
Historical reconstruction of ponderosa pine,
Pinus ponderosa Dougl. ex P.&C. Lawson, for-
ests over the last 100 years has shown range-
wide significant increases in densities and a
concomitant reduction in fire frequency (Cov-
ington and Moore 1994, Mast et al. 1997, 1999,
Brown and Sieg 1999, Moore et al. 1999,
Everett et al. 2000, Veblen et al. 2000, Turner
and Krannitz 2001). This has resulted in an
emphasis toward restoration of Pinus ponder-
osa forests to reduce tree densities to earlier
levels to prevent wildfires, to rejuvenate stands,
and to benefit associated wildlife (Covington
et al. 1994, Harrod et al. 1999, Mast et al. 1999,
Kolb et al. 2001). One wildlife species of inter-
est in the northernmost part of the P. pon-
derosa range is the uncommon and in some
places endangered White-headed Woodpecker,
Picoides albolarvatus. The White-headed wood-
pecker is most abundant in California, where
it relies on seeds from a variety of tree species
(Garrett et al. 1996). Picoides albolarvatus
albolarvatus is a species of concern in Oregon,
Washington, and Idaho, while in British Colum-
bia it is nationally endangered. Here, P. pon-
derosa cones provide the only suitable food
source in the nonbreeding months (Garrett et
al. 1996). In Oregon it is clear that old-growth
Pinus ponderosa stands, with many snags and
large-diameter trees, are more productive for

Picoides albolarvatus than newer and managed
stands (Dixon 1995). Restoration activities in
Washington state have focused on reintroduc-
ing fire to Pinus ponderosa ecosystems which,
in Methow Valley Ranger District, has resulted
in anecdotal reports of increased abundance of
Picoides albolarvatus (Dale Swedberg personal
communication). Picoides albolarvatus is the
umbrella species of restoration activities in the
northern part of the range for Pinus ponder-
osa, and yet there are very little data on the
effect of tree thinning and prescribed burning
on the ecosystem or the bird. In the South-
west, Picoides albolarvatus does not occur, but
general effects of tree ingrowth on diversity of
native flora and fauna are of concern (Coving-
ton and Moore 1994). Here, a research team at
Northern Arizona University at Flagstaff has
promoted and initiated restoration of Pinus
ponderosa (Covington et al. 1997) and has be-
gun documenting some of the effects on the
ecosystem (i.e., Crawford et al. 2001).

Because of the lack of direct evidence on
the benefits of current restoration activities for
seed-eating species of interest such as Picoides
albolarvatus, this review gathers what is known
about cone production in P. ponderosa in gen-
eral and assesses whether restoration activities
are likely to benefit Picoides albolarvatus
through enhanced cone production.
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CONE AND SEED PRODUCTION IN PINUS PONDEROSA: A REVIEW
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ABSTRACT.—Factors associated with seed cone production in Pinus ponderosa were reviewed to identify broad pat-
terns and potential effectiveness of restoration activities. Cone and seed production are quite variable, with differences
between (1) years, (2) sites, and (3) individual trees. Between-year, population-wide crop failures suggest large-scale
triggers for cone and seed production, perhaps high temperatures and dry weather. Stem diameter is the most important
determinant for cone production at the tree level, with other factors such as genetic disposition, moisture, soil nutrients,
and insect pests and disease playing a smaller role. Some extrinsic factors affect growth rate, indirectly affecting cone
production. For example, less competition and lower stand densities result in P. ponderosa trees that increase in diame-
ter more quickly, possibly because of more light, and produce seeds earlier. This literature suggests that restoration
activities, especially thinning, will result in trees better able to produce larger seed crops. The effect of prescribed fire is
less clear, with contradictory effects depending on site conditions, burn severity, and nutrient status of the site.
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STUDY SPECIES

