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FUNCTIONAL TRAITS AND ECOLOGICAL AFFINITIES OF RIPARIAN
PLANTS ALONG THE COLORADO RIVER IN GRAND CANYON

Emily C. Palmquist!:3, Barbara E. Ralston2, Daniel Sarrl:6, David M. Merritt3,
Patrick B. Shafroth4, and Julian A. Scott3

ABSTRACT.— Trait-based approaches to vegetation analyses are becoming more prevalent in studies of riparian
vegetation dynamics, including responses to flow regulation, groundwater pumping, and climate change. These analyses
require species trait data compiled from the literature and floras or original field measurements. Gathering such data
makes trait-based research time intensive at best and impracticable in some cases. To support trait-based analysis of
vegetation along the Colorado River through Grand Canyon, a data set of 20 biological traits and ecological affinities for
179 species occurring in that study area was compiled. This diverse flora shares species with many riparian areas in the
western USA and includes species that occur across a wide moisture gradient. Data were compiled from published
scientific papers, unpublished reports, plant fact sheets, existing trait databases, regional floras, and plant guides. Data
for ordinal environmental tolerances were more readily available than were quantitative traits. More publicly available
data are needed for traits of both common and rare southwestern U.S. plant species to facilitate comprehensive, trait-
based research. The trait data set is free to use and can be downloaded from ScienceBase: https://www.sciencebase.gov/
catalog/item/58af41dee4b01ccd54f9f2ff and https://dx.doi.org/10.5066/F7TQV3JN1

REsuMEN.—Andlisis de vegetacion con base en rasgos son cada vez més frecuentes en los estudios de la dindmica de
la vegetacion de ribera, tales como cambios en la composicion debido a la regulacion del caudal, el bombeo de agua vy el
cambio climatico. Estos andlisis requieren datos de rasgos de especies recopilados de la literatura y de las floras o
medidas de campo originales, lo que hace que la investigacion basada en rasgos sea dificil. Para apoyar el anlisis basado
en los rasgos de la vegetacion a lo largo del rio Colorado a través del Gran Caiién, una matriz de 20 rasgos biologicos y
afinidades ecoldgicas de 179 especies que se encuentran en esa area de estudio fue compilado. Esta flora de alta diversi-
dad comparte especies con muchas zonas de ribera en el oeste de los EUA e incluye especies que abarcan un amplio
gradiente de humedad-sequia. Los datos de la matriz fueron recompiladas de los articulos cientificos publicados,
informes inéditos, hojas de datos sobre plantas, bases de datos de rasgos existentes, floras regionales y guias de plantas.
Los datos para las tolerancias ambientales ordinales eran mds ficilmente disponibles que los de rasgos cuantitativos. Se
necesitan mas datos disponibles al ptblico acerca de los rasgos tanto comunes como poco comunes de especies de
plantas del sudoeste de los EUA para facilitar la investigacion integral basada en rasgos. El conjunto de los datos de ras-
gos es de uso gratuito y se pueden descargar en el nimero ScienceBase: https://www.sciencebase.gov/catalog/item/
58af41dee4b01ccd54f921f and https://dx.doi.org/10.5066/FTQV3IN1

Environmental factors interact with plant demonstrated that seed size declined by 2-3
traits (e.g., leaf area, rooting depth, seed orders of magnitude from the equator to 60°
mass) to influence where, when, and to what latitude. Others have used trait-based vegeta-
extent species may occur within a habitat tion analyses to examine trait patterns across
and across landscapes (Tilman et al. 1997, environment gradients (Reich and Oleksyn
Lehman and Tilman 2000, Hough-Snee et al. 2004, Cornwell and Ackerly 2009, Lawson et
2015). Analysis of plant traits and environ- al. 2015), evolutionary patterns in traits
ment interactions has provided a way to (Knight and Ackerly 2003, Moles et al. 2005),
explore aspects of functional ecology across or intraspecific variation in traits relative to
geographic, environmental, and evolutionary environmental gradients (de la Riva et al.
scales. At a global scale, Dolph and Dilcher 2016). Employing trait-based approaches can
(1980) used leaf size to describe vegetation reveal morphological and physiological simi-
assemblage changes in response to climatic larities among species, provide a quantitative
changes, while Moles and Westoby (2003) framework for assembly rules for community
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ecology, and describe global patterns of adap-
tations (Keddy and Weiher 1999).

