BYU Studies Quarterly

Volume 16 | Issue 1 Article 11

1-1-1976

From Pebbles to Commutators

Donald W. Robinson

Follow this and additional works at: https://scholarsarchive.byu.edu/byusq

Recommended Citation

Robinson, Donald W. (1976) "From Pebbles to Commutators," BYU Studies Quarterly: Vol. 16 : Iss. 1,
Article 11.

Available at: https://scholarsarchive.byu.edu/byusq/vol16/iss1/11

This Article is brought to you for free and open access by the Journals at BYU ScholarsArchive. It has been
accepted for inclusion in BYU Studies Quarterly by an authorized editor of BYU ScholarsArchive. For more
information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.


http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/byusq
https://scholarsarchive.byu.edu/byusq/vol16
https://scholarsarchive.byu.edu/byusq/vol16/iss1
https://scholarsarchive.byu.edu/byusq/vol16/iss1/11
https://scholarsarchive.byu.edu/byusq?utm_source=scholarsarchive.byu.edu%2Fbyusq%2Fvol16%2Fiss1%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/byusq/vol16/iss1/11?utm_source=scholarsarchive.byu.edu%2Fbyusq%2Fvol16%2Fiss1%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Robinson: From Pebbles to Commutators

College of Physical and Mathematical Sciences

From Pebbles to Commutators
Donald W. Robinson

Upon review of the list of annual Sigma Xi lectures given on
this campus, I noted that this marks the first time that a mathe-
matician has been invited to participate. Since mathematics is often
referred to as the “Queen of the Sciences,” this seemed at first an
affront to her Majesty. But, upon further reflection, I considered
the possibility that the selection committees for the preceding lec-
tures had been moved by the words of St. Augustine: “The good
Christian should beware of mathematicians and all those who make
empty prophecies. The danger already exists that mathematicians
have made a covenant with the devil to darken the spirit and con-
tine man in the bonds of Hell.” Since the selection committee for
this lecture has obviously failed to heed this warning, I accept this
opportunity to plead innocent of any such charge. Indeed, although
admitting the fact that the Queen readily rejects many who wish
to know her, my purpose is not to “cast you into outer darkness,”
but rather to illuminate some of the facets of her remarkable life.

In order to avoid the customary effects of frustation and disap-
pointment that are suffered by an audience before the Queen, we
will clear her court of the mass of grubby little details and technical
paraphernalia that surround her. On the other hand, in order prop-
erly to acquaint you with her, it will be necessary to speak her lan-
guage much of the time. Moreover, since on an occasion such as
this the topic of conversation is somewhat arbitrary, it should be
stated that my personal tastes and interests alone have dictated the
choice. Thus, it is hoped that you may sense through and beyond
this particular message to a better understanding of and an appre-
ciation for the Queen herself.

To most of us the word “mathematics” is associated with some
form of the word “calculation.” Thus, it seems appropriate to begin

Thirty-first Annual Sigma Xi Lecture, Brigham Young University Chapter, April
13, 1967. Reprinted by permission, American Scientist, journal of Sigma Xi, The
Scientific Research Society of North America.

Donald W. Robinson is professor of mathematics at Brigham Young University.
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with the observation that the word is derived from the word calcxls.
The Romans used it as the name of a counting device that was made
of stone. Indeed, the latin noun ca/cul/us means “'pebble” and is the
derivative of calx, a piece of limestone. Thus, to calculate means
literally to pebble, and a calculator is one who works with pebbles.

Our work will be with some pebbles. First, we shall present in
brief allegory the birth and early development of the science of num-
bers and computation. Second, we shall recall some historical facts
and identify some of the significant mathematical pebbles of the
past. Finally, in order to meet the requirements of this lecture,
which is to speak on some aspect of my own research, we shall in-
vestigate one particular pebble. Although I do not intend to present
the complete details of this one pebble, it is hoped that you will be
sufficiently motivated at least to perceive why I wanted to “crack it.”

Imagine a shepherd who 1s tending his sheep. In the morning he
allows them to leave the safety of their enclosure and go off to
graze, and in the evening he gathers them back into the fold. Most
shepherds know their sheep. But this one has a short memory, and
as such looks for a machine to help him keep track of his flock. He
collects some pebbles and procures a pouch. As each sheep leaves
in the morning he places a pebble in the pouch. In the evening he
removes one pebble for each sheep as it returns. If he has pebbles
lett over, then he goes out in search of his lost sheep; if he has extra
sheep, then—well—he lets the other shepherds worry. The shepherd
has solved his problem by simply matching the pebbles with the
sheep.