Taxonomy and Range

Three varieties of Pinus ponderosa Dougl.
ex P.&C. Lawson are recognized though the
taxonomy is not yet resolved: P. ponderosa var.
ponderosa Dougl. (Pacific ponderosa pine), P.
ponderosa var. scopulorum Engelm. (Rocky
Mountain ponderosa pine), and P. ponderosa
var. arizonica (Engelm.) Shaw (Arizona pine;
Kral 2000). The distribution of P. ponderosa
ranges from near 52°N in south central and
southeastern British Columbia (both ponder-
osa and scopulorum subspecies) east to Nebra-
ska, south to northern Mexico (the arizonica
subspecies), and west to the Pacific Coast (Kral
2000). Within the Pacific variety 3 races (South-
ern California, Pacific, and North Plateau) have
been differentiated (Conkle and Critchfield
1988). There are also 3 races within P. pon-
derosa var. scopulorum: Southern, Central,
and Northern Interior (Wells 1964).

The P. ponderosa environment is broadly
characterized by cool to cold winters and warm,
dry summers with periods of prolonged drought.
Because P. ponderosa is the widest ranging
pine in North America, the droughts that
occur during different seasons in its areas of
distribution depend on location. In the Pacific
Northwest and California, summers are typi-
cally dry, while summer rains are usual for the
eastern slope of the Rockies, the Black Hills of
South Dakota, and the Southwest (Curtis and
Lynch 1957, Hope et al. 1991, Agee 1998).
Annual precipitation in the ponderosa pine
zone of British Columbia is 280–500 mm
(Hope et al. 1991).

The range of P. ponderosa encompasses ele-
vations from near sea level at Tacoma, Washing-
ton, to between 250 m and 1200 m in British
Columbia (Eremko et al. 1989), and to more
than 2740 m in California, Colorado, and Ari-
zona (Curtis and Lynch 1957).

Reproductive Cycle 
and Seed Production

For 12- to 16-year-old P. ponderosa trees in
the northern part of the range, seed cones are
initiated in mid- to late summer and differen-
tiate in September to October (Eis et al. 1983,
Owens and Blake 1985). Pollination occurs
between April and June the following year, and
pollen tube and ovule development begins
and proceeds until midsummer. Development

resumes the next spring, fertilization takes place,
and seeds mature by fall. This lengthy (26- to
27-month) reproductive cycle of initiation, dif-
ferentiation, pollination, fertilization, and em-
bryo and seed development provides a large
window for a complex variety of potentially
interacting factors to play a role in the fre-
quency of P. ponderosa cone production and
the quantity of seeds produced (Roeser 1941,
Puritch and Vyse 1972, Eis et al. 1983, Owens
and Blake 1985, Eremko et al. 1989).

Variability in Productivity

Seed cone production in Pinus ponderosa is
variable, with 3 broad categories of contribut-
ing factors: differences between (1) years, (2)
sites, and (3) individual trees (Table 1). Many
years result in no cone production at all, and
other years result in heavy production, with
many cones on more than half the population
(McDonald 1992). Throughout its range, these
abundant crops occur about every 3 to 8 years
(Roeser 1941, Fowells and Schubert 1956, Lar-
son and Schubert 1970, Boldt and van Deusen
1974, Dahms and Barrett 1975, Eis et al. 1983).

Differences in cone production between
sites within an area are not as variable, with
some site differences being marginally signifi-
cant (Table 1; data from Dale and Schenk 1978)
and others not being significant at all (Table 1;
data from Linhart 1988). Within sites, differ-
ences in cone production between trees can
be striking, with some trees consistently being
big producers (Linhart and Mitton 1985).

REGULATION OF SEED

AND CONE PRODUCTION

The 27-month development of a seed-bear-
ing cone provides many opportunities for ma-
ternal regulation of seed and cone production
via cone, ovule, or embryo abortion. Though P.
ponderosa cone crops can be decimated by a
combination of physiological dysfunction and
insect damage, unexplained conelet abortions
can prevent as much as 66% of the ovules from
becoming seed (Pasek and Dix 1988). Good
years for producing cones are also good years
for producing seed: over a 24-year period,
more filled seeds than unfilled seeds were pro-
duced in years with heavy cone production
(McDonald 1992).

