Brigham Young University

BYU ScholarsArchive

Theses and Dissertations

2006-05-31

Image Vectorization

Brian L. Price
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

b Part of the Computer Sciences Commons

BYU ScholarsArchive Citation

Price, Brian L., "Image Vectorization" (2006). Theses and Dissertations. 879.
https://scholarsarchive.byu.edu/etd/879

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F879&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F879&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/879?utm_source=scholarsarchive.byu.edu%2Fetd%2F879&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

IMAGE VECTORIZATION

by

Brian Price

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University
August 2006

Copyright (©) 2006 Brian Price
All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Brian Price

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date William Barrett, Chair

Date Dan Olsen

Date Daniel Zappala,

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Brian Price
in its final form and have found that (1) its format, citations, and bibliographical style
are consistent and acceptable and fulfill university and department style requirements;
(2) its illustrative materials including figures, tables, and charts are in place; and
(3) the final manuscript is satisfactory to the graduate committee and is ready for
submission to the university library.

Date William Barrett
Chair, Graduate Committee

Accepted for the Department

Parris Egbert
Graduate Coordinator

Accepted for the College

Tom Sederberg,
Associate Dean, College of Physical and Math-
ematical Sciences

ABSTRACT

IMAGE VECTORIZATION

Brian Price
Department of Computer Science

Master of Science

We present a new technique for creating an editable vector graphic from an object in a
raster image. Object selection is performed interactively in subsecond time by calling
graph cut with each mouse movement. A renderable mesh is then computed auto-
matically for the selected object and each of its subobjects by (1) generating a coarse
object mesh; (2) performing recursive graph cut segmentation and hierarchical order-
ing of subobjects; (3) applying error-driven mesh refinement to each (sub)object. The
result is a fully layered object hierarchy that facilitates object-level editing without
leaving holes. Object-based vectorization compares favorably with current approaches
in the representation and rendering quality. Object-based vectorization and complex

editing tasks are performed in a few 10s of seconds.

ACKNOWLEDGMENTS

I would like to thank my professor Dr. Barrett for all the time, support, and direction
that he has given me throughout my undergraduate and graduate career. I thank
Adobe Inc. for the feedback on our project and funding that helped make it possible.

I would also like to thank my family, friends, and roommates for their support.

Contents

1 Introduction
2 Previous Work
2.1 Vectorization Techniques
2.2 Pixel-Based Editing o oo
2.3 Object-Based Editing o o
2.4 Object Selection
2.5 Texture Synthesis L Lo
2.6 Non-Photorealistic Rendering
3 Methods
3.1 Object Selection
3.1.1 Graph Formulation and Weighting
3.1.2 Watershed Hierarchy
3.1.3 Persistent Graph Cut
3.1.4 One-Step Boundary Localization
3.2 Mesh Creationo o

3.2.1 Curvature Analysis for Corner Detection

vii

10
11
13
17

19

23

CONTENTS

322 AxisCreation. Lo
3.2.3 Mesh Representation and Rendering
3.2.4 Mesh Refinement o000
3.3 Automated Recursive Subobject Segmentation
3.3.1 Automatic Foreground/Background Seeding
3.3.2 Background Fillingo
3.3.3 Subobject Segmentationo
3.3.4 Subobject Vectorization and Recursive Segmentation
3.3.5 Automatic Segmentation Algorithm
3.4 Object/Subobject Hierarchy
3.5 Object Editing
3.5.1 Object Scaling o L
3.5.2 Interactive Object and Subobject Editing
3.5.3 HoleFilling

3.6 Progressive Levels of Detail

4 Results
4.1 Comparison to Other Vectorization Techniques
4.2 Comparison to Hand-Made Examples
4.3 Editing Results o oo
4.4 Zooming Results oL

4.5 Levels of Detail Results
5 Limitations and Future Work

6 Conclusions

viii
32
37
39
40
42
42
45
47
47
49
o1
o1
02
23
93

57
60
66
69
71
71

81

85

CONTENTS

A User Manual
A.1 Introduction
A.2 Getting Started
A.2.1 Opening an Image
A.2.2 Saving an Image
A.3 Object Selection

A.3.1 Trap Select Tool

A.3.2 Min Graph Cut Tool

A.3.3 Creating Objects and Subobjects

A.4 Graphic Creation
A.4.1 Choose Object .
A.4.2 Selecting Corners
A.4.3 Making Mesh . .

A.44 Render Mesh . .

A.5 Managing Graphics and Hierarchy

A.6 Editing Tools
A.6.1 Move Pivot Tool
A.6.2 Move Tool
A.6.3 Scale Tool
A.6.4 Rotate Tool . . .
A.6.5 Stretch Tool . . .

A.6.6 Bend-Stretch Tool

B OpenGL Commands

ix

87

87

87

87

88

38

38

89

90

90

90

90

91

91

92

92

92

93

93

93

94

95

97

CONTENTS

Bibliography

99

List of Figures

1.1
1.2

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6

Baseball glove L oo 2
Vectorized Ferrari Lo 4
Current vectorization outputs 9
Current vectorization regions. 10
Object-Based Image Editing 12
Intelligent Scissors Lo 15
Lazy Snapping L 16
Efros Texture 18
Impaintingo 19
Non-photorealistic rendering 20
Image Analogies L L 20
Subobject hierarchyo L 0oL 23
Watershed Regions for Graph Cut 27
Object selection 28
Coarse-to-fine segmentation 29
Boundary localization in object selection 29
Corner finding L L 32

xi

LIST OF FIGURES xii

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25

4.1
4.2
4.3
4.4
4.5

Mesh creation Lo Lo 34
Distance map Lo 35
Boundary refinemento L0000 36
Object division Lo o 38
Grid refinement and rendering oL Lo 40
Levels of refinement 0oL 0oL 41
Background renderingo L oo 43
Least squares fit hole filling L. 44
Subobject renderingo Lo 46
Object error 46
Recursive subobject selection 47
Subobject hierarchyo o o000 50
Subobject gridso 51
Background rendering oo oL o L 52
Object editing L L 53
Object editing L L 54
Hole filling 95
Progressive Detail 0oL 56
Detail Grapho 56
Rose Sequence 58
Bowl Graphic 58
Board Graphic 59
Banana comparisono 0oL 61
Object Translation 000 62

LIST OF FIGURES xiii

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26

Rollingpinedit L. 63
Ferraris L 63
Strawberrieso 64
Bowls 65
Comparison of Vectorization Techniques 65
Leaves o L 66
Baseball gloveo 68
“Catching a hotone” 0000 69
“Vectorize the Vector Eyes” 70
“Improving on nature” Lo 73
Erasing the board oo 74
“Pyramidal Optimization” 74
“Desktop Editing” Lo 75
Sailzoomo 75
Bananalevelso o oo 76
Banana level graph oo oo 76
Strawberry levels L 77
Strawberry level grapho oo 7
Baseball glove levels oo 0oL 78
Baseball glove level graph oL 78
Roselevels 79
Icons 88

Chapter 1

Introduction

Image vectorization is the process of converting a raster image into a vector
graphic. Raster images, such as photographs, are understood by a computer only
as an array of pixel values, limiting the operations that can be performed on the
image to those which manipulate pixels. Vector graphics, on the other hand, have a
geometric data structure associated with them, allowing more direct object-level con-
trol. Unfortunately, vector graphics are more difficult to produce than photographs,
usually requiring a graphic artist to laboriously hand craft them. Through image
vectorization, we can quickly convert raster images into vector graphics with minimal
user intervention. This requires the detection of specific objects in the image, followed

by a means of fitting a suitable vector structure to them.

There are several motivating reasons for performing image vectorization. Vector
graphics are used abundantly in advertising and on the web, mainly for their scalabil-

ity, stylization, and editability. Producing these manually is an increasingly expen-

2 CHAPTER 1. INTRODUCTION

sive, time-intensive, high-level task, especially as the demand for increased realism
increases. Image vectorization would facilitate the creation of editable (photorealis-
tic) graphical models of complex, real-world objects. For example, the picture of the
baseball glove created by the artist Highside [32] in Figure 1.1(b) is not a photograph,
but was generated from the vector graphic shown in Figure 1.1(a). Creation of this
model required approximately 60 hours by this highly skilled artist. Semi-automated
vectorization techniques can significantly reduce the time and talent required for
graphic production. Using image vectorization, libraries of such models could be
created more readily, extending the tool set for artists in doing image synthesis and
scene compositing, while reducing the time and tedium associated with manual model

creation.

= 0
g byl .»*}Jr}..skl Tlustrator
=l I {

(a)

Figure 1.1: (a, b) Mesh created and rendered by Highside [32]. It required 60 hours
to create the mesh.

Vector representation and manipulation of objects contained in raster images
would also ease many of the tasks associated with image editing. For example, image
objects could be scaled or distorted without the pixelation that accompanies tradi-
tional interpolation techniques (see Figure 3.20), and without affecting surrounding
image areas as occurs with rubber-sheet distortions. Vectorization would allow ob-
jects to be reduced in size or deleted without leaving holes in the surrounding objects.
A separate vector graphic for each object in an image would also allow it to be relit,
filtered or stylized independent of the other objects in the scene, with user-selectable
levels of detail. And clearly, any manipulation of image content performed at the
object level offers greater efficiency, selectivity and user-friendliness than low-level,

pixel based tools.

Techniques for image vectorization could also be used to reverse-engineer a graphic
and repurpose existing animation. Such techniques could also provide a medium for
the exchange of objects between the world of graphical models and raster images.
Vector representation also provides a means of representing image content geometri-
cally (and hierarchically), in a way that describes object adjacency and enables image
or object search technologies. Finally, a scalable, hierarchical, vectorized representa-
tion may allow a more efficient representation of a raster image and open the door to

progressive compression or transmission strategies.

Automatically-generated vector graphics should possess several desirable charac-
teristics (see Figure 1.2). Individual graphic objects should correspond to significant
objects in the image. Subobjects of these significant objects should also exist as sep-
arate, nested graphic objects. Graphic objects should be easy to edit, with edits on

objects being automatically propagated to their subobjects (if desired). Translation

4 CHAPTER 1. INTRODUCTION

or deletion of subobjects should not leave holes in their parent objects. Vector graph-
ics should also accurately represent the original object at a level of detail, ranging
from near-photorealistic to stylized, as specified by the user. Artificial edges should
not be introduced in smoothly shaded areas, while sharp edges should remain sharp.
These characteristics are usually found in manually-created graphics, but are poorly

enforced in current techniques for automatically generating graphics (see Section 2.1).

Figure 1.2: (a) Original raster image. (b) Vector graphic consisting of 3579 Bezier
patches computed from image in (a) in about 1 minute. Meshes for individual objects
(e.g. car body, wheels, hubcaps, lights, etc.) are created automatically using recur-
sive graph cut and error-driven grid refinement. (c¢) OpenGL rendering of the mesh
shown in (b). Individual objects are repositioned and scaled to illustrate interactive
editability. Note that where objects have been displaced, the underlying objects (car
body, tires) have been filled in automatically (no holes) with relevant impressions and
indentations preserved.

Constructing a vector graphic in accordance to these characteristics is a diffi-
cult challenge. Object-based vectorization requires object segmentation, necessitat-
ing powerful user-driven segmentation tools. However, any given image may contain
hundreds, to possibly thousands of objects and subobjects, far too many for a user to
segment in any practical time frame. General purpose image segmentation is, as yet,
an unsolved problem. Recent work has introduced powerful, semi-automated segmen-
tation tools, such as Graph Cut [13], Snakes [31], and Intelligent Scissors [37], to cite

only a few. However, even these tools are unacceptable for full image vectorization,

where so many objects must be segmented. Methods for automatic segmentation

must be developed.

After the regions are selected for object vectorization, the next challenge is to
create a suitable vector graphic. Current vectorization techniques do not support
shaded regions, but rather segment the image into flat-filled regions. Accordingly, the
entire process of creating a vector graphic must be discovered. Hierarchical ordering
must be implemented, and a method of editing an object hierarchy efficiently must be
developed. Since object deletions are allowed, occluded portions of an object must be
filled, calling upon texture synthesis and image completion. Each of these difficulties

must be addressed in order for vectorization to be successful.

In this paper, we present a method for image vectorization conforming to these
desired chararctistics. Users may select objects to vectorize by means of an interactive
min graph cut selection tool, similar to [35] but with improvements. A vector graphic
is then created based on Bezier patches, allowing for smooth shading. Automatic
segmentation and hole-filling are provided. Editing tools similar to those in Object-

Based Image Editing [8] are used to demonstrate object-level editability.

This work makes several important contributions to the current body of research.
We provide a new means for image vectorization that creates graphics that are more
realistic, naturally shaded, and far more editable than current techniques, and that
contain hierarchical levels of detail. We present a more advanced object-based rep-
resentation of images through a hierarchy structure, allowing for better organization
and easier editing and manipulation of objects in an image. We introduce a new
method of automatic image segmentation. We also introduce several improvements

to min graph cut image segmentation which allow for easier and faster use.

6 CHAPTER 1. INTRODUCTION

We validate the success of the project by comparing our results qualitatively and
quantitatively with other vectorization algorithms, demonstrating more natural shad-
ing and superior editability. We show the utility of the hierarchical object represen-
tation by performing complex image edits not easily achievable through other tech-
niques. We also show results of progressive levels of detail, meaning the user may

view the same graphic at different levels of stylization.

Chapter 2

Previous Work

Image Vectorization is most closely related to current commercial vectorization pro-
grams which also convert raster images into vector graphics. However, Image Vector-
ization moves beyond these current techniques by offering object-based vectorization,
graphic editing tools, various stylization levels, and automatic hole filling. Image
Vectorization therefore draws upon not only current vectorization techniques but
also those found in image editing, texture synthesis, non-photorealistic rendering,
and object selection.
2.1 Vectorization Techniques

Much of the previous work in image vectorization has focused on maps, engi-
neering drawings, documents, or similar raster images that are inherently bitonal in
nature [1] [48]. Because the images are bitonal, the problem reduces to curve-fitting
boundaries. These techniques work quite well within their intended domain; however,
this problem is drastically different than that of producing a vector representation of
an object in a color image, which requires not only boundary information but also

internal geometry and color information to provide appropriate coloration of object

7

8 CHAPTER 2. PREVIOUS WORK

interiors. Because of this difference, these previous techniques are not applicable to

full color image vectorization.

