4-30-2003

Changes in the distribution and status of sage-grouse in Utah

Jeffrey L. Beck
University of Idaho, Moscow

Dean L. Mitchell
Utah Division of Wildlife Resources, Salt Lake City, Utah

Brian D. Maxfield
Utah Division of Wildlife Resources, Vernal, Utah

Follow this and additional works at: https://scholarsarchive.byu.edu/wnan

Recommended Citation
Available at: https://scholarsarchive.byu.edu/wnan/vol63/iss2/6

This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
CHANGES IN THE DISTRIBUTION AND STATUS OF SAGE-GROUSE IN UTAH

Jeffrey L. Beck1, Dean L. Mitchell2,4, and Brian D Maxfield3

ABSTRACT.—Sage-grouse (Centrocercus spp.) were abundant in all of Utah's 29 counties at the time of European settlement wherever sagebrush (Artemisia spp.) occurred. Greater Sage-Grouse (C. urophasianus) inhabited areas north and west of the Colorado River, and Gunnison Sage-Grouse (C. minimus) occupied suitable habitat south and east of the Colorado River. The largest Greater Sage-Grouse populations in Utah are currently restricted to suitable habitats in Box Elder, Garfield, Rich, Utah, and Wayne Counties. A remnant breeding population of Gunnison Sage-Grouse occurs in eastern San Juan County. We stratified Greater Sage-Grouse populations (1971-2000) by counties where the 1996 to 2000 moving average for estimated spring breeding populations was >500 (GT500) or <500 (LT500). Males per lek declined in all populations from 1971 to 2000; however, there were consistently more males observed on GT500 than on LT500 leks. Juveniles per adult hen (including yearling hens) Greater Sage-Grouse in the 1973-2000 fall harvest in Box Elder, Rich, and Wayne Counties did not differ from 2.25, a ratio suggesting sustainable or increasing sage-grouse populations. Declines are attributed to loss, fragmentation, and degradation of sagebrush habitat. Sage-grouse conservation ultimately depends on management and enhancement of remaining sagebrush rangelands in Utah.

Key words: sage-grouse, sagebrush habitats, habitat loss, Utah, Centrocercus urophasianus, Centrocercus minimus, Greater Sage-Grouse, Gunnison Sage-Grouse, Artemisia tridentata.

Sage-grouse (Centrocercus spp.) are recognized for their obligate relationship with sagebrush (Artemisia spp.; Brann et al. 1976, Robertson 1984) and persist in Utah and 10 other states (California, Colorado, Idaho, Montana, Nevada, North Dakota, Oregon, South Dakota, Washington, and Wyoming) and 2 Canadian provinces (Alberta and Saskatchewan) where sagebrush occurs (Connelly and Braun 1997, Braun 1998). Sage-grouse have been extirpated in areas on the periphery of their core habitat including Arizona, Kansas, Nebraska, New Mexico, Oklahoma, and British Columbia (Braun 1998, Johnson and Braun 1999). Sage-grouse populations have declined throughout their remaining range at increasing rates due to habitat loss, fragmentation, and degradation (Connelly and Braun 1997, Braun 1998).

In at least 9 states and Alberta, males per lek, an index of yearly breeding populations, declined 17%–47% ($\bar{x} = 33\%$) from 1985 to 1994 from long-term averages calculated through 1984 (Connelly and Braun 1997). Utah and other states and provinces (Alberta, North Dakota, South Dakota, and Washington) with smaller sage-grouse populations saw an overall mean decline of 37% in breeding populations from 1985 to 1994 compared to the long-term average (Connelly and Braun 1997). However, a rough estimate of breeding populations in 1998 indicated 10.6% of all sage-grouse were found in Utah (Braun 1998).

