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Eigenvalue problems of Ginzburg–Landau operator
in bounded domains

Kening Lu
Department of Mathematics, Brigham Young University, Provo, Utah 84602

Xing-Bin Pan
Center for Mathematical Sciences, Zhejiang University,
Hangzhou 310027, People’s Republic of China

�Received 21 September 1998; accepted for publication 5 March 1999�

In this paper we study the eigenvalue problems for the Ginzburg–Landau operator
with a large parameter in bounded domains in R2 under gauge invariant boundary
conditions. The estimates for the eigenvalues are obtained and the asymptotic be-
havior of the associated eigenfunctions is discussed. These results play a key role in
estimating the critical magnetic field in the mathematical theory of superconduc-
tivity. © 1999 American Institute of Physics. �S0022-2488�99�02806-6�

I. INTRODUCTION AND STATEMENT OF MAIN RESULTS

This paper is devoted to the asymptotic estimates, for large parameter �, of the first eigen-
value �(�A) and the associated eigenfunctions of the Ginzburg–Landau operator ���A

2 in a
smooth bounded domain 	 in R2. Given a real vector field A�(A1,A2), the Ginzburg–Landau
operator ��A

2 associated with A is defined by

��A
2
���A•��A
����
�i�2A•�
�
 divA���A�2
 ,

where i���1. We denote �A
��
�i
A , curlA��1A2��2A1, and curl2A�(�2(curlA),
��1(curlA)), here � j��/�x j .

Let ���(A) be the first eigenvalue of the following problem:

��A
2
��
 in 	 ,

�1.1�
��A
�•��
�0 on �	 ,

where 
 is a complex-valued function, � is the unit outer normal to �	, and �0 is a given
constant. Then,

��A �� inf

�W1,2�	�

�	��A
�2dx���	�
�2 ds
�	�
�2 dx . �1.2�

It is well-known that the Ginzburg–Landau operator has the gauge invariance property

�A����ei�
��ei��A
 , �A���
2 �ei�
��ei��A

2


for every real smooth function �. The equation and the boundary condition in �1.1� as well as the
functional in �1.2� are invariant under the gauge transformation A→A��� , 
→ei�
 . Therefore,
�(A���)��(A). By a gauge transformation if necessary, we may assume

divA�0 in 	 , A•��0 on �	 .

Our main result is the following
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Theorem 1: There exists a universal constant �0 , 0��0�1, such that for all A�C2(	̄)

lim
�→�

���A �
���

�min�min
x�	

�curlA�x ��,�0 min
x��	

�curlA�x ���. �1.3�

Remark 1.1: As a consequence of Theorem 1 we see that, if curlA(x)�H , a nonzero constant,
then

lim
�→�

���A �
���

��0�H�.

The universal constant �0 stated in Theorem 1 is the number �(1) given in Lemma 2.2. We
have an estimate for �0 :

0.5��0�0.76,

see Ref. 1. It has been expected that �0�0.59, see for instance Refs. 2 and 3. If curlA vanishes
at some points, the estimates can be greatly improved, see Sec. VI. It is interesting to see that the
distribution of minimum points of �curlA� determines the magnitude of �(�A) and the location of
the concentration points of the eigenfunctions for large �. This is partially due to the gauge
invariance of the Ginzburg–Landau operator and due to the invariance of curlA under the gauge
transformations.

To prove Theorem 1 we shall establish two estimates for �(�A), the upper bound estimate
�given in Sec. VI� and the lower bound estimate �given in Sec. VII�. The gauge invariance of the
Ginzburg–Landau operator, the local decomposition formula of vector fields obtained in Sec. III,
and the results obtained in Ref. 4 concerning the eigenvalue problems of Ginzburg–Landau
operator in the entire plane and on the half plane will play essential roles to obtain these estimates.
To derive the lower bound estimate we also need to show the local convergence, as �→� , of the
rescaled eigenfunctions �after a series of gauge transformations�. Since the eigenfunctions may
concentrate either in the interior of 	 or at the boundary, both interior and boundary a priori
estimates established in Secs. IV and V are needed to obtain the local convergence. We mention
that most of the estimates given in this paper are gauge invariant. As a by-product, the asymptotic
behavior of the eigenfunctions as � goes to � will also be obtained.

The technical difficulty in our problem comes from the boundary effects, which is our main
concern in this paper. One may see in Sec. VI that when the eigenfunctions concentrate in the
interior of 	, the limiting equation obtained after rescaling is an eigenvalue problem in the entire
plane R2, see �2.3�. All the eigenvalues of �2.3� have been obtained in Ref. 4. However, when the
concentration happens at the boundary, very technical analyses are required to get the boundary
estimates and to prove the local convergence of the rescaled eigenfunctions near the boundary. In
this case, the limiting equation is an eigenvalue problem in the half plane �R�

2 , see �2.5�. The first
eigenvalue �(h) of �2.5� was obtained in Ref. 4 after lengthy analyses, which is the difficult part
of Ref. 4. Comparing Lemma 2.1 with Lemma 2.2 in Sec. II, one may see the significant differ-
ence between the problems in the domain without or with boundary.

The motivation to study such type eigenvalue problems is to estimate the value of the upper
critical magnetic field at which superconductivity can nucleate.

In the mathematical theory of superconductivity, the following Ginzburg–Landau equation for
�
, A� was proposed as a macroscopic model �see Ref. 5�

���A
2 
��2�1��
�2�
 ,

�1.4�

curl2 A��
i
2� �
̄�
�
�
̄���
�2A�curlH in 	 .
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Here 	 is the region occupied by the superconducting specimen, 
 is a complex-valued function
called order parameter, A is a real vector field called magnetic potential, H is the applied magnetic
field, � is the so-called Ginzburg–Landau parameter. The natural boundary conditions for a
superconductor-other material junction are �see Ref. 6�

���A
�•��
�0, �curlA�H ����0 on �	 , �1.5�

where � is the unit out-normal vector at the boundary of 	 and  is a positive constant.
It is well-known that a superconductor placed in an applied magnetic field may change its

phase when the field varies. Consider a spatially homogeneous field. If the field is sufficiently
strong, it penetrates through the entire sample and the superconductor is in a normal state. As the
field is gradually reduced to a certain value HC3 called the upper critical field, the nucleation of
superconductivity at surface occurs. If the field is further reduced to another value HC2, the
nucleation in the interior occurs. It is important in both theory and applications to estimate the
values of the critical fields, especially for type 2 superconductors with large value of �.

The physicists Saint-James and De Gennes were the first to study the surface nucleation
phenomenon for semi-infinite superconductor occupying the half space �see Ref. 2�. The most
amazing result they obtained was the relation HC3 /HC2�1/0.59. The argument for this relation
was nontrivial, even though they studied only the superconductor which occupies the half space
and is subjected to a spatially homogeneous applied magnetic field.

We have been interested in estimating the value of the upper critical field for superconducting
specimen occupying an arbitrary bounded smooth domain. In Ref. 1, to get such estimate, we
considered the applied field having the form H��H0 and estimated the maximal value of �, say
�*, so that under the applied field �*H0 the nucleation of superconductivity occurs. Choosing a
vector field F so that curlF�H0 , we found that when � is large, the value of �* is close to the
number �* for which �(�*�F)��2. This led us to study the asymptotic estimates of �(�F) for
large value of �. In Ref. 1, by using the results in this paper, we obtained the asymptotic estimate
for HC3 for large � and the location of nucleation of superconductivity.

