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Here 6 is the angle conjugate to J,. The above approximate
Hamiltonian is independent of the angle conjugate to J;.
Therefore, J, is a constant of the motion of the approximate
Hamiltonian. J; can be chosen to fulfill the EBK quantiza-
tion condition J,=#f(n+1), n=0,1,2.... With J; fixed, all
that remains is a one-dimensional Hamiltonian. In this choice
of action-like variables, the second action is the area en-
closed by the J,, @ curve and is negative for the circulating-
type trajectories, because the “mass,” as defined by

*H\™!
m= ?‘7? s (18)

is less than zero. In other words, the motion in the J,, 8
plane is in the counterclockwise sense. See Fig. 4.

Figure 4 shows a plot of the phase space structure of the
approximate Hamiltonian (17) for J,=6. The two fundamen-
tal types of motion can be clearly seen. Curves which en-
circle the point (J,=0, 6=m/2) or the point (J,=0, §=—7/2)
correspond to trajectories of the circulating type in the full
Hamiltonian. Those encircling the point at (J,=0, §=7/2)
correspond to circulating in the opposite sense from those
which encircle (J,=0, §=—1/2). There are three equivalent
pendular-type modes of the full Hamiltonian. These are seen
in the phase space plot of the approximate Hamiltonian as
curves encircling the points: (J,=~5, 8=0), (J,~—35, §=0),
(J,=0, 8=) and correspond to pendular orbits along each
of the three symmetry planes of the Hénon—Heiles system.

Action J2
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In this picture, the line J,=0 corresponds to the equator of
the polyad phase sphere where the II; axis is chosen as the
axis. The top of Fig. 4 where J, is a maximum all maps to
the north pole of the sphere; likewise the bottom of Fig. 4
maps to the south pole of the sphere.

The area inside one of the citculating-type closed curves
in phase space has units of action and is the classical action
associated with J, for that trajectory. It follows that primitive
semiclassical quantization can be effected by locating trajec-
tories which enclose an area of phase space which satisfies
the EBK quantization condition. Energies obtained by this
technique are in reasonable agreement with quantum results,
with some exceptions. In the quantum picture, however, mo-
tion of the circulating-type associated with the region of
phase space near the point (J,=0, #=—m/2) can interact
with motions of the circulating-type associated with the re-
gion of phase space about (J,=0, #=m/2) by tunneling
through the barrier at =0. This is equivalent to the problem
of the interaction of two adjacent potential wells by tunnel-
ing through the intervening potential barrier. This one-
dimensional Hamiltonian, however, does not decompose into
a kinetic energy term (one quadratic in the action) and a
potential energy term (one dependent only on the angle). As
a consequence of this complication, one cannot simply sub-
stitute the usual quantum operators in place of the classical
variables and arrive at a Schrodinger-like wave equation as
done by Uzer et al.***" Tt is, however, possible to apply
WKB methods to the problem because all that is required for
their application is knowledge of the action as a function of
the angle. Miller*®*° has given the WKB quantization condi-
tion for the problem of a one-dimensional symmetric
“double well.” The equation is

tan? a=[ef+(1+¢%#)12]2, : (19)

Here « is the phase integral across one of the wells and 3 is
the phase integral through the intervening barrier. For a
given value of J,, the value of J, can be found numerically
for a fixed value of @ from the approximate Hamiltonian by
the method of bisection. Once a sufficient number of points
on the curve J,(6) are found, the « and B phase integrals can
be computed numerically. This calculation, however, results
in either tunneling splittings which are much too small, or
states which are split but which should not be. The reason for .
this is that the tunneling path used is only one of three sym-
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TABLE II. Tunneling corrected actions and WKB eigenenergies for the circulating-type states. The zero-order actions are J; and J,. The tunneling corrected
J; action is J,(WKB). Note that the tunneling corrected actions are close to the zero-order actions. WKB eigenenergies for Hamiltonian (17) were determined

graphically using Eq. (19)