Variable hydrology and dynamic channel
processes make riparian ecosystems ideal for
trait-based analysis and comparisons across
physical gradients. Riparian ecosystems are
inherently heterogeneous environments that
support species with a variety of life history
strategies (Naiman et al. 1993). These habitats
are distributed globally and occur in many
geomorphic settings, as well as in mesic to
arid environments. These ecosystems are rec-
ognized as key to biodiversity preservation
(Naiman et al. 1993), but their integrity is
increasingly compromised by effects of flow
regulation (Nilsson and Berggren 2000) and
alterations in discharge volumes associated
with climate change (Palmer et al. 2008, Perry
et al. 2012, Seager et al. 2012). Trait-based
approaches to riparian vegetation analysis can
reveal redundancies in plant traits among
plant species and can be used to disentangle
functional diversity found in a habitat patch.
Understanding how species with similar trait
values are distributed along environmental
gradients can also be used to identify candi-
date species that may fill a niche previously
occupied by a species that can no longer persist
under river regulation or changes in climate
(Kyle and Leishman 2009, Stromberg and
Merritt 2016).

Trait information has been used for a vari-
ety of riparian vegetation analyses, including
defining functionally relevant groups of plants
(guilds or functional groups) that are expected
to respond similarly to environmental resource
gradients and/or stressors (Merritt et al. 2010,
Hough-Snee et al. 2015, Stromberg and Merritt
2016), evaluating changes in vegetation attri-
butes due to environmental change (Kyle and
Leishman 2009, Bejarano et al. 2012), and pre-
dicting changes to ecosystem services and
ecological functions resulting from vegetation
change (Merritt and Bateman 2012). In dry-
land riparian areas, trait-based analyses are
beginning to be used to better understand
the impacts of flow regulation and ground-
water pumping on riparian vegetation (Bejarano
et al. 2012, Merritt and Bateman 2012,
Stromberg and Merritt 2016), the results of
which could potentially be applied to future
scenarios and restoration efforts associated
with climate change or changing human
water use demands (Harrison et al. 2010).
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The previously mentioned examples of trait-
based analysis in other systems (Reich and
Oleksyn 2004, Cornwell and Ackerly 2009,
Lawson et al. 2015) could also be applied to
riparian ecosystems to understand patterns
and drivers of riparian plant distributions.

To successfully relate trait-based plant
groupings to environmental change and eco-
system functions, consistent and complete data
about the traits of individual plant species in
the flora of interest are required. Data for fea-
tures measurable on an individual plant, such
as height and rooting depth (hereafter “biologi-
cal traits”), are needed to link vegetation to
ecosystem processes (Merritt et al. 2010, Strom-
berg 2013, Verberk et al. 2013). However, the
data most readily available are “ecological
affinities,” data that describe the general re-
sponse of a species to an environmental vari-
able, habitat, or resource (e.g., drought toler-
ance, salinity tolerance). Although these types
of data are useful, they often integrate multi-
ple traits and observed environmental rela-
tionships, obscuring linkages among those
variables and hampering efforts to avoid circu-
larity in cause and effect (Verberk et al. 2013).

