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Abstract: This study contributes a rigorous diagnostic assessment of state-of-the-
art multiobjective evolutionary algorithms (MOEAs) and highlights key advances 
that the water resources field can exploit to better discover the critical tradeoffs 
constraining our systems. This study provides the most comprehensive diagnostic 
assessment of MOEAs for water resources to date, exploiting more than 100,000 
MOEA runs and trillions of design evaluations. The diagnostic assessment 
measures the effectiveness, efficiency, reliability, and controllability of ten 
benchmark MOEAs for a representative suite of water resources applications 
addressing rainfall-runoff calibration, long-term groundwater monitoring (LTM), and 
risk-based water supply portfolio planning. The suite of problems encompasses a 
range of challenging problem properties including (1) many-objective formulations 
with four or more objectives, (2) multi-modality (or false optima), (3) nonlinearity, (4) 
discreteness, (5) severe constraints, (6) stochastic objectives, and (7) non-
separability (also called epistasis). The applications are representative of the 
dominant problem classes that have shaped the history of MOEAs in water 
resources and that will be dominant foci in the future. Recommendations are 
provided for which modern MOEAs should serve as tools and benchmarks in the 
future water resources literature. 
 
Keywords: many-objective optimization, evolutionary algorithms, water supply, 
model calibration, long-term groundwater monitoring, interactive visual analytics   
 
 
1 INTRODUCTION 

 
There is a clear demonstrated need for multiobjective problem formulations in 
water resources, as evidenced by Haimes and Hall [1977].  When designing a 
water project, decision makers and stakeholders want to minimize the cost, but also 
maximize the system’s reliability, environmental quality, and so forth. The decision 
objectives are often calculated using complex simulation models that exhibit 
mathematical properties that preclude using classical optimization, including 
nonlinearity, stochasticity, discreteness, high dimension decisions, severe 
combinatorial growth rates, and uncertainties.  These properties have motivated 
research into multiobjective evolutionary algorithms (MOEAs) that can effectively 
solve this problem (see the review by Coello Coello [2007]).  MOEAs are a class of 
a posteriori decision support tools, which means that the decision makers are 
presented with an explicit representation of their tradeoffs before they express their 
preference for one or more selected solutions.  No weighting or commensuration is 
done before the search, which allows the analyst to discover surprising problem 
properties during the search process.  Additionally, a complex simulation model is 
fully embedded within the MOEA, which means that the mapping from design to 
objective outcome is calculated using a trusted method. 
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Cohon and Marks [1975] defined the multiobjective optimization problem as “vector 
optimization”, where the objective function is a vector comprised of a number of 
scalar objectives, f(x), subject to a set of constraints.  Decision variables 
comprising the vector x can be real-valued, integer, or binary.  In the absence of 
additional preference information, there is no single optimal solution when conflicts 
exist between one or more objective functions.  Pareto optimal solutions have 
performance that is not exceeded with respect to all objectives by any other feasible 
solution in the search space.  Since it is infeasible to enumerate the entire search 
space for nontrivial problems, MOEAs find a “Pareto approximate set” which is the 
best known approximation to the set.  The set of tradeoff solutions is often called 
the Pareto front.  Nicklow et al. [2010] provides a review of water resources 
applications using MOEAs. 
 
This study provides the most comprehensive diagnostic assessment for MOEAs 
ever attempted.  The results provide a careful assessment of effectiveness, 
efficiency, reliability, and controllability of ten benchmark MOEAs for a suite of 
water resources applications.  The applications span a mathematical test function, 
rainfall-runoff calibration, long-term groundwater monitoring, and risk-based water 
supply portfolio planning.  Interested readers can refer to the full analysis for further 
detail [Reed et al. In-Press].  Section 2 outlines recent innovations in multiobjective 
optimization and the tested algorithms.  Section 3 describes the testing framework, 
and section 4 introduces the test problems. Section 5 provides summary results, 
with section 6 giving conclusions. 
 
2. MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS 
2.1 Recent Innovations 
 
As reviewed by Nicklow et al. [2010], early MOEAs were used to solve problems in 
several important areas in the water literature [e.g., Meyer et al. 1994; Gupta et al. 
1998].  However, these tools were limited in their ability to sustain convergence 
(evolving to the Pareto front) while maintaining diversity (spreading solutions on the 
full extent of the Pareto front).  One important innovation is the proof of 
convergence and diversity [Rudolph 1998; Rudolph 2000; Laumanns et al. 2002], or 
the theoretical assertion that given unlimited search time the algorithm has a non-
zero probability of generating a well-spread set of Pareto optimal solutions.  
Laumanns et al. [2002] introduced epsilon dominance archiving, in which point-
based nondomination sorting is replaced by epsilon “blocks” of user-defined 
precision.  Kollat and Reed [2007a] demonstrated that epsilon dominance archiving 
improves the scalability of MOEAs, in terms of their ability to solve large problems 
with a reasonable amount of increasing computational demand.  Section 4.1 will 
introduce a mathematical problem in this study that tests the scalability of 
algorithms for high objective counts. 
 
Recent research has also explored many-objective problems of four or more 
objectives simultaneously [e.g. Reed and Minsker 2004].  Brill et al. [1990] showed 
that for complex planning problems, solutions from low-dimensional problem 
formulations can be proven inferior when new objectives are added to the analysis.  
In contrast, many-objective formulations can overcome two key cognitive 
challenges.  Cognitive myopia [Hogarth 1981] refers when stakeholders ignore 
alternatives that influence their decision preferences (i.e., focusing on a narrowly-
defined problem formulation).  Cognitive hysteresis [Gettys and Fisher 1979] is the 
idea that low-dimensional highly constrained problems reinforce initial 
preconceptions and biases (i.e., not being able to form new hypotheses).  While 
many-objective problems expand the complexity of problems that can be 
considered, MOEAs should also avoid dominance resistance, where the rapid 
growth of non-dominated solutions overwhelms the ability of MOEA selection to 
distinguish high-quality solutions [Purshouse and Fleming 2007]. 
 
Interactive visual analytics is a third innovation that aids the process of using 
MOEAs for many-objective problems.  First introduced in Thomas and Cook [2005], 
visual analytics refers to the rapid analysis of large data sets using interactive 
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software that enables multiple connected views of planning problems.  Kollat and 
Reed [2007b] demonstrated how visual analytics can be used to explore high-
dimensional tradeoff sets to discover and negotiate high-quality solutions.  
Watching the iterative solution sets can also be used during the search to 
determine suitable stopping criteria, and afterwards to “brush” away solutions that 
do not meet user-defined performance thresholds. 
 

Table 1. MOEAs tested in this study. 
 
Group Algorithm Names Notes 
Historical Benchmarks NSGAII, SPEA2 Spawned creation of 

more sophisticated 
MOEAS, widely used 

Pareto Approximation ε-MOEA, ε-NSGAII, 
OMOPSO 

Uses epsilon archiving to 
avoid search deterioration 

Indicator-Based Methods IBEA Uses hypervolume 
instead of non-domination 
to measure quality 

Aggregate Functions MOEA/D Decomposes 
multiobjective problem 
into single-objective 
aggregations 

Differential Evolution GDE3 Utilizes a rotationally 
indifferent operator for 
non-decomposable 
problems 

Adaptive Operator 
Selection 

AMALGAM, BORG Adapts different 
evolutionary operators 
during search 
commensurate on search 
progress 

 
 
2.2 Tested Algorithms 
 
Table 1 presents the ten algorithms tested in this study.  The algorithms are 
grouped based on their properties as shown in the first column.  For more 
information on each algorithm, please consult Hadka and Reed [In-Press] and 
Reed et al. [In-Press]. 
 