I Energy Iy Energy
Iy Jy (WKB) . (WKB) Jy g (WKB) (WKB)
1.0 —-0.5 —0.319813 .. 0.99572 9.0 —3.5 ~3.500 000 8.627 60*
2.0 —-0.5 —0.500 000 1.986 39 10.0 —0.5 —0.499 957 10.063 38
2.0 —0.5 —0.500 000 1.986 39 ~ 10.0 -0.5 --0.500 034 10.063 36
3.0 -0.5 —0.500 000 2.982 05 10.0 -1.5 —1.500 000 9.830 64
3.0 —0.5 —0.500 000 2.98205 10.0 -1L5 —1.500 000 9.830 64
3.0 —~L5 ~1.306 250 2.95470 10.0 -2.5 —2.500 000 9.662 45
4.0 ~0.5 —0.484 145 3.98319 10.0 —-2.5 -2.500 000 9.662 45
40 - —0.5 - —0.518 184 3.980 19 10.0 =-3.5 -3.331 531 9.569 35
4.0 —1.5 —1.500 000 3.92385 10.0° " —35 ~3.675 846 9.551 89
4.0 - =15 —1.500 000 3.92385 11.0 ~0.5 —0.500 000 11.090 27
5.0 —0.5 —0.500 000 4.985 54 11.0 —0.5 —0.500 000 11.090 27
5.0 -0.5 —0.500 000- 4.985 54 11.0 —-15 -1.500 000 10.828 63
5.0 -1.5 —1.500 000 4.898 50 11.0 —1.5 —1.500 000 10.828 63
5.0 - —15 —1.500 000 4.898 50 11.0 —-25 --2.480 258 10.635 78
6.0 -0.5 —0.500 000 599312 11.0 -2.5 —2.521919 10.628 79
6.0 —0.5 —0.500 000 - 5.993 12 11.0 -3.5 —3.500 000 10.501 17
6.0 —1.5 ~1.444 193 _ 5.882 08 11.0 -35 ~-3.500 000 10.501 17
6.0 -5 -1.577 260 5.87072 12.0 —0.5 -0.500 000 12,121 05
7.0 —-0.5 —0.499 235 7.00507 12.0 -0.5 -0.500 000 12.121 05
7.0 —0.5 —0.500772 7.00479 12.0 -1.5 —1.500 493 11.829 87
7.0 -1.5 —1.500 000 6.859 76 12.0 -1.5 —1.498 188 11.830 50
7.0 —-1.5 - 1.500 000 6.859 76 12.0 ~2.5 -2.500 000 11.605 36
70 - -2.5 —2.500 000 6.776 25 12.0 -2.5 —2.500 000 11.605 36
7.0 =25 —2.500 000 6.776 25 12.0 =35 —3.500 000 11.445 40
8.0 —0.5 —-0.500 000 8.020 53 12.0 -3.5 —3.500 000 11.445 40
8.0 —-0.5 —0.500 000 8.020 53 12.0 —4.5 —4,328 953 11.378 64
8.0 -15 - 1.500 000 7.846 37 13.0 -0.5 —0.499 996 13.155 962
8.0 -L5 —1.500 000 7.846 37 13.0 -0.5 —-0.500 005 13.155 959
8.0 - —-2.5 -2.39173% 7.743 29 13.0 —1.5 —1.500 000 12.834 59
8.0 =25 —2.654 881 7.722 53 13.0 —-1.5 --1.500 000 - 12.834 59
9.0 —~0.5 —0.500 000 9.039 88~ 13.0 - -25 —2.500 000 12.583 21
9.0 —-0.5 —0.500 000 9.039 88 13.0 —2.5 —2.500 000 12.583 21
9.0 ~15 —1.494 731 8.837 69 13.0 —3.5 --3.447 895 12.405 00
9.0 —-1.5 —1.505 469 8.83581 13.0 ~3.5 -3.563 263 12.386 08
9.0 —-2.5 —2.500 000 8.695 92 13.0 -4.5 --4.500 000 12.291 87
9.0 —2.5. —2.500 000 8.695 92 13.0 ) —-4.5 —4.500 000 12.291 87
9.0 -3.5 —3.500 000 8.627 60*

these states is proportional to e"™% where ¢ is the azimuthal
angle. The exact wave functions will mix terms which differ
in m by multiples of 3. The tunneling path along J,=0 in
Fig. 4, corresponds to ¢=0 with the polar angle changing.
The other tunneling paths correspond to ¢=27/3 and ¢=
—27/3 in this picture. If m is an integer multiple of 3, then
the phase of the wave function will be the same at each value
of ¢ where tunneling can occur. Although no rigorous WKB
theory of tunneling in two or more dimensions is available,
we have found that reasonable results can be obtained by the
following ad hoc procedure. When the phase of the wave
function is the same at each tunneling path, we replace every
occurrence of the tunneling factor e ™# by 3¢ ~# in Eq. (19).
When m is not a multiple of 3, the phases of the wave func-
tion add to zero, so the tunneling integrals will be assumed to
cancel in these cases and the states will not be split. We
emphasize that while this procedure is somewhat ad hoc, it
does justify, on plausible physical grounds, the neglect of

splitting. We have no rigorous justification for using Eq. (19)
with e? replaced with 1e?, however, this formula is probably
accurate at least to first order in e”.