There have been many recent works on the mathematical theory of superconductivity, see
Refs. 3, 7–19, and the references therein. The works3 by Chapman,7 by Bauman, Phillips, and
Tang, and by Bernoff and Sternberg10 are closely related to our present paper, while Refs. 7 and
10 were found after this work had been completed. In Ref. 3, Chapman studied the half-plane
problem on HC3 by using formal mathematical analysis. In Ref. 7, Bauman, Phillips, and Tang
rigorously estimated HC3 and found the location of nucleation for a sample occupying a cylinder
with two-dimensional cross section consisting of a disk. The sample is adjacent to a vacuum and
is subject to a homogeneous applied magnetic field pointing in the axial direction. From the
bifurcation point of view, they studied small solutions bifurcating from the eigenfunctions. In Ref.
10, Bernoff and Sternberg considered a sample occupying an infinite cylinder with two-
dimensional cross section consisting of an arbitrary simply connected smooth bounded region in
R2. The sample is adjacent to a vacuum and is subject to a homogeneous applied magnetic field
pointing in the axial direction. They estimated HC3 and found the location of nucleation by using
formal asymptotic expansions. In this paper we study eigenvalue problems in bounded smooth
domains with nonhomogeneous applied magnetic fields under the boundary conditions for a
superconductor–other material junction. The result obtained in this paper was used in Ref. 1 to
obtain rigorously estimates for HC3 and locations of nucleation for a cylindrical sample which is
placed in an applied magnetic field being parallel to the lateral surface but not necessarily spatially
homogeneous and is adjacent to other material.

II. PRELIMINARIES

In this section we give some basic lemmas which will be used later to establish our main
result. Throughout this paper, we let
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��x �� 1
2��x2 ,x1�. �2.1�

Note that curl��1 and div��0. Denote, for a nonzero real number h,

��h �� inf

�W�R2�

�R2��h�
�2 dx
�R2�
�2 dx , �2.2�

where W(R2)�W loc
1,2(R2)�L2(R2). Clearly, the minimizers are the L2 eigenfunctions of the fol-

lowing problem associated with ���(h):

��h�
2 
��
 in R2. �2.3�

Let

��h �� inf

�W�R�

2
�

�R
�
2 ��h�
�2 dx

�R
�
2 �
�2 dx , �2.4�

where W(R�
2 )�W loc

1,2(R�
2 )�L2(R�

2 ). The associated eigenvalue problem is

��h�
2 
��
 in R�

2 ,
�2.5�

��h�
�•��0 on �R�
2 ,

where �(x)�(0,�1) is the outer normal to R�
2 .

Lemma 2.1: �Ref. 4�. For every h�0, �(h)��h�. The associated eigenfunctions are given by


�x ��� f �x �exp���h�r2/4�
f �x � exp���h�r2/4�

if h�0
if h�0,

where r��x�, f (x) is any function analytic in R2 such that f (x)exp(��h�r2/4)�L2(R2). For all
���(h), �2.3� has no nontrivial bounded solution. �

Lemma 2.2: �Ref. 4�. There exists a positive constant �0 , 0��0�1�1/�2e� , such that
�(h)��0�h�. For all h�0, �(h) is not achieved in W(R�

2 ), i.e., there is no L2 eigenfunction
associated with �(h). For all ���(h), �2.5� has no nontrivial bounded solution. �

III. LOCAL DECOMPOSITION OF VECTOR FIELDS

In the proof of the convergence of the rescaled eigenfunctions in later sections, we use the
gauge transformations frequently. Thus, we need to decompose a vector field into a gradient part
and a curl part near a given point P. When P is an interior point, this decomposition follows
directly from the Taylor expansion �see Lemma 3.1�. When P is a boundary point, we need to
decompose the vector field in new coordinates which straighten a portion of boundary �see Lemma
3.2�.

Let A(x)�(A1(x),A2(x))�C2(BR) and denote

a j
i�
�Ai

�x j
�0 �, a jk

i �
�2Ai

�x j�xk
�0 �, a1�A1�0 �, a2�0 ��A2�0 �.

Let H(x)�curlA(x). Then, curl2A(x)�(�2H ,��1H).
Lemma 3.1: Let A�C2(BR). Then,

A�x ��A�0 �����x �����x ��curlA�0 ���x �� 1
2 �x�2curl2A�0 ��D�x �, �3.1�

where
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��x �� 1
2�a1

1x1
2��a2

1�a1
2�x1x2�a2

2x2
2� ,

�3.2�
��x �� 1

6�c1x1
3�3c2x1

2x2�3c3x1x2
2�c4x2

3�

with

c1�a11
1 ��2H�0 �, c2�a12

1 , c3�a12
2 , c4�a22

2 ��1H�0 �,

and �D(x)��o(�x�2) as x→0. If A�C3(BR), then �D(x)��C(R)�x�3 in BR . �

In the following we assume that 	 is a smooth �say, Ck for some k�3� bounded domain in
R2 and 0��	 . Then, �	 consists of a finite number of simple closed Ck curves disintersecting
with each other. Every component � of �	 can be represented as z�z(s), where s is the arclength
of �, and �(s)�(�1 ,�2)�z�(s) is the unit tangent vector. Let �(s)�(�1 ,�2) be the unit outer
normal. We choose the positive direction of � in such a way that the orientation of ��,�� is
coincident with the orientation of the x1x2 coordinates. Then, �1���2 , �2��1 . From the Frenet
formula we have

�����r� , �����r����r
2� , ����r� , ����r����r

2� , �3.3�

where �r is the relative curvature of � under the given orientation. Obviously, there exists a
positive constant �0��0(	) such that ��r��1/�0 on �	.

Fix 0����0 . Denote by d(x)�dist(x ,�	) the distance function, and denote 	(�)��x
�	̄:d(x)���. Then, d�Ck�1(	(�0)). For every x�	(�0) there exists a unique point z
�z(x)��	 such that x�z�d(x)�(z), �d(x)���(z). The mapping

x�F�s ,t ��z�s ��t��s � �3.4�

determines a C1 transformation of coordinates. Set

g�s ,t ���detDF���Fs�Ft��1�t�r�s �.

After rotating the coordinate system we may assume �(0)�(1,0), �(0)�(0,�1). Denote
e1�� , e2��� , y1�s , y2�t , y�(y1 ,y2). y is the new coordinate straightening the boundary.
Using �3.3� we get

e1�y ����y1��� 10 ��� 0
�r�0 �y1 ��

1
2 y1

2� ��r
2�0 �

�r��0 �
� �O� �y1�3�,

e2�y �����y1��� 01 ��� �r�0 �y10 ��
1
2 y1

2� �r��0 ��r
2�0 � � �O� �y1�3�,

�3.5�

F�y ��y�
�r�0 �
2 � �2y1y2

y1
2 ��O� �y �3� as y→0,

g�y ��1��r�0 �y2��r��0 �y1y2�O� �y �3�.