C].:;HE.‘ day the shepherd decides to speed up the process of send-
ing off his sheep. He assigns his son to one gate, and he takes an-
other. As the sheep depart, each assembles a collection of pebbles
as before, which are later all put into one bag. He seems to sense
that the matching is still all right, and in fact that it does not matter
whether he or his son first place the pebbles in the bag.

Let us now bring out the mathematician in the shepherd. He rec-
ognizes in his flock a collection of objects. His matching in a one-to-
one way leads him to the process of counting and eventually to the
concept of number. The combination of two piles of pebbles in-
troduces the notion of an operation—addition. Finally, his observa-
tion of the fact that it does not matter which comes first suggests
some kind of a principle—commutativity.

Of course, the shepherd does not stop here. More sophisticated
problems prompt him to improve his newly discovered tool. He en-
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larges his concept of number to include other objects such as nega-
tives and fractions. His facility to compute increases, and he intro-
duces new operations and techniques. He recognizes other principles
and begins to abstract their formal content.

A system finally emerges which consists of first, the collection R
of real numbers; second, the operations of addition () and multi-
plication (-); and third, a list of basic properties: for example, com-
mutativity of addition

« + 83 =08+ a

a3 = [«
are included. This system [R, +,-7 is called the real number system,
and the end result of the shepherd’s labors is symbolic arithmetic—
the science of the real number system.

Thus, by application of his ability to reason about some elemen-
tary observations, the shepherd places at his disposal a useful, flex-
ible, and powerful tool. He is now in a position to look up from
his pile of pebbles and glimpse, ever so faintly, the vast expanse of
a new ocean—algebra.

Unfortunately, the very mention of this word strikes fear in the
minds of some of us. Thus, before proceeding, let me offer you some
assurance. We have, in fact, reached the point where we can stand
by Sir Isaac Newton when he saic:

and of multiplication

“I do not know what I may appear to the world; but to my-
self I seem to have been only like a boy playing on the sea-
shore, and diverting myself in now and then finding a smoother
pebble or a prettier shell than ordinary, whilst the great ocean of
truth lay all undiscovered before me.”

Newton sensed that something of great magnitude lay just be-
yond him. What was it? In particular, if he had been free to explore
the ocean of algebra, what would he have found? First, he would
have marveled at the rich display and great variety of algebraic struc-
tures. Second, as a scientist, he would have plunged into the task of
classitying these systems into their genera and species. He would,
for example, find that the system of real numbers is only one of
several algebraic structures that have the same basic features. Each
system {F,+,.]}, called a field, of this one genus consists of a collec-
tion of objects, F, two operations, - and -, and the same basic list of
postulates that describe the real numbers. He would discover further,
however, that this genus had several species. These species would
be identified by such properties as the following:
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Order. In the real number field [R,+,] the collection R con-
tains an infinite number of elements. Some fields, however, have
only a finite number of elements. The order of the field [F,+,] is
defined to be the number of elements in FF. In particular, the order
of a given field may be either some finite counting number or in-
finite.

Characteristic. Every field contains subsystems which are them-
selves fields. If the order of the smallest such subsystem of a given
field is a finite number p, then it can be shown that p must be one
of the prime numbers {2, 3, 5, 7, 11, . . . }; in this case the given
field is said to be of characteristic prime p. Otherwise, the field i1s
said to be of characteristic zero. Thus, a given field is classified ac-
cording as its characteristic is zero or some prime number p.

Algebraic closure. Although some equations such as
1 —3x +2x* = 0
have real solutions for x, some equations such as
I + x +x2 =0

cannot be solved in the real number field. This is because the poly-

nomial
1 —3x + 2x* = 2(1/2 —x) (1 —x)

can be factored, whereas 1 |- x - x* cannot be factored over the
real numbers. In general, if every polynomial over a given field
[F,+,1 is completely factorable in the sense that

@ T oaX T . . . T oapx" = -G(JQI ““—.?f) (ﬁf .?f) e (1811“—}5)

for some Bo, B1, . . ., Buin F, then the field is said to be a/gebraically
closed. Otherwise it 1s not. Thus, a given field 1s or is not alge-
braically closed.