The energy is varied until the quantization condition (19)
with e replaced with e is satisfied by the resulting numeri-
cally determined values of @ and B. A graphical technique
was employed to find quantizing energies: The resulting en-
ergies are better approximations to the energy levels of the
full Hénon-Heiles Hamiltonian than those found using
primitive actions. These uniform WKB results which corre-
spond to circulating-type classical motion are shown in Table
II.

The results of the WKB treatment for the double-well
approximate Hamiltonian can be used to improve the calcu-
lation of the energies for the full Hamiltonian. Instead of
seeking actions that satisty integer or half-integer rules, we
can use the phase integral across the well in the approximate
1D Hamiltonian as a “‘tunneling corrected” action to be lo-
cated in the full Hamiltonian. These tunneling corrected ac-
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tions are close to the primitive quantizing actions as shown
in Table II. The FFT technique and Eq. (6) are used to cal-
culate the actions of a classical trajectory, and the energy of
such a trajectory is a tunneling corrected semiclassical ap-
proximation to the quantum eigenstate. Energies for circulat-

ino qtataq fannd thic wavy ara chawn in Tahla TT Thaga anar
g otails 10ulG uils Way aiC silUwil 1l 14010 au. 11050 -

gies generally are in better agreement with the exact results
than are the energies of trajectories with the same actions in
the approximate Hamiltonian.

2. Pendular motion

Pendular-type motions are best studied with the approxi-
mate Hamiltonian which results from Jaffé’s choice of
action-like variables:

Ho=171y, (20)
O,=(2-J3)"2 cos(20), (21)
=75, (22)
M= (J2-J3)""2 sin(26). (23)
The resulting approximate Hamiltonian to order & is?
ITms T 562 72 1 7€ 72 6764 T 764 r 72
BT T 2T 3 YT 144 02
7€t o 422964
6
2 2 2
YT Y ) _'5 P
155520 J5(458 682]1 75 85573)
&5 &
35€
eag DA I cos(26)— =2 J3(UT-T)
6
Xcos(46’)—20936 J (.:’2—.}"7‘)3’2 cos(68) (24)
2160 “'1 T2

As befora, 8is the angle coniugate to J.. The above anproxi-
£ 1ore, U 1S (e ang:e copjugate e J,. 1ne apeve

mate Hamiltonian is independent of the angle conjugate to
J,. This means that J; is again a constant of the motion of
the approximate Hamiltonian. J; can be chosen to fulfill the
EBK quantization condition J,=%#(n+1), n=0,1,2... . With
J, fixed, again all that remains is a one-dimensional Hamil-
tonian. In this case, however, the J, action is positive for the
pendular-type trajectories.

Figure 5 shows a plot of the phase space structure of

- . . .
Taffa’c annrovimate Hamiltonian Tha twn fundamantal tunac
<8IIC S QpProximart maimintnian. 14¢ WO 1uUnGameniad. types

of motion can be identified. Motions which correspond to
pendular-type trajectories along the three symmetry axes in

the full Hamiltonian are manifest as curves which encircle

one of the three points: (J,=0, 8=7/6), (J,=0, 6=37/6),
(J,=0, 6=577/6). Near these three periodic orbits the second

action tends to zero, and II, is the action-like variable which -

has this property. This representation is suitabie for studying
the pendular-type motions. Motions related to trajectories of
the circnlating type in the full Hamiltonian result in curves
for which the value of 6 increases (or decreases) without
bound. For this choice of variables, the circulating orbits

D
>
>\
s

Angle

FI(3 5. DPhaga snace structiira of tha annrovimate Haomilignian ragulting
rilg. J. rnase space sgucwure o1t W€ approXimate mamiitoman resultin 15

from Jaffé’s choice of action-like variables, J,=ITy, J,=I1,, with J,=6.
This approximate Hamiltonian is well-suited for investigating pendular-type
motions of the full Hamiltonian.

encircle the north or south poles of the polyad phase sphere
and the librating orbits evolve in one of three basins distrib-
uted symmetrically around the equator.