Recent work on courtship behavior (Young et al. 1994), genetics (Kahn et al. 1999, Oyler-McCance et al. 1999), morphometrics (Hupp and Braun 1991), and plumage (Young et al. 2000) led to recognition of 2 distinct species of sage-grouse, Gunnison Sage-Grouse (C. minimus) and Greater Sage-Grouse (C. urophasianus; AOU Checklist Committee 2000), also preferred or known by others as Northern Sage-Grouse (Young et al. 2000). In Utah, sage-grouse occurring south and east of the Colorado River in Grand and San Juan Counties are Gunnison Sage-Grouse, whereas sage-grouse north and west of the Colorado River are Greater Sage-Grouse (Young et al. 2000). The current Gunnison Sage-Grouse population of approximately 120–150 birds in Utah represents 3% of an estimated population of 4000–5000 in

1Department of Fish and Wildlife Resources, University of Idaho, Moscow, ID 83844-1326.
2Utah Division of Wildlife Resources, 1594 West North Temple, Suite 2110, Box 145001, Salt Lake City, UT 84114-5001.
3Utah Division of Wildlife Resources, 152 East 100 North, Vernal, UT 84078-5126.
4Corresponding author.

An analysis of the distribution and status of sage-grouse in Utah is needed to assist in the conservation and management of populations and essential habitats within the state. Similar syntheses have been completed for sage-grouse in Colorado (Braun 1995), Oregon (Willis et al. 1993), and Washington (Schroeder et al. 2000).

Our paper clarifies what is known about the original and current distribution of sage-grouse in Utah, provides historical and current status information about the species, and discusses causes of sage-grouse declines and the need for conservation in relation to habitat conditions.

In our synthesis we (1) reviewed literature, examined museum specimens, and performed geographical analyses to evaluate the current and historical distribution of sage-grouse in Utah; and (2) analyzed population data to evaluate trends (1971-2000) in sage-grouse abundance and productivity in the state.

METHODS

Personnel from the U.S. Bureau of Land Management (BLM), U.S. Forest Service (USFS), U.S. Natural Resources Conservation Service, and Utah Division of Wildlife Resources (UDWR) met in 4 interagency regional meetings in 1998 and 1999 and compiled available data, retrieved from each of the respective agency’s files, on sage-grouse populations and habitat. New spatial data were combined with existing spatial data and are maintained in UDWR's Geographic Information System (GIS) database. Sage-grouse population data were combined into a database maintained by UDWR. We incorporated these data sets in our analyses.

Historical and Current Distribution

We constructed a list of sage-grouse collected in Utah by examining ornithological collections at Brigham Young University (BYU) in Provo, College of Eastern Utah in Price, and University of Utah (UU) in Salt Lake City. C.E. Braun (personal communication, July 2002) provided survey information for the Weber State University (WSU) ornithological collection in Ogden and accession records from the major North American museums. We derived the current distribution of sage-grouse in Utah from information and maps provided by BLM, UDWR, and USFS biologists. This information was digitized into a GIS (ArcView™ Version 3.2, Environmental Systems Research Institute, Redlands, CA).

Historical distribution of sage-grouse in Utah was mapped using the current distribution map as the initial data layer and then adding areas of historical distribution as supporting evidence was found. Historical observations of sage-grouse from early research in Utah, early scientific explorations, and UDWR Job Progress Reports were all used to identify historical distribution of sage-grouse. Literature was reviewed to obtain estimates of the original distribution of big sagebrush (A. tridentata) and other species of sagebrush (low sagebrush [A. arbuscula], black sagebrush [A. nova], and threetip sagebrush [A. tripartita]; Beetle 1960, Küchler 1964, Foster 1968, Bailey 1976, McArthur and Ott 1996). We used the Utah GAP vegetation coverage to add areas of historical sagebrush distribution to the initial sage-grouse distribution layer if these areas were not already identified (Edwards et al. 1995). Additional cover types from Utah GAP were added to the historical map if topographical relief was moderate and if sagebrush was an important component of the plant community (e.g., Gambel’s oak [Quercus gambelii]-sagebrush, salt desert scrub-sagebrush, and pinyon [Pinus spp.]-juniper [Juniperus spp.]-sagebrush) to account for the diversity of habitats within the sagebrush biome (Miller and Eddleman 2001).