These and other properties identify a multitude of species in the
genus field. But Newton was not even aware of these different
species; 1n fact he did not even get his “"feet wet” in this vast ocean.
The time of exploration had not yet arrived; it was still over a cen-
tury in the future. The story is as follows:

Mathematics entered into its modern phase when René Descartes
published his analytic geometry in 1637. Here, for the first time,
the tool of symbolic arithmetic was applied to geometry. The idea
was to give a “‘name’’ to each point on a line. Each name was a real
number, and the assignment was made in a precise, orderly way. (A
crude approximation of this concept of number line is provided by
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the number scale on a ruler.) The extension to the plane was a bril-
liant, yet simple device. Name the points of the plane by a par
(ai, az) of real numbers! The elements of this pair were obtained
by “projecting” the point onto two (perpendicular) number lines,
and the collection of all such pairs was denoted by R*. The next
step was obvious. Name the points in three-space by the collection
R? of ordered triplets (a, a2, a3), and in general n-space by the col-
lection R" of n-tuples (au, az, .. ., an).

Thus, the points of space correspond to some algebraic objects.
What algebraic structure is applicable? In the first case, clearly the
entire field {R,+,-] is at our disposal. But it took the genius of Carl
Friedrich Gauss in 1831 to give the first coherent interpretation of
the second case. By the proper definition of addition and multiplica-
tion, he recognized [R* + ] as the heretofore mysterious complex
number field.

The next question was a natural one. If » 1s greater than 2, then
how can the operations - and . be given to provide a field
[R,T,}? The answer was far from obvious. But one mathemati-
ctan—an Irishman named William Rowan Hamilton—became ob-
sessed with the problem. For nearly fifteen years it haunted him.
Finally, on October 16, 1843, as he was out taking a walk, a partial
solution came to him. Then and there he scribbled the answer onto
the nearest object at hand—a stone in the bridge upon which he
stood at the time. Later that same day, he requested permission to
present his idea before the Royal Irish Academy, which he did a few
weeks later (on November 13, 1843; see also [2] and 17])

The idea was a bold one. It was not a field that he sought, but
a “skew” field—an algebraic structure that possessed all of the prop-
erties of a field except one—commutativity of multiplication!

Reject the principle of commutativity ? But could this be done?
And why not? Suppose the shepherd had matched his sheep with
cannon balls, and his son had matched his with peaches. Would we
not be aware of some difference in who first placed their respective
objects into the bag? Does anyone who has tried to put on his socks
after his shoes were on wish to argue that this is the same as the
normal procedure? The same idea 1s also suggested by the follow-
ing verse, which is found on the Game Board of Algebra (I.B.M.,
Pacific Science Center, Seattle):

4 pills 365 times a year can cure you
365 pills 4 times a year can kill you.

Finally, the usefulness of this concept of noncommutativity may be
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sensed in the words of Dr. P. A. M. Dirac, who wrote in one of his
eatly papers on quantum theory L5I:

“For the purpose of atomic physics it has been found con-
venient to introduce the idea of quantities that do not in general
satisfy the commutative law of multiplication, but satisfy all the
other laws of ordinary algebra.”

Yes, commutativity may be just the thing we do »of want. In
mathematics, Hamilton was the first to recognize this fact, and once
again, a most difficult, yet simple step had been taken. A step so
significant, that it may be ranked with the construction of the first
non-Euclidean geometries. It was not that Hamilton’s particular sys-
tem, which he called quaternions, was all-important. It was not.
Hamilton’s discovery was significant because it showed that the
commutative law of multiplication was not necessary for a self-con-
sistent algebraic system. Algebra was no longer just symbolic arith-
metic: it now recognized a variety of algebraic structures. Thus, the
step transcended the traditions of centuries and gave algebra its free-
dom. Although Newton had not been free to do so, the mathema-
ticians of the mid-nineteenth century were now free to explore the
vast ocean of algebra.

One of the first algebraic structures to be investigated in this new
era was introduced by Arthur Cayley in 1858. It included, in par-
ticular, the complex numbers of Gauss and the quaternions of Hamil-
ton. The objects of its collection M were square “arrays” of ele-
ments from a field. These arrays were called matrices. Operations
of addition and multiplication of matrices were defined and most
of the principles of ordinary algebra were found to be satisfied.
However, there was one exception; in general, for matrices 2z and 5,

ab %+ ba

That 1s, the algebra [M,+,} of matrices was a noncommutative
system.