Compiling relevant information for trait-
based analyses specific to U.S. dryland riparian
areas requires extensive literature resources, a
large time and staffing commitment, and often
original field measurements. Additionally,
until a thorough literature search has been
conducted, the need for new field measure-
ments (extent of data gaps) is unclear. Thus,
open sharing of data that will be useful to
many trait-based projects has the potential to
increase the efficiency of individual research
projects, to identify critical data gaps, and to
advance trait-based and functional ecology
research. Tremendous effort and resources
have been focused on gathering data on the
biological traits and ecological affinities of
thousands of common species throughout
the world as part of a number of trait data-
base projects (e.g., PLANTS, LEDA, TRY,
MARIWENN, BROT, FLOWBASE, SID,
eHALOPH, and GLOPNET) (Kew Royal
Botanic Gardens 2008, Kleyer et al. 2008,
Reich et al. 2009, USDA 2010, Baralotto et al.
2011, Aguiar et al. 2013, Paula and Pausas
2013, Boenisch and Kattge 2014, Flowers et
al. 2015). Unfortunately, trait data for U.S.
dryland riparian areas are not well repre-
sented in these databases (Stromberg 2013,
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Hough-Snee et al. 2015). The USDA PLANTS
database (USDA 2010) contains information
on many desert riparian and upland species,
but the data are mostly ecological affinities
with categorical or ordinal values that are most
applicable in agricultural or cultivation settings.
For example, the PLANTS database lists a
minimum rooting depth category for many
species (useful for horticultural application),
but a maximum rooting depth is necessary for
understanding relationships between desert
riparian species occurrence and water avail-
ability (Stromberg 2013). These data are only
marginally useful for identifying relationships
between vegetation responses and the environ-
ment. Other databases that contain measured
traits are focused on one particular trait or set
of traits, or contain only a few traits of desert
riparian species from the southwestern USA.
For example, the Seed Information Database
(SID) (Kew Royal Botanic Gardens 2008)
contains extensive data on seed weights, stor-
age behavior, germination, etc., but does not
contain data related to other parts of the
plant. Alternatively, TRY: Plant Trait Database
(Boenisch and Kattge 2014), LEDA Traitbase
(Kleyer et al. 2008), and FLOWBASE (Aguiar
et al. 2013) all house a wide variety of trait
data but currently have data for only a small
percentage of southwestern U.S. plant species.
The data set presented here is a starting point
for collating traits of these species.

To help fill the information gap in trait data
for western U.S. riparian systems, we compiled
a data set of 5 biological traits and 15 ecologi-
cal affinities for 179 herbaceous and woody
plant species occurring along the Colorado
River through Grand Canyon (Table 1, Supple-
mentary Material 1). For each species in the
data set, its family, genus, and species names;
species code; wetland indicator status (Lichvar
et al. 2014); and values for each of the biological
traits and ecological affinities (as available) are
listed. Biological traits and ecological affinities
were recorded at the species level; subspecies,
varieties, and cultivars were not documented
separately. Definitions and units of measure for
each of the variables are provided (Table 1).
Citations for values in the data set are noted,
and the complete citation is included in a
separate list (Supplementary Material 2).

This data compilation is supporting the
development of vegetation-flow response guilds
(sensu Merritt et al. 2010) that are being used
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to examine past and future riparian vegetation
change in response to dam operations and
climate change in Grand Canyon. In addition,
the data are likely to have several applications
beyond the Grand Canyon. The Grand Canyon
flora comprises species typical of 3 of the 4
western deserts: the Mojave, the Great Basin,
and the Sonoran (Phillips et al. 1987). The
flora found within riparian habitats along the
Colorado River in the Grand Canyon also con-
sists of both native and nonnative species that
exhibit a wide range of hydrologic tolerances
(submerged to drought tolerant) and includes
upland species. This broad representation of
western floras will be useful for a spectrum of
trait-based analyses and for identifying data
gaps in plant traits of western species. Collating
the traits for drought-tolerant species that
occur in riparian areas will likely be important
for understanding and attempting to restore
dewatered riparian zones (Beauchamp and
Shafroth 2011, Reynolds and Cooper 2011), to
refine management of flow regimes (Merritt et
al. 2010), and to forecast vegetation response
to climate change (Perry et al. 2012, 2013).

Species in the data set include vascular
plant species recorded as part of annual
riparian vegetation monitoring along the
Colorado River between Lees Ferry, Arizona,
and the eastern boundary of Lake Mead
National Recreation Area, Arizona, as well as
species that are known to occur in the study
area (Phillips et al. 1987; B. Ralston and E.
Palmquist personal observation). The 179
species in the data set represent 122 genera
and 37 families (Supplementary Material 1).
Forbs (61) and grasses (58) comprise the bulk
of the list, but shrubs (33), trees (10), rushes
(14), succulents (2), and a sedge (1) are also
represented (Table 2, Supplementary Material
1). Reflecting the species composition in the
Grand Canyon, there are more native (141)
than introduced (38) species. The plants range
from obligate wetland species to obligate
upland species, reflecting adaptations to the
selective pressures associated with strong
gradients in moisture availability and flow
duration from river’s edge to upland, as well
as the mosaic pattern of landforms and micro-
habitats within the riparian area of the Grand
Canyon.