Denote the inverse map of F by G(x). At the point x�F(y) we have

DG�x ��� G11 G21
G12 G22� �

1
1�y2�r�y1�

� ��2 �1

��1�y2�r�y1���2 �1�y2�r�y1���1
� . �3.6�

For a given vector field A(x) we define a new vector field a(y) associated with A(x) by

a�y ��a1�y �e1�a2�y �e2 , �3.7�
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where

a1�y ��g�y �A�F�y ��•e1�y �, a2�y ��A�F�y ��•e2�y �. �3.8�

Then,

a1�y ��a1��a1
1��r�0 �a2�y1��a2

1��r�0 �a1�y2� 1
2��a11

1 ��r�0 �a2
1�2�r�0 �a1

2

��r�0 �2a1��r��0 �a2�y1
2�2�a12

1 �2�r�0 �a1
1��r�0 �a2

2��r
2�0 �a2��r��0 �a1�y1y2

��a22
1 �2�r�0 �a2

1�y2
2��o� �y �2�,

a2�y ��a2��a1
2��r�0 �a1�y1�a2

2y2� 1
2��a11

2 ��r�0 �a2
2�2�r�0 �a1

1��r
2�0 �a2��r��0 �a1�y1

2

�2�a12
2 ��r�0 �a1

2��r�0 �a2
1�y1y2�a22

2 y2
2��o� �y �2�.

Summarizing the above discussion, we obtain
Lemma 3.2: Let 	 be a smooth domain in R2 with 0��	 . Assume that A

�C2(	�F(BR)). Then, in the new coordinates y straightening the boundary, the vector field
a(y) associated with A(x) has the following decomposition for y�BR :

�a1�y �,a2�y ���A�0 ����̃�y ����̃�y ��curlA�0 ���y �

�
�y �2

2 �curl2A�0 ���r�0 �curlA�0 ���0 ���D̃�y �, �3.9�

where

�̃�y �� 1
2��a1

1��r�0 �a2�y1
2��a2

1�a1
2�2�r�0 �a1�y1y2�a2

2y2
2� ,

�̃�y �� 1
6� c̃1y1

3�3 c̃2y1
2y2�3 c̃3y1y2

2� c̃4y2
3�

with

c̃1�a11
1 �a22

1 �a12
2 ��r�0 ��a1

2�a2
1���r

2�0 �a1��r��0 �a2,

c̃2�a12
1 ��r�0 ��a2

2�2a1
1���r

2�0 �a2��r��0 �a1,

c̃3�a12
2 ��r�0 ��a1

2�a2
1�,

c̃4�a12
1 �a11

2 �a22
2 .

�D̃(y)��o(�y �2) as y→0. If A�C3(	�F(BR)), then �D̃(y)��C(R)�y �3 in BR
� . �

Note that in �3.9� ��̃(y)�(�y1�̃ ,�y2�̃). In the following we denote

�y f�� � f�y1� e1�� � f�y2� f e2 . �3.10�

From �3.7� and �3.10�, we can write �3.9� as follows:

a�y ��A�0 ���y�̃�y ���y�̃�y ��curlA�0 ��̃�y �

�
�y �2

2 �curl2A�0 ���r�0 �curlA�0 ���0 ���D̃�y �, �3.11�
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where �̃(y)��(y2/2)e1�(y1/2)e2 . The decomposition in the form of �3.11� is more closely
related to the gauge invariance of the operators involving the vector a, and will be used often in
later sections.

IV. INTERIOR ESTIMATES

In this section we shall derive a priori interior estimates for the solutions 
 of the equation

�A
2
�g in 	 , �4.1�

where the vector field A and the function g are given. We shall establish the gauge invariant
estimates which depend on curlA instead of A itself.

Theorem 4.1: Assume that 
 is a smooth solution of Eq. (4.1) and curlA�L2(	). Then, for
any compact subset K of 	, there exists a constant C depending only on 	 and K such that

���A
��H1�K �
2 � 

j ,k
��A j�Ak
�L2�K �

2 �2�
 curlA�L2�	�
2

�6�g�L2�	�
2

�C�1��curlA�L2�	�
4

�

�� ��A
�L2�	�
2

��
�L2�	�
2

� . �4.2�

Before proving Theorem 4.1 we mention that ��A
�L2 can be controlled by �
�L2, as shown
in the following

Lemma 4.2: Assume that 
�W loc
1,2(	) is a weak solution of Eq. (4.1) for g�L loc

2 (	). Then,
for every R�0 such that B2R�	 we have

�
BR

��A
�2 dx�2�
B2R

�g
�dx�
16
R2 �R2R�
�2 dx .

Proof: Let ! be a smooth cutoff function supported in B2R such that !�1 on BR and ��!�
�2/R . Multiplying Eq. �4.1� by !2
 and integrating by parts we get the conclusion. �

For convenience we denote F j ,k
�(�A j�Ak��Ak�A j)
 , �A j
�(� j�iA j)
 and (" ,
)
��	"
̄ dx .

Proposition 4:3: Let A�C1(	̄) and 
�C2(	̄). Then,

 
j ,k

��A j�Ak
�L2�	�
2

��
 curlA�L2�	�
2

���A
2
�L2�	�

2
�2F��A1
�A2
 ,curlA ��I��	�,

�4.3�

where

I��	���
�	

� 
j ,k

��Ak�A j
�Ak
� j���A
2
��A
�•�	 ds

��
�	

� 12 �

��
��A
�2��curlA ��F� 
̄�
���
�2A�•��R��A
•���A2
	 ds . �4.4�

Here � is the unit tangent vector to �	 such that the orientation of ��,�� is the same as the
orientation of x1x2 coordinates.

Proof: Let 
 j��A j
 . Then,

��A j�Ak
 ,�A j�Ak
����A j
k ,F j ,k
���
k ,F j ,k
 j����Ak
k ,�A j
 j�

��
�	
�Ak
 j
k� j ds��

�	
�A j
 j
k�k ds .

2653J. Math. Phys., Vol. 40, No. 6, June 1999 K. Lu and X.-B. Pan

Downloaded 13 Feb 2009 to 128.187.0.164. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



Taking summation over 1� j , k�2 we obtain

 
j ,k

��A j�Ak
�L2�	�
2

� 
j ,k

���A j
k ,F j ,k
���
k ,F j ,k
 j�����A
2
�L2�	�

2

��
�	

� 
j ,k

��Ak
 j
k� j���A
2
��A
�•�	 ds

�i� 
̄��A1
2��A2
1��
1
2�
2
1,curlA �

���A
2
�L2�	�

2
��

�	
� 
j ,k

��Ak
 j
k� j���A
2
��A
�•�	 ds

�� �
�2 curlA�2F��2
�1
̄ ��2R�A1
̄�2
�A2
�1
̄ �,curlA �

���A
2
�L2�	�

2
��

�	
� 
j ,k

��Ak
 j
k� j���A
2
��A
�•�	 ds

��
 curlA�L2�	�
2

���A
2
�L2�	�

2
�2F��2
�1
̄ ,curlA �

�2R�A1
̄�2
�A2
�1
̄ ,curlA �

��
�	

� 
j ,k

��Ak
 j
k� j���A
2
��A
�•�	 ds ,

which gives �4.3�. �4.3� implies that I(�	) is real and

I��	��R�
�	

� 
j ,k

�F j ,k��A j
k�
k� j��A
2
��A
�•�	 ds .