Current Status

Data collected since 1959 by UDWR on Greater Sage-Grouse were stratified by counties according to whether the breeding population of sage-grouse in each county exhibited a 5-year (1996-2000) moving average of greater than 500 (GT500; persistent) or less than 500 (LT500; at risk of extirpation; Braun 1995). Gunnison Sage-Grouse were considered separately from Greater Sage-Grouse. Counties represent discrete geographical populations from which data have been recorded since 1959. Maximum number of males observed from the highest of 3 lek counts was the sample statistic.
used to estimate breeding population size relative to each lek (Beck and Braun 1980) with the assumptions that (1) 75% of all males were observed during the peak count, and (2) the male-to-female ratio was 1:2.0 (C.E. Braun, personal communication, January 2002).

We define a lek as a traditional strutting ground where sage-grouse congregate to display and breed in spring. Furthermore, UDWR considers historical leks to be those where displaying male sage-grouse have not been observed for 5 or more years, and inactive leks to be those where displaying males have not been observed for up to 3 years. Active leks comprise those where males were observed during at least 1 of the 2 previous years.

A Greater Sage-Grouse lek was established in an isolated area of north central San Juan County by birds translocated in 1976 (Reese and Connelly 1997). These grouse were not considered in any analyses as they were artificially placed within historical Gunnison Sage-Grouse habitat, and no males have been observed on this lek since 1996. Initial collection of data sets began at different dates for different populations. However, by spring 1971, lek counts represented most sage-grouse populations in the state. Statistical testing thus represents data collected from 1971 to 2000. Statistical significance was set at $\alpha \leq 0.05$.

Lek Counts.—All lek count data were collected by UDWR biologists. Biologists were directed to count male sage-grouse on leks according to the following protocol: (1) observe each lek a minimum of 3 times annually at approximate weekly intervals between 20 March and 1 May, and (2) record the maximum number of male sage-grouse observed at each instance of lek observation. Biologists were also instructed to conduct lek counts (1) following the peak of breeding (mid-March to early April), the apex of male lek attendance (Jenni and Hartzler 1978, Emmons and Braun 1984); (2) within half an hour before and after sunrise, to coincide with the period of greatest daily lek attendance (Jenni and Hartzler 1978); and (3) when weather conditions permitted optimal visibility and did not hinder grouse activity (Autenrieth et al. 1982). We assume biologists followed the protocol above to collect lek count data. Yearly maxima from each lek were used to evaluate trends in male lek attendance over time (Jenni and Hartzler 1978, Autenrieth et al. 1982).

Maximum males per lek were averaged by year for GT500, LT500, and Gunnison Sage-Grouse populations. Correlations were performed between males per lek in all populations (GT500, LT500, and Gunnison Sage-Grouse) and year to evaluate the relationship of lek counts over time (PROC CORR; SAS Institute, Inc. 2000). A generalized ANOVA using maximum likelihood with a time series error structure was used to test the hypothesis that males observed per lek were higher in GT500 populations than in LT500 populations from 1971 to 2000 (PROC MIXED; SAS Institute, Inc. 2000).

Productivity.—Wings from Greater Sage-Grouse harvested from 1973 to 2000 in GT500 counties were used to calculate annual juvenile-to-adult female (including yearlings) ratios to evaluate productivity (Eng 1955, Autenrieth et al. 1982). We estimated mean juvenile-to-adult female ratios with a 2-stage approach using a stratified cluster sample. Counties were strata (stage 1) and wing samples were clusters (stage 2) within these counties (Scheaffer et al. 1996). Box Elder, Rich, and Wayne Counties were selected as strata due to missing data from Garfield and Uintah Counties; sufficient data for comparing LT500 populations were not available after 1981. Wing ratios were weighted by mean proportion of total males counted on leks in these 3 counties over this 28-year period to make each county’s contribution to the estimated mean ratio proportional to population size. Recommendations by Connelly et al. (2000a) suggest a ratio of 2.25 juveniles per adult hen (including yearling hens) should indicate a stable to increasing population. We used a 1-sample t test (PROC TTEST; SAS Institute, Inc. 2000) to test the null hypothesis that mean juveniles per adult hen did not differ from 2.25 from 1973 to 2000.