The data set contains 5 biological traits (val-
ues measurable on an individual plant; e.g.,
maximum rooting depth) and 15 ecological
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TaBLE 2. No. species = number of species included
that fall into each functional group (Forb, Grass, Sedge,
Rush, Succulent, Shrub, Tree), are considered native or
introduced, and have values for all traits (Complete
species). All species had at least 4 traits values. Percent
= the percentage of the total species represented. Val-
ues presented are for the time of publication and are
expected to increase in the future. See Supplementary
Material 1 for a complete species list at the time of
publication.

Species group No. species Percent
Forb 61 34%
Grass 58 32%
Sedge 1 1%
Rush 14 8%
Succulent 2 1%
Shrub 33 18%
Tree 10 6%
Native 141 79%
Introduced 38 21%
Complete species 6 3%

affinities (ecological tolerances; e.g., drought
tolerance) (Table 1). A data set consisting
entirely of biological traits is preferable to one
including ecological affinities, but biological
trait data for southwestern plant species are
limited. Thus, ecological affinities were used
in addition to biological traits. Biological traits
and ecological affinities that are likely to be
useful for stream flow management and envi-
ronmental filtering represent the bulk of the
data set, such as resiliency and regeneration
strategies relative to flood-related inundation,
sediment deposition and erosion, and water
availability (e.g., anaerobic tolerance, rooting
depth, and vegetative propagation). Traits
from Westoby’s leaf-height-seed (LHS) plant
ecology strategy scheme (Westoby 1998) were
included for multiple purposes; specific leaf
area (SLA) is reflective of resource acquisi-
tion and conservation (Reich 2014), height at
maturity is associated with light competition
and competitive dominance (Westoby 1998),
and seed mass is an indicator of regeneration
strategy and the ability to recolonize from
seed banks or after disturbance (Westoby
1998). Traits that are important for other
ecosystem functions but with less direct con-
nection to stream flow management (e.g., litter
and temperature traits) are not included.
Fourteen of the variables are categorical
or ordinal and 6 are continuous; both biologi-
cal traits and ecological affinities are repre-
sented by both types of data. Specific leaf
area is included twice, representing values
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from different references. The secondary values
illustrate how intraspecific variation can be in-
corporated into the data set. The data set does
not include intraspecific variation of the other
variables because it was not used in the devel-
opment of the riparian vegetation-flow response
guilds. Currently, each data point is either
the only value that could be found or the
value that is likely to be most applicable to
the Grand Canyon (based on the location of
the source study). Data that represent intra-
specific variation can be added to the data set
as needed and as data become available.

Data were compiled from over 275 refer-
ences (Supplementary Material 2) and stored
as a matrix. Published scientific literature,
unpublished government reports and data-
bases, USDA PLANTS (USDA 2010), the Kew
Royal Botanic Gardens Seed Information
Database (Kew Royal Botanic Gardens 2008),
eHALOPH (Flowers et al. 2015), regional
floras, and plant guides were all used to fill
in as many data points as possible (Supple-
mentary Material 2). Literature searches were
conducted online using both a standard
search engine and Google Scholar. Search
terms included the species name and different
phrasing for each trait (e.g., maximum rooting
depth, root length, root depth). Species syn-
onyms were also searched for in this manner.
Because data for biological traits of south-
western species are incomplete, ecological
affinity data from USDA PLANTS (USDA
2010) and other sources were used in addition
to trait data with the idea that these data will
be replaced with biological trait data as they
become available. The authors and several
other riparian ecologists with expertise in
southwestern U.S. riparian systems reviewed
the draft data set to provide professional
judgment regarding the trait values, particu-
larly the ecological affinities. If a value for an
ecological affinity was judged as unsupported
by expert knowledge and did not have associ-
ated data (e.g., the affinities that are available
on PLANTS), that value was left blank. Many
of the values for anaerobic (57%), drought
(51%), fire (59%), and shade tolerance (65%);
moisture use (92%), growth (79%) and spread
rate (50%); and resprout (63%) and seed
period (60%) come from PLANTS (Table 3).
Most of the values for seed weight come from
the Kew Royal Botanic Gardens Seed Infor-
mation Database (SID; 98%). Even so, only
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33% of the entire data set comes from
PLANTS and only 7% from SID. Data for spe-
cific leaf area, relative growth rate, maximum
rooting depth, average height at maturity,
maximum salinity tolerated, salinity tolerance,
lifespan, ability to sexually and vegetatively
reproduce, and bloom period were either
entirely or mostly from references other than
PLANTS (Table 3). No species has only data
from either PLANTS or SID. The average
number of unique references used for each
species is 5.5 (minimum = 1, maximum = 11).