3. TESTING FRAMEWORK 
 
An important consideration for implementing the ten parameters of Table 1 is 
finding values for parameters such as crossover and mutation that result in good 
performance for each algorithm.  Consequentially, a robust algorithm will perform 
well across large regions of the parameter space, meaning that the choice of 
parameter value is not important for determining performance.  The experimental 
design of this study follows Hadka and Reed [In-Press] and represents the most 
comprehensive test of MOEAs ever performed in the water literature. 
 
First, a Latin Hypercube Sample (LHS) of values for all algorithm parameters is 
generated.  Since algorithm performance can be affected by random numbers used 
within the initial population and operators, 50 replicate random number generator 
seeds are used for each LHS sample point.  We generate a best-known 
approximation to the Pareto optimal set for each water resources problem across 
all runs and random seeds.  This set is termed the “reference set”. 
 
Each algorithm run is tested relative to the reference set using three metrics: 
generational distance [Van Veldhuizen 1998], additive epsilon indicator [Zitzler et al. 
2003], and hypervolume [Zitzler et al. 2003].  Generational distance measures the 
Euclidian distance of points in the approximation set relative to the nearest 
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corresponding points in the reference set.  This is the easiest measure to satisfy 
since a single approximation solution being close to the reference set satisfies this 
indicator.  The additive epsilon indicator measures the worst case distance required 
to translate an approximation set solution to dominate its nearest neighbor.    The 
additive epsilon indicator is a good measure of diversity, since it focuses on the 
worst case distance and can show whether or not the approximation set has “gaps” 
in its tradeoff solution set.  Hypervolume, the third metric, is the most challenging to 
satisfy.  It measures the volume of objective space dominated by an approximation 
set.  According to Knowles and Corne [2002], the hypervolume indicator measures 
both convergence and diversity of an approximation set. 
 
Two tests are used with each of the three indicators.  The first test is the attainment 
threshold, which measures the probability of success across the LHS samples.  
Our use of attainment thresholds in this context is the first study to statistically 
characterize the “controllability” of algorithms, or the likelihood that a random 
parameterization of an algorithm will perform well on an application problem 
[Goldberg 2002].  The second test visualizes “control maps” of the algorithm 
performance, showing which values in the parameter space perform well across the 
three indicators. 
 
4. APPLICATION TEST CASES 
 
4.1 DTLZ2 
 
Although the majority of MOEA studies to date have focused on two or three 
objective problems, many real-world applications have four or more objectives to 
consider.  We test the scalability of the MOEAs to problems with higher numbers of 
objectives by using a scalable version of the DTLZ2 problem first introduced in Deb 
et al. [2002].  There are M objective functions (where M ranges from 2 to 16), and 
the number of decision variables for each problem is L, where L = M + 9. 
 
4.2 Rainfall-Runoff Model Calibration (HBV) 
 
Here, we test the ability for MOEAs to calibrate conceptual rainfall-runoff models 
that transform input rainfall into runoff at an outlet point.  The HBV model is a widely 
used lumped conceptual rainfall-runoff model [Bergstrom 1995].  The model utilizes 
14 real-valued parameters that control three routines (a degree-day snow model, 
soil moisture accounting, and outflow routing).  The Williams River, West Virginia, 
US (USGS Gauge 03186500) was selected for calibration based on a screening 
analysis that showed the difficulty of calibration.  Four objectives are used: the 
Nash-Sutcliffe Efficiency (focusing on high-flows); the Box-Cox transform Root 
Mean Squared Error (focusing on low-flows); the runoff coefficient error (focusing 
on the long-term water balance); and the slope of the flow duration curve error 
(focusing on the long-term variability of flows).  The problem, hereafter referred to 
as HBV, is nonlinear and multimodal, in that the objective space contains false 
optima. 
 
