the illustrations progressively show specimens that look less and less like algal material, ending with Endo’s 1957 illustration of Permian specimens and Endo’s 1961c Jurassic paper where the illustrations really suggest stromatoporoids.

Homann (1972, pl. 2, fig. 15, p. 181) described and illustrated a specimen, from the Carnic Alps, Austria, as *Hikorocodium elegantae* Endo. It is not possible to be certain about skeletal details and classification of the specimen based on his illustration.

The specimen illustrated by E. Flügel (1980, pl. 2, fig. 7) as *Hikorocodium elegantae* Endo, from the lower Permian (Trogkofel beds) of the Carnic Alps, shows the large axial and small collateral canals (Fig. 1H) typical of *Heptatubispongia symmetrica* Rigby and Senowbari-Daryan 1996.

Nakazawa (2002, pl. 29, fig. 5) illustrated several specimens that were considered by him to be *Hikorocodium*. According to his description, “This incertae sedis has a tube form with inner pores.” (Nakazawa 2002, p. 198) and in his photographs these specimens may be algae but are not *Hikorocodium* comparable to the type material of Endo (1951).

In summary, *Hikorocodium* was not accepted as a certain alga and was listed as a problematic alga by algal specialists (e.g., Kochansky and Herak 1960; H.W. Flügel 1963; Johnson 1964; Kochansky-Devidé 1970; Vachard, in Termier et al. 1977). Some fossils that were described in the literature as *Hikorocodium elegantae* Endo should be assigned taxonomically to several different sponge genera. They are classified within the hypercalcified Demospongea in the following section.

A small specimen of questionable taxonomy, but referred to as *Hikorocodium?* sp., was described and figured by Rigby, Fan, and Han (1995) from the Upper Permian of western Hubei Province, China. They concluded that the calcified specimens they had were not suitable for detailed comparisons with other forms of the genus, but suggested that the genus should be re-examined by researchers with better material to make a taxonomic evaluation of the genus.

Systematic paleontology

Class Demospongea Sollas, 1875
Subclass Ceractinomorpha Lévi, 1953
Order Agelasida Verrill, 1907
Family Preperonidellinae Finks and Rigby, 2004
Subfamily Preperonidellinae Finks and Rigby, 2004
Genus *Hikorocodium* Endo, 1951

Type species: *Hikorocodium elegantae* Endo, 1951.

Emended diagnosis: Cylindrical inozooid sponges with a relatively wide axial spongocoel equal to approximately 40% of the whole sponge diameter. Sponge skeleton composed of loose irregular or reticular fibrous elements. A cortex (outer wall of sponge) well developed and pierced by openings of different size. Endowall (wall of spongocoel) is not distinct.

1951 *Hikorocodium elegantae* n. sp.- Endo, pl. 10, figs. 1, 2, pp. 126–127 (non fig. 3, which is an inozooid sponge attributed to *Bicoelia*).

? 1953 *Hikorocodium elegantae* Endo.- Endo, pl. 12, fig. 8, p. 124.

1954a *Hikorocodium elegantae* Endo.- Endo, pl. 14, fig. 6, pp. 201–202.

1954b *Hikorocodium elegantae* Endo.- Endo, pl. 19, fig. 2, pp. 218–219 (non figs. 1, 3; these species are also sponges but gen. et sp. indet.).

? 1957 *Hikorocodium elegantae* Endo.- Endo, pl. 42, fig. 5, pp. 297–298.

non 1957 *Hikorocodium elegantae* Endo.- Endo, pl. 42, fig. 6, pp. 297–298 (it is a Maeandrosta).

? 1958 *Hikorocodium elegantae* Endo.- Horiguchi, pl. 27, fig. 3, pp. 137–138 (not pl. 28, fig. 7).

? 1958 *Hikorocodium elegantae* Endo.- Horiguchi, pl. 9, figs. 9–13, p. 90 (different sponges with one or two spongocoels).

? 1961c *Hikorocodium elegantae* Endo.- Endo, pl. 7, p. 135 (see *Heptatubispongia*).

non 1970 *Hikorocodium elegantae* Endo.- Kochansky-Devidé, pl. 26, fig. 5, p. 220 (sponges with two spongocoels).

non 1977 *Hikorocodium* Endo.- Wray, fig. 87, p. 84 (may be Maeandrosta).
Fig. 2. Heptatubispongia symmetrica Rigby and Senowbari-Daryan 1996, holotype from the Upper Permian of Djebel Tebaga, Tunisia, USNM 463724. (A) Side view of branched holotype with weakly annulate growth lines, ×2. (B) Summit view, with left branch as shown in Fig. A as upper branch, with minor axial canals and symmetrically distributed vertical canals near the periphery, ×4. (C) Base of sponge with typical ring of exhalant canals near the periphery and radial canals around the central spongocoel, ×8. (D) Summit of right branch with characteristic canal pattern, ×5 (from Rigby and Senowbari-Daryan 1996, pl. 33, figs. 9–12).

non 1980 Hikorocodium elegantae Endo.- E. Flügel, pl. 56, fig. 7 (see Heptatubispongia).

non 2002 Hikorocodium Nakazawa, pl. 29, fig. 5 (may be an alga but not Hikorocodium comparable with type material of Endo 1951).