There has been one study on factors associ-
ated with ovule abortion, though it was done
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on a congener of Pinus ponderosa (Karkkainen
et al. 1999). Seventy-six percent of experimen-
tally self-pollinated ovules in P. sylvestris
aborted, compared with 26.5% for cross-polli-
nated and 30% for naturally pollinated ovules.
For naturally pollinated seeds, maternal genetic
differences accounted for 29% of the variation
in ovule abortions (Karkkainen et al. 1999).
Unfortunately, no measurements of the effect
of environmental variables were made. Ovule
abortions have been thought to be associated
with self-pollination, temperature, competition,
and disease or insect infestation (Owens and
Blake 1985, Karlsson 2000).

FACTORS AFFECTING FREQUENCY

AND QUANTITY OF CONE CROPS

Factors Contributing 
to Annual Variation

TEMPERATURE.—Higher-than-average tem-
peratures during seed cone initiation in P.
ponderosa have been associated with above-
average cone production. Over a 23-year period
in California, whenever total average tempera-
tures for April and May were above or below
average, the cone crop 27 months later was
also above or below average, respectively
(Maguire 1956). Similarly, in Whitman County,

Washington, larger cone crops of 8 trees over
7 years were correlated with higher-than-aver-
age June through September temperatures 2
years earlier (Daubenmire 1960). Temperature
effects have also been demonstrated in other
Pinus species: differences between 1995 and
1996 in cone production in P. sylvestris were
associated with differences in temperatures at
time of bud initiation in 1993 and 1994 (Karls-
son 2000).

There is scattered evidence that cold tem-
peratures negatively affect seed cone crops in
P. ponderosa (Maguire 1956, Schubert 1974,
Barrett 1979, Owens and Blake 1985), with
below-freezing, late spring temperatures killing
2nd-year conelets (Maguire 1956, Sorensen
and Miles 1974). Pollen cones of P. ponderosa
are less susceptible to freezing (Roeser 1941),
as are cones of other pine species such as P.
contorta (Sorensen and Miles 1974). Negative
effects of cold temperatures underscore how
weather at any time during the 27-month P.
ponderosa reproductive cycle might negate or
enhance weather effects at another time (Dau-
benmire 1960).

MOISTURE.—Little information exists on the
effects of moisture specific to seed cone pro-
duction in P. ponderosa, and results from other
species are conflicting and often confounded
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TABLE 1. Variability in seed or cone production for Pinus ponderosa (PP). K = 1000.

Variation in seed Time
Location or cone production period Comments Source

California 0–18K seeds ⋅ ha−1 to 400K
1200K seeds ⋅ ha−1 (yearly) 24 years r2 = 0.76, P < 0.01 McDonald 1992

1958–1981 filled seeds and cone
crop, 613 trees ⋅ ha−1

Washington 0–384 cones ⋅ tree−1, 48% variation 7 years 8 different PP trees Daubenmire 1960
attributed to year (P < 0.0001) 1951–1957 followed
and 9% to tree (P > 0.2)a

Idaho and 0–9.4K cones ⋅ 100 PP trees−1, 3 years 12 widely dispersed Dale and Schenk
eastern 32% variation attributed to site 1967–1969 sites, 42–770 1978
Washington (P = 0.07), 28% to year PP ⋅ ha−1

(P = 0.002)a

Colorado 4–12.3K cones ⋅ 100 PP trees−1, 4 years 4 sites Linhart 1987
1.3% variation attributed to site 1984–1987
(P > 0.2), 42% to year (P = 0.10)a

Arizona 1.2–29.7 cones ⋅ 100 PP trees−1 10 years 62.5 PP ⋅ ha−1 Larson and
1956–1965 Shubert 1970

Colorado 0–7.7K cones ⋅ 100 PP trees−1 10 years 78 PP ⋅ ha−1 Roeser 1941
1926–1935