We calculated λ (Akgakaya et al. 1999), the finite rate of increase, for lek counts in Box Elder, Rich, and Wayne Counties from 1973 to 2000. We correlated these λ's with lagged juvenile-to-adult (including yearling hens) hen ratios (e.g., mean wing ratio from 1973 correlated with λ from 1974/1973) to evaluate the relationship of change in annual growth rates with productivity from the previous fall (PROC CORR; SAS Institute, Inc. 2000).
RESULTS

Historical Distribution

Franciscan missionaries Silvestre Vélez de Escalante and Francisco Atanasio Domínguez and their exploring party visiting Utah Valley in September 1776 were the first Europeans to describe sage-grouse in Utah. They reported that “wild hens” (i.e., sage-grouse and/or Columbian Sharp-tailed Grouse (Tympanuchus phasianellus columbianus)) around Utah Lake were abundant and used by Native Americans as a source of food (Auerbach 1943). Early naturalists visiting Utah observed that sage-grouse were abundant, even near settlements until at least the 1870s (Allen 1872, Henshaw 1875, Hayward et al. 1976).

Henshaw (1875:437) reported:

The sage hen is very numerous throughout Utah; its predilection, as its name implies, being for the open, barren plains of Artemisia; and whenever this plant exists in abundance, whether on the extensive stretches of open plain on the lowlands, entirely barren but for the growth of this shrub, or in the valleys high up among the mountains, this bird will not be looked for in vain.

His observations suggest sage-grouse originally occurred in all of Utah’s 29 counties coincident with sagebrush communities (Fig. 1). Sage-grouse declined near settlements concurrent with early agricultural development (Allen 1872, Christensen and Johnson 1964). Allen (1872) noted the magnitude of agricultural development in the Salt Lake Valley in autumn 1871 while “ornithologizing” between Ogden and Salt Lake City (i.e., Davis, Salt Lake, Tooele, Uintah, Utah, and Wasatch Counties). No specimens of Gunnison Sage-Grouse were found. Of note were 1 specimen collected in Salt Lake County in December 1892 (American Museum of Natural History, No. 353711) and 1 egg set (Royal Ontario Museum, Toronto, No. 8385) collected in Salt Lake County in May 1902. The earliest collected specimens at BYU, dated 5 July 1926, were from the Strawberry Reservoir area of Wasatch County. In the UU collection, the earliest records were of 2 sage-grouse collected on 5 September 1932 in the Lynn Canyon area of Box Elder County. The single specimen at WSU (No. 00060) was collected 1 August 1898 in the vicinity of Heber City, Wasatch County. Early records of sage-grouse from Utah County include egg sets collected from West Mountain (1893 and 1913) and other locations in 1898, 1901, and 1927 in the collection of the Western Foundation of Vertebrate Zoology. We are uncertain of the exact collection locale (most likely in eastern Tooele County) for a specimen (University of Missouri-Columbia, No. 04001335) reportedly taken 40.2 km (25 mi) west of Salt Lake City on 26 September 1966.

We found 108 Greater Sage-Grouse museum specimens and/or egg sets representing Beaver, Box Elder, Cache, Carbon, Daggett, Duchesne, Grand, Salt Lake, Tooele, Uintah, Utah, and Wasatch Counties. No specimens of Gunnison Sage-Grouse were found. Of note were 1 specimen collected in Salt Lake County in December 1892 (American Museum of Natural History, No. 353711) and 1 egg set (Royal Ontario Museum, Toronto, No. 8385) collected in Salt Lake County in May 1902. The earliest collected specimens at BYU, dated 5 July 1926, were from the Strawberry Reservoir area of Wasatch County. In the UU collection, the earliest records were of 2 sage-grouse collected on 5 September 1932 in the Lynn Canyon area of Box Elder County. The single specimen at WSU (No. 00060) was collected 1 August 1898 in the vicinity of Heber City, Wasatch County. Early records of sage-grouse from Utah County include egg sets collected from West Mountain (1893 and 1913) and other locations in 1898, 1901, and 1927 in the collection of the Western Foundation of Vertebrate Zoology. We are uncertain of the exact collection locale (most likely in eastern Tooele County) for a specimen (University of Missouri-Columbia, No. 04001335) reportedly taken 40.2 km (25 mi) west of Salt Lake City on 26 September 1966.