4.3 Groundwater Monitoring Design (LTM) 
 
The groundwater monitoring design test case tries to eliminate redundancies in 
sampling a contamination plume in the subsurface.  The problem class is termed 
Long Term Monitoring (LTM), since the wells sample and monitor the development 
of the plume over long periods of time.  The sampling domain is a hypothetical 
plume of perchloroeythlene drawn from an existing study site at Lawrence 
Livermore National Lab.  An existing network of 58 sampling points exists at the 
site, with the decision variables determining whether or not to sample at a well (i.e., 
a discrete space of size 2

58
 yes/no decisions).  Four objectives are used: minimize 

the cost of the system, minimize concentration error, minimize concentration 
uncertainty, and minimize the error in estimating total contamination mass.  
Quantile Kriging is used to test the performance of each sampling plan relative to 
the full case of sampling all 58 ports.  A constraint enforces that each sampling plan 
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must provide a sufficient spatial coverage of the full extent of the plume such that 
an interpolation estimate can be made across each spatial grid location. The 
problem is constrained and discrete with a very large decision space.  For more 
information see Kollat et al. [2008]. 
 
 
4.4 Water Supply Portfolio Planning (LRGV) 
 
The water supply portfolio planning test case seeks to help a single city in the 
Lower Rio Grande Valley (LRGV) of Texas, USA find the best combination of 
traditional supply and market-based leases and options for maintaining a reliable 
water supply.  The portfolio is controlled by eight real-valued decision variables that 
control rights (one variable), options (three variables), and thresholds that 
determine market acquisitions using ratios of supply to demand (four variables).  A 
Monte Carlo simulation is used to test the performance of each portfolio, which 
simulates 10 years of water supply decisions.  Five objectives are used, which 
minimize system cost, maximize reliability, minimize surplus water, minimize 
dropped transfers, and minimize the number of leases of each portfolio.  The 
problem is “noisy”, in that each objective function calculation depends on random 
draws from the Monte Carlo simulation.  It also exhibits a highly irregular Pareto 
front geometry partially due to its combination of integer and discrete decision 
variables.  For more information see Kasprzyk et al. [2009]. 
 
5. REPRESENTATIVE RESULTS 
 
The study used more than 100,000 separate MOEA runs and trillions of function 
evaluations to evaluate the 10 MOEAs across four separate test case problems as 
summarized in section 4.  Results for all runs are analyzed using the attainment 
function and control maps as previously discussed.  The five best performing 
algorithms were identified as the Borg MOEA, GDE3, ε-NSGAII, AMALGAM, and 
OMOPSO.  Table 2 provides summary notes about the performance characteristics 
of the five best algorithms, with the full analysis presented in Reed et al. [In-Press]. 
 

Table 2. Summary results for the top five performing algorithms. 
 
Algorithm Notes 
Borg Best scalability on DTLZ2 problem; dominant contributor to all water 

resource problem reference sets; superior performance at small 
populations and low number of function evaluations. 

GDE3 One of the most parsimonious parameterizations; low scalability on 
DTLZ2; high success rates on HBV and LTM but low contributions to 
reference sets; requires careful parameterization. 

ε-NSGAII First algorithm to use adaptive population sizing and epsilon 
dominance archiving; good scaling performance and contribution to 
LTM reference set; performance expected to be exceeded by Borg. 

AMALGAM First auto-adaptive multi-operator MOEA; good performance for HBV 
and LTM but struggled on LRGV case; performance expected to be 
exceeded by Borg. 

OMOPSO Reduced scalability on DTLZ2; low contributions to reference sets; 
good performance on LRGV case in terms of attainment and 
controllability. 

 
 
6. CONCLUSIONS   
 
Based on the suite of results, the Borg MOEA was the only algorithm to consistently 
perform well across all applications, also showing the highest controllability for the 
water resources problems.  The five MOEAs in Table 2 should be the focus of 
future benchmarking studies, which should follow rigorous statistical designs such 
as the one presented in this study. 
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Complex water resources problems in the future will require the ability to design 
and use algorithms that are controllable, efficient, and reliable across different 
problem types.  This is bolstered by the development of auto-adaptive algorithm 
frameworks that can modify the search procedure with minimal user input.  
Advances in additional domains including human-computer interaction, parallel 
cloud computing services, and visual analytics will also aid this effort, allowing 
discovery of new water resources innovations in a changing future. 
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