California 0–338 cones ⋅ 100 PP trees−1 21 years 5 PP ⋅ ha−1, 9 P. Fowells and 
1933–1953 lambertiana ⋅ ha−1, Shubert 1956

48 Abies concolor ⋅ ha−1

aANOVA, SAS 1990



by other factors (Owens and Blake 1985). For 
example, there is a positive correlation between
low rainfall in the spring and summer months
when cones are initiated and subsequent cone
production, but low moisture is often accom-
panied by high temperatures and high insolation
(Owens and Blake 1985). Anecdotal evidence
suggests that reproductive bud initiation in P.
ponderosa benefits from dry summers (Eis et al.
1983, Eremko et al. 1989). Irrigation in the
spring combined with removal of moisture in
the summer produced larger cone crops in P.
taeda than in controls (Dewers and Moehring
1970).

Site-related Factors

STAND DENSITY.—In general, there is an
increase in productivity, including seed cone
production, with a decrease in stand density.
In a comparison of 12 sites in Idaho, seed pro-
duction was negatively associated with density
of both P. ponderosa (rs = –0.80, P = 0.0034)
and all trees (rs = –0.67, P = 0.017; data from
Dale and Schenk 1978; Spearman rank corre-
lation [SAS 1990]). Similarly, 4 blocks of vary-
ing P. ponderosa stem densities in Arizona
showed concomitant variation in cone and seed
production (rs = –1.0, P < 0.0001; data from
Heidmann 1983). Cone yield differences in
response to stand density have been observed
for many decades, with individual P. ponderosa
trees yielding on average 24.7 L of cones in
“dense” stands, 38.8 in “medium,” and 63.4 in
“open” stands (Pearson 1912).

When P. ponderosa stands are thinned, stem
diameter of released trees consistently increases
(Schubert 1974, Martin 1988, Feeney et al.
1998); this also holds true for older individuals
150+ years of age (Latham and Tappeiner
2002). The responses of stem diameter to re-
ductions in stem density are consistent, and in
Pinus resinosa they have been predictably mod-
eled (Laroque 2002). Stem diameter is consis-
tently associated with cone production (see
section below on tree size, age, and domi-
nance), and the growth response to thinning
can be large: P. ponderosa stands in the South-
west thinned from 48.21 m2 to 6.89 m2 basal
area ⋅ ha−1 grew 5 times faster in diameter
than those in unthinned stands (Schubert 1974).
Since trees of larger diameter produce the
majority of cones, increased cone production
may be a longer-term benefit of thinning.

When P. ponderosa stands are thinned, pho-
tosynthetically active radiation increases (Riegel
et al. 1992), and subsequent increases in seed
production are often attributed to increased
light (Sprague et al. 1979). Evidence from
Pinus species other than ponderosa suggests
that an increase in light results in an increase
in cone production, either for whole trees (P.
sylvestris; Sarvas 1962) or individual branches
(P. banksiana; Despland and Houle 1997).
Anecdotal evidence suggests that P. ponderosa
is similarly dependent on light (Pearson 1912).
In addition, changes in the crown location of
cone production upon stand thinning showed
a localized dependence on light; P. sylvestris
trees in a closed stand produced 40% of cones
in the upper 2 m of crown, and 7 years post-
thinning that figure dropped to 15%, with a
greater proportion of cones being produced on
lower branches that were now exposed to light
(Karlsson 2000). These kinds of localized
changes in cone production attributable to
light are better indicators of the importance of
light than whole-tree responses because stand
thinning will also affect midday temperatures
(Riegel et al. 1992).

NUTRIENT AVAILABILITY AND FERTILIZERS.—
Effects of increased nutrients, either added or
as a result of thinning, are not as clear as the
effect of increased light. Often there is im-
proved flowering and seed production in Pinus
when fertilization is combined with thinning,
irrigation, or girdling treatments (Puritch and
Vyse 1972, Owens and Blake 1985). For exam-
ple, P. taeda clones increased seed cone pro-
duction much more in a combined irrigation
and fertilization treatment than in either treat-
ment alone (Sprague et al. 1979, Gregory et al.
1982).