McArthur and Ott (1996) reported total potential cover of big sagebrush and its close relatives in Utah following Kuchler’s (1964) map (vegetation types 38 and 55) was 35,315 km² and following Bailey’s (1976) map (ecoregions 3131, 3133, and A3142) was 17,489 km². These areas are respectively equivalent to 16.05% and 7.95% of the total area of Utah (McArthur and Ott 1996). However, West (1983a, 1983b) indicated that in Utah the total cover of sagebrush semidesert was 15.1% (37,000 km²) and sagebrush-steppe was 2.4% (11,100 km²). Thus, prior to settlement, big sagebrush communities,
Fig. 1. Current and historical distribution of sage-grouse in Utah. Gunnison Sage-Grouse are found south and east of the Colorado River and Greater Sage-Grouse inhabit areas north and west of the Colorado River.
the core of sage-grouse habitat, probably covered about 8–17.5% of Utah.

Current Distribution

Our geographical analyses indicate Utah consists of 219,838 km2, of which historically 72,995 km2, or 33.2%, may have been used by sage-grouse (Greater Sage-Grouse 32.2% [70,696 km2] and Gunnison Sage-Grouse 1.0% [2299 km2]; Fig. 1). Our analyses also indicate 29,821 km2 (13.6%) of Utah currently provides habitat for sage-grouse (Fig. 1). Greater Sage-Grouse inhabit 29,208 km2 (97.9%) and Gunnison Sage-Grouse 613 km2 (2.1%) of this area. The current distribution of sage-grouse represents 40.9% of the historical distribution of sage-grouse in Utah. Thus, Greater and Gunnison Sage-Grouse may currently occupy 41.3% and 26.7%, respectively, of their potential historical distribution. The largest Greater Sage-Grouse populations in Utah are presently restricted to Blue and Diamond Mountains in Uintah County, Parker Mountain (mainly in Wayne County), Rich County, western Box Elder County, and western Garfield County (Fig. 1).

Lek Counts

Three hundred twenty sage-grouse leks are known in Utah, of which 162 (51%) were actively used from 1998 to 2000. Thirty-two (10%) were inactive and 124 (39%) were historical and not active from 1996 to 2000. Lek counts by county were initiated in Box Elder and Rich in 1959; Summit in 1962; Cache in 1966; Garfield, Piute, Sevier, Uintah, and Wayne in 1967; Beaver, Carbon, Emery, Iron, San Juan, and Tooele in 1968; Morgan in 1969; Daggett, Duchesne, and Wasatch in 1970; Juab and Sanpete in 1971; Millard in 1975; Utah in 1976; and Kane in 1983. Lek sampling intensity (leks and total males subsequently counted) generally increased from 1959 to 2000 (Table 1). The highest number of leks counted since 1959 was 167 in 1988 and 1996 (GT500, $r_{GT500} = 0.38$, $P = 0.0397$; LT500, $r_{LT500} = 0.78$, $P < 0.0001$; Gunnison Sage-Grouse, $r_{Gunnison} = 0.74$, $P < 0.0001$; Table 1, Fig. 2). Highest number of males per GT500 lek was observed in 1979 (30.7, $s_{x} = 4.9, n = 62$) and lowest was observed in 1996 (12.7, $s_{x} = 1.6, n = 88$). In LT500 populations, highest number of males per lek was observed in 1972 (20.6, $s_{x} = 2.9, n = 41$) and lowest was observed in 1996 (6.2, $s_{x} = 1.3, n = 46$; Fig. 2). Long-term (1971–2000) average males observed on leks in GT500 populations was 20.4 ($s_{x} = 0.8$); 12.5 ($s_{x} = 0.7$) in LT500 populations; and 13.8 ($s_{x} = 1.1$) for Gunnison Sage-Grouse in San Juan County. Number of males per lek in GT500 populations was higher than in LT500 populations from 1971 to 2000 ($F_{1.29} = 91.35, P < 0.0001$).

Productivity

Long-term (1973–2000) mean juveniles per adult hen (including yearlings) analyzed from wings from hunter-harvested sage-grouse in
Status of Sage-Grouse in Utah

Table 1. Number of leks counted and high counts of male sage-grouse on leks in Utah, 1959-2000. Greater Sage-Grouse stratified by counties as LT500 = less than 500, or GT500 = greater than 500 for the 1996-2000 average breeding population.