A long-standing approach to full-color image vectorization is found in Adobe’s
Streamline [2]. Streamline converts raster images to line art, but is targeted primarily
at scanned linework rather than photographic images. More recent vectorization tools
such as Adobe Illustrator Live Trace [4], Corel’s CorelTRACE [16], Siame Vector
Eye [42], Macromedia Flash [36] or AutoTrace [7], can be applied directly to full
color images, but most of these are still targeted at converting line drawings or flat-
shaded color cartoons. When converting color images, they yield vector graphics
consisting of many small homogenously-colored objects similar to those produced by
posterization algorithms. Examples of the output of these techniques is shown in

Figure 2.1.

In the introduction, we described several desirable characteristics of vector graph-
ics as typically found in hand-crafted graphics. Such chararcteristics include accurate
representation of the image, correspondence of graphical objects to image objects,
and ease of editing. However, the graphics produced by current vectorization pro-
grams fall short in many of these areas. Current vectorization programs create an
extremely large number of small, irregularly-shaped, flat-filled regions. These can rep-
resent scanned artwork with relatively flat shading quite well, but cannot accurately
represent the multitude of photographic and artistic images with significant shading
and color variation. Rather, they segment smooth-shaded regions into a series of flat

color regions, adding artificial edges where the regions meet, as seen in Figure 2.1.

These methods also do not provide a mechanism for the vectorization and direct

control of specific objects in an image. Objects are instead oversegmented into small

2.1. VECTORIZATION TECHNIQUES 9

() (d)

Figure 2.1: The square region of interest in the original image (a) is vectorized by
(b) Adobe Illustrator, (c) Vector Eye, and (d) Macromedia Flash.

regions corresponding to similarly colored areas, which rarely correspond to signifi-
cant objects in the image. Also, they often produce extremely complex boundaries
comprised of a polygonal or spline boundary around the similarly-colored region, as
shown in Figure 2.2. Since these regions have no connection to one another, have

such complex boundaries, and are many in number, editing is difficult and tedious.

10 CHAPTER 2. PREVIOUS WORK

Real images are comprised of objects which may contain many subobjects and their
corresponding subobjects. Representing objects in images as actual graphical objects
allows for more natural and simplified editing of the objects. Hierarchical represen-

tation allows for the propagation of edits to subobjects.

Figure 2.2: Regions from the vectorized banana shown in Figure 2.1 as produced by
(a) Adobe Illustrator and (b) Vector Eye.

Without a sense of object hierarchy, it is difficult to perform background com-
pletion to prevent holes from appearing in the image during editing. Some of these
systems will create a fill behind an object if it is completely enclosed within another
object’s boundary. However, this often does not happen, meaning that there is no
fill behind most of the small regions in the image, which results in holes if a region is
moved or deleted.

2.2 Pixel-Based Editing

Traditional image editing consists of pixel-based operations such as recoloring or

moving pixels. Photoshop [3] and The Gimp [44], for example, contain many pixel

editing tools, such as paintbrushes, blur and sharpening brushes, clone brushes, and

2.3. OBJECT-BASED EDITING 11

global filters. Photoshop’s Healing Brush copies pixels from a sample location to a
destination, much like a clone brush, but matches the texture, lighting, transparency,
and shading of the destination while doing so. Oh et al. [39] developed a clone brush
which prevents distortion caused by perspective. Rubber-sheet techniques [11] [46]
allow for image warping or morphing between two images.

Pixel-based editing approaches are ideal for editing tasks that simply require re-
coloring or shifting pixels regardless of the their object membership. However, users
perceive images as a collection of objects rather than an array of pixels, and many
commonly desired editing tasks involve direct manipulation of these objects. Pixel-
based techniques are generally inadequate for such operations. Users may sometimes
achieve the desired results by selecting the object region and applying pixel-based
techniques to that region only, but this still does not give true object level control.
Often users are required to go to great lengths to produce the desired manipulation

using pixel-based editing.

2.3 Object-Based Editing

A significant extension of Image Vectorization over other current vectorization
techniques is its ability to vectorize on an object level. Various object-based meth-
ods of image editing exist, with Object-Based Image Editing (OBIE) [8] by William
Barrett and Alan Cheney being the most relevant to this project. OBIE can be con-
sidered a precursor to this project, inspiring our object-based implementation. We
also use OBIE-style widgets for interactive object-based editing operations.

Object-Based Image Editing allows image editing to occur on an object level via
easy-to-use interactive tools. Users first select a desired object in the image, and then

edit that object as a whole using various translation, rotation, scaling, and warping

12 CHAPTER 2. PREVIOUS WORK

Figure 2.3: Example of image editing using Object Based Image Editing. Potato
Head’s arm is easily bent due to its object representation. Images from [8].

tools. OBIE utilizes a hierarchical watershed segmentation for object selection and
hole filling. OBIE editing tools allow for non-linear transformations as well as indirect
object manipulation. OBIE provides an excellent means of performing many image
edits more quickly and naturally than pixel-based techniques. An example of an

image edit is shown in Figure 2.3.

The most significant difference between OBIE and Image Vectorization is the
intended final product of the two methods. For OBIE, the deliverables are only
modified raster images. The structures being used to produce the final image were
chosen because they were an efficient means of producing the intended result and not
for their own intrinsic value. In Image Vectorization, however, the deliverables are
vector graphics, and thus the structures used are inherently valuable. Their value

increases with their ability to be edited and stylized easily.

The work presented in this paper extends the OBIE framework in several signifi-

cant ways. The OBIE framework represents objects with an irregular, texture-mapped

2.4. OBJECT SELECTION 13

triangular mesh, requiring storage of the original image pixel data and leaving ob-
jects susceptible to pixelation under certain scaling and editing operations. Our work
represents objects using a scalable, regular mesh of Bezier patches, requiring storage
of only the node color and mesh geometry. In OBIE, the mesh has one level of de-
tail specified by the chosen level in the watershed hierarchy. In our work, the mesh
is hierarchically ordered, supporting coarse-to-fine editing operations and selectable
levels of detail in the object rendering. In OBIE, objects are selected by manually
tagging watershed regions; here we exploit graph cut for object selection and auto-
mated, recursive segmentation and hierarchical ordering/layering of the object into
relevant subobjects. This also allows selective, object-level filtering and stylization.
Because of the texture layering used in OBIEs automated hole filling, it is best suited
for relatively flat or random (stochastic) regions. Our work extends this by extrapo-
lating smooth, shaded surfaces over holes for object background completion (Figure
Ic).

Additional methods of object-based editing have been developed. The innovative
work by Elder and Goldberg [23] demonstrates object-level editing, even deletion,
but requires that the user perform contour grouping, which is analogous to object
selection. W. Li et al. [34], cleverly apply semi-automated object selection and lay-
ering constraints to create exploded-view diagrams, analogous to what is shown in

Figure 1.2(c).

2.4 Object Selection

A popular area of research in computer vision is object segmentation. Due to the
difficulty in automatically segmenting images, and the impossibility of automatically

knowing which of several objects in an image the user wants selected, most research

14 CHAPTER 2. PREVIOUS WORK

focuses on developing interactive segmentation tools to reduce user effort in object
selection. Object segmentation tools are generally divided into boundary and region

based algorithms.

Among the best known boundary segmentation algorithms is Intelligent Scis-
sors [37], which computes a least cost path from the user’s initial mouse click to
the current mouse position in order to best localize the object boundary, as shown
in Figure 2.4. The costs along the path are based on image gradient and Lapla-
cian information. Snakes [31], another boundary based method, allows the user to
again roughly mark the image boundary, then iteratively adapts the outline to match
the object boundary by minimizing an energy function based on the snake bound-
ary curvature and image gradient. Boundary based techniques work well in many
cases. Unfortunately, some objects have complex boundaries that require excessive
user interaction to correctly segment the object. Complex textures also complicate

segmentation by obscuring true object boundaries with internal gradients.

Region-based segmentation algorithms rely on regional information provided by
a user to select objects. Magic wand [3] selects all pixels connected to an initial
user-specified example that fall within a similar color threshold. Intelligent Paint [40]
segments the image into watershed regions, then groups regions connected to a user
selected region based on statistical similarity. While these techniques take advantage
of object regional information, they can easily fail to select objects with weak edges

by “leaking” the selection to include image regions exterior to the object.

Recent break-through work in interactive image segmentation [5] [35] [41] has
been accelerated by the popularization of minimum graph cut [13] [12]. Min graph cut

techniques apply both region and boundary information in segmentation by combining

2.4. OBJECT SELECTION 15

Free Paint

Figure 2.4: Intelligent Scissors selects objects by allowing the user to roughly trace
the object boundary. The algorithm uses Laplacian and gradient information to
adhere to the true object edge. Images from [37].

both into an energy minimization equation. Segmentation is cast as a graph cut
problem, which tries to divide one connected graph into two connected graphs by
cutting along the lowest weighted edges. Seeds are placed in the graph at nodes to
assign those nodes to one of the two specified subgraphs, and they are used to help
determine the membership of other nodes. For images, pixels correspond to nodes
in the graph, and the boundary and region information determine the weights of the
edges. Generally, users create foreground or background seeds by marking pixels with
a paintbrush as foreground or background. These seeds help initialize the graph, and
min graph cut consequently divides the graph (image) into two regions, foreground
(desired object) and background. An example of this from Lazy Snapping [35] is
shown in Figure 2.5. Grab Cut [41] alters this interface by allowing the user to
simply draw a bounding box around the object, followed by iterative refinement to

localize the correct object.

16 CHAPTER 2. PREVIOUS WORK

Figure 2.5: Lazy snapping selects objects by optimizing a min graph cut problem.
Foreground seeds (yellow) and background seeds (blue) provide initialization infor-
mation for the graph cut. The dotted line shows the segmentation. Images from [35].

Building on Lazy Snapping [35] this paper presents several extensions to user-
driven graph cut segmentation. (1) Initial object selection is performed by calling the
graph cut algorithm continuously, as each new foreground sample is collected with
the mouse. This allows the object to grow as each sample is collected, making the
user an active, rather than a passive participant, similar to Intelligent Paint [40].
Overgrowth is curtailed by sampling those areas back into the background, as in
GrabCut [41]. (2) We apply graph cut to a toboggan-based watershed, allowing fast,
pixel-level, boundary localization in one step, rather than two. This also allows graph
cut to be called continuously without the need for user intervention. (3) We introduce
automated, recursive graph cut for hierarchical segmentation and ordering of image

objects.

2.5. TEXTURE SYNTHESIS 17

Although a much more difficult problem, work has been done in automatically se-
lecting objects from images. Gao et al. [25] segment by finding connected components
after thresholding in morphological gradient space, then group all remaining pixels to
a region using a partition optimization method. Jing et al. [30] define a homogene-
ity metric, select seed regions based on the most homogeneous regions, then grow
and merge these regions to produce a final segmentation. Deng et al. [19] convert
the image into a J-image, an image derived from class map information, to assist
in segmentation. Fan et al. [24] find edges using an isotropic edge detector, then
grow regions out from the centroids of the regions defined by the found edges. All of
these techniques work well in some cases, but perform poorly in others. Automatic
segmentation also has no means of guaranteeing the selection of the object that is of

interest to the user.

2.5 Texture Synthesis

For image edits such as translations and deletions to be effective, there must be
relevant imagery underneath the object being moved or deleted. Texture synthesis
provides a means of filling in holes in images. Approaches to texture synthesis include
pixel-based methods, patch-based method, and inpainting.

Pixel-based texture synthesis involves creating new texture one pixel at a time.
Most pixel-based texture synthesis techniques today find root in Efros and Leung’s
landmark paper Texture Synthesis by Non-parametric Sampling [22]. In this paper, a
given pixel is filled by locating another pixel of existing texture whose neighborhood
is most similar to the neighborhood of the pixel to be filled. A texture generated by
this algorithm is shown in Figure 2.6. Wei and Levoy [45] build on this by searching

for a similar texture pyramidally through a multi-resolution tree to allow for faster

18 CHAPTER 2. PREVIOUS WORK

Figure 2.6: Example of texture synthesis from [22]. Images from [22].

texture synthesis. Ashikhman [6] performs synthesis in scanline order using an L-
shaped window, and allows for user guidance in directing the synthesis. Drori et
al. [20] iteratively fills the hole and computes a confidence measure over the newly-

filled pixels to indicate the need for further iterations.

Patch-based texture synthesis, on the other hand, creates new textures by copy-
ing a patch of texture into the destination region instead of copying one pixel at
a time, greatly speeding the process of synthesis but increasing the probability of
repeated patterns. Efros and Freeman [21] lies down overlapping blocks of texture,
then computes a least cost path across the overlap region to merge the two. Graphcut
Textures [33] similarly lays down texture and finds a seam on overlapping regions,
but it does not require the size of the patch to be chosen beforehand and uses min

graph cut to find the seam.

Inpainting has produced impressive results for object background completion and

hole filling [10], as shown in Figure 2.7. Inpainting fills holes in images from the

2.6. NON-PHOTOREALISTIC RENDERING 19

Figure 2.7: Example of inpainting. Images from [10].

outside in, while propagating edges into the synthesized region. Inpainting preserves
structure well, but tends to oversmooth the region and loose texture. Recent, impor-

tant extensions recover both structure and texture [9] [17].

2.6 Non-Photorealistic Rendering

Image Vectorization allows the creation of highly stylized versions of the original
image, recalling work done in non-photorealistic rendering (NPR). Seeing how all cur-
rent vectorization algorithms also stylize, they could be considered NPR algorithms
too. However, traditionally NPR algorithms do not create vector graphics of the
original image, but rather just paint new pixels.