When N alone was added to thinned stands
of P. sylvestris, an increase in stemwood pro-
duction occurred, but cone production was
lower than that of the controls (Valinger 1993).
Adding P along with N at 3 levels of concen-
tration to a thinned, even-aged, 55-year-old P.
ponderosa stand near Flagstaff, Arizona, resulted
in a linear increase of seed cone production
(Heidmann 1984). The number of trees bear-
ing cones was always highest in the high fertil-
izer treatments, and significantly higher in year
4 (P < 0.025) and marginally higher in year 5
(P < 0.1) of a 6-year study. The period of the
experiment encompassed 3 reasonably good
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cone crops, with production in these years lin-
early related to fertilizer levels (P < 0.05). Dur-
ing this time period 4 times more cones were
produced on trees fertilized at the high rate
than in the unfertilized controls (Heidmann
1984).

FIRE EFFECTS.—Pinus ponderosa evolved
with relatively frequent, but low-intensity, fires
(Agee 1988, Arno 1988), and fire suppression
over the last 100 years has resulted in dramatic
increases in stem density (Harrod et al. 1999,
Mast et al. 1999, Turner and Krannitz 2001).
From the literature already reviewed, it is
clear that thinning results in greater cone pro-
duction, but there is little direct data on whether
or not fire improves production over and above
that of thinning. The effect of fire on P. pon-
derosa ecosystems is complex and may be
beneficial or detrimental, depending on the
nutrient status of the site, initial conditions of
the stand, and timing and severity of the burn.

The effect of fire on cone and seed produc-
tion can be indirectly assessed by its effect on
growth because larger trees generally produce
more cones (see next section). In unthinned P.
ponderosa stands, fire was detrimental to
growth of surviving trees (Sutherland et al.
1991, Swezy and Agee 1991) largely because
of high burn severity attributable to accumu-
lated fuels due to fire suppression. When fire
occurred in a thinned stand in Arizona, with
the woody debris having been removed prior
to the fire, fire improved resin production
compared with the thinned treatment and the
control (Feeney et al. 1998). This has been
associated with increased resistance to insect
pests such as the bark beetle (Feeney et al.
1998), which may in turn affect growth and or
cone production.

The effect of fire on nutrient availability for
Pinus ponderosa will be noticeable in cone
production (see previous section on nutrient
availability). Fire did not affect the rate of N
cycling over and above that of thinning in both
Arizona (Kaye and Hart 1998) and a nutrient-
poor site in Oregon (Monleon et al. 1997), but
it decreased total N and organic-matter con-
tent (Covington and Sackett 1984, Kaye and
Hart 1998). This, however, did not reduce avail-
ability of N to the trees because, as also shown
by other studies, more of the total N was trans-
formed and made more readily available for up-
take (Schoch and Binkley 1986, Knoepp and
Swank 1995, Kaye and Hart 1998). Nutrient-

poor P. ponderosa sites do not have extra total
N to transform, however, and even light sur-
face fires can be detrimental to trees over time
in this case (Monleon et al. 1997).

Tree Differences

TREE SIZE, AGE, AND DOMINANCE.—For Pinus
in general and Pinus ponderosa in particular,
the largest seed and cone crops are borne by
the largest-diameter trees (Fowells and Schu-
bert 1956, Larson and Schubert 1970, Sundahl
1971, Linhart and Mitton 1985, Latta and Lin-
hart 1997, Karlsson 2000). In a 6-year study fol-
lowing more than 200 Colorado P. ponderosa
trees, diameter was a better predictor of cone
production (r2 = 0.43, P < 0.001) than age 
(P > 0.05), although diameter and age were
correlated (P < 0.001; Linhart and Mitton 1985,
Latta and Linhart 1997). In California, P. pon-
derosa trees over 66 cm dbh produced at least
some cones over a 16-year period, while only
13% of the smallest class (between 9.1 and
19.1 cm dbh) bore cones (Fowells and Schu-
bert 1956). Only P. ponderosa trees ≥49.5 cm
in diameter produced 500 cones or more at
least once in the 16-year period (Fowells and
Schubert 1956).