<table>
<thead>
<tr>
<th>Year</th>
<th>Gunnison Sage-Grouse</th>
<th>Greater Sage-Grouse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Leks</td>
<td>Males</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>1959</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1960</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1961</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1962</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1963</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1964</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1965</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1966</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1967</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1968</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>1969</td>
<td>3</td>
<td>42</td>
</tr>
<tr>
<td>1970</td>
<td>6</td>
<td>123</td>
</tr>
<tr>
<td>1971</td>
<td>6</td>
<td>156</td>
</tr>
<tr>
<td>1972</td>
<td>6</td>
<td>175</td>
</tr>
<tr>
<td>1973</td>
<td>6</td>
<td>165</td>
</tr>
<tr>
<td>1974</td>
<td>6</td>
<td>137</td>
</tr>
<tr>
<td>1975</td>
<td>6</td>
<td>115</td>
</tr>
<tr>
<td>1976</td>
<td>6</td>
<td>98</td>
</tr>
<tr>
<td>1977</td>
<td>5</td>
<td>117</td>
</tr>
<tr>
<td>1978</td>
<td>5</td>
<td>96</td>
</tr>
<tr>
<td>1979</td>
<td>4</td>
<td>67</td>
</tr>
<tr>
<td>1980</td>
<td>5</td>
<td>41</td>
</tr>
<tr>
<td>1981</td>
<td>5</td>
<td>63</td>
</tr>
<tr>
<td>1982</td>
<td>4</td>
<td>47</td>
</tr>
<tr>
<td>1983</td>
<td>4</td>
<td>59</td>
</tr>
<tr>
<td>1984</td>
<td>3</td>
<td>51</td>
</tr>
<tr>
<td>1985</td>
<td>3</td>
<td>32</td>
</tr>
<tr>
<td>1986</td>
<td>3</td>
<td>46</td>
</tr>
<tr>
<td>1987</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>1988</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>1989</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>1990</td>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>1991</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>1992</td>
<td>3</td>
<td>36</td>
</tr>
<tr>
<td>1993</td>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td>1994</td>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td>1995</td>
<td>3</td>
<td>38</td>
</tr>
<tr>
<td>1996</td>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>1997</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>1998</td>
<td>3</td>
<td>32</td>
</tr>
<tr>
<td>1999</td>
<td>3</td>
<td>46</td>
</tr>
<tr>
<td>2000</td>
<td>5</td>
<td>57</td>
</tr>
</tbody>
</table>

Annual counts were conducted for grouse on all leks in Wayne County in 1983 and 1984.

Box Elder, Rich, and Wayne Counties was 2.4 ($k_0 = 0.2$, Fig. 3). Mean juveniles per adult hen in fall harvests in these counties from 1973 to 2000 did not differ from 2.25 ($t_{27} = 0.73$, $P = 0.4740$). Wings received from hunters declined in Box Elder (−53%) and Wayne (−23%) Counties and increased in Rich County (+46%), while the ratio of juveniles to adult hens increased in Box Elder County (+53.3%) but decreased in Rich (−17.3%) and Wayne (−12.8%) Counties in the period from 1973–1986 to 1987–2000 (Table 2). We detected a moderate relationship between ratio of juveniles per adult hen the previous fall and growth rates (λ) for males per lek the following spring ($r = 0.36$, $n = 27$, $P = 0.0682$).
Fig. 2. Males per lek (x ± s_x), GT500 and LT500 Greater Sage-Grouse county populations, Utah, 1971–2000.

DISCUSSION

Historical and Current Distribution

The accuracy of our GIS analyses on historical and current distribution of sage-grouse in Utah is unknown. However, our analyses indicate a decline in potential habitat of at least 60% and 70% for Greater and Gunnison Sage-Grouse populations, respectively. In addition, 49% of known leks throughout Utah are no longer used by sage-grouse. Lek counts represent only a 42-year period (1959–2000); consequently, the number of historical leks is not clear. Therefore, we argue that the decline in sage-grouse distribution in Utah since historical times is far greater than 50% as suggested by the Utah Division of Wildlife Resources (1997).