Traits ranged from being complete (average
height at maturity and ability to sexually
reproduce; 179 entries) to 26% complete (rela-
tive growth rate; 47 entries) (Table 3). The
ecological affinities were generally available
for more species, while the data fields for bio-
logical traits were less complete. On average,
species have 13.6 data points (minimum = 4,
maximum = 20). Less information was typi-
cally available for species that are limited in
distribution and/or are forbs (e.g., Baccharis
brachyphylla and Wislizenia refracta). The most
complete information available was for nonna-
tive species of concern (e.g., Bromus tectorum
and Salsola tragus), large woody species (e.g.,
Populus  fremontii and Salix gooddingii),
prairie species (e.g., Andropogon gerardii and
Schizachyrium scoparium), and broadly dis-
tributed rangeland species (e.g., Artemisia
tridentata and Pascopyrum smithii). More data
are needed for the traits of both common and
rare southwestern plant species.

Although this effort is intended to be a
comprehensive summary of the data available
for these species at this time, some hard-to-find
sources (not electronic, out of print, etc.) may
have been overlooked. Also, the values listed
here are not necessarily representative of
species across their entire range. Many of the
values are point measurements from a certain
time and place with limited replication at that
site and no replication across the geographic
and morphologic range of the species. These
data should still be useful for landscape-scale
analyses despite these limited numbers of
measurements (Kazakou et al. 2014, Ordonez
2014). In particular, seed mass, maximum and
reproductive plant height, and specific leaf
area are stable enough within most species to
allow for analyses between species using a mean
value (Kazakou et al. 2014, Ordonez 2014).
However, individual values from different data
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sources for the vegetative plant height of
herbaceous species may not be reliable (Kaza-
kou et al. 2014). The ordinal attributes (i.e.,
anaerobic tolerance, drought tolerance, fire
tolerance, moisture use, salinity tolerance,
shade tolerance, growth rate, and spread rate)
are discretely ordered and are intended to
represent the typical response of that species,
so they are inherently less precise with respect
to intraspecific variation.

This data set will be added to and revised
through contributions from other researchers
and as new data are collected by our group.
Over time, the ecological affinities will be
replaced with related biological traits (mea-
surable on an individual) and data added
where it is currently missing. For example,
quantitative biological trait data are currently
being collected by collaborators at Northern
Arizona University (McCoy-Sulentic 2016). As
the trait data set is updated and expanded, new
versions will be added to ScienceBase. Older
versions for reference will remain available on
the site (Supplementary Material 3). At present
there are no plans to add more ecological
affinities, though these can be added as they
are deemed useful for specific analyses. The
data set is free to use and can be downloaded
from ScienceBase: https://www.sciencebase
.gov/catalog/item/58af41dee4b01ccd54f9f2ff
and https://dx.doi.org/10.5066/F7QV3JN1. Con-
tact information for submitting new data is
also listed on ScienceBase.

SUPPLEMENTARY MATERIAL

Three online-only supplementary files
accompany this article (scholarsarchive.byu
.edu/wnan/vol77/iss1/3).

SUPPLEMENTARY MATERIAL 1. List of species
included in the traits data set at the time of pub-
lication.

SUPPLEMENTARY MATERIAL 2. List of references
used at the time of publication.

SUPPLEMENTARY MATERIAL 3. Data traits matrix
(Microsoft Excel file).
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