Various types of non-photorealisic rendering techniques have been produced. Some
techniques require user interaction to produce the stylized image. Paint by Num-
bers [26] is an early example of such a system. In this system, the user selects a
brush type, then sweeps over the image while strokes are drawn using color samples
from the current mouse position. DeCarlo [18] uses eye movement as its form of
input. The user looks at the image, and areas where the eye lingers are considered

more important and therefore are rendered with greater detail. An example is of this

20 CHAPTER 2. PREVIOUS WORK

Figure 2.8: Example of image stylization from [18]. The important features from
the original image are located by tracking where the user’s eye looks (circles in middle
image) to produce the stylized image on the right. Images from [18].

A A

Figure 2.9: Example of image stylization from Image Analogies [29]. The transfor-
mation that changed A to A’ is applied to B to produce the image B’ as output.
Images from [29)].

technique is shown in Figure 2.8.

Different automatic non-photorealistic rendering algorithms have also been devel-
oped. Several different methods have been developed by Hertzmann [27] [28] [29].
These methods include painting rough strokes, then more detailed strokes for ar-
eas above an error threshold [27], or treating the image as an energy function that
must be relaxed [28]. Image Analogies [29] uses the idea of analogies to transfer a
modification performed from one image to another image, as shown in Figure 2.9.
Collomosse [15] paints strokes based on image salience. Salience is determined by
calculating Gaussian smoothed derivatives over several standard deviations. Least

salient brush strokes are painted first, then more salient strokes afterward.

2.6. NON-PHOTOREALISTIC RENDERING 21

Non-photorealistic rendering techniques provide a variety of ways in which images
may be altered to produce more artistic or painterly effects. The different techniques
combined provide more versatility than image vectorization alone. However, image
vectorization is capable of creating varying levels of non-photorealism while still pro-

viding a vector-based graphic representation and the editability that comes with it.

22

CHAPTER 2. PREVIOUS WORK

Chapter 3

Methods

The purpose of our vectorization algorithm is to allow users to selectively create ed-
itable vector graphics of objects in an image. The graphic will consist of a hierarchical
ordering of meshes corresponding to the subobjects in the image, as demonstrated
in Figure 3.1. Each graphic mesh should be relatively sparse, and should be able to
produce both realistic and stylized versions of the object. They should also be easily

editable and scalable.

Figure 3.1: Hierarchy tree of the rendered body of the Ferrari (Figure 1.2(a)) and
its subobjects

23

24 CHAPTER 3. METHODS

Section 3.1 explains the first step of our method, interactive object selection using
an improved min graph cut segementation tool. Section 3.2 discusses the process
of creating a graphic mesh that adheres to the object geometry and represents the
object appearance within a user-selected level of detail. Section 3.3 introduces an au-
tomatic recursive subobject selection algorithm using min graph cut which segments
subobjects from the main object, fills the holes behind the subobjects, then recur-
sively treats each subobject as a new object and segments its respective subobjects.
Section 3.4 discusses the object hierarchy which is created through the automatic
subobject segmentation. Section 3.5 demonstrates the editability and object-level
control our graphics provide. Section 3.6 explains the levels of detail, ranging from

more abstract to more realistic, that may exist within a single graphic.

3.1 Object Selection

The first step in vectorization is selecting an object to be vectorized. Our user
segmentation tool is similar to Lazy Snapping [35], but with significant improvements.
We use graph cut to perform object segmentation in subsecond times, allowing the
segmentation to update with each mouse movement, providing interactive feedback
as opposed to only updating results after the mouse is released. Interactive rates
are achieved by performing graph cut on a watershed hierarchy. Also, we perform a
coarse-to-fine boundary localization with each mouse movement instead of doing so
as a secondary step. Finally, our tool includes automatic background seeding, which

allows a selection result to be displayed immediately after the first mouse click.

3.1.1 Graph Formulation and Weighting

We use the min graph cut algorithm in [13] which casts object selection as a

graph optimization problem. A graph G is formed consisting of two terminal nodes

3.1. OBJECT SELECTION 25

Ty and Tj, representing object foreground and background, and a set of nodes P
for each pixel in the image plus an additional background node, p,, not associated
with any pixel. All nodes p are initialized as foreground or background (as seeded
by the user) or unknown. The set V of all edges in G contains an edge (p,7) and
(p, T,) for each p € P as well as an edge (p,q) for nodes p and ¢ corresponding to
each neighboring pair of pixels. Each of these edges is weighted, and then the min
graph cut algorithm divides the graph into two pieces, foreground (containing 77)

and background (containing 7;). We weight the edges of the graph as follows:

For p,q € P
)
M if foreground
0 otherwise
’
M if background (3.1)
(p7 Tb) =
0 otherwise
\
- 1
P9 = Go=cwn
(pbap) = m,

where M is a large number representing high cost, m is a small number used for
background preseeding, and C(p) the color at node p. The node p; is an initial
background seed, and is (weakly) connected to each node corresponding to an image
boundary pixel. Each edge between a boundary node and p;, has a low cost, m. This
assumes that the boundaries of the image are background, but since the edge is such a
low cost, it is easily overridden by the effect of foreground seeds in the same region as
the boundary pixels. This allows object selection to begin with the first (foreground)

stroke of the user.

26 CHAPTER 3. METHODS

3.1.2 Watershed Hierarchy

Similar to Lazy Snapping, we achieve a speed increase by operating over wa-
tershed regions instead of pixels. We use the watershed (toboggan) hierarchy seen
in [38] [8] [40]. The first level of this hierarchy is created by performing a watershed
algorithm on the pixels to oversegment the image. In other words, the gradient mag-
nitude image is calculated, and each pixel then “slides” down the gradient magnitude
image, moving from pixel to pixel according to which neighbor has the lowest value,
until a low point is reached. All pixels sliding to the same low point form a water-
shed in the initial hierarchy level. Each subsequent level of the hierarchy is formed
by grouping watersheds from the previous level according to statistical similarity
calculated using the student’s t-distribution. Each level of the watershed hierarchy
completely segments the space, with each level of the hierarchy being completely
composed of a union of watersheds from the previous level, except for the initial level
which is a union of pixels. Watersheds tend to maintain gradients in the image, such
that object boundaries are still well represented at higher levels of the watershed

hierarchy.

Since these watersheds exist in a hierarchy, this allows us to use a coarser level
of the hierarchy if desired, reducing the size of the graph substantially, resulting in
much faster response from the graph cut algorithm (< .1 sec), and therefore faster,
interactive segmentation. Figure 3.2 demonstrates how regions from the initial wa-
tershed level (created by watershedding on pixels) are combined into larger regions.
The regions in 3.2(a) are grouped and merged to create the larger watershed regions
shown in 3.2(b). The grey boundaries in 3.2(b) are boundaries that were eliminated

when the regions were grouped.

3.1. OBJECT SELECTION 27

Figure 3.2: Watershed regions for (a) first level, (b) second level of hierarchy. Bound-
aries of combined watersheds are shown in grey. (c) Boundary refinement is limited
to yellow pixels within watersheds bordering the coarse boundary (blue). Red (rim)
pixels are used to seed foreground and background.

3.1.3 Persistent Graph Cut

As in [35] [41] the user marks the image with a (yellow) paintbrush to place fore-
ground seeds (Figure 3.3). (Background seeds are initialized as described above.)
With each mouse movement, min graph cut is called and the segmentation is dis-
played. Because min graph cut is called with each mouse movement, the user inter-
action follows a painting metaphor, where the user moves the cursor over the image,
receiving constant and instant feedback, until the correct segmentation is computed.
The background seed py, allows the user to receive visual feedback with the first (fore-
ground) mouse click, increasing the responsiveness of the tool. Figure 3.3 illustrates
the user interaction. The user first clicks inside the “T”, which selects it, as shown by
the cyan outline in 3.3(b). As the user moves the cursor continuously (yellow path),
the segmentation grows from the region bordered by cyan (o) to magenta (¢;) and

finally to green (t2). The selection updates as fast as the user can move the mouse.

28 CHAPTER 3. METHODS

(a) (b)

Figure 3.3: The segmentation changes at each ¢;,. Segmentation boundaries are
shown in cyan, magenta, and green. The user cursor path is shown in yellow. The
time between ?;s is as fast as the user can move the cursor (<< 1 second).

3.1.4 One-Step Boundary Localization

With each mouse movement, graph cut is called for each level of the watershed
hierarchy down to the pixel level. The catchment basins immediately adjacent to
the object boundary at the bottom of the hierarchy form a rim (yellow region in
Figure 3.4). Graph cut is applied automatically to the pixels in the yellow rim to
localize the boundary (in magenta) to the pixel level. At each level of the watershed
hierarchy, foreground and background seeds (green border of yellow rim) are taken
from the inside and outside edges of the rim created by the watersheds around the
initial boundary, and a new boundary is computed. Thus, for each mouse click or
movement, an entire coarse-to-fine segmentation is computed. The localized boundary

of the cap example is shown in Figure 3.5.

3.2. MESH CREATION 29

Figure 3.4: The initial segmentation of watershed regions produces a coarse object
boundary (red). The pixels in the watersheds along the boundary (yellow) are used to
refine the object boundary. Seeds are placed on the edges of the watersheds (green),
and a finer boundary (magenta) is found.

(b)

Figure 3.5: (a) The rim around the watersheds bordering the coarse segmentation
(blue) become seeds for a new region (yellow) where min graph is applied, producing
a new segmentation. (b) Final segmentation (green).

3.2 Mesh Creation

Once an object is selected, we create a mesh that allows the object to be rendered,
scaled, and edited at hierarchical levels of detail. Although we constrain the mesh to

be a warped, rectangular grid, we have found that this works well for a surprisingly

30 CHAPTER 3. METHODS

wide variety of objects. To create a mesh, we first locate four points on the object
boundary to serve as corner points. The corners help define endpoints for a least-cost
search that traverses the object, creating mesh axis lines. The resulting mesh is then

rendered and refined.

3.2.1 Curvature Analysis for Corner Detection

The first step in mesh creation is locating four points along the object boundary
to serve as corners of the rectangular grid (see blue dots in Figure 3.7(a)). This can
sometimes be problematic, since many objects do not have four easily identifiable
corners. We find candidate corner points by searching for points of high curvature
along the boundary of the object.

Points of high curvature usually reveal relevant extremities in the geometry of
the object silhouette, and are used to create a set of potential corner points. The
curvature, x;, and slope, s;, at boundary point, b;, are computed by averaging over
a window, w, for robustness to noise while still catching gradual bends in the object

boundary, according to the equation

1 i+w/2
Ki=_ Z (8i41 — 8i), (3.2)
j=i—w/2
where
1 itw/2
S; = E Z (bi+1 — bz) (33)
j=i—w/2
and

w = max(P/20,4) (3.4)

3.2. MESH CREATION 31

for object perimeter P. The n=8 points with the highest k; comprise the set, C, of
potential corner points. Additional potential corner points may be added to C' if the
current points are distributed in a “triangular” fashion, meaning that if the boundary
were divided at each of the potential corner points, two consecutive segments would
have a greater length than all other segments combined. Such an example is shown in
Figure 3.6(b), where the boundary of the red part of the strawberry produces corners
that form a triangular formation, with only one at the tip and all others near the
leaves. When this occurs, the two long segments are each searched for a new corner

point using Equation 3.2, producing two new corners as shown in Figure 3.6(c).

The best four corners from set C' are chosen over (%) according to

L w,, . . w))
max_|[i—j||+|[k—m||+a—(|[7=k[[+][m—i|])+ B4/ 5 + 1([[i=k[|+|[7—ml[]), (3.5)
i4.kleC l l

where ||i — j|| + [|[k — m|| < [|j — k|| + |[m — 4|]| and w, | = width, length of the
minimum bounding box around the object. In other words, the edges between i and
j and between k and m comprise the short sides of the rectangle to which the corners
belong, as illustrated in Figure 3.6(d). The best corners are the combination of points
that maximizes the lengths of the sides of this rectangle. However, the lengths of the
long sides and diagonals of the rectangle are scaled to better reflect the shape of the
object (by way of the bounding box ratios) and to reflect the relative importance of
each (by scalars a and). We generally set @ =.83 and § =.33. If the computed
corner points appear to be unsatisfactory, the user can easily adjust their position,

subject to the constraint that the points are attached to the object boundary.

32 CHAPTER 3. METHODS

() (d)

Figure 3.6: (a) The boundary of the red part of the strawberry (b) is searched for
corners (yellow), producing a “triangular” distribution. (c¢) New corner points are
added (green), and (d) the best four corners (cyan) are selected. The length and
width of the magenta boundary box, as well as the distances between points (blue)
are used in calculating the best corners.

3.2.2 Axis Creation

Once the corners have been found, mesh lines can be formed. Major and minor
axes (Figure 3.7(a)) are first found by performing a least-cost search from the midpoint
of one side of the rectangle across the object to the midpoint of the opposite side (red

dots in Figure 4b). Each pixel is a node in the search and the minimum cost path

3.2. MESH CREATION 33

is calculated, in Intelligent Scissors fashion [37], using the local cost function, I(p, q)
between pixels p and ¢, where the cost functions fp, fg, and f; refer to distance
(Figure 3.7(b)), gradient and isocontour and wp, wg, and wy are their corresponding

weights. The local cost function is given as:

I(p,q) = wpfo(p) + wafa(p) +wrfr(p) (3.6)

fp(p) is a geometry cost based on the value of an inverted distance map at pixel,
p, which coerces the minimum cost path for the major axis into the center of the
object (yellow line, Figure 3.7(b)). fa(p) is a gradient cost, which draws the path
toward interior object edges. fr(p) is a color isocontour, cost which penalizes the path
for moving to pixels of different color. The weights wp, wg, and wy, which set the
importance of the each cost, are set (interactively) by the user using sliders. Since
the gradient and isocontour costs often cause the axes to avoid subobjects that will
be removed later (Section 4), we often set their weights to zero, as has been done in
Figure 3.7.