Primitive camiclacqical aicanvaliias onnld he fonnmd hy
LI YC SLLiilidadoiCdl vigliivaiuls Lol ov ouliu. Uy

requiring the area in phase space enclosed by the classical
trajectory of the approximate Hamiltonian to satisfy the EBK
quantization cond1t1on. A motion in one of these regions of
phase space, however, can be interpreted as a librating-type
motion below the barrier in a threefold hindered rotor. In the
quantum picture, the motions in each of the three equivalent
areas can interact through tunneling. As in the case where the
circulating motion was treated as a double-well problem we
can apply the WKB method to this problem to obtain tunnel-
ing corrected actions. The quantization condition for a three-
fold hindered rotor as given previously?®*® is

o i [2nr) : -
(1+¢2%91% cos p=cos| == ). (25)

In this expression, B is the phase integral across the well, and
« is the barrier penetration integral. The number 27 is equal
to [, the angular momentum quantum number in the zero-
order limit. The integer [ must be even in the event that J; is -
odd and must be odd when J; is even, since J;=n+1. [See
Ref. 24, Eq. (3.4).]

Tha function J (8 wae found hy hicection fro tha an_
L8 TURCIOoH 4,10 Was I0UNd DY O15CClion rom tne ap

proximate Hamiltonian at a fixed value of J,. Values of «
and B for which the quantization condition is satisfied were
found by graphical techniques. As in the circulating case, a
tunneling corrected semiclassical approximation to the quan-
tum eigenvalue can be found by taking the energy of a clas-
sical trajectory of the full Hénon—Heiles Hamiltonian for
which the action determined by the FFT technique {6) is
equal to the phase integral 8 of a quantum state of the ap-

?ro*nmaha Hamiltonian. The tunneline corrected actions and

ximate ng cotrecte
WKB eigenenergies for the pendular states are given in Table
II1.
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TABLE III. Tunneling corrected actions and WKB eigenenergies for the
pendular-type states. The zero-order actions are J; and J,. The tunneling
corrected J, action is J, (WKB). Note that the tunneling corrected actions
are close to the zero-order actions. WKB eigenenergies for Hamiltonian (24)
were determined graphically using Eq. (25).

Jy Ja J, (WKB) Energy (WKB)
5.00 0.50 0.256 044 4.872 15
6.00 0.50 0.359 714 5.817 10
6.00 0.50 0.359 714 5.817 10
700 .. 050 0.298 310 6.743 17
8.00 0.50 0.401 863 7.666 74
8.00 0.50 0.401 863 7.666 74
9.00 0.50 0.612 925 8.587 42
9.00 0.50 0.612.925 8.587 42
9.00 0.50 0.346 631 8.565 31
10.00 0.50 0.426 986 9.463 60
10.00 0.50 0.426 986 9.463 60
11.00 0.50 0.582 934 10.359 30
11.00 0.50 0.582 934 - 10.359 30
11.00° 0.50 0.391 786 10.335 60
12.00 0.50 0.670 665 11.23579
12.00 0.50 0451 101 11.206 00
12.00 0.50 0.451 101 11.206 00
13.00 0.50 0.549 414 12.069 79
13.00 0.50 0.549 414 12.069 79
13.00 0.50 0.430 220 12.051 13

B. Resonances

As mentioned briefly in Sec. I, motion is said to be reso-
nant if the two fundamental frequencies w; and w, are such
that kyw; +k,w,=0, where k; and k, are integers. The mo-
tion of a resonant trajectory undergoes |k,| cycles of the first
fundamental motion in the same time it takes to complete k|
of the second fundamental motion. The region of phase space
which is sampled by the resonant trajectory is very much
different from that sampled by a nonresonant trajectory
whose initial conditions differ by only a small amount. This
difference is illustrated by a Poincaré surface of section con-
structed by plotting y and p, wherever x=0 and p,=0. Fig-
ure 6 shows a composite surface of section from three tra-
jectories in which one of the contributing trajectories is

10
05
Py 00}

05 |

FIG. 6. Composite surface of section at E=8 (£=0.6 D). Note the island
chain associated with a fivefold resonance. ’

K. Sohlberg and R. B. Shirts: Quantization of a nonintegrable system .

resontant and exhibits a fivefold island chain. Inside a reso-
nance zone, both frequencies which are fundamental outside
the resonance can be assigned as multiples of the lowest
frequency or a subharmonic of both, forming one new fun-
damental: A low-frequency precession around the resonance
island becomes the new second fundamental.’> With this new
definition of the fundamental frequencies comes new actions.
Actions, then, do not vary continuously as one continuously
varies the initial conditions through a resonance zone.