A computation shows

R�
�	
 
j ,k
F j ,k
k� j�R�

�	
F1,2��A1
�2��A2
�1�ds

�R�
�	
i
̄�curlA ���A1
�2��A2
�1�ds

�R�
�	
i
̄�curlA ���1
�2��2
�1�ds��

�	
�
�2�curlA ��A1�2�A2�1�ds

��
�	
�curlA ��F� 
̄�
���
�2A�•� ds;

and

R�
�	
 
j ,k

��A j
k�
k� j ds�R�
�	
 
j ,k

�� j�iA j��Ak�Ak
� j ds

�R�
�	
 
j ,k

� j�Ak�Ak
� j ds�
1
2 ��	

�

��
��A
�2 ds .

So �4.4� is true. �
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Proof of Theorem 4.1: For a given compact subset K of 	, we choose a smooth real cutoff
function ! such that spt!�	 and !�1 on K. Denote 
 j��A j
 . From �4.3� and the Kato’s
inequality it follows that

����A�!
���L2�	�
2 � 

j ,k
��A j�Ak�!
��L2�	�

2

��!
 curlA�L2�	�
2

���A
2 �!
��L2�	�

2
�2F��A1�!
��A2�!
�,curlA �

��!
 curlA�L2�	�
2

��!�A
2
�2�!•�A
�
#!�L2�	�

2

�2�
	

�curlA���A�!
��2 dx .

Next, we estimate

�
	

�curlA���A�!
��2 dx��curlA�L2�	�� �
	

��A�!
����A�!
��3 dx	 1/2
��curlA�L2�	���A�!
��L2�	�

1/2 ��A�!
��L6�	�
3/2

�C1�curlA�L2�	���A�!
��L2�	�
1/2 ����A�!
���L2�	�

3/2

�by Sobolev inequality�

� 1
2����A�!
���L2�	�

2
�C2�curlA�L2�	�

4 ��A�!
��L2�	�
2 .

Therefore,

1
2����A�!
���L2�	�

2 ��!
 curlA�L2�	�
2

�3�!�A
2
�L2�	�

2
�12��!•�A
�L2�	�

2

�3�
#!�L2�	�
2

�C2�curlA�L2�	�
4 ��A�!
��L2�	�

2

��
 curlA�L2�	�
2

�3�g�L2�	�
2

�C3� ��A
�L2�	�
2

��
�L2�	�
2

�

�C2�curlA�L2�	�
4 ��A�!
��L2�	�

2 ,

where C1 ,C2 ,C3 are constants depending only on 	 and K. The proof is complete. �

V. ESTIMATES NEAR BOUNDARIES

In this section we establish the boundary estimates for the solutions of the equation

��A
2
�g in 	 ,

�5.1�
��A
�•��
�0 on �	 .

As mentioned in Sec. I, by making a gauge transformation if necessary, we may assume that

divA�0 in 	 , A•��0 on �	 .

Of course, under the gauge transformation, function g in �5.1� will be changed to a new function
g̃ . However, since it does not effect the estimation given below, we still denote the new function
g̃ by g.

To obtain the estimates we shall straighten a portion of boundary and study the new equation
in the half ball BR

� . We also need to extend the solutions to the entire ball. For this purpose we
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transform Eq. �5.1� to an equation having homogeneous boundary condition. Let u be the positive
eigenfunction associated with the first eigenvalue $ of the following eigenvalue problem:

�#u�$u in 	 ,
�5.2�

�u
��

�u�0 on �	 .

u is smooth and positive on 	̄ . Set 
�u" , v�log(u2), f�g/u . Then, " satisfies the equation

��A
2"��v•�A"�$"� f in 	 ,

�"

��
�0 on �	 .

In the following we denote "̃(y)�"(F(y)), ṽ(y)�v(F(y)), where F(y) is the diffeomorphism
defined on BR0, see �3.4�. We shall always assume R�R0/2. Let a(y) be the vector field associ-
ated with A(x) defined by �3.7�. We define the following differential operators:

D�g �w�D�g �1we1�D�g �2we2 ,

where D�g �1�
1
g �1 , D�g �2��2 ,

D�g �aw��D�g �a1w�e1��D�g �a2w�e2 ,

where D�g �a1w�
1
g ��1�ia

1�w , D�g �a2w���2�ia2�w ,

D�g �a*w��D�g �a1*w�e1��D�g �a2*w�e2 ,

where D�g �a1*w�D�g �a1w , D�g �a2*w�
1
g ��2�gw ��ia

2gw� ,

#�g �aw�D�g �a1*D�g �a1w�D�g �a2*D�g �a2w

�
1
g � �1
1g ��1w�ia1w ���

ia1

g ��1w�ia1w �	
�
1
g ��2�g��2w�ia2w ���ia2g��2w�ia2w ��.

As in Sec. III we denote �y��(�1�)e1�(�2�)e2 . The operators D(g)a and #(g)a have the
following gauge invariant properties:

D�g �a��y�
�ei�%��ei�D�g �a% , #�g �a��y�

�ei�%��ei�#�g �a% . �5.3�

Note that, in the above notations, �A"�D(g)a"̃ , �A
2"�#(g)a"̃ . Thus, "̃ satisfies the equa-

tion
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�#�g �a"̄�D�g �ṽ•D�g �a"̃�$"̃� f̃ on BR
� ,

�5.4�
�"̃

�y2
�0 on �R ,

where �R��(y1,0):�y1��R�.

Next, we extend the solution "̃ of Eq. �5.4� onto the entire ball. Note that

a2�0, �2"̃�0 when y2�0.

Hence, we can evenly extend a1 and "̃ in y2 and oddly extend a2 in y2 . Note that although g(y)
is defined on the entire ball, it is not even in y2 . Therefore, for y2�0 we define

"̃�y1 ,y2��"̃�y1 ,�y2�, ṽ�y1 ,y2�� ṽ�y1 ,�y2�,

g�y1 ,y2��g�y1 ,�y2�,

a1�y1 ,y2��a1�y1 ,�y2�, a2�y1 ,y2���a2�y1 ,�y2�.

After such extensions, "̃�C1(BR), a�C(BR), and � jaj�C1(BR). We further notice that
D(g)a1"̃ is continuous and even in y2 , D(g)a2"̃ is continuous and odd in y2 , and #(g)a"̃ is even
in y2 . Although �2ṽ is not continuous at y2�0, it is bounded, and D(g)a2"̃�0 at y2�0. Hence,
D(g) ṽ•D(g)a"̃ is continuous.

The main result in this section is the following
Theorem 5.1: Assume that "̃ is a solution of Eq. (5.4) and is extended as the above. Then,

 
j ,k

�D�g �ajD�g �ak"̃�Lg
2�BR�
2

�6� f̃ �Lg2�BR�
2

�6�
BR

�D�g �ṽ•D�g �a"̃�2g dy�C�g ,R ��"̃�Lg
2�BR�
2

�C�g ,R ��1���1a2��2a1�Lg2�BR�
4

��D�g �a"̃�Lg
2�BR�
2

�C�g ,R ��
BR

��1a2��2a1�2�"̃�2 dy . �5.5�

To prove Theorem 5.1 we need an identity, see Proposition 5.3 below. Define

Gjkw�D�g �ajD�g �akw�D�g �akD�g �ajw ,

Gjk*�D�g �aj*D�g �akw�D�g �akD�g �aj*w .