Use of a standard distance map to compute the minimum cost path causes pixels
around the search target to have high cost, due to the nature of the medial axis.
This usually pushes the search away from the middle and causes undesirable results
(Figure 3.8(b)). Simply removing the section of the boundary around the target often
alleviates this problem, but in many cases this also removes needed information, which
can cause the axis to veer away from its desired target (Figure 3.8(c)). To correct for
this, we replace a section of the object boundary with a section of an ellipse oriented
toward the low valley in the distance map to guide the axis more directly towards the

goal (Figure 3.8(d)). More specifically, a low point is found by ”walking downhill”

34 CHAPTER 3. METHODS

(b)

Figure 3.7: (a) Corner points (blue) and major and minor axes (yellow). (b) Distance
map used to find major axis (yellow). White = low cost; black = high cost. Red dots
= search endpoints. Object boundary for the cap is in green. (c¢) Resulting mesh.

from the two corners nearest the target, at each step moving to the pixel with the
lowest cost, until they meet. This is assumed to be part of the medial axis of the
shape, or the valley in the distance map. The algorithm then walks downhill from the
target until it intersects the path from one of the two corners. The algorithm “walks
uphill” as slowly as possible, meaning moving to the pixel with the smallest value
greater than the value of the current pixel, from this point until it reaches a point p
where the uphill path differs from its downhill path from the target. The ellipse is
centered on the target and oriented such that the major axis points toward p. We set,
the length of the major axis of the ellipse to twice the distance from the target to p
and the length of the minor axis to half the length of the major axis. These ellipses
account for the unusual looking bulges at the top and the bottom of the distance map

(as in Figure 3.7(b)), but it accomplishes the desired objective.

Once the major and minor axes are found, additional mesh lines are found by sub-

dividing the object and applying equation 3.6 to each half recursively (Figure 3.7(c)).

3.2. MESH CREATION 35

(a) (b) () (d)

Figure 3.8: (a) Original shape. (b) Its distance map, where black indicates low cost
and white high cost. The red dot is where the search begins, and the yellow line
is the axis. The high values near the search goal repel the axis causing it to bend.
(c) Without the edge, the axis bends the other way until it hits the boundary of the
object (shown by the cyan dotted line), then follows it to the goal. (d) With the
added ellipse, the axis reaches the goal on a straighter (though slightly bent) coarse.

When doing so, the previously found axis becomes part of the new object boundary,

and the endpoints of the axis become new corner points.

The algorithm as just explained produces a good mesh for the object interior for
most cases. However, problems can occur at the object boundary. Since the object
boundary is being approximated by Bezier curves, it will not always exactly fit the
boundary. Often, this stylization is exactly what is wanted in a vectorization. Just
as the color of the object interior is stylized, the boundary is stylized by becoming
smoother. The problem occurs when the user wants the boundary to be more exact,
or when two objects are touching. To allow for more exact boundaries, the user

may adjust a boundary tolerance parameter. The tolerance describes the maximum

36 CHAPTER 3. METHODS

distance the graphic boundary may be from the true boundary of the object. If
the boundary created, as previously described, exceeds this tolerance, the offending
Bezier is subdivided. The maximal curvature point along the portion of the true
boundary that the Bezier approximates is calculated using the curvature constraint
described in Section 3.2.1, and the Bezier is split at this point. Figure 3.9 illustrates

the process.

After subdividing, the bezier
remains within threshold

Threshold Regicn

Origimal Bonmdary

(a) (b)

Figure 3.9: (a) The Bezier curve (red) contains points whose distance from the
original boundary (black) is too large. (b) After subdividing, the two new Bezier
curves (red and magenta) fall within the threshold.

Even with an adjustable boundary tolerance, problems occur when objects share
a common boundary. In this case, they are vectorized separately, and since the
boundaries are not exact, there may be noticeable gaps between the objects. This is
especially noticeable when automatically generated subobjects are suppose to meet
but have small, often pixel-sized, gaps between them. The user may want a smoothed
boundary for the overall object, but still may want bordering subobjects to touch. To

handle this, when bordering subobjects are created, their common border is checked

3.2. MESH CREATION 37

for gaps by rendering the subobjects and their parent object each in a different color
to encode them, tracing the subobject’s common border, and looking for any pixel
along that border which belongs to the parent object. If gaps exist, the boundaries
are slightly nudged toward each other. This removes visible gaps while allowing an

overall smoothed boundary.

When subobjects have a shape difficult to capture by a rectangular mesh, the
object is automatically subdivided into more easily represented objects. Figure 3.10
shows an example, where the object formed by the two wheels and the shadow un-
derneath the car has a difficult shape to represent and needs to be divided. The
rectangularity of the object, the ratio of the object area to the area of the tightest
bounding box, is calculated. If it is too low, the object boundary is searched for the
point of highest curvature (red), using the algorithm in Section 3.2.1, which is also
located in a concavity. Straight paths across the object interior are computed for
discrete angles, and the shortest path to the opposing boundary (green) becomes the
line of division given that the opposing intersection is some minimal distance along
the object boundary (Figure 3.10(c). Each half is then treated as a separate object,
having a separate mesh computed for it, and again being subdivided if necessary

(Figure 3.10(d)).

3.2.3 Mesh Representation and Rendering

After creating mesh lines, we fit each mesh cell with a Bezier patch. The Bezier
patch is formed by first approximating each side of the cell with a Bezier curve. This

yields 12 of the necessary control points for the Bezier patch. Each additional control

38 CHAPTER 3. METHODS

Figure 3.10: (a) Original image. (b) Shadows and tires form a difficult object to
represent. (c) The highest concave curvature point (red) is found, and the shortest
path across the object (green) is computed. (d) The object is divided in two, and the
resulting objects are again divided, yielding four objects.

point, ¢, at position (7, j) in the 4x4 Bezier patch control grid is interpolated using:

C(Za]) = UQC(O,j) + U16(3,]) + UQC(i) 0) + Ulc(i, 3) -

ugv2¢(0,0) — ugv1¢(0, 3) — uv9c(3,0) — ugv1¢(3, 3), (3.7)

where

uy =1/3,ups = 1.0 —uy, vy = 5/3, and vy = 1.0 — vy (3.8)

After the geometry of the patch has been determined, colors must then be assigned
to each of the control points. We choose colors by sampling the image from the point

of the patch to which the control point corresponds. The corresponding point on the

3.2. MESH CREATION 39

patch surface for a given control point is calculated using de Castlejau’s algorithm on
the columns and rows of the Bezier patch and assuming values of t = 1/3 and t =
2/3 for the interior control point on each Bezier curve. The sampled color is assigned
to the control point, and the patch is shaded using OpenGL. The OpenGL rendering

is explained in more detail in B.

3.2.4 Mesh Refinement

After being rendered, the meshes are refined to provide higher resolution of detail.
Each patch containing points whose render error (difference between original and
rendered versions) is above a user-selectable threshold (level of detail) is subdivided
as shown in Figure 3.11, where the center grid was divided in half, and one half into
fourths, to produce the grid on the right. These smaller patches provide more control
points and thus more color samples over the region of error. This process is iterative,
checking all new patches to see if their errors are below threshold, and subdividing if
necessary. This process continues until a predetermined number of iterations occur or
until all patches fall below the error threshold or a user-defined size. Each iteration
runs in subsecond times for normal-sized objects or up to a second for large objects
or objects requiring many refinements. We generally refine the mesh after subobject
selection (explained in Section 3.3) to avoid refining regions which are occluded by
(nested) subobjects.

Mesh refinement may cause T-junctions in the mesh, as shown on the right grid in
Figure 3.11. These can potentially cause discontinuities in the surface because more
control point are used in calculating the color gradients on one side of the junction
(the right side in Figure 3.11) than on the other (the left side). However, in practice

if the color is varied enough to cause a discontinuity, there will be enough error to

40 CHAPTER 3. METHODS

force both sides to subdivide, maintaining the same distribution of control points and
preventing problems (if the left side also divided in half, the control points would be
aligned with those on the right side).

Figure 3.12 illustrates the increase of resolution achieved using a refined grid. The
original grid resolution in Figure 3.12(b) is used to create the rendering shown in Fig-
ure 3.12(e). The refined grid in Figure 3.12(c) produces a rendering (Figure 3.12(f))

which more closely matches in original (Figure 3.12(d)).

Figure 3.11: The image on the left is approximated with an initial grid (center)
and a refined grid (right). Notice how the colors produced by the refined grid more
accurately represent the image.

3.3 Automated Recursive Subobject Segmentation

Usually complex real-world objects consist of multiple subobjects as well, each of
which could contain its own subobjects. While we could select subobjects individually,
as described above, and create grids and render them individually, this would soon
become unacceptably tedious for 10’s to 100’s of subobjects. To automate the process

of subobject selection, we apply graph cut to the selected object recursively. With-

3.3. AUTOMATED RECURSIVE SUBOBJECT SEGMENTATION 41

Figure 3.12: (a) Original image. (b) Coarse grid (103 patches). (c) Refined grid
(1406 patches). (d) Zoomed portion of original image. (e) Coarse rendering (5.75
error per pixel) from (b). (f) Refined rendering (2.08 error per pixel) from (c) after
5 refinement iterations. The total running time for all five iterations was about 2.5
seconds.

out loss of generality, we assume that the initially selected object is heterogeneous,
consisting of multiple (nested) subobjects, which we treat, alternately, as foreground
and background. Subobjects are automatically detected and removed, with the space
behind them being filled. Subobjects are then treated as new objects and are also
segmented recursively, etc.

The main steps of the algorithm are as follows:

1. Automatically seed foreground and background.

2. Fill background.

42 CHAPTER 3. METHODS
3. Segment subobjects with min graph cut.
4. Vectorize subobjects and recursively segment their subobjects.

3.3.1 Automatic Foreground/Background Seeding

Subobjects are identified as regions whose color is significantly different from the
overall color of the object. These regions are determined based on the difference
between the initial, coarse rendered object (Figure 3.13(a)) and the corresponding
pixel values in the original image (Figure 3.3(a)). This difference is thresholded to
find the largest connected component, C, of pixels (yellow color in Figure 3.13(d))
whose error is less than some (small) threshold, e, We assume C to be representative
of the bulk of the currently selected object, and thus assume its color to represent
the color of the main object without the subobjects.

3.3.2 Background Filling

One of the advantages of vector graphics over raster images is that even occluded
portions of an object are defined, such that moving an occluding (sub)object does not
create a hole in the image. Accordingly, areas of objects occluded by subobjects are
filled, which not only provides a means of background completion but also provides
information for the recursive segmentation of subobjects via graph cut.

Areas of an object which are occluded by subobjects are filled by estimating
the color of occluded mesh nodes using a least squares fit (LSF), as illustrated in
Figure 3.14. The set of control points N, whose color is within 3o of the mean of
the largest connected component C' are assumed to represent the homogenous object,
and are used as data by the LSF to replace the color of the remaining control points,
Np. The control points of an object form a grid, as shown in Figure 3.14(a), where

the black boxes indicate control points to be filled and the colored squares represent

3.3. AUTOMATED RECURSIVE SUBOBJECT SEGMENTATION 43

Color difference
berwesn rendered
and eriginal poel
Black= 0 emor,
Eed = smmor = 50

(d) ()

Figure 3.13: (a) Initial rendering of the coarse grid (Figure 3.7(c)). (b) Error be-
tween original image and initial rendering. (c) Error legend = RGB color difference
between rendered and original image. (d) Connected components (yellow) of pixels
below (small) error threshold, 5. (e) Coarse grid rerendered using colors from largest
connected component.

the control ponints in N, with their respective colors. The color of the control points
in N, is determined by performing an LSF over each row and column of this grid
using the colors of control points in N, (Figures 3.14(b) and 3.14(c)). The color at
each point in N, is calculated as the average of the colors produced by the LSF over
the point’s corresponding row and column. After one pass, there may remain points

which have not been filled because neither the column nor row they belonged to had

44 CHAPTER 3. METHODS

any points initially, such as the upper right point in Figure 3.14(d). A second pass of

this algorithm is performed to guarantee each control point is filled (Figures 3.14(e)-

3.14(g)).

OoooOoo & HEENE[
EEEEO BB EEEEN

= n
1

EEEE B EE 0 EEEEN
1
L]

|
[
|

HOOENQO T EEEERN
EEEE[BB EEEERN
(a) (b) (c) (d)
a8 NN EEEEN
E BB BN EEERN EEEEN
E BB BN EEERN EEEERN
E BB BN EEER EEEERN
A BB BN EEEBN EEEERN

(e) (f) (®)

Figure 3.14: (a) Initial control point grid. Black boxes indicate points to be filled.
(b) LSF performed over each row. (c¢) LSF performed over each column. (d) Control
points are filled by averaging the result from the row and column. Additional holes
are filled by performing LSF on each (e) row and (f) column to produce (g) the final
result.

However, this method, as described, has problems when a given row or column
does not have enough control points to yield a good approximation. This causes
streaks in the rendered graphic. To compensate for this, the slope and intercept of
each line produced by the LSF for the rows or columns is also fit with a LSF, which
is then used to replace the colors in the control points (Figure 3.13(e)).

This hole-fill is a temporary fill to assist in subobject selection rather than a final

hole fill, due to the fact that the exact subobjects are not yet known and consequently

3.3. AUTOMATED RECURSIVE SUBOBJECT SEGMENTATION 45

the regions needing to be filled are not precisely known. After all objects have been
selected, the color estimation is again performed over each object. Since subobject
locations are now certain, reperforming the hole fill corrects errors in the object color

caused by control points incorrectly classified as background or subobjects.

3.3.3 Subobject Segmentation

Once the objects main color has been established, the rendered object is treated as
the primary background for this object (Figure 3.13(e)). We then subtract this newly
rendered object from the original image pixels to generate an error map. Areas of large
error, €, (i.e. red), where g, is user-selectable, indicate the presence of subobjects
(Figure 3.16(a)), and act as foreground seeds, while pixels in C' (from Figure 3.13(d))
act as background seeds. These seeds are then sent to min graph cut to segment the
entire object into subobjects. Thus the error map serves as a mask for the parsing
of the originally selected object into its component subobjects. The same weighting
scheme used in Section 3.1 is used to set the weights for the subobject segmentation.

This algorithm locates regions that have large color differences from the supposed
background color to separate them into subobjects. This greatly aids in rendering,
because the edge between an object and its subobject will become blurred if a Bezier
patch spans them (Figure 3.15(b)). In order to reduce the blurring, the patches must
be subdivided excessively, adding undesired bulk to the mesh. Subobject represen-
tation allows these edges to remain sharp (Figure 3.15(d)). Additionally, subobject
segmentation increases object-level control by allowing subobject to be edited sepa-
rately from their parent.