The discontinuity in the actions as the initial conditions
are varied causes trouble when searching initial condition
space for a trajectory which has specific actions. Figure 6
illustrates this problem. One of the trajectories is resonant
and produces the readily identifiable fivefold island chain.
The two other trajectories give a surface of section just inside
and just outside the island chain, respectively. The curve just
inside the island chain encloses an area of action
Ajnsige=0.56, and the curve just outside the island chain en-
closes an area of action A yy;4.=0.74. If one were looking
for a trajectory with the action 0.70, it couid not be located
as the variation in action jumps discontinuously from 0.56 to
0.74 as the island chain, whose area is approximately 0.18, is
crossed. An analytic solution to this dilemma, which in-
volves transforming to new resonance variables, has been
given by Pickett and Shirts.® This method, however, requires
additional information about the strength and form of the
resonance zone. In the present paper, it will be shown that
these resonances can be “*smoothed” over in the spirit of the
discussion of Reinhardt and Jaffé.!* This smoothing proce-
dure is based on two observations. (1) If the classical reso-
nance zone occupies a region of phase space which is small
in relation to #, the resonance structure should not affect the
quantum wave functions.”® (2) Only a few of the most
prominent peaks in the Fourier spectrum of the classical tra-
jectory need to be assigned in order to compute classical
actions with reasonable accuracy. We assume that a quantiz-
ing invariant torus can be interpolated between two other tori
of identical topology even if the phase space between the
outer two tori contains a.resonance structure and no such
torus exists. . .

Actions which are good outside the resonance zone can
be related to those inside the resonance zone. A related cor-
respondence must exist between the old and new frequen-
cies. If we assume that there exists a matrix C relating the
new fundamental frequencies ' to the old fundamental fre-
quencies , such that w'=Cuw, then the matrix D=(C™")’
relates the k vectors which assign peaks in terms of the fun-
damental frequencies: k’=Dk. Consider a 5:1 resonance
where the old fundamental frequencies are w;=1600 and
©;=320. w=(1600,320) and «'=(320,8), where & is the
new, low-frequency, second fundamental which cannot be
defined in terms of the old frequencies. Table IV gives a set
of frequencies for this hypothetical system and the old and
new k vectors. A matrix D which converts all k to k’ is
(3,1,0,0). Since this matrix is singular and cannot be in-
verted, we use (5,1,x,x) to get C=(1/4,—1/4,~1/4x,5/4x).
This C matrix projects that the new o' vector is [320,
(—400/x+400/x)] which becomes (320,0) as x is allowed to
go.to zero. The new second frequency &'is of course small
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TABLE IV, Example of frequencies o which can be express linear
combination of the “old” fundamental frequencies {w;=1600, 320), or
the “new” fundamental frequencies associated with the resonance zone
{w] = 320,w; = unk.). Note that for each frequency, ® = k @, + kyo,
= kjoy + kyw;. The new second fundamental frequency w; is a low fre-
quency associated with the motion about the resonance zone. Its value is not
required for assigning peaks which appear both inside and outside the reso-
nance zone.

) ky ky ki ky
320 0 1 1 0
1600 1 0 5 0
1280 1 ~1 4 0
1920 1 1 - 6 0
3200 2 0 10 0
2880 2 -1 9 0

and cannot be defined in terms of the old frequencies. The
relationship of the new actions (I') to the old (I) is®

I'=(CH" L (26)
The corresponding old actions are then given by
I=(CHI'. @

This method of transformation is very usetul in treatmg reso-
nances. Ideally one should find the actions of a resonant
trajectory based on the new resonant fundamental frequen-
cies and then transform back to the nonresonant form using
Eq. (27). Experience, however, has shown that this procedure
is not necessary.

If we ignore the resonance zone and assign the funda-
mental frequencies as is appropriate just outside the reso-
nance zone, me LUIHPULCQ dLLlOIlS WlLl DC SlHllldI {o Lnose_]ust
outside the resonance zone. The value of J, is not seriously
affected by the presence of the resonance. J,,
dlscontmuous as expected. This is exhibited in Flg. 7. Inside
the resonance zone, a new low-frequency fundamental ap-
pears and as a consequence there are some new peaks which
cannot be assigned in terms of the two old fundamental fre-
quencies. These new peaks appear as' side bands