Larger-diameter trees also produce cones
more frequently. Over a 16-year period in Cal-
ifornia, frequency of cone production ranged
from once for the 19.3–29.2 cm dbh class up to
10 times for all trees larger than 61 cm (rs =
0.65, P = 0.02, n = 12, for number of crops in
16 years and diameter; data from Fowells and
Schubert 1956; Fig. 1). Similarly, in Arizona
the frequency of cone crops was highly corre-
lated with tree diameter (Larson and Schubert
1970; Fig. 1). Cone production of 100 cones or
more per tree was not as frequent as crops
with more than 5 cones, but both classes in-
creased in frequency with diameter (Larson
and Schubert 1970; Fig. 1). Frequency of cone
production increased linearly with diameter
up to approximately 80 cm in diameter, after
which it plateaued (Fig. 1). Similarly, cone pro-
duction in P. ponderosa increased with age but
the rate of increase was smaller among older
trees (Latta and Linhart 1997).

Smaller-diameter Pinus edulis produce male
cones and larger-diameter trees produce female
cones (Floyd 1983). Normally, Pinus is consid-
ered to be monoecious with both male and fe-
male stroboli on the same tree, but size segre-
gation of the sexes has led to the suggestion
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that Pinus edulis is functionally dioecious (Floyd
1983). In P. ponderosa sex segregation does not
occur to this extent, and older trees that produce
female cones also produce some male strobili.
Younger trees do tend to produce mostly male
strobili, with the greatest production occur-
ring from large-diameter young trees (Linhart
and Mitton 1985).

Dominant trees, those with crowns extend-
ing above the general crown level in a stand,
also tend to be more productive than trees
whose crowns are in the canopy (co-dominants)
or lower (Fowells and Schubert 1956, Larson
and Schubert 1970). Tree height alone had a
much smaller effect on seed production than
did stem diameter; small-diameter but domi-
nant P. ponderosa trees in California did not
produce seed cones with the same frequency
or in the same number as trees of greater
diameter (Fowells and Schubert 1956). How-
ever, almost all counted cones were borne on
dominants (99%), with only 0.92% of total cones
produced on co-dominant trees. Intermediate
or suppressed crown classes produced only
0.05% of total cones (Fowells and Schubert
1956). Closer inspection of these data shows
that the effect of dominance on seed produc-
tion relates to greater leaf production: seed
production in both gymnosperms (including

Pinus ponderosa) and angiosperms is directly
associated with leaf mass (Greene and Johnson
1994).

COMPETITION.—The largest P. ponderosa
cone crops are produced by isolated trees that
are free from competition. Over 10 years in
central Arizona, isolated trees free to grow on
all sides not only produced cone crops more
frequently but also averaged 274 cones per
year versus 158 cones for open stands, 90
cones for trees on the margin of stands, and 42
cones for interior trees (Larson and Schubert
1970). Some benefits of reductions in stand
density mentioned earlier can be attributed to
reduced competition for resources such as
light. The only caveat is while low stand den-
sities are beneficial for cone production, iso-
lated P. ponderosa trees self-pollinate at a
higher frequency than stand-grown trees, and
self-pollinated cones bear lower percentages
of filled seed (Sorensen and Miles 1974). Pinus
ponderosa seedlings from seeds of lower-den-
sity stands are also more inbred and have
lower heterozygosity and survival ability (Far-
ris and Mitton 1984).