However, subobjects do not always coincide with objects that the user would de-

sire. This is especially the case when a subobject is similar in color to the background.

46 CHAPTER 3. METHODS

Figure 3.15: Without subobject segmentation, the (a) graphic is (b) blurred unless
excessive subdivisions occur. With subobject segmentation the (c) graphic remains
(d) sharp.

For this reason, we allow the user to manually select subobjects using the min graph
cut method described in Section 3.1. In fact, and as an important note, preselection
of multiple, conspicuous subobjects to begin with (e.g. eyes and mouth on a face,
green and red objects in Figure 3.19, or straps and labels on the baseball glove, green
objects in Figure 4.12(b)) is very simple to do and results in a much more regular
mesh for the underlying main object, because the mesh lines are not deflected by the

subobjects.

Color difference
berween rendered
and eriginal poel.
Black= 0 emor,
Eed = smor = 50

(b)

Figure 3.16: (a) Error map used to detect subobjects. Pixels > €; become foreground
seeds for graph cut segmentation. Pixels with low error (Figure 5b) = background
seeds. (b) Error legend = RGB color difference between rendered and original image.

3.3. AUTOMATED RECURSIVE SUBOBJECT SEGMENTATION 47

3.3.4 Subobject Vectorization and Recursive Segmentation

After a subobject is segmented, it is treated as a separate object and vectorized
independently. The entire automatic subobject segmentation process is then repeated
for each of it. This process is illustrated in Figure 3.17. Here, the initial object to
be selected is the body of the Ferrari, shown in the first column. The body becomes
the background object (second column) with its holes filled and foreground objects
(such as the tire in the third column) are generated. The automatic segmentation is
then applied recursively by considering each foreground object (tire, second row in
Figure 3.17) as a new object from which new completed backgrounds (solid tire) and

foreground objects (tire hub cap) are generated.

Object Background Foreground

—

Figure 3.17: Recursive graph cut. Each object to be segmented has a background
(red car body) and foreground object (tire) computed. Foreground objects in turn
become background objects to be segmented at the next level.

3.3.5 Automatic Segmentation Algorithm
A summary of the algorithm is as follows:

Algorithm 1: Recursive Object Parsing using Min. Graph Cut
1. Select entire (heterogeneous) object (Fig. 3.3)

2. Create (coarse) grid (Fig. 3.7(b))

48

10.

11.

12.

CHAPTER 3. METHODS

Render coarse grid (Fig. 3.13(a))

Compute difference, D = | rendered object - original image |

Find largest connected component C' of pixels with error < 5 in D (Fig. 3.13(d))
Create histogram of pixels in C' and compute mean, m,

Revisit (coarse) Grid:

(a) If node color > 30 from m, replace with one-dimensional least squares fit

(LSF) from surrounding node colors

(b) Then replace with global, bidirectional LSF for horizontal and vertical grid

lines

(c) Rerender coarse grid with updated node colors (Fig 3.13(e)) (This is the

rendered object background Oy)
Subtract O, from the original image pixels

Find each connected component, K;, in diff. image with error > ¢; (Fig. 3.16(a))

(Note: ¢; is user-selectable, default = 25)
Repeat steps 10a. and 10b. recursively

(a) Invoke graph cut to segment each Kj; into subobjects, S;

(b) Repeat steps 2-8 for each S
Repeat LSF for all objects using color known to belong to object

Perform mesh refinement (Fig. 3.11)

3.4. OBJECT/SUBOBJECT HIERARCHY 49

(a) Render object at initial coarse level
(b) Subtract rendered object from original image pixels

i. For each patch

A. If (local) error > user selectable threshold subdivide patch and

repeat the process

3.4 Object/Subobject Hierarchy

Previous object-based representations of images, such as [8], have no way of
storing information about the relationship between objects. Rather, each object is
represented independent of all other objects. However, users often intuitively under-
stand images on an object level, and assume relationships between objects.

Objects in images generally relate to one another in a hierarchical manner, as seen
in Figure 3.18, with main objects containing subobjects which themselves contain
subobjects. In an image, these can best be thought of as layers, with each two-
dimensional subobject layer lying on top of its parent object layer. In this manner, an
entire scene may be constructed as a hierarchy, with the main background composing
the parent layer for the entire hierarchy. Through our subobject selection, we create
such a hierarchical structure for storing object information.

This provides a more powerful means of object-level control, allowing edits on
parent objects to be propagated (optionally) to children, while children can still be
edited independently of the parent. Because objects are completely filled, subobjects
can also be deleted or removed from their parent object without leaving holes in the
parent. The separation of subobjects from their parents not only provides a more
intuitive object-level control but also allows for edits that cannot be performed with

previous techniques.

20 CHAPTER 3. METHODS

Often subobjects which may be important for accurate rendering will be insignif-
icant to the user. The hierarchy allows the user to work with substantial objects
without having to worry about their subobjects. Objects can also be regrouped by

the user to allow for better control.

Hierarchical ordering of objects and subobjects is illustrated in Figure 3.18. Here,
some of the major subobjects of the Ferrari, such as the wheels, shadows, and lights,
are shown. The hubcaps, being subobjects of the tires, indicate the multi-tier capabil-
ity of the hierarchy. Other subobjects important to rendering but likely not relevant
to the user, such as the highlights on the car body or hubcaps, are not shown in the
diagram, but likewise may be ignored by the user because the hierarchy allows for
them to be edited along with their parent object. This is especially important for

complex objects which may be comprised of hundreds of such objects.

Additional examples of subobjects are shown in Figure 3.19.

Figure 3.18: Hierarchy tree of the rendered body of the Ferrari (Figure 1.2(a)) and
its subobjects

3.5. OBJECT EDITING ol

Figure 3.19: Subobject meshes computed for cap and model face.

3.5 Object Editing

With image objects now represented as a renderable mesh, a variety of editing
operations become available. Our graphics may be manipulated by pulling control
points, much like other stroke-based or gradient mesh-based graphics, thus making
themselves candidates for currently existing tools. However, our hierarchical object-
based structure provides more direct and simplified control of image objects, allowing
both object and subobjects to be edited together. Additionally, the object hierarchy
automatically fills the areas under subobjects, preventing holes from appearing during
editing. Some specific types of editing are illustrated below.
3.5.1 Object Scaling

One of the most common image editing operations is that of scaling, which may
use a variety of interpolation techniques. While much good progress has been made

in image interpolation [47], it still causes pixelation at high scales (Figure 3.20(c)).

52 CHAPTER 3. METHODS

Since our vector graphics are scalable, this pixelation does not occur (Figure 3.20(b)).
Current vectorization techniques also allow for scaling without pixelation, but since
they are essentially flat-filled regions, all natural shading is lost and unwanted edges

appear (Figure 3.20(d)).

(©) (d)

Figure 3.20: (a) Potato Head’s mouth (yellow region) is shown at 700% (b) using
image vectorization, (c) bicubic interpolation, and (d) Adobe Ilustrator Live Trace.

3.5.2 Interactive Object and Subobject Editing

As vector graphics, our objects are designed for easy editing. We make use of
editing tools similar to those described in OBIE [8] to edit our meshes (Figure 3.21).
These tools allow users to apply various transformations and deformation to objects.
Using the object hierarchy tree, the edits can be propagated to the subobjects to
allow for natural object level editing. This provides individual object and subobject
control, allowing the user to easily perform complex edits that cannot be replicated
with warping techniques without heroic effort.

In order to maintain interactivity in editing complex objects, only the coarsest level
of detail is displayed while editing, as shown in Figure 3.22(b). This provides better
visual feedback than simply displaying the mesh, as other vectorization techniques

do (Figure 3.22(c)).

3.6. PROGRESSIVE LEVELS OF DETAIL 53

iliiis:
AN,

AR

PRI

/ ‘M -
PR

A
il

(b) (©)

Figure 3.21: (a) Photo of a jacket (282x480) and (b) its graphic (6 objects, 4378
patches. (c) A simple edit shows we have nothing up our sleeve.

3.5.3 Hole Filling

When subobjects are created, the area beneath them is automatically filled as
described in Section 3.3.2. Because of this, when subobjects are edited independently

from their parent object, no holes are left in the parent object, as seen in Figure 3.23.

3.6 Progressive Levels of Detail

After an object or subobject is created, it is refined over a series of iterations
to add more detail and create a more realistic rendering of the original object, as
described in Section 3.2.4. Before refinement, the graphic of the object with its
subobjects represents a rough approximation of the object which, although lacking
in some detail, gives the general appearance of the object and conveys the basic
shapes and colors of the scene. Since additional detail is added iteratively, successive

iterations of the refinement form a hierarchy of detail.

o4 CHAPTER 3. METHODS

Figure 3.22: (a) Original render by Image Vectorization. (b) During edit, lower level
of detail shown to maintain interactivity. (c¢) Adobe Illustrator maintains interactivity
by displaying grid.

Figure 3.24 illustrates such a detail hierarchy. From the initial rendering in
3.24(b), the rose is identifiable, but appears to be a graphical illustration rather
than a real object. Many parts are overly smoothed, and expected detail is missing.

With more refinements (3.24(c) and 3.24(d)), more detail is seen and a greater level

3.6. PROGRESSIVE LEVELS OF DETAIL 95

[[
(a) (b)

Figure 3.23: (a) Wounded leg. (b) The cut is “healed” by removing the cut and
leaving the hole fill behind. Only the region around the cut is vectorized.
of realism is achieved.

These progressive levels of detail allow the user to select from or specify varying
levels of stylization. They also may provide a means of progressive transfer of data.
While many patches are needed for the most refined renderings of images (3.24(d)),
initial levels of the hierarchy capture much of the information at a far lower storage
cost. Figure 3.25 shows the number of patches required to represent the rose from
Figure 3.24(a) at the given error per pixel per channel in RGB space. As can be seen,
the number of patches can be greatly reduced while incurring only a small increase

in the overall error.

o6 CHAPTER 3. METHODS

(d)

Figure 3.24: Progressive Levels of Detail. (a) The original photo is progressively
refined to show greater detail. Results are shown after (b) 0 iterations, (c) 2 iterations,
and (d) 4 iterations of mesh refinement. The graphics and renderings of all levels of
detail are shown in Figure 4.26.

12

Error

0 Patches 8000

Figure 3.25: The error per pixel per RGB channel for a given number of patches
for the renderings of Figure 3.24. The number next to each data point indicates the
iteration number which produced the given data. The graphics and renderings of all
levels of detail are shown in Figure 4.26.

Chapter 4

Results

Image vectorization can be used for versatile, object-based image editing, photoreal-
istic (or non photorealistic) rendering, or even reverse-engineering a graphic. Image
vectorization results compare favorably with those produced by other vectorization
programs. Figure 4.1 shows a typical result of image vectorization. The original
image (Figure 4.1(a)) is segmented as shown in Figure 4.1(b). Since a single graphic
represents detail in a hierarchy, the rose can be rendered as a lower resolution of
detail (Figures 4.1(c)- 4.1(d)) and at a higher resolution (Figures 4.1(c)- 4.1(d)) as
specified by the user. The high resolution version has been modified to demonstrate
editability. The rose petals’ fall is created by translating, scaling, and warping the
petals using the techniques explained in Section 3.5, all of which may be performed

in a matter of seconds.

Figures 4.2-4.3 show more results of vectorized image objects. The bowl, Fig-
ure 4.2(a), was selected in <1 sec., followed by mesh creation (~5 sec.) and seg-

mentation and mesh creation of subobjects (~40 sec.). The board, Figure 4.3(a)

o7

o8 CHAPTER 4. RESULTS

(f)

Figure 4.1: (a) Original raster image. (b) Hierarchical graph cut segmentation into
29 objects (c¢) Vector graphic (367 Bezier patches). User-selected (low) level of detail
and (high) stylization. (d) OpenGL rendering of (c). (e) User-selected higher level
of detail (3069 patches) computed in about 50 seconds. (f) OpenGL rendering and
editing of the mesh shown in (e) “She loves me ... she loves me not ... ”

(c)

Figure 4.2: (a) 800x427 image (b) Mesh (c) Rendered: 64 objects, 2894 patches.

was selected in 1-2 seconds, followed by mesh creation (~5-10 sec.), with about 1-2

minutes for recursive segmentation and mesh creation for all of the 250 subobjects.

99

(d) (e) (f)

Figure 4.3: (a) 550x1024 image. (b) Mesh. (c) Rendered: 250 objects, 6346 patches.
(d, e, f) Close-ups of rendering.

60 CHAPTER 4. RESULTS
4.1 Comparison to Other Vectorization Techniques

Image vectorization produces results quite different than those typically gener-
ated by other vectorization techniques. One such example is our ability to capture
smoothly shaded surfaces, as shown in Figure 4.4. Since other vectorization tech-
niques (such as Adobe Illustrator Live Trace, Corel Corel TRACE, Siame Vector Eye,
Macromedia Flash, and AutoTrace) use arbitrary flat-shaded regions defined using
polygons or curves, they cannot capture these smooth surfaces but rather produce a

striated or terraced look with obvious contouring.

Since our graphics are object-based and hierarchically structured, it is easy to
edit objects and subobjects. Because of the hierarchy, subobjects can be edited
with their parent object, or object and subobjects can be edited separately, often
revealing the filled, occluded portions of objects higher in the hierarchy tree. Other
vectorizations lack such a hierarchy, causing them to create separate, disassociated
objects which must all be selected before an editing operation can take place. After
such operations, holes in the background are usually visible. Figure 4.5 demonstrates
a simple translation using Image Vectorization and Adobe Illustrator, which is typical
of other vectorization techniques. The label in Image Vectorization is an object, so
to move it the user simply has to select the label and move it. The area behind the
label is already defined, such that no hole is left in the image. To move the label
using [llustrator, the user must select all 163 objects which comprise the label, which
is tedious, time-consuming, and error-prone, and then translate them (as a group).
Also, a hole is left in the glove because the area under the label has not been defined

by an object.