Throughout the range of sage-grouse, habitat loss, fragmentation, and degradation have reduced the quantity and quality of habitat, especially for nesting and early brood-rearing (Connelly and Braun 1997). Reduction in quantity and quality of sage-grouse habitat can occur over a short time period (Enyeart 1956, Swenson et al. 1987) or can occur gradually (Welch et al. 1990). Loss, fragmentation, and degradation of sage-grouse habitat has occurred across Utah as an incremental process. Establishment of settlements along sagebrush foothills and in valleys and subsequent ploughing of arable areas led to initial habitat loss (Allen 1872, Christensen and Johnson 1964). Settlement was closely followed by livestock grazing, which degraded surrounding habitats by inducing changes in sagebrush community composition (Cottam and Stewart 1940, Cottam 1947).

Livestock overgrazing, agricultural activities, and fire disturbances promoted establishment of annual weeds, in particular cheatgrass (Bromus tectorum; Stewart and Hull 1949, Young and Allen 1997). Cheatgrass was first collected in Utah in 1894 (Warg 1938), and expansion since then has led to increased fire frequencies in xeric (often Wyoming big sagebrush [A. t. wyomingensis]) communities (Bunting et al. 1987), which subsequently limits recovery of brood-rearing habitats in dry sagebrush types (Fisher et al. 1996). Following World War II, additional sagebrush was lost and/or degraded as ranges were converted through mechanical and chemical means to increase grass forage (usually crested wheatgrass [Agropyron cristatum]) for livestock (Enyeart 1956, Beck and Mitchell 2000). Fire suppression and overgrazing have facilitated invasion of sagebrush
Fig. 3. Estimated ratios (± s.e.) of juveniles per adult hen (including yearling hens) Greater Sage-Grouse in the fall harvest from Box Elder, Rich, and Wayne Counties, Utah, 1973–2000. Estimated ratios compared to a ratio of 2.25 juveniles per hen, a level suggesting stable to increasing populations (Connelly et al. 2000a).

by pinyon-juniper woodlands (Miller et al. 1994), which has led to additional loss of sage-grouse habitat (Commons et al. 1999). Additional losses, fragmentation, and degradation have arisen from surface mining and energy developments, roads, powerlines, fences, reservoirs, and housing developments (Braun 1987, 1998).

Sage-grouse in Strawberry Valley provide a particularly compelling history of habitat conditions that have induced declines in a Utah sage-grouse population. During the mid-1930s, an estimated population of 3000–4000 grouse was present during spring, summer, and fall on what was then called Strawberry Valley Federal Refuge (Rasmussen and Griner 1938). Within 15 years sage-grouse in Strawberry Valley (excluding the area below the dam) had declined to 1500 birds (Lords 1951). The sage-grouse population in Strawberry Valley further decreased to an estimated 160–185 birds by 1989 (Welch et al. 1990). Loss and degradation of sage-grouse habitat in Strawberry Valley has resulted from overgrazing, chemical control of sagebrush, reservoir enlargement, summer homes, roads, and campgrounds (Rasmussen and Griner 1938, Welch et al. 1990). Although much work has been done to rehabilitate remaining big sagebrush habitat in Strawberry Valley, additional factors including establishment of sod-forming grasses (e.g., smooth brome [*Bromus inermis]*) in sagebrush understories and colonization of an exotic predator (red fox [*Vulpes vulpes]*) may preclude this population from recovering (Bunnell 2000).

Long-term trends (1971–2000) in Utah indicate marked declines in all breeding populations, particularly in Gunnison and smaller Greater Sage-Grouse populations. Careful management will be required to keep all populations from further reductions. Protection and enhancement of all known sage-grouse use areas and populations must be a top priority to insure sage-grouse remain an important component of Utah sagebrush ecosystems.

Lek Counts

Increased emphasis by UDWR to understand population dynamics of sage-grouse throughout the state led to enhanced lek sampling efforts over time. Lek count results since
Table 2. Trend in wing receipts and juveniles per adult hen (including yearling hens) ratios from hunter-harvested Greater Sage-Grouse in Box Elder, Rich, and Wayne Counties, Utah, 1973-2000. Wing receipts and juveniles per hen are $\bar{x} \pm s$ for each 14-year period.