Competition with the understory shrub layer
for resources other than light also plays a role
in P. ponderosa growth (Oliver 1984, McDon-
ald and Abbott 1997). In a northern California
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Fig. 1. Relationship between frequency of seed cone crop production and stem diameter of P. ponderosa. Data taken
from citations listed; 5+ or 100+ refers to cone crops >5 or >100 cones, respectively.



plantation, P. ponderosa grew to 20 cm in
diameter in 31 years without competition from
shrubs, whereas with a heavy shrub cover
diameters averaged 5.4 cm (McDonald and
Abbott 1997). Similarly in Oregon, P. ponderosa
trees 13 cm to 51 cm in diameter (19 to 36
years old) added an average of 7.6 cm in diam-
eter over 10 years when surrounded by under-
story vegetation, but they averaged 16.5 cm
without surrounding ground cover (Dahms and
Silen 1956, cited in Barrett 1979). Reduced
growth was associated with greater suscepti-
bility to damage by insects (Oliver 1984,
McDonald and Abbott 1997).

GENETICS.—Genetic differences were sus-
pected a number of years ago when Linhart et
al. (1979) observed that only a few Pinus trees
produced the majority of cones. Pinus ponderosa
trees that produce abundant cone crops were
shown to be genetically distinct from those
that did not (Linhart et al. 1979). Pinus pon-
derosa and P. sylvestris trees of the same
diameter produce either abundant cone crops
or many male strobili, but not both in abun-
dance (P. ponderosa: Linhart and Mitton 1985;
P. sylvestris: Savolainen et al. 1993). Trees that
produce both produce fewer of each (Linhart
and Mitton 1985, Savolainen et al. 1993). In
addition, individual trees that are genetically
predisposed for high female cone production
bear a cost in vegetative growth: they have
smaller stem diameters than P. ponderosa trees
with low cone production of the same age
(Linhart et al. 1979).

Recently, plantations of genetic clones of a
variety of Pinus species showed that seed cone
production has a strong genetic component (P.
banksiana: Todhunter and Polk 1981; P. nigra:
Matziris 1993; P. sylvestris: Burczyk and Cha-
lupka 1997). For P. sylvestris, variation in cone
production attributable to different clones ex-
ceeded that for differences between years, but
in both cases data were collected for only 2
years (Savolainen et al. 1993, Burczyk and
Chalupka 1997). Byram et al. (1986), monitor-
ing clonal plantations over many years, noted
that clones of P. taeda would change rank from
year to year in cone production.

SILVICULTURAL INDUCEMENTS

FOR CONE PRODUCTION

A variety of silvicultural treatments have
been used in Pinus seed orchards to increase

seed and cone production (see review within
Eriksson et al. 1998). In P. ponderosa only gird-
ling has been applied, with varying success.
Wide (2.5 cm to 5 cm, with small bridge) and
narrow girdling (cut around entire circumfer-
ence) were applied during bud initiation in
May in western Montana, and both methods
increased cone production of the 1st crop to
be formed post-treatment, although some
treated trees showed no response (Shearer
and Schmidt 1970). On average, treated trees
produced about 20 cones versus 1 cone pro-
duced by the paired controls (Shearer and
Schmidt 1970). The treatment had no lasting
effect in subsequent years.

FACTORS AFFECTING SEED

AND CONE LOSS

Insects

The native pines of North America host at
least 1111 insect species, and Pinus ponderosa
hosts 367 of them, the highest for any pine (de
Groot and Turgeon 1998). Nine species are
associated with pollen cones and 35 species
are associated with seed cones (de Groot and
Turgeon 1998). Other insects, not specialized
on cones, may also affect production by weak-
ening or killing trees outright (e.g., pine bee-
tles, Dendroctonus spp.; Curtis and Lynch
1957, Oliver and Ryker 1990, de Groot and
Turgeon 1998).