Complex edits, such as warps, are easily created in Image Vectorization using

4.1. COMPARISON TO OTHER VECTORIZATION TECHNIQUES 61

(d)

Figure 4.4: Comparison of vectorization techniques on the indicated portion of the
image in Figure 2.1(a) using (a) Image Vectorization, (b) Adobe Illustrator, (c) Vector
Eye, and (d) Macromedia Flash.

OBIE-style tools on the objects. The hierarchy automatically propagates these edits
to the children objects. Similar edits can be performed on graphics produced by
vectorization techniques using warping or other such tools. However, since the image
is comprised of many small subobjects, holes can appear as object boundaries warp

independent of one another (Figure 4.6(b)). Adobe Illustrators Live Paint tool does

62 CHAPTER 4. RESULTS

(a)

Figure 4.5: Translation of the label on the mit using (a) Image Vectorization and
(b) Adobe Illustrator. Only one selection (the label) is required in (a), and the label
subobjects are moved with the parent. The mit graphic extends under the label,
leaving no hole. For (b), all 163 objects comprising the label must be selected. Also,
a hole is left in the object.

allow such operations to occur without creating holes (Figure 4.6(c)), but at a large
time cost. For the edit in Figure 4.6(c), each stroke with the warp brush required
20-40 seconds preprocessing/postprocessing time on top of the user editing time.
Consequently, it required about 100 seconds to complete this very simple edit, while

our edit in Figure 4.6(a) required only about 5 seconds.

Figures 4.7-4.9 show examples of objects which have been vectorized by Image Vec-
torization, Adobe Illustrator, Siame Vector Eye, and Macromedia Flash. Figure 4.10
compares the error from the original image over these and other examples. In this
comparision, the number of Bezier patches for our technique is kept relatively equal
to the number of regions for other techniques. Given equal number of regions, our
method is comparable to other techniques, having less regions in some instances and
more in others. However, note that the complexity of the regions in other techniques

can vary wildly, from being a small region whose border is defined by only a few

4.1. COMPARISON TO OTHER VECTORIZATION TECHNIQUES 63

Figure 4.6: Rolling pin edited with (a) Image Vectorization and (b) Illustrator with-
out Live Paint enabled and (c) with Live Paint enabled. (d) The original image. (e)
Close up of (b) showing holes created by editing. The edit in (a) required 5 seconds
to perform while the edit in (c) required 100 seconds.

Figure 4.7: Ferrari graphic created by (a) Image Vectorization, (b) Adobe Illustrator,
(c) Macromedia Flash, and (d) Siame Vector Eye. The area in the yellow box is shown
zoomed to 500% in the lower right corner. Note the smooth-shaded appearance of
the Image Vectorization zoom compared to the terraced look of the other techniques.

points to being a large, complex region whose border is defined by hundreds of points

(Figure 2.2). Also note that for editing purposes, each region in other techniques

64 CHAPTER 4. RESULTS

Figure 4.8: Strawberry graphic created by (a) Image Vectorization, (b) Adobe Il-
lustrator, (¢) Macromedia Flash, and (d) Siame Vector Eye. The area in the yellow
box is shown zoomed to 500% in the upper left corner. Note the smooth-shaded look
of Image Vectorization compared to the terraced look of the other techniques.

is treated as a separate object, while in our technique the patches are contained in
objects, and each example has a few to a few tens of objects. Additionally, although
the average error as reported would be virtually unperceivable for a user were it dis-

tributed evenly over the whole image, the error is often more concentrated in specific

4.1. COMPARISON TO OTHER VECTORIZATION TECHNIQUES 65
.-I '-I
(a) (b)
’.I '-I
(c) (d)
Figure 4.9: Bowl graphic created by (a) Image Vectorization, (b) Adobe Illustrator,
(c) Macromedia Flash, and (d) Siame Vector Eye. The area in the yellow box is shown

zoomed to 500% in the lower left corner. Note the smooth-shaded appearance of the
Image Vectorization zoom compared to the terraced look of the other techniques.

IAY Nlustrator Vector Eye Flash
Image Regions ‘ Error || Regions ‘ Error || Regions ‘ Error | Regions ‘ Error
Ferrari 1714 | 4.67 1768 | 3.26 1735 | 5.54 1711 | 3.98
Banana 2100 | 2.32 2090 | 4.97 2099 | 4.74 2155 | 2.67
Strawberry 3018 3.7 3030 | 2.48 3021 | 2.33 2914 | 3.17
Bowl 2842 | 2.77 2837 | 2.85 2896 | 3.83 2919 | 2.93
Pin 3663 | 2.38 3732 | 1.58 3683 | 3.47 3745 | 2.06

Figure 4.10: The error of various vectorization techniques is compared when the
number of patches or regions is relatively constant. The original images are shown in
Figures 1.2(a), 3.12(a), 3.6(a), 4.2(a), and 4.6(d) respectively.

areas, leading to visual errors or discontinuities such as the terraced appearance of

smoothly shaded regions seen in other techniques.

66 CHAPTER 4. RESULTS

4.2 Comparison to Hand-Made Examples

Image vectorization can be used to reverse engineer manually-crafted vector graph-
ics, as demonstrated in Figures 4.11 and 4.12. For each of the simple objects (leaves
and stems) in Figure 4.11, selection is instantaneous, while recursive segmentation,
mesh creation and rendering required less than 10 seconds per object. The original
graphic consisted of 312 patches, while our graphic consisted of 695 patches. The
error between our graphic and the original is about 3.3 per pixel. However, most of
the error is around the edges of the leaves and stem where they do not completely

overlap due to the smoothing of the object boundary.

(c) (d)

Figure 4.11: (a, b) Mesh created and rendered with Adobe Illustrator, 5 objects,
312 patches. (c, d) Fig. b as 462x377 raster image reverse engineered with image
vectorization. 12 objects, 695 patches.

4.2. COMPARISON TO HAND-MADE EXAMPLES 67

The vector graphic in Figure 4.12(a) required approximately 60 hours of a highly
skilled artists time to create and contains several hundred gradient mesh lines. Image
vectorization of Figure 4.12(b), taken as a raster image, required a total of about 4
minutes: Initial object selection (~1-3 seconds per piece); pre-selection of each of the
(green) subobjects (~1-2 minutes); recursive graph cut segmentation (~40 seconds
for the large piece, 10-15 seconds for each of the two smaller pieces); mesh creation
and rendering (~1 minute). Our rendering has an error of about 3.7 per pixel when

compared to the original glove.

68 CHAPTER 4. RESULTS

| e

Al sixi il l.mtt‘;: i

/fie MajorFower

(©) (d)

Figure 4.12: (a, b) Mesh created and rendered by Highside [32]. (c, d) Mesh and
rendering with object-based vectorization using (a) as a raster image. Blue and green
indicates subobjects pre-selected from the black region, and red indicates subobjects

of the blue region. 102 objects, 15796 patches.

4.3. EDITING RESULTS 69
4.3 Editing Results

Image vectorization provides a hierarchical arrangement of objects and their sub-
objects, allowing for complex image edits to be performed easily. Figures 4.13 illus-
trates examples of such edits in a series showing a baseball tearing through baseball
glove. Figure 4.13(a) shows object layering by placing the ball between different sub-
object layers of the glove. Edits, such as the warps in Figure 4.13(b), are performed on
the main object and are automatically applied to the subobjects (ties on the glove).
The ability to edit subobjects independent of the main object as well as hole filling
behind subobjects is shown where the label and letters on the glove are knocked off.
The baseball tearing out of the back of the glove (Figure 4.13(c)) would be extremely
difficult to mimic using other image editing or vectorization techniques. However, due
to the object-level representation of image vectorization, the edit may be performed

easily by a user in less than a minute.

(a) (b) (c)

Figure 4.13: Catching a “hot one.” Image editing simulates label and letter being
knocked off and ball tearing through glove. The glove is generated by vectorizing
Figure 4.12(b).

70 CHAPTER 4. RESULTS

The example in Figure 4.14 illustrates the power of hierarchical object control.
Each face has two subobjects, the eyes, which have as subsequent descendent sub-
objects, the irises, then pupils, and finally the highlights in the pupils, forming five
hierarchical layers of relevant objects. The left eyes were switched by simply moving
the entire eye along with its subobjects. The right eyes, however, were edited by
swapping the irises (without its subobjects) and the highlights. In other words, each

woman in her right eye has her own sclera (white part of the eye) and pupil, but has

o

the other woman’s pupil and highlight.

< pal

(a) (b)

Figure 4.14: The eyes in (a) are switched in (b). Left eye was switched as a whole,
right eye by switching only the colored iris and the highlight on the pupil.

A sequence of edits is illustrated in Figure 4.15. Figure 4.15(a) shows the unedited
graphic. In Figure 4.15(b) the petal is scaled much too large, so it is rescaled and
moved into place in Figure 4.15(c). In Figure 4.15(d) a leaf is translated, and then
edited using the OBIE-style bend-stretch tool so that the thin connection to the stem

is shortened, and then is moved into place higher up the stem in Figure 4.15(e). A

4.4. ZOOMING RESULTS 71

second leaf is moved higher up the stem in Figure 4.15(f). The broken stem is repaired
by stretching the bottom half until it touches the upper half in Figure 4.15(g). In
Figure 4.15(h) the last leaf is translated into position. Figure 4.15(i) shows the
completed rose.

Additional examples of image editing, highlighting the editability, hierarchical
object structure, and hole filling, can be seen in Figures 4.16-4.18. Other editing
examples have been seen previously in Figures 1.2(c), 3.21(c), 3.23(b), 4.1(f), 4.5(a),
and 4.6(a).

4.4 Zooming Results

Vector graphics are inherently scalable, suggesting the application of image vec-
torization for image zooming and resampling. Vectorizations by nature stylize the
image to some degree, removing fine textures and approximating image boundaries,
thus making our image vectorization not applicable in current form to general image
resampling problems. However, our ability to produce smooth surfaces and capture
sharp boundaries demonstrate potential use of image vectorization for handling spe-
cific image scaling cases. Results of such scales are shown in Figure 4.19.

Visual comparisons of our scaling results to other vectorization techniques are
shown in Figures 4.7-4.9. As mentioned previously, our techniques scales objects
smoothly, as opposed to other vectorization techniques which result is a striated or

terraced look when smooth surfaces are zoomed.

4.5 Levels of Detail Results

Mesh refinement allows a graphic to be accurate to the original object within
an error threshold. Since the grid refinement is constructed hierarchically, the same

graphic can be used to display various levels of detail by altering how many levels

72 CHAPTER 4. RESULTS

of the hierarchy are being displayed. Figures 4.20, 4.22, and 4.24 illustrates graphics
and their rendering at different levels of detail. Figures 4.21, 4.23, and 4.25 show
how the error diminishes as the number of patches increases. The error asymptotes
depending on the level of error set by the user. Figure 4.26 shows all levels of detail

for the rose from Figure 4.1(a).

4.5. LEVELS OF DETAIL RESULTS 73

(8) (h) (i)

Figure 4.15: A sequence of edits on the rose is shown. (a) Original. (b) Petal is
scaled. (c) Petal is moved. (d) Right leaf is warped. (e) Right leaf is moved onto
stem. (f) Left leaf is moved higher up the stem. (g) Stem is warped to cover hole. (h)
Center leaf is moved up the stem. (i) Final image. Some of the images were captured
mid-edit, and so are rendered at a lower level of resolution.

74 CHAPTER 4. RESULTS

111!

(a) (b) (c)

Figure 4.16: The words represented on the chalkboard as vector graphics are erased.
Original image in Figure 4.3(a).

(a) (b)

Figure 4.17: The pyramid in (a) is shrunk and the sky filled in through background
completion(b).

4.5. LEVELS OF DETAIL RESULTS 75

Figure 4.18: “Desktop Editing.” Items from the computer desktop and the real desk
top from (a) are swapped in (b).

(a) (b) (c) (d)

Figure 4.19: (a) The original has been (b) downsampled to 25%, then scaled back
up using (c) bicubic interpolation and (d) Image Vectorization. (c) has an average
error of 1.58 per pixel while (d) has an average error of 4.34 per pixel.

76 CHAPTER 4. RESULTS

Mesh Rendering

Original

S —0 < a

o —0 < o

wnm o —0o0 < o -

Figure 4.20: The grid and graphic of the banana shown at various levels of detail.

6 'ﬁ”
R
Error 2
— 13
0
0 Patches 1500

Figure 4.21: The error per pixel per RGB channel in Figure 4.20 given the number
of patches. The number next to each data point indicates the iteration number which
produced the given data.

4.5. LEVELS OF DETAIL RESULTS 7

Original

Rendering

N =0 < o S —=a < ot

wm =0 < o -

Figure 4.22: The grid and graphic of the strawberry shown at various levels of detail.

Error \\i__:a 45

0 Patches 3200

Figure 4.23: The error per pixel per RGB channel in Figure 4.22 given the number
of patches. The number next to each data point indicates the iteration number which
produced the given data.

78 CHAPTER 4. RESULTS

Rendering Original

S —~o < o™

(XTI
i ey
6000 s

N =0 < o ™

w —o < o™

Figure 4.24: The grid and graphic of the baseball glove shown at various levels of
detail.

12 I!“
AY
Error \i

0 Patches 25000

Figure 4.25: The error per pixel per RGB channel in Figure 4.24 given the number
of patches. The number next to each data point indicates the iteration number which
produced the given data.

4.5. LEVELS OF DETAIL RESULTS

Rendering Original

Figure 4.26: The grid and graphic of the rose shown at various levels of detail.