<table>
<thead>
<tr>
<th></th>
<th>Box Elder</th>
<th>Rich</th>
<th>Wayne</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973-1986</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wing receipts</td>
<td>333 ± 47</td>
<td>99 ± 20</td>
<td>268 ± 16</td>
</tr>
<tr>
<td>Juveniles per hen</td>
<td>1.0 ± 0.2</td>
<td>2.7 ± 0.5</td>
<td>2.5 ± 0.2</td>
</tr>
<tr>
<td>1987-2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wing receipts</td>
<td>158 ± 28</td>
<td>143 ± 31</td>
<td>207 ± 24</td>
</tr>
<tr>
<td>Juveniles per hen</td>
<td>2.9 ± 0.8</td>
<td>2.2 ± 0.2</td>
<td>2.2 ± 0.2</td>
</tr>
<tr>
<td>Percent change*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wing receipts</td>
<td>-53</td>
<td>$+46$</td>
<td>-33</td>
</tr>
<tr>
<td>Juveniles per hen</td>
<td>$+53.3$</td>
<td>-17.3</td>
<td>-12.8</td>
</tr>
</tbody>
</table>

1996 may thus be artifactual, and higher counts during this time period, at least in part, reflect intensified sampling efforts. Problems with early (through the 1960s) lek counts include inadequate equipment, personnel commitment, and a lack of understanding of sage-grouse biology (Braun 1998). We presented the most precise lek sampling data as information from 1971 and later, when loks in most areas were being counted. However, the accuracy of lek counts is still poorly understood. The relationship between lek counts and total population size has not been documented, even though substantial effort has been expended on refining methods to obtain lek counts (Beck and Braun 1980). Although lek counts have been used to estimate prairie grouse populations, they are meant to serve as indices of population trends over time (Applegate 2000). Nevertheless, indices of density, such as lek counts, provide measures of relative population size and are useful to track year-to-year changes in single populations as well as to compare the size or density of 2 populations (Caughley and Sinclair 1994:215). Despite the faults of lek count methodologies, they provide the best index to breeding populations over time (Connelly and Braun 1997, Connelly et al. 2000a).

Productivity

Our results suggest juvenile-to-adult hen ratios may have been sufficient to promote sustainable or even increasing populations of sage-grouse from 1971 to 2000 (Connelly et al. 2000a). Females and juveniles are typically harvested disproportionately to males in late-summer hunts because broods tend to congregate near moist areas at this time of year (Braun 1998, Connelly et al. 2000b). Consequently, since the late 1990s sage-grouse hunting seasons in Utah have been shortened, bag limits reduced (1 bird daily and possession limit of 2 daily bag limits since 1997), and opening dates held later in September (3rd Saturday since 1997; 2nd Saturday before 1997) to conserve breeding females. It is possible that, prior to these new regulations, ratios exceeding 2.25 juveniles per adult hen (including yearling hens) in the fall harvest may reflect disproportionate harvests of hens and young near wet areas in early September. In addition, the overwinter survival rate of juvenile and yearling sage-grouse across Utah is unknown. Low overwinter survival of these key segments of the population could also be contributing to the decline of sage-grouse populations in Utah.

Acknowledgments

C.E. Braun and J.W. Connelly provided insightful comments as manuscript reviewers. K.P. Reese, University of Idaho, contributed helpful suggestions during manuscript preparation. E.O. Garton and R.K. Steinhorst, University of Idaho, provided statistical advice. We thank J.W. Alston and L.K. Peterson for assistance in literature searches and museum data collection. In particular, we thank C.E. Braun for providing his exhaustive list of Utah sage-grouse specimens and/or egg sets representing the major North American museums. The University of Idaho, provided statistical advice. We thank J.W. Alston and L.K. Peterson for assistance in literature searches and museum data collection. In particular, we thank C.E. Braun for providing his exhaustive list of Utah sage-grouse specimens and/or egg sets representing the major North American museums. The Utah Division of Wildlife Resources provided funding for publication.
LITERATURE CITED

UtAH Division of WildlE Resources. 1997. Utah upland game. Publication 63-12, Utah Division of Wildlife Resources, Salt Lake City. 54 pp.

Received 7 September 2001
Accepted 10 June 2002