Denote

�w��R��
�R

�
w dy1��

�R
�
w dy1� lim

&1 ,&2→0
� �

�R

R
�w�y1 ,&1��w�y1 ,�&2��dy1	 .

If w is continuous in BR , then �w��R�0. Note that g�1 on �R . We have
Lemma 5.2: Assume that " and 
�C1(BR��R) and the support spt(")�BR . Then,
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�
BR
�D�g �aj"�
̄g dy���

BR
"D�g �aj*
g dy��� j"
̄��R,

where �1�0, �2��1. Moreover if 
�C2(BR��R), then

�
BR
�D�g �aj"�D�g �ak
g dy���

BR
"D�g �aj*D�g �ak
g dy��� j"D�g �ak
��R.

For our convenience we denote by �•�Lg
2 the L2 norm with the weight g, and (" ,w)g

��BR"w̄g dy .

Proposition 5.3: Assume that 
�C1(BR)�C2(BR��R) with its support spt(
)�BR , and 
 is
even in y2 . Then,

 
j ,k

�D�g �ajD�g �ak
�Lg
2�BR�
2

��#�g �a
�Lg
2�BR�
2

��G12
�Lg
2�BR�
2

��
BR

�D�g �a2
�2g�2� �2gg � dy
�2F�

BR
��1a2��2a1��D�g �a1
�D�g �a2
 dy�2R�

BR
��2g �

��D�g �a2
�D�g �a1
2 
 dy��

BR

�1� �2gg ��

�1g�2g
g �

��D�g �a1
�D�g �a2
 dy . �5.6�

Remark 5.1: Note that curl a�(�1a2��2a1)/g . Although it is not continuous at y2�0, it
remains bounded. The term �1((�2g)/g)�(�1g)(�2g)/g is also bounded. Therefore, the integrals
involving such terms make sense. Also note that when y2�0, g�2((�2g)/g)����r(y1)�2/g
�0. So

�
BR

�D�g �a2
�2g�2� �2gg � dy�0.
Proof of Proposition 5.3: The proof is similar to one of Proposition 4.3, but involves more

computations. Set 
 j�D(g)aj
 . Using Lemma 5.2 we have

�D�g �ajD�g �ak
 ,D�g �ajD�g �ak
�g

��D�g �aj
k ,Gjk
�D�g �ak
 j�g

��D�g �aj
k ,Gjk
�g��D�g �aj
k ,D�g �ak
 j�g

��D�g �aj
k ,Gjk
�g��
k ,Gjk*
 j�g��D�g �ak*
k ,D�g �aj*
 j�g

��� j
kD�g �ak
 j��R���k
kD�g �aj*
 j��R.

Summing up the above over 1� j , k�2 we have

 
j ,k

�D�g �ajD�g �ak
�Lg
2�BR�
2

��#�g �a
�Lg
2�BR�
2

� 
j ,k
��D�g �aj
k ,Gjk
�g��
k ,Gjk*
 j�g�

� 
jk
��� j
kD�g �ak
 j��R���k
kD�g �aj*
 j��R�.
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Since �1�0, �2��1, 
2�D(g)a2
�0 on �R , we have �k
k�0 on �R , and

 
jk
��� j
kD�g �ak
 j��R���k
kD�g �aj*
 j��R�����D�g �a1
�D�g �a1
2��R�0.

Here the following fact is used:

D�g �a1
2�D�g �a1D�g �a2
�
1
g ��1�2
�ia1�2
�i�1�a2
��a1a2
�→0 as y2→0.

Therefore,

 
j ,k

�D�g �ajD�g �ak
�Lg
2�BR�
2

��#�g �a
�Lg
2�BR�
2

��D�g �a1
2�D�g �a2
1 ,G12
�g� 
jk
�
k ,Gjk*
 j�g

��#�g �a
�Lg
2�BR�
2

��G12
�Lg
2�BR�
2

� 
jk
�
k ,Gjk
 j�g� 

k
� 
k ,
2D�g �k
�2gg � �

g
. �5.7�

By computation we get

 
k

� 
k ,
2D�g �k
�2gg � �
g
��

BR
�D�g �a2
�2g�2� �2gg � dy��

BR
�1� �2gg � �D�g �a1
�D�g �a2
 dy ,

�5.8�

 
jk
�
k ,Gjk
 j�g�2F�

BR
��1a2��2a1��D�g �a1
�D�g �a2
 dy�2R�

BR
��2g �
2D�g �a1
1 dy

��
BR

�1g�2g
g �D�g �a1
�D�g �a2
 dy . �5.9�

For instance, to obtain �5.9�, we note that

 
jk
�
k ,Gjk
 j�g���
1 ,G12
2�g��
2 ,G12
2�g

��
BR
g�
2G12
1�
1G12
2�dy

�2F�
BR
��1a2��2a1��D�g �a1
�D�g �a2
 dy

��
BR
��2g ��
2D�g �a1
1�
1D�g �a1
2�dy .

Since
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�
BR
��2g ��
2D�g �a1
1�
1D�g �a1
2�dy

��
BR
��2g ��
2D�g �a1
1�
2�D�g �a1
1��dy��

BR

�1g�2g
g 
1
2 dy

�2R�
BR
��2g �
2D�g �a1
1��

BR

�1g�2g
g 
1
2 dy ,

so �5.9� holds.

Now, �5.6� follows from �5.7� to �5.9�. �

Proof of Theorem 5.1: In the proof, for simplicity we denote "̃ by " and denote a constant
depending only on g and R by C. Let ! be a smooth cutoff function supported in B2R such that
!�1 on BR/2 and ! is even in y2 . Using Proposition 5.3 we have

 
j ,k

�D�g �ajD�g �ak�!"��Lg2�BR�
2

��#�g �a�!"��Lg2�BR�
2

��G12
�Lg
2�BR�
2

�C��D�g �a"�Lg
2�BR�
2

��"�Lg
2�BR�
2

��J1�2J2 , �5.10�

where

J1��
BR

��1a2��2a1��D�g �a�!"��2 dy ,

J2��
BR

��2g��D�g �a2�!"���D�g �a1
2
�!"��dy .

Now, we estimate each term on the right of �5.10�,

�#�g �a�!"��Lg2�BR�
2

�3� f̃ �Lg2�BR�
2

�C��"�Lg
2�BR�
2

��D�g �a"�Lg
2�BR�
2

�

�3�
BR

�D�g �ṽ•D�g �a"�2g dy ,

�G12
�Lg
2�BR�
2

�C� �D�g �a"�Lg
2�BR�
2

��
BR

��1a2��2a1��"�2 dy 	 ,
J1���1a2��2a1�Lg2�BR�� �BR�D�g �a�!"���D�g �a�!"��3 dy 	

1/2

�C��1a2��2a1�Lg2�BR��D�g �a�!"��Lg2�BR�
1/2 ���D�g �a�!"���Lg2�BR�

3/2

�by Sobolev inequality�

�&���D�g �a�!"���Lg2�BR�
2

�
C
&

��1a2��2a1�Lg2�BR�
4 �D�g �a�!"��Lg2�BR�

2 ,

and
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J2�&�D�g �a1
2
�!"��Lg

2�BR�
2

�
C
&

�D�g �a�!"��Lg2�BR�
2

�& 
jk

�D�g �ajD�g �ak�!"��Lg2�BR�
2

�
C
&

�D�g �a�!"��Lg2�BR�
2 .