79

80

CHAPTER 4. RESULTS

Chapter 5

Limitations and Future Work

One challenge faced by this system is its ability to handle complex textures. Most
natural scenes contain textures that are not easily modeled using a smooth-shaded
vector approach. These textures pose a problem both for our automated subobject
selection, where textures make it difficult to find true edges and thus lead to incorrect
segmentations, and for representation, where many small subobjects or excessive grid
refinement are required to accurately model them. Complex image textures can lead
to vectorizations heavier than the original pixel grid. However, such textures also
pose similar problems to humans modeling the same objects by hand. Indeed, gen-
erally vector graphics appear smoothly shaded because such textures are noticeably
absent. Their presence indicates either excessively heavy vector meshes or texture
mapping. Since this work specifically focuses on creating shaded graphics without
texture mapping, our results are similar to those which would be produced manually

by graphic artists.
Nevertheless, to address these problems, additional work could focus on allowing

81

82 CHAPTER 5. LIMITATIONS AND FUTURE WORK

the system to better handle textures. This would include both better segmenta-
tion of textured regions and better representations of them. The ability to locate
and distinguish different textures of an image would facilitate correct segmentation.
Improved representation could be achieved by procedurally generating the desired
textures. Procedural textures would allow for image zooming without the artifacts
seen in texture maps, and would not require the storage of the original image. An-
other possible approach to improve texture representation is using the built-in error
metric to identify when a particular patch is being subdivided too much, causing
the mesh to become too heavy, and then reverting to an OBIE-style texture map to

represent that patch.

Our algorithm also has difficulty with complex object shapes. We assume rela-
tively convex shapes, and although our algorithm works quite well on many shapes
with concavities, even multiple concavities, many images contain objects with shapes
too complex to accurately represent. These objects must either be subdivided into
more managable shapes, or our approach must be modified to handle boundaries of
arbitrary complexity. Additionally, we have difficulty representing extremely thin
(pixel-wide) objects, due to our dependence on the pixel grid to calculate the graphic

mesh. Future work could focus on better representing such objects.

Additional work could focus on improving the automatic segmentation algorithm.
Not only may textured areas hamper the segmentation, but also large shifts in object
shading and shadowing may confuse the algorithm, such as those often found near the
boundary of curved objects as the surface normals of the object fall into the image
plane. Superfluous subobjects are also occasionally found. Improvements in the

subobject selection would not only improve the vectorization algorithm, but could also

83

be used to provide object-level information to a variety of computer vision algorithms.

Image vectorization could be applied to image resampling problems in order to
produce more accurate or visually-appealing image zooms. Our ability to capture
hard edges and scale smooth surfaces could potentially improve the scaling of such

features.

A logical extension of image vectorization is its application to video. Video vec-
torization is the process of vectorizing a particular object or the entire scene in a
video sequence. Stylizing video is an active field of research, due to its applicability
in advertising and film making. Video vectorization would not only allow for efficient
video segmentation, but would also allow for hierarchical object-based editing to be

applied to video sequences.

There is a significant difference between vectorizing an image and vectorizing a
video sequence. An object must be segmented in each frame of the video sequence.
Objects must ”look right” in every frame of the sequence, meaning there are no visual
discontinuities such as flickering or color changes, and thus the vectorization in each
frame must be coordinated. The system must deal with objects that disappear and
reappear through the sequence. Also an object which may look like a subobject in a
single frame may be revealed to be an occluding object in a video sequence and so
must be hierarchically arranged accordingly. Object editing occurs differently in that
edits must be intelligently propagated through previous and/or subsequent frames as

desired by the user. Each of these is a non-trivial problem requiring additional work.

Vector-based video generation techniques are another avenue of future research.
Commercial applications such as Macromedia Flash are specifically designed to allow

users to manually create and edit vector graphics in order to create animation se-

84 CHAPTER 5. LIMITATIONS AND FUTURE WORK

quences. Image vectorization allows these techniques to be applied to objects derived
from photographs as well. It also opens the door to the development of more complex
and powerful editing tools, allowing for the easy generation of video sequences which

are difficult to create today.

Chapter 6

Conclusions

We have presented a method for creating editable vector graphics from objects in
raster images. As demonstrated through the examples, object-based image vectoriza-
tion works surprisingly well on a wide variety of naturally occurring and manmade
objects, providing user-selectable levels of detail and rendering, ranging from photo-
realistic to highly stylized. We have also demonstrated tools for editing and animating
selected image objects in ways that are not possible with current pixel-based image

editing tools or without resorting to manual creation of the vector graphic.

Our approach to image vectorization does not perform well on highly textured
images such as trees or grass where object detail is often the size of a pixel or less.
However, such cases can be detected from the error metric used in mesh refinement.
In such cases we revert to Object-Based Image Editing [8] which uses texture mapping

implemented on an editable, triangular network.

Object background completion facilitates automated segmentation of subobjects

and allows objects to be edited and manipulated without leaving holes. However, we

85

86 CHAPTER 6. CONCLUSIONS

believe that Image Completion with Structure Propagation [43] would be a powerful
addition to this part of the work. In general, we find that automatic background
initialization, coupled with 1-step watershed-to-pixel boundary localization, provides
an efficient interface for object selection, while automated, recursive graph cut seg-

mentation of subobjects makes complete vectorization of complex objects practical.

Appendix A

User Manual

A.1 Introduction
Image Vectorization (IV) is a software tool for converting raster images into vector

graphics. The main steps in creating a vector graphic are:
1. Selecting an object from the image to vectorize
2. Creating a mesh for the object
3. Render the graphic
4. (Optional) Edit the graphic

This manual will explain how to perform each of these operations. The icons for
the different tools are shown in Figure A.1.
A.2 Getting Started
A.2.1 Opening an Image

To open an image, go to the File menu, and choose Open. IV currently supports

jpeg, png, and ppm files (and maybe some others).

87

88 APPENDIX A. USER MANUAL

A c# o + BB P

(a) (b) (c) (d) () (f) (&) (h) (i)

-

Figure A.1: Image Vectorization icons for (a) Trap Select tool, (b) Graph Cut tool,
(c) Mesh tool, (d) Move Pivot tool, (e) Scale tool, (f) Rotate tool, (g) Stretch tool,
and (h) Bend-Stretch tool.

A.2.2 Saving an Image

To save an image, go to the File menu, and choose either Save or Save As. Save
will save the image over current image, and Save As will let you choose a new name
for the image. It can be saved as a jpeg, png, or ppm file. The image will be saved

as it looks on the screen.

A.3 Object Selection
IV allows object-based vectorization, so accordingly objects must be selected be-
fore vectorization is possible. We use a selection tool based on min graph cut to allow

for object segmentation. IV also contains an older tool, the trap select tool.

A.3.1 Trap Select Tool

The purpose of the Trap Select tool is to allow the user to select small regions
called TRAPS and join them into objects, which can then be manipulated.

To start the Trap Select Tool, click the icon shown in Figure A.1(a). TRAP
boundaries should then appear on the image. A sidebar with buttons specific to this
tool should also appear to the right side of the main window.

To select a TRAP, either click on the trap or drag a box over it. If you drag
the mouse an invisible bounding box is created, and any TRAP that is partially or
completely inside the bounding box will be selected. Selected regions turn a blue-gray

color. To deselect a TRAP, click on it again. You can also deselect all the TRAPS

A.3. OBJECT SELECTION 89

by clicking on the clear button in the sidebar.

If the TRAP boundaries do not correspond to the object you want to select, you
can move down in the TRAP hierarchy by clicking on the up or down arrows in the
sidebar. TRAPS selected in a higher level of the hierarchy should be selected in lower
levels, but TRAPS selected in lower levels will not be selected in higher levels. You
can select any level of the hierarchy you want to work on. A useful strategy is to
select as much of the object as you can on higher levels of the hierarchy, then to move

to lower levels to pick up any additional pieces.

When the desired region is selected, click the “create object” button to create an

object.

A.3.2 Min Graph Cut Tool

To activate the min graph cut tool, click the icon shown in Figure A.1(b). To select
an object using min graph cut, simply drag over the object you desire. Seed points
are then drawn on the object in yellow for foreground and blue for background. With
each mouse movement the segmentation is recomputed. The object is highlighted in

yellow and the background in blue.

To place foreground seeds, hold down the left mouse button while dragging. To
place background seeds, hold down the right mouse button. To erase previously placed
seeds, hold down the middle button. Alternately, the sidebar contains radio buttons

which may be used to change the function of the left mouse button in selection.

The size of the paintbrush may be changed by clicking on the radio buttons on

the sidebar. A large and small size are available.

The selection may be cleared by clicking the “Clear” button.

90 APPENDIX A. USER MANUAL

A.3.3 Creating Objects and Subobjects

When the desired region has been selected, click on the “Make Object” button to
finish the selection of the object. This object will show up in the Objects tab of the
Objects, Graphics, Hierarchy sidebar under a generic name.

You may also select subobjects of the main object that has been selected. To do
this, select the subobject in the same way that you would select a main object. Then,

click the “Make Subobject” button instead of the “Make Object” button.

A.4 Graphic Creation

Once an object is selected, it must be converted into a graphic. This consists
of three main steps: selecting corners for the graphic mesh, creating the mesh, then
creating and rendering the mesh. To begin Graphic Creation, click the icon shown in
Figure A.1(c).
A.4.1 Choose Object

To choose which object to vectorize, go to the “Objects” tab in the Objects,

Graphics, Hierarchy sidebar. Click on the name of the object you wish to vectorize.

A.4.2 Selecting Corners

To select the corners, simply click on the “Select Corners” button. To edit the
corners, click on the “Edit corners” button. The button will remain down until you
have finished editing the corners. To move a corner, click near the desired corner on
the image, then move the mouse to where you wish the corner to be. The corner will
remain on the object boundary. When finished, click the “Edit Corners” button to
end.

You may turn off the display of the corners by clicking the “Show Corners” check-

box.

A.4. GRAPHIC CREATION 91

A.4.3 Making Mesh

To make the mesh, click on the “Build Axis” button. You may turn off the display
of the mesh by clicking on the “Show Mesh” checkbox. This not only creates the mesh

but generate a rough rendering of that mesh.

A.4.4 Render Mesh

To finish the graphic creation, click on the button “Subobject Extraction”. This
will create subobjects and refine the mesh as needed to create a rendering of the
graphic.

To adjust the look of the graphic, you may change the connected component
threshold, the edge accuracy threshold, the subobject accuracy and error thresholds.
The “CC Threshold” is used to compute the initial connected component which de-
termines the object’s main color. The “Edge Accuracy” threshold sets how accurate
the vector graphic boundary must adhere to the real object boundary. The “Subob-
ject Accuracy” slider sets a threshold which is used to decide if a certain pixel is near
enough to the main object color to be considered part of that object, or whether it
should be used as a seed to select a subobject. The “Error Threshold” slider sets
a threshold to decide whether a particular patch has an error high enough to re-
quire refinement. The Error Threshold spinbox determines the maximum number of

refinements allowed.

You may also set the background color of an object rather than have the algorithm
compute it by clicking the “Set Background” button, clicking on the image within

the desired color, and then clicking the “Set Background” button again to deselect it.

An error map may be computed by clicking the “Compute Error” button.

92 APPENDIX A. USER MANUAL

A.5 Managing Graphics and Hierarchy

When a graphic is created, many subobject graphics are created as well. These
form a hierarchy which can be seen in the “Hierarchy” tab of the Objects, Graphics,
Hierarchy sidebar. Each main object will appear as with a plus next to it if it contains
subobjects. By clicking on the plus, the subobjects can be shown. These subobjects
can in turn have subobjects. The “Show Grid” checkbox allows you to see the grid
for a given subobject.

To select an object or subobject, click on its name in the Hierarchy menu. This
will be the object to which editing operations will be applied.

The graphics tab also lists the graphic objects, but does so linearly as opposed
to in a hierarchy. On this tab, you may also save or load graphics. When saving a

graphic, the select graphic and all its subobjects will be saved.

A.6 Editing Tools
Once an object is selected, there are multiple tools which can be used on it to
change the look of the object. The following is a list of these tools and how they

work. These tools based on those developed by Alan Cheney in [14] and [8].

A.6.1 Move Pivot Tool

The Move Pivot tool is an auxiliary tool that helps the other tools to perform.
Many of the other tools require a pivot point about which they will do their work.
The Move Pivot tool allows you to change the location of the pivot point.

To start the Move Pivot tool, click the icon shown in Figure A.1(d). A light blue
dot should appear in the center of the selected object. To move the pivot point,
simply click on the object where you would like the new point to be. To place the

pivot point back it its original location, click on the Reset Pivot button in the Move

A.6. EDITING TOOLS 93

Pivot Tool sidebar located on the right side of the main window.

A.6.2 Move Tool

The Move Tool allows you to move an object around in the image. The shape and
orientation of the object remain the same, only the location changes.

To start the Move tool, click the icon shown in Figure A.1(e). To use the tool,
simply click on the object and then drag the cursor around. The object will move
around accordingly.

To apply the tool to the selected graphic without propagating the edit to the
children, deselect the “Edit Children” checkbox.

A.6.3 Scale Tool

The Scale Tools allows you to scale the selected object. This tool does not require
that the aspect ratio is maintained, so you can scale it in various directions. The
scaling happens with respect to the pivot point.

To start the Scale Tool, click the icon shown in Figure A.1(f). To use the tool, click
anywhere on or near the object and drag the cursor. The object will scale according
to the pivot point. Moving the cursor in a direction along the line between the pivot
point and the point where the mouse was first clicked will scale the object in that
direction. Moving the object in a direction perpendicular to that will scale the object
in that direction.

To apply the tool to the selected graphic without propagating the edit to the
children, deselect the “Edit Children” checkbox.

A.6.4 Rotate Tool

The Rotate tool allows you to rotate the object.

94 APPENDIX A. USER MANUAL

To start the Rotate Tool, click the icon shown in Figure A.1(g). To use the tool,
click on the object and drag it around. The object will rotate around the pivot point.

To apply the tool to the selected graphic without propagating the edit to the
children, deselect the “Edit Children” checkbox.

A.6.5 Stretch Tool

The Stretch tool allows you to stretch a portion of the object relative to the pivot
point. The object will only be stretched to the side of the pivot point where you
originally clicked. It also allows for implicit control of the stretch. For example, you
can control whether most of the stretch happens near the pivot point or near the
end of the object, and control how wide it stretches along the length of the stretch
direction.

To start the Stretch Tool, click the icon shown in Figure A.1(h). To use the tool,
click on the object near the area you want to be stretched. Dragging the mouse
along the line between the pivot point and the point where you originally clicked will
stretch the object in that direction, and dragging the mouse perpendicular to that
will stretch the object that way.