Today, over a century later, the algebra of matrices is still one
of the prized tools in the mathematician’s briefcase, and the non-
commutativity of the system is still one of its fascinating features.

We now conclude this lecture with an examination of one par-
ticular pebble of this discipline. Early in the study of matrices it was
observed that some pairs of matrices do commute. In fact, some com-
mute with every matrix: the collection Z ot such matrices is called
the center. Furthermore, it was noted that a given matrix # com-
mutes with every matrix of the form
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do + ava + axa® + ... T ana",

where 40,41, . . . an belong to the center. Such a matrix is said to be
generated by a over the center. In 1875, W. K. Clifford [3] at-
tempted to prove the converse of this observation; namely, every
matrix that commutes with a given matrix 1s generated by that mat-
rix. In 1878, G. Frobenius [6] proved this result for a very special
case, but in 1884, J. J. Sylvester [15] showed that in general the
conjecture was false. In other words, if K(z), which is called the
centvalizer of a, is the collection of all matrices that commute with 4,
and Z|a] 1s the collection of matrices that are generated by # over
the center, then every matrix in Z|«] is in K («), but not vice-versa:
symbolically Z[#]| ¢ K(a), but in general, K(&) # Z|[a].

Thus, the question remained: what “nice” necessary and suffi-
cient condition guarantees that a given matrix is generated by an-
other? This question was answered in 1910 by L. Autonne [1l.
(See also [81.) He reasoned as follows: if & is generated by &, then
b not only commutes with # but also with every matrix that com-
mutes with 2. He then demonstrated the converse, which is now
called the “double-centralizer” theorem. Specifically, any matrix
which commutes with every matrix which commutes with # must be

generated by . In other words, if K [K(«)] denotes the collection
of all matrices that commute with each matrix in the centralizer

K(a), then
K[K(a)] = Z|a].

Consequently, the class of all matrices that are generated by a given
matrix is here completely characterized by the apparently superficial
notions of commutativity.’

It is very often the case in the study of matrices that commuta-
tivity is a sufficient but not necessary condition for some conclusion
(see [16]). This leads one to seek a “weaker” condition, which
gives rise to the same result, thus producing a “stronger” theorem.
One such device 1s suggested by the following observation. The
matrix 5/ commutes with the matrix # if and only if the difference

b-a — ab 1s zero. This difference is called the (additive) com-
mutator of 4 and #, and is denoted by
bd, = b-a — a-b.

=

'Proofs of this result may be found in references [10] and [11]. One important
application was made by P.A.M, Dirac: specifically, this concept provided the starting-
point of his function theory for quantum algebra [5].
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In a heuristic sense, the commutator measures how much 4 and #
fail to commute.

Now, if 4 does not commute with «, it may happen that the com-
mutator of the commutator is zero; that is (£8.) 8, = 0 even though
b8, # 0. In other words, although 5 does not commute with # in
the ordinary sense, it does “commute” in a higher order sense. The
extension to still higher order commutators is immediate. The col-
lection K () of all matrices & such that

(o ((8)8g). . )8y = O,

where 8. 1s repeated 7z times, 1s called the m-centralizer of 2. Finally,
Kn|Kmn(a)| denotes the collection of matrices that are in the -
centralizer of every matrix in the m-centralizer of 4.

In 1960, M. Marcus and N. A. Khan [12]] (both of the Uni-
versity of California at Santa Barbara) published the following
modification of the double-centralizer theorem. In the algebra of
matrices over a field which is (1) of characteristic zero, and (2)

algebraically closed,
Ki[K:(a)] < Z[a].

In 1961, M. F. Smiley (114l of the University of California at River-
side) generalized this result. Under essentially the same two restric-
tions on the field, but for any positive integer 72, he showed that

Kn|Kn(a)| < Z|a].

In other words, if the matrix & 1s in the m-centralizer of every matrix
in the m-centralizer of 4, then 4 is generated by « over the center.

This result leaves two glaring questions unanswered. First, are
the restrictions (1) and (2) on the field really necessary? That is,
does the result fail for other species of fields or is it valid for the
entire genus? Second, can it be shown that the inclusion 1s actually
an equality? Or (as was shown in [12] for the case m = 2) does
the left-hand member describe a particular subcollection of matrices
generated by #”

As in the case of Hamilton, these questions began to haunt me.
They also haunted others, and in 1963, Dr. Olga Taussky Todd
[17] of California Institute of Technology formally posed (in part)
these questions to the American Mathematical Society as a research
problem. Fortunately for me (my wife and children) the haunting
ended the following year. In 1964, I was able to discover the key
to the solution, and in 1965 the results were published (see [131).
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In final form this is the theorem. Let 2 be a matrix over a field F
and let 7z be a positive integer.