Plugging the above inequalities back in �5.10�, using the following

���D�g �a�!"���Lg2�BR�
2

�C�g ,R � 
jk

�D�g �ajD�g �ak�!"��Lg2�BR�
2 ,

and choosing & small enough, we obtain the estimate �5.5�. �

In the same fashion as the above, one can also prove the following
Lemma 5.4: Assume that "̃ is a solution of Eq. (5.4) and is extended even in y2 . Then,

�
BR/2

�D�g �a"̃�2g dy�C�g ,R ��
BR
��"̃�2�� f̃ �2��D�g �ṽ�2�"̃�2�g dy .

Note that after extension �1a2��2a1 is not continuous at �R . Therefore, the estimates de-
pending only on the data given on BR

� are needed. As a direct corollary of Theorem 5.1 we have
Theorem 5.5: Assume that "̃ is a solution of Eq. (5.4). Then,

 
jk

�D�g �ajD�g �ak"̃�Lg
2�BR

�
�

2
�C�� f̃ �Lg2�BR

�
�

2
��"̃�Lg

2�BR
�
�

2
�, �5.11�

where the constant C depends on R, g, �D(g) ṽ�Lg
2(BR

�) and ��1a2��2a1�Lg2(BR�) . �

VI. UPPER-BOUND ESTIMATES

In this section, we give an upper bound for �(�A)/���. Throughout this section we assume
A�C2(	).

Lemma 6.1: Assume that A�C2(	). Then,

lim sup
�→�

���A �
���

�min
x�	

�curlA�x ��. �6.1�

Proof: Let H(x)�curlA(x). First, we note that �(��A)��(�A). In fact, for every 

�W1,2(	) we set "�
̄ . Then, ����A"�����A
�����A
�. Therefore, we may assume ��0.
We shall show that for every x0�	 ,

lim sup
�→��

���A �
�

��H�x0��.

Without loss of generality we may assume x0�0.
Set h�H(0). When h�0 the conclusion is obvious, see Proposition 6.3 below. So, we

assume h�0. Denote '�1/�� . Let R�0 be fixed such that BR�	 . For any 
�W1,2(	), we let

'(x)�
('x) and A'(x)�A('x)/' . Then,
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���A �
�

�
1
�

inf

�W0

1,2
�BR�

�BR���A
�2 dx

�BR�
�2
,

� inf
"�W0

1,2
�BR/'�

�BR/'��A'"�2 dx

�BR/'�"�2 dx .

Using �3.1� and noting that ��('x)�'��(x), �('x)�'�(x), we have

A'�x ����'�x ��h��x ��B'�x �,

where

�'�x ��
1
'
A�0 �•x���x ��'��x �,

B'�x ���
'

2 �x�2 curl2A�0 ��
1
'
D�'x �,

�B'�x ���
'

2 �curl2A�0 ���x�2�1�o�'R �� in BR/' .

Therefore,

��A'e
i�'"�2���h��B'"�2���h�"�iB'"�2��1�$���h�"�2�

�1�$�'2

4$ �1�o�'R ���x�4�"�2,

where 0�$�1. So,

���A �
�

� inf
"�W0

1,2
�BR/'�

1
�BR/'�"�2 dx � �1�$��

RR/'
��h�"�2 dx

�
�1�$�'2

4$ �1�o�'R ���curl2A�0 ��2�
RR/'

�x�4�"�2 dx	 .
Choose "�"m�u!m , where u(x)�u(�x�)�exp(�h2�x�2/4) and !m is a smooth cutoff function
supported in Bm such that !m�1 on Bm/2 . For fixed R and for all small ',

���A �
�

�
1

�Bm�"m�2 dx � �1�$��
Rm

��h�"m�2 dx

�
�1�$�'2

4$ �1�o�'R ���curl2A�0 ��2�
Rm

�x�4�"m�2 dx	 .
We first fix m�1, $�(0,1) and let � approach �� �so '→0�, then we fix m and send $ to 0,
finally we send m to ��. By using Lemma 2.1, we obtain

lim sup
�→��

���A �
�

�
�R2��h�u�2 dx
�R2�u�2 dx ���h ���h���H�0 ��.

This completes the proof. �

Lemma 6.2: Assume that A�C2(	̄). Then,
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lim sup
�→�

���A �
���

��0 min
x��	

�curlA�x ��, �6.2�

where �0 is given in Lemma 2.2.
Proof: As in the proof of Lemma 6.1, we only need to show that, if 0��	 and h�H(0),

then

lim sup
�→��

���A �
���

��0�h�.

Now, we need to use the local decomposition of A in the new variables which straighten a portion
of boundary of �	 near the point 0. We shall use the notations presented in Sec. III. For a fixed
small R�0, we have

���A �� inf
"�W*�BR

�
�

�BR
��D�g ��a"�2g�y �dy���R

R �"�2 dy1
�BR

��"�2g�y �dy ,

where W*(BR
�)��"�W1,2(BR

�):spt(")�BR�, a is the vector field associated with A given by
�3.7�.

For ��0 we set '�1/�� , a'(y)�(1/')a('y), g'(y)�g('y). Then, for all small ',

���A �
�

� inf
"�W*�BR/'

�
�

�BR/'
� �D�g'�a'"�2g'�y �dy�'��R/'

R/' �"�2 dy1
�BR/'

� �"�2g'�y �dy
.

From �3.11� we have

a'�y ���y�̃'�y ��h�̃�y ��B̃'�y �,

where

�̃'�y ��
1
'
A�0 �•y� �̃�y ��'�̃�y �,

�̃�y ����y2/2�e1��y1/2�e2 ,

B̃'�y ���
'�y �2

2 �curl2A�0 ��h�r�0 ���0 ���
1
'
D̃�'y �.

Here �r(0) is the relative curvature of �	 at the point 0. Since the operator D(g)a is gauge
invariant, see �5.3�, so

�D�g'�a' exp� i�̃'�"�2��D�g'�h��B̃'"�2��1�$��D�g'�h�"�2�
1�$

$�g'�2
�B̃'"�2,

where $ is an arbitrary number lying between 0 and 1.
Choose "�
!m , where 
�W(R�

2 ), !m is the cutoff function used in the proof of Lemma
6.1. Note that g'→1 uniformly on each Bm� as '→0. Therefore, by the same argument as in the
proof of Lemma 6.1, we obtain

lim sup
�→��

���A �
�

�
�R

�
2 ��h�
�2 dy

�R
�
2 �
�2 dy .
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Since the above is true for all 
�W(R�
2 ), using Lemma 2.2 we have

lim sup
�→��

���A �
�

���h ���0�h���0�H�0 ��.

The proof is complete. �

If curlA vanishes at some point in 	̄ , the estimates �6.1�, �6.2� can be greatly improved.
Denote

Z�A ,	���x�	:curlA�x ��0�, Z�A ,�	���x��	:curlA�x ��0�.