You can also implicitly affect the curve by changing the curves in the Stretch tool
sidebar. Each curve has four control points which can be moved. The left side of the
curve corresponds to the part of the object closest to the control point, while the right
side of the curve corresponds to the part of the object farthest from the control point
in the direction of the stretch. By moving the control points, you can change the
curve and by so doing change the way that the object is stretched. By changing the
Length curve, you change which areas of the object are stretched more. Initially, the

curve is set so that the stretching occurs uniformly over the object. By changing the

A.6. EDITING TOOLS 95

curve, you can change whether the object is stretched more near the control point or
near the border. Similarly, by changing the thickness curve, you can change whether
the object is wider near the pivot point or the border. By clicking reset under either
curve, you can reset the curve to its initial position.

You can also click the preserve area checkbox if you want the part of the object
being stretched to have a constant area. This will cause the object to thin out as it
is stretched.

To stretch a certain portion of the object, first move the pivot point so that all of
the object you want to be stretched is to one side of the pivot.

To apply the tool to the selected graphic without propagating the edit to the
children, deselect the “Edit Children” checkbox.

A.6.6 Bend-Stretch Tool

The Bend-Stretch tool is similar to the Stretch tool except that it can bend the
object as well as stretch it. The bending and stretching occurs relative to the position
of the control point, with only the parts of the object to one side of the control point
being affected. Like with the Stretch tool, you can also implicitly control the change
of the object.

To start the Bend-Stretch Tool, click the icon shown in Figure A.1(i). To use the
tool, click on the object near the area you want to be changed. Dragging the mouse
along the line between the pivot point and the point where you originally clicked will
stretch the object out in that direction, and dragging the mouse perpendicular to
that will bend the object in that direction.

You can also implicitly affect the curve by changing the curves in the Stretch tool

sidebar. Each curve has four control points which can be moved. The left side of

96 APPENDIX A. USER MANUAL

the curve corresponds to the part of the object closest to the control point, while the
right side of the curve corresponds to the part of the object farthest from the control
point in the direction of the stretch. By moving the control points, you can change
the curve and by so doing change the way that the object is stretched. By changing
the Length curve, you change which areas of the object are stretched more. Initially,
the curve is set so that the stretching occurs uniformly over the object. By changing
the curve, you can change whether the object is stretched more near the control point
or near the border. Similarly, by changing the rotation fallout curve, you can change
whether most of the bending happens near the pivot point or the border. By clicking
reset under either curve, you can reset the curve to its initial position.

To bend a certain portion of the object, first move the pivot point so that all of
the object you want to be bent is to one side of the pivot.

To apply the tool to the selected graphic without propagating the edit to the
children, deselect the “Edit Children” checkbox.

Appendix B

OpenGL Commands

The following OpenGL commands are used to render a patch.

For the arrays coordsli][j][k] and colors]i][j][k] where the i and j indices in both
cases refer to the x and y index respectively into the 4x4 Bezier patch, the k index in
coords refers to the x, y, or z position respectfully in the image (where z = 0), and
the k index in color refers to the r, g, b, and alpha values respectfully in the image
(where alpha = 1):

glEnable(GL_MAP2_ VERTEX 3);

glEnable(GL.MAP2_COLOR_4);

glMap2f(GL_.MAP2 VERTEX 3, 0, 1, 3, 4, 0, 1, 12, 4, &coords[0][0][0]);

glMap2f(GL_MAP2_ COLOR 4, 0, 1, 4, 4, 0, 1, 16, 4, &colors[0][0][0]);

glMapGrid2f(10, 0, 1, 10, 0, 1);

glEvalMesh2(GL_FILL, 0, 10, 0, 10);

glDisable(GL_MAP2_ VERTEX 3);

glDisable(GL.MAP2_COLOR 4);

97

98

APPENDIX B. OPENGL COMMANDS

Bibliography

[1] S. Ablameyko, V. Bereishik, O. Frantskevich, M. Homenko, N. Paramonova, and
O. Patsko. Automatic/interactive interpretation of color map images. In Proc.

16th Intl. Conf. on Pattern Recognition, pages 1269-1272, 2002.

[2] Adobe Systems Incorporated. Streamline at http://www.adobe/com/products/.
1997.

[3] Adobe Systems Incorporated. Adobe photoshop 7.0 user guide. 2002.

[4] Adobe Systems Incorporated. Illustrator at http://www.adobe/com/products/.
2005.

[6] A. Agarwala, M. Dontcheva, M. Agrawala, S. Drucker, A. Colburn, B. Curless,
D. Salesin, and M. Cohen. Interactive digital photomontage. In Proceedings of
ACM SIGGRAPH 2004, pages 294-301, 2004.

[6] M Ashikhman. Synthesizing natural textures. In ACM Symposium on Interactive
3D Graphics, pages 217-226, 2001.

[7] AutoTrace. Autotrace at http://autotrace.sourceforge.net/. 2004.

99

100

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

BIBLIOGRAPHY

W. Barrett and A. Cheney. Object-based image editing. In Proceedings of ACM
SIGGRAPH 2002, pages 777-784, August 2002.

M. Bertalmio, V. Luminita, G. Sapiro, and s. Osher. Simultaneous structure and
texture image inpainting. In IEEE Trasactions on Image Processing, volume 12,

pages 417-424, August 2003.

M. Bertalmio, G. Sapiro, L. Vese, and C. Ballester. Image inpainting. In Pro-
ceedings of ACM SIGGRAPH 2002, pages 882-889, 2002.

F. L. Bookstein. Principal warps: Thin-plate splines and the decomposition of

deformations. In IEEE Transaction on PAMI, pages 567-585, 1989.

Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary and re-
gion segmentation of objects in n-d images. In Proceedings of IEEE International

Conference on Computer Vision, pages 105-112, 2001.

Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-
flow algorithms for energy minimization in vision. In IEEE Transactions on

PAMI, volume 26, pages 1124-1137, September 2004.

A. Cheney. Object-based image editing. In Masters Thesis, Department of

Computer Science, Brigham Young University, Provo, Utah., 2002.

J. P. Collomosse and P. M. Hall. Painterly rendering using image salience. In

Eurographics UK Conference, Proceedings, pages 122-128, 2002.

Corel Corporation. CorelTRACE at http://www.corel.com. 2005.

BIBLIOGRAPHY 101

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

A. Criminisi, P. Perez, and K. Toyama. Object removal by exemplar-based

inpainting. In Proceedings of IEEE CVPR 2003, pages 721-728, 2003.

Doug DeCarlo and Anthony Santella. Stylization and abstraction of photographs.
In Proceedings of ACM SIGGRAPH 2002, pages 769-776, August 2002.

Y. Deng, B. S. Manjunath, and H. Shin. Color image segmentation. In Proc.
IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, CVPR °99,, volume 2, pages 446-451, 1999.

I. Drori, D. Cohen-Or, and H Yeshurun. Fragment-based image completion. In

Proceedings of ACM SIGGRAPH 2003, pages 303—-312, 2003.

A. A. Efros and W. T. Freeman. Image quilting for texture synthesis and transfer.

In Proceedings of ACM SIGGRAPH 2001, pages 341-346, 2001.

A. A. Efros and T. Leung. Texture synthesis by non-parametric sampling. In
IEEE International Conference on Computer Vision, pages 1033-1038, Septem-
ber 1999.

J. H. Elder and R. M. Goldberg. Image editing in the contour domain. In

Computer Vision and Pattern Recognition, Proceedings, page 374381, June 1998.

J. Fan and D. Yau. Automatic image segmentation by integrating color-edge ex-
traction and seeded region growing. In IEEE Transactions on Image Processing,

volume 10, pages 1454-1466, October 2001.

H. Gao, Siu W.-C., and Hou C.-H. Improved techniques for automatic image seg-
mentation. In IEEE Transactions on Circuits and Systems for Video Technology,

volume 11, pages 1273-1280, December 2001.

102

[26]

[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

BIBLIOGRAPHY

P. Haeberli. Paint by numbers: Abstract image representations. In Proceedings

of ACM SIGGRAPH 1998, pages 207214, 1990.

A. Hertzmann. Painterly rendering with curved brush strokes of multiple sizes.

In Proceedings of ACM SIGGRAPH 1998, pages 453-460, 1998.

A. Hertzmann. Paint by relaxation. In Proc. Computer Graphics International

2001, page 4754, 2001.

A. Hertzmann, C.E. Jacobs, N. Oliver, B. Curless, and D. H. Salsesin. Image
analogies. In Proceedings of ACM SIGGRAPH 2001, pages 327-340, August
2001.

F. Jing, M. Li, H.-J. Zhang, and B. Zhang. Unsupervised image segmentation
using local homogeneity analysis. In Proc. IEEE International Symposium on

Crircuits and Systems, pages 456-459, 2003.

M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. In
Proceedings of IEEE International Conference on Computer Vision, pages 259—
268, 1987.

Highside (Takashi Kondo). http://homepage3.nifty.com/highside/. 2004.

V. Kwatra, A. Schodl, I. Essa, G Turk, and A. Bobick. Graphcut textures: Image
and video synthesis using graph cuts. In Proceedings of ACM SIGGRAPH 2003,
pages 277286, 2003.

W. Li, M. Agrawala, and D. Salesin. Interactive image-based exploded view

diagrams. In Proceedings of Graphics Interface, pages 203-212, 2004.

BIBLIOGRAPHY 103

[35] Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum. Lazy snapping. In Proceedings of

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

ACM SIGGRAPH 2004, pages 303-308, 2004.

Macromedia Incorporated. Flash at http://www.macromedia.com /software/flash.

2004.

E. N. Mortensen and W. A. Barrett. Intelligent scissors for image composition.

In Proceedings of ACM SIGGRAPH 1995, pages 191-198, 1995.

E. N. Mortensen and W. A. Barrett. Toboggan-based intelligent scissors with
a four parameter edge model. In Proceedings of IEEE Conference on Computer

wviston and Pattern Recognition, pages 452-458, 1999.

B. M. Oh, M. Chen, J. Dorsey, and F. Durand. Image-based modeling and photo
editing. In Proceedings of ACM SIGGRAPH 2001, pages 433-442, 2001.

L.J. Reese. Intelligent paint: Region-based interactive image segmentation. In
Masters Thesis, Department of Computer Science, Brigham Young University,

Provo, UT., 1999.

C. Rother, V. Kolmogorov, and A. Blake. Grabcut - interactive foreground
extraction using iterated graph cuts. In Proceedings of ACM SIGGRAPH 2004,

pages 309-314, 2004.
Siame Editions. Vector eye at http://www.siame.com/. 2005.

J. Sun, L. Yuan, J. Jia, and H.-Y. Shum. Image completion with structure

propatation. In Proceedings of ACM SIGGRAPH 2005, pages 861-868, 2005.

The Gimp. http://www.gimp.org.

104 BIBLIOGRAPHY

[45] L. Y. Wei and M. Levoy. Fast texture synthesis using tree-structured vector
quantization. In Proceedings of ACM SIGGRAPH 2000, pages 479-488, 2000.

[46] G. Wolberg. Image morphing: a survey. In the Visual Computer 14, pages
360-372, 1998.

[47] B.S. Yu, X. Morse and T.W. Sederberg. Image reconstruction using data-
dependent triangulation. In IEEE Computer Graphics and Applications, vol-

ume 21, pages 62-68, 2001.

[48] J.J. Zou and H. Yan. Line image vectorization based on shape partitioning and

merging. In Proc. Intl. Conf. on Pattern Recognition, 2000.

	Image Vectorization
	BYU ScholarsArchive Citation

	Image Vectorization
	Abstract
	Acknowledgments
	Contents
	List of Figures

	Chapter 1: Introduction
	Chapter 2: Previous Work
	2.1 Vectorization Techniques
	2.2 Pixel-Based Editing
	2.3 Object-Based Editing
	2.4 Object Selection
	2.5 Texture Synthesis
	2.6 Non-Photorealistic Rendering

	Chapter 3: Methods
	3.1 Object Selection
	3.1.1 Graph Formulation and Weighting
	3.1.2 Watershed Hierarchy
	3.1.3 Persistent Graph Cut
	3.1.4 One-Step Boundary Localization

	3.2 Mesh Creation
	3.2.1 Curvature Analysis for Corner Detection
	3.2.2 Axis Creation
	3.2.3 Mesh Representation and Rendering
	3.2.4 Mesh Refinement

	3.3 Automated Recursive Subobject Segmentation
	3.3.1 Automatic Foreground/Background Seeding
	3.3.2 Background Filling
	3.3.3 Subobject Segmentation
	3.3.4 Subobject Vectorization and Recursive Segmentation
	3.3.5 Automatic Segmentation Algorithm

	3.4 Object/Subobject Hierarchy
	3.5 Object Editing
	3.5.1 Object Scaling
	3.5.2 Interactive Object and Subobject Editing
	3.5.3 Hole Filling

	3.6 Progressive Levels of Detail

	Chapter 4: Results
	4.1 Comparison to Other Vectorization Techniques
	4.2 Comparison to Hand-Made Examples
	4.3 Editing Results
	4.4 Zooming Results
	4.5 Levels of Detail Results

	Chapter 5: Limitations and Future Work
	Chapter 6: Conclusions
	Appendix A: User Manual
	A.1 Introduction
	A.2 Getting Started
	A.2.1 Opening an Image
	A.2.2 Saving an Image

	A.3 Object Selection
	A.3.1 Trap Select Tool
	A.3.2 Min Graph Cut Tool
	A.3.3 Creating Object and Subobjects

	A.4 Graphic Creation
	A.4.1 Choose Object
	A.4.2 Selecting Corners
	A.4.3 Making Mesh
	A.4.4 Render Mesh

	A.5 Managing Graphics and Hierarchy
	A.6 Editing Tools
	A.6.1 Move Pivot Tool
	A.6.2 Move Tool
	A.6.3 Scale Tool
	A.6.4 Rotate Tool
	A.6.5 Stretch Tool
	A.6.6 Bend-Stretch Tool

	Appendix B: OpenGL Commands
	Bibliography