If F 1s of characteristic prime p, and f is the integer defined by
the inequalities of p'~'<<m=p', then

Kn|Kn(a)] = Z[ap'] ¢ Z|a].

If F is of characteristic zero, and s is the semisimple part® of z,

then
. K:|Ki(a)] = Z|a].
Kn[Kn(2)] = Z[s] ¢ Z]a].
for m > 1. |

This theorem completely answers the above questions. But, as i1s
the case with all research, it asks many more of its own. Some have
recently been answered: Professor Willes Werner, of our own staff,
and I have just extended this theorem to matrices over the skew
field of quaternions (see also [4].) Some questions have yet to be
answered: is the theorem valid in some sense over any skew field?

With this question we come to the end (for now) of one thread
of mathematical research. Although this thread has brought us to
commutators in particular, as was promised in the title of this lec-
ture, hopefully it has revealed along the way a few general proposi-
tions. First, mathematics is based on the simple faith that man can
pebble. Second, its function is to identity and abstract the kernel of
this experience. Third, its resources are extensive and are abundant
in overwhelming variety, yet it refuses to give to man its wealth
without extracting a price. Fourth, although in part it 1s a deductive
science, in the large it is a creative science; not only does the mathe-
matician draw necessary conclusions, but he also decides what to
prove and discovers how to establish the proof. Fifth, it evolves
with the changing times; in the words of R. H. Bing, “mathematics
is an alive and growing subject.” In summary, we may say as War-
ren Weaver did of science in general, mathematics is “an adventure
of the human spirit.”

I leave you now to ponder this lofty conclusion, while I go off to
play with another pile of pebbles.

REFERENCES

1. L. Autonne. Sur les matrices linéaires échangeables 4 une matrice donnée.
J. Ec. Poly. (2) 14 (1910) 125.

*The semisimple part of « is a special matrix generated by « (see, for example,

[9]).

115

Published by BYU ScholarsArchive, 1976



NSRS LI (N

p—t bt

12,

13.

14.
15.

16.

17.

~OY ® a4 ow

BYU Studies Quarterly, Vol. 16, Iss. 1 [1976], Art. 11

E. T. Bell. Men of Mathematics (New York, 1937) Chapter 19.

. W. K. Clifford. Fragment on matrices. Collective Papers (1875) p. 337.

C. G. Cullen and R. Carlson. Commutativity for matrices of quaternions, Abstract
642-39, Notices AMS, 44 (1967), 72.

P. A. M. Dirac. On quantum algebra, Roy Soc. Proc.,, A. 110 (1926) 412.
G. Frobenius. Uber linear Substitution und bilineare Formen, J. reine angew.
Math., 84 (1878) 1-63, Theorem XIII.

J. Willard Gibbs. On multiple algebra, Proc. Amer. Assoc. Adv. Science,
35 (1886) 37-66.

H. Hilton. Substitutions permutable with a canonical substitution, Mess. Math.,
41 (1911) 114-116.

K. Hoffman and R. Kunze. Linear Algebra (Englewood Cliffs, 1961) 217.
N. Jacobson. Lectures in abstract algebra, Vol. II (Princeton, 1953) 113.

P. Lagerstrom. A proof of a theorem on commutative matrices, Bull. Amer. Math.
Soc., 51 (1945) 535-536.

M. Marcus and N. A. Khan. On matrix commutators, Can. | Math., 12
(1960) 269-277.

D. W. Robinson. On matrix commutators of higher order, Can. J. Math., 17
(1965) 527-532.

M. F. Smiley. Matrix commutators, Can. J. Math., 13 (1961) 353-355.

J. J. Sylvester. On the three laws of motion—the world of universal algebra,
Jobns Hopkins Circ., 3 (1884) 33-34, 57.

O. Taussky. Commutativity in finite matrices, Amer. Math. Monthly, 64 (1957)

232,
O. Taussky. Matrix commutators of higher order, Bull. Amer. Math. Soc., 69

(1963) 738.

116

https://scholarsarchive.byu.edu/byusqg/vol16/iss1/11

10



	From Pebbles to Commutators
	Recommended Citation

	tmp.1468865165.pdf.CUNAw