Define, for ��0,

p���� inf
u�W�R2�

�R2���u�2� 1
4�
2�x�4�u�2�dx

�R2�u�2 dx . �6.3�

Using the rescaling method we can show that p(�)�p(1)���2/3 and p(�) is achieved for every
��0. Choosing u�exp(��x�3 /6) as a test function we see that p(1)��3 3/�( 53). Define, for a
constant vector a,

q�a�� inf
"�W�R�

2
�

�R
�
2 ��"�

i
2 �y �2a"�2 dy

�R
�
2 �"�2 dy . �6.4�

Obviously,

q�a�� inf
"�W�R�

2
�

�R
�
2 ���"�2� 1

4�a�2�y �2�"�2�dy

�R
�
2 �"�2 dy �p� �a���p�1 ��a�2/3�

�3 3
�� 53�

�a�2/3.

Proposition 6.3: Assume that A�C2(	̄). If Z(A ,	)�� , then

lim sup
�→�

���A �
���2/3

�p�1 � inf
x�Z�A ,	�

�curl2A�x ��2/3. �6.5�

If Z(A ,�	)�� , then

lim sup
�→�

���A �
���2/3

� inf
x�Z�A ,�	�

q�curl2A�x ���p�1 � inf
x�Z�A ,�	�

�curl2A�x ��2/3. �6.6�

Here p(1) and q(a) are defined in (6.3), (6.4).
Remark 6.1: Note that �curl2A(x)����H(x)�, where H(x)�curlA(x).
Proof of Proposition 6.3: Assume that 0�Z(A ,	). For ��0 we set '�1/�3 � , 
'(x)

�
('x), A'(x)�A('x)/'2. From Lemma 3.1, we have

A'�x ����̂'�x �� 1
2�x�2 curl2A�0 ��D'�x �,

where
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�̂'�x ��
1
'2
A�0 �•x�

1
'
��x ����x �,

D'�x ��
1
'2
D�'x �, �D'�x ���o�'�x�3� in BR/' .

Set "m�u!m , where !m is a smooth cutoff function as we used above and u is a real function to
be determined later. Then, we have

���A �
�2/3

�
1

�Bm�"m�2 dx � �1�$��
Rm


 ��"m�2�
1
4 �curl2A�0 ��2�x�4�"m�2�dx

�O�'�� 1�
1
$ � �

Rm
�x�6�"m�2 dx	 .

First sending ' to 0, then sending $ to 0, finally sending m to ��, we conclude that

lim sup
�→��

���A �
�2/3

� inf
u�W�R2�

�R2���u�2� 1
4�curl2A�0 ��2�x�4�u�2�dx
�R2�u�2 dx �p�1 ��curl2A�0 ��2/3.

So, �6.5� is true.
Now, we assume 0�Z(A ,�	). From �3.11� it follows that

a�y ��A�0 ���y�̃�y ���y�̃�y �� 1
2�y �2 curl2A�0 ��D̃�y �.

Using the similar argument we obtain �6.6�. �

Remark 6.2: If there exist a smooth open subdomain D�	 such that curlA(x) vanishes in D,
then

���A �� inf
"�W0

1,2
�D �

���A"�L2�D �
2

�"�L2�D �
2 � inf

"�W0
1,2
�D �

��"�L2�D �
2

�"�L2�D �
2 �$1�D �,

where $1(D) is the first Dirichlet eigenvalue of �# on D.

VII. LOWER-BOUND ESTIMATES

In this section we give an lower bound of �(�A)/��� for large �. The asymptotic behavior of
the eigenfunctions as �→� will also be discussed.

Lemma 7.1: Let 	 be a smooth bounded domain in R2 and A�C2(	̄). Then,

lim inf
�→�

���A �
���

�min�min
x�	

�curlA�x ��,�0 min
x��	

�curlA�x ���, �7.1�

where �0 is the positive constant given in Lemma 2.2.
Proof: Let H(x)�curlA(x),

m�	��min
	̄

�H�x ��, 	m��x�	:�H�x ���m�	��,

m��	��min
�	

�H�x ��, ��	�m��x��	:�H�x ���m��	��
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and m�min�m(	),m(�	)�0�. We shall show that lim inf�→� �(�A)/����m . As in Sec. VI we
assume ��0 and denote '�1/�� . Let 
' be the eigenfunction associated with �(�A) satisfying
maxx�	̄�
'(x)��1. Then, 
' satisfies

���A
2 
����A �
 in 	 ,

�7.2�
���A
�•��
�0 on �	 .

Denote by x' the maximum point of �
'�.
Now, we assume that ��k� is a given sequence, �k→�� . We choose a subsequence �k j such

that

x'k j →x0,
���k jA �

�k j
→a

for some non-negative number a. Lemma 6.1 implies a�m . We shall show a�m . Then it follows
that a�m for any sequence ��k�. For simplicity, we denote �k j by �. Let h'�H(x'), h
�H(x0).

Case 1: x0�	 . We shall show a�m(	). Let 	'�(	�x')/' , 
'(x)�
'(x'�'x),
A'(x)�(1/')A(x'�'x), H'(x)�H(x'�'x). Note that curlA'(x)�H'(x). Using �7.2� we
check that 
' satisfies

��A'
2 
'�

���A �
�


' in 	' �7.3�

and �
'(0)��1��
'�L�. We shall show that �
'� locally converges up to gauge transformations.
Let R�0 be a fixed constant. Then, for ' small enough we have B3R�	' . Since ��
'�� is

uniformly bounded in L loc
2 , Lemma 4.2 implies that ���A'
'�� is also uniformly bounded in L loc

2 .
Applying Theorem 4.1 to Eq. �7.3� we have

���A'
��H1�BR�
2 �2�
'H'�L2�2R �

2
�6
���A �� �2�
'�L2�B2R�2

�C�R ��1��H'�L2�B2R�
4

�� ��A'
'�L2�B2R�
2

��
'�L2�B2R�
2

�

�C�R ,�H�L���
'�L2�B3R�
2 .

So, ���A'
'�� is uniformly bounded in W loc
1,2 , hence, is relatively compact in L loc

2 . Since ���
'��
���A'
�, ����
'��� is uniformly bounded in L loc

2 . Thus, ��
'�� is relatively compact in L loc
2 .

Passing to a subsequence we may assume that �
'� converges in L loc
2 (R2) as '→0. It follows from

Lemma 3.1 that

A'�x ����'�x ��h'��x ��B'�x �,

where

�'�x ��
1
'
A�x'�x�

1
2 ��1A

1�x'�x1
2���1A2�x'���2A1�x'��x1x2��2A2�x'�x2

2� .

Set "'(x)�exp(�i�')
'(x). Then, "' satisfies

��h�
2 "'�

���A �
�

"'� f '�x �, �7.4�
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where h�H(x0) and

f '�x ���� i divB'�2h�h'�h ��2h�•B'���h'�h ���B'�2�"'

�2i��h'�h ���B'�x ��•�"' .
Since ��h'��B'"'����A'
'� and

��"'�2���h'��B'"'�i�h'��B'�"'�2�2��h'��B'"'�
2�2��h'��B'�"'�2,

���"'�� is also uniformly bounded in L loc
2 . Passing to another subsequence we have "'→"0

weakly in W loc
1,2 and strongly in L loc

2 . Since divB'(x)�(divA)(x'�'x)�(divA)(x')→0, �B'(x)�
�C'�x�2 and h'→h , we have f '→0 in L loc2 . Hence, the limiting function "0 satisfies

��h�
2 "0�a"0 in R2 �7.5�

and �"0(x)��1. Applying Theorem 4.1 to Eq. �7.5� yields that "0 is smooth.
Denote "̂'(x)�"'(x)�"0(x). From �7.4� and �7.5�,

��h�
2 "̂'�a"̂'� f̂ ' , �7.6�

where

f̂ '� f '�
���A ��
�a �"'→0 in L loc

2

and "̂'→0 in L loc2 . Applying Lemma 4.2 to �7.6� we get ��h�"̂'�→0 in L loc2 . Since ��"̂'�2

�2��h�"̂'�2�2�h�"̂'�2 we have ��"̂'�→0 in L loc2 . So,

"̂'→0 in W loc
1,2 . �7.7�

Denote ��(�1,�2), �h� j�� j�ih� j. Applying Theorem 4.1 to Eq. �7.6� we have

�h� j�h�k"̂'→0 in L loc
2 . �7.8�

Note that, for example,

�h�1�h�1"̂'�
�2

�x1
"̂'�ihx2

�

�x1
"̂'�

1
4 �hx2�2"̂' .