DISCUSSION: The diagnosis presented earlier in the text is based on two longitudinal specimens illustrated by Endo (1951, pl. 10, figs. 1, 2) (Figs. 1A, 1B).

Endo (1957, pl. 42, fig. 7; pl. 43, figs. 1–3; p. 298).

A third species of Hikorocodium, H. fertiliz, was described and illustrated by Endo (1961b, pl. 10, fig. 1; pl. 14, fig. 5; pl. 17, fig. 5; pp. 66–67) from Upper Jurassic limestone, Fukushima-ken in Endo (1961b, p. 66) or Tokushima-ken in Endo (1961b, p. 72), Japan. Endo designated “Slide No. 684” (1961b, p. 66) as the holotype of H. fertiliz and illustrated it in fig. 5 of plate 17 (Endo 1961b). According to Endo, an enlargement of that holotype was illustrated in fig. 1 of plate 10 (Endo 1961b); the same enlargment was reillustrated by Johnson 1964, pl. 45, fig. 1), but this figured material does not correspond to any part of the holotype. Both specimens of H. fertiliz illustrated by Endo are fragments of undetermined sponges and should be excluded from the algae.

Finally, the fourth species was described as Hikorocodium kuramotoi by Nakamura (1994) from the Carboniferous of Japan. The systematic position of this species is uncertain.

Subfamily Heptabubispongiinae Rigby and Senowbari-Daryan, 1996

Genus Heptatubispongia Rigby and Senowbari-Daryan, 1996

TYPE SPECIES: Heptatubispongia symmetrica Rigby and Senowbari-Daryan, 1996.

ORIGINAL DIAGNOSIS: “Cylindrical to branched sponge with relatively large axial canal or spongocoel, and usually seven but in some specimens with as few as six or as many as eight or more collateral vertical canals located near periphery of sponge. Outer surface bears a few ostia. Internal structure characterized by relatively coarse reticulate fibers. Growth lines prominent on exterior.” (Rigby and Senowbari-Daryan 1996, p. 83).

1958 Hikorocodium elegantae Endo.- Horiguchi, pl. 28, fig. 7 (non pl. 27, fig. 3).

1961c Hikorocodium elegantae Endo.- Endo, pl. 4, fig. 7, p. 135.

1977 Graminosponge girtyi (Parona).- Termier and Termier, pl. 8, fig. 1.

1980 Hikorocodium elegantae Endo.- E. Flügel, pl. 56, fig. 7.

1996 Heptatubispongia symmetrica n. sp.- Rigby and Senowbari-Daryan, pl. 33, figs. 9–16, pl. 49, fig. 9, pp. 83–84.

OCURRENCE: Heptatubispongia symmetrica (Figs. 2A–2D) is an abundant preperonidelliid inozoid sponge, occurring in Permian deposits of Tunisia (Rigby and Senowbari-Daryan 1996), the Carnic Alps of Austria (Flügel 1980), Japan (Horiguchi 1958, Endo 1961c), Sicily (material of Senowbari-Daryan, see Senowbari-Daryan and Di Stefano 1988) and in Iran (Senowbari-Daryan et al. 2005).

Acknowledgments

The investigations were carried out within the framework of Project “Se 416/10” supported by the Deutsche Forschungsgemeinschaft to B. S.-D. We thank Dr. S.H. Vaziri (Tehran, currently in Japan) for his help in procuring copies of Endo’s publications from Japan. We appreciate the constructive reviews of M.G. Carrera and D. Janussen, and the editorial assistance of Associate Editor Brian Chatterton. Brooks Britz aided in preparation of the photographic figures.

References

© 2007 NRC Canada
Endo, R. 1954b. Stratigraphical and paleontological studies of the later Paleozoic calcareous algae in Japan, IX. The Science Reports of Saitama University, series B, 1(3): 217–221.
Horiguchi, M. 1958. Some calcareous algae in the central part of the Kitakami Mountains, Iwate Prefecture, northern Japan. The Science Reports of Saitama University, series B, 3(1): 131–139.