While pollen cone insects may be relatively
benign (Hedlin et al. 1980), seed cone insects
can destroy high proportions of cone crops in
some years (Larson and Schubert 1970, de Groot
and Turgeon 1998). The coneworm, Dioryctria
auranticella (Grote), for example, killed 80% of
P. ponderosa cones in interior British Colum-
bia (Ross and Evans 1957) and northern Ari-
zona (Blake et al. 1989), and up to 57% in
Idaho (Dale and Schenk 1978). At 10 sites in
northern Arizona, seed damage by all insect
pests, including the coneworm, ranged from a
low of 1% to a high of 91% per cone (Schmid
et al. 1984). Survival of 1st season conelets can
be especially difficult: survival averaged only
19.5%, and 76.8% of those survived a 2nd year
(Pasek and Dix 1988).

Diseases

As with insects, diseases of Pinus ponderosa
are many and may reduce cone production
directly or indirectly by undermining tree
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health. Dwarf mistletoe, Arceuthobium spp., is
P. ponderosa’s most widespread disease and
causes the most damage (Oliver and Ryker
1990). In the Southwest it has been particu-
larly devastating and is sometimes responsible
for significant mortality (Schubert 1974). Among
trees that survive, the parasite impairs tree
growth and reduces seed production and seed
viability (Schubert 1974, Hawksworth and
Shaw 1988, Harrington and Wingfield 1998).
Elytroderma deformans is P. ponderosa’s most
serious foliage disease and may slow the growth
of mature trees, occasionally killing them. Bark
beetles may also be quick to attack affected
trees, which, like trees parasitized by Arceutho-
bium, develop characteristic witches’ brooms
(Curtis and Lynch 1957, Oliver and Ryker 1990,
Harrington and Wingfield 1998).

Other pathogens that significantly affect P.
ponderosa include species of Armillaria and a
diverse assemblage of parasites, cankers, root
diseases, heart rots, foliage diseases, blights,
and rusts (Oliver and Ryker 1990), many of
which have benefited from fire suppression as
well as from leftover stumps from thinning
and harvest operations (Harrington and Wing-
field 1998). Diseases might be more prevalent
at higher stand densities; in P. sylvestris higher
stand densities increased susceptibility to a
canker (Niemela et al. 1992).

Other Animals

Squirrels (Tamiasciurus hudsonicus, Sciurus
aberti, and S. kaibabensis) destroy potential cone
crops by vigorously clipping conelet-bearing
twigs and directly clipping cones and consum-
ing seeds (Keith 1965, Larson and Schubert
1970, Snyder 1993). In the southern part of
the P. ponderosa range, Sciurus aberti reduced
cone production of target trees to 10% that of
nontarget trees (Snyder 1993). White-headed
Woodpeckers and other woodpeckers are also
P. ponderosa seed predators (Garrett et al.
1996), but their effect on overall seed and
cone production has not been quantified.

CONCLUSION

Restoration activities in natural stands of P.
ponderosa include thinning and fire, in combi-
nation and alone. Research on P. ponderosa
and other Pinus species suggests that thinning
increases cone production through greater
light availability, reduced competition for nutri-

ents and water, increased temperature, and 
reduced disease and insect pests. These in turn
have been shown to promote growth in stem
diameter, which is strongly linked to cone pro-
duction. The only negative issue with respect
to thinning is the possibility of self-pollination
that leads to greater ovule abortion. The effect
of fire is less clear, but limited evidence sug-
gests that combining fire with thinning is the
best way to improve health, growth, and cone
production in P. ponderosa stands.

Factors that influence cone production, but
that are not normally controlled in natural P.
ponderosa stands, include climate, which may
affect annual variation and crop failures; genet-
ics, with only some trees being genetically
predisposed to produce large cone crops; and
seed predators, which in some areas can be
responsible for substantial seed loss.

What does this all mean for the White-
headed Woodpecker? Thinning treatments
being carried out in the northern part of the P.
ponderosa range will certainly increase seed
and cone production unless the trees that are
removed are the ones that are genetically pre-
disposed for greater seed and cone production.
However, given the benefits of outcrossing, a
few younger trees that predominantly produce
pollen should also be left in the stand.
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