Therefore, �7.7� and �7.8� imply that � j�k"̂'→0 in L loc2 . So, "̂'→0 in L loc2 .
Now, we apply the classical C� estimates to �7.6� and conclude that "̂'→0 in C loc� , that is,

"'→"0 in C loc
� . Especially, we get "0(0)�lim'→0 "'(0)�1. Therefore, "0 is a nonzero

bounded smooth solution of Eq. �7.5� in R2. From Lemma 2.1 we have

a���h ���h���H�x0���min
x�	

�H�x ���m�	�.

Since a�m , we conclude that a�m . We also see that if Case 1 happens then m�m(	), x0
�	m and �7.1� holds.

Case 2: x0��	 . Now, we shall prove a�m(�	). Let d'�dist(�	 ,x'), the distance be-
tween x' and �	. Then, Bd' /'�	' . If there exists a subsequence ' j→0 such that d' j /' j→� ,
then the argument in Case 1 also gives that �(� jA)/�� j�→�H(x0)�. Therefore, we assume that
d' /' is bounded. Passing to a subsequence, we may assume that d' /'→d0 .
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Let x̂'��	 such that � x̂'�x'��dist(x',�	)�d' . At each point x̂' we take a diffeomor-
phism F' :BR0

� →	�F'(BR0) to straighten a portion of boundary around the point x̂
' such that

F'(0)� x̂'. For simplicity, we denote F' by F. We keep in mind that the diffeomorphism F
depends on '. However, the constant R0 can be chosen to be independent of ', thus, we have
uniform estimates on F for all small '. Let y'�BR0

� be such that F(y')�x'. Then, �y'��Cd'
�C' .

Let 
'(F(y))�u(F(y))
̃'(y), where u is the positive eigenfunction of Eq. �5.2� associated
with the first eigenvalue $ and �u�L��1. Then, ��
̃'�� is uniformly bounded from above and
�
̃'(y')� is uniformly bounded away from zero. As in Sec. V we can check that 
̃' satisfies the
following equation:

�#�g ��a
̃'�D�g �ṽ•D�g ��a"̃'�����A ��$�
̃' in BR0
� ,

�7.9�
�D�g ��a
̃'�•��0 on �R0.

Here the notations involved are the same as in Secs. III and V.
Define the following rescaled functions and vector fields: 
̃'(y)�
̃'('y), ṽ'(y)� ṽ('y),

g'(y)�g('y), a'(y)�(1/')a('y). Then,

�#�g'�a'
̃'�D�g'�ṽ'•D�g'�a'
̃'�
���A ��$

�

̃' in BR0 /'

� ,

�D�g'�a'
̃'�•��0 on �R0 /' .

Recall that h'�H(x'), h�H(x0). From �3.11� we have

a'�y ���y�̃'�y ��h'�̃�y ��B̃'�y �,

which holds in BR0 /'
� , but not in the entire ball. Set "̃'(y)�exp(�i�̃')
̃' . Then,

�#�g'�h'�̃�B̃'"̃'�D�g'�ṽ'•D�g'�h'�̃�B̃'"̃'�
���A ��$

�
"̃' in BR0 /'

� .

Using Theorem 5.5 we obtain

"̃'→"̃0 weakly in W loc
1,2 and strongly in L loc

2 .

Write B̃'�B̃'
1e1�B̃'

2e2 , and write the equation for "̃ as follows:

�#�g'�h�̃"̃'�
���A �
�

"̃'� f̃ ' in BR0 /'
� ,

�7.10�
�D�g'�h'�̃"̃'�•���iB̃'

2"̃' on �R0 /' .

Note that D(g') ṽ'•D(g')h'�̃�B̃'"̃'→0 in L loc
2 and B̃'→0 in L loc2 . So, f̃ '→0 in L loc2 . We also

note that g'(y)�1�'y2�r('y1)→1. Hence, "̃0 satisfies

��h�
2 "̃0��"̃0 in R�

2 ,
�7.11�

�h�•"̃0�0 on �R�
2 .
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We apply Theorem 5.5 to the equation for "̃�"̃0 , then use the classical elliptic estimates to
obtain that "̃'→"̃0 in C loc

� .
Recall that �y'�/'�C . By passing to a subsequence, we may assume that z'�y'/'→z0,

hence, "̃0(z0)�lim "̃'(z')�0. Therefore, "̃0(0, that is, "̃0 is a nonzero bounded smooth solu-
tion of Eq. �7.11�. Using Lemma 2.2 we conclude that

a���h ���0�h���0�H�x0����0 min
x��	

�H�x ���m��	��0 .

Since m(�	)�0�m�a , we have m�a . We also see that if Case 2 happens then m
�m(�	)�0 , x0�(�	)m and �7.1� holds. �

The proof of Lemma 7.1 has the following consequence.
Proposition 7.2: Assume that A�C2(	̄). Let 
� be the eigenfunction of Eq. (7.2) associated

with the first eigenvalue �(�A) such that �
��L��C . Then,

�
��→0 in C loc
� �	�	m� and in C loc

� ��	���	�m� as �→� .

Proof of Theorem 1: Combining Lemmas 6.1, 6.2, 7.1 yields Theorem 1. �

As a corollary of Theorem 1 and Proposition 7.2, we have
Theorem 7.3: Assume A�C2(	̄) and curlA(x)�H , a nonzero constant. Then

lim
�→�

���A �
���

��0�H�. �7.12�

Let 
� be the eigenfunction of (7.2) satisfying �
��L��1, then 
� concentrates at some points on
�	, that is, �
��L�(�	)→1 and


�→ in C��	� as �→� .

Proposition 7.2 says that as �→� the eigenfunctions concentrate at some points in
	m�(�	)m . From the proof of Lemma 7.1 one easily see that, after rescaling near the maximum
points and making gauge transitions, the eigenfunctions exhibit profiles of either the eigenfunction
of �2.3� in the entire plane R2 �when interior concentration happens�, or the eigenfunction of �2.5�
in the half plane R�

2 �when boundary concentration happens�. It will be interesting to find the
exact location of the concentration points. In Ref. 1 the concentration behavior of minimal solu-
tions of Ginzburg–Landau equations is studied and the location of concentration is investigated.
The arguments used in Ref. 1 can be applied in a similar way to obtain the location of concen-
tration of the eigenfunctions. We should mention that in Ref. 10 Bernoff and Sternberg obtained
the location of surface nucleation of superconductivity by using the asymptotic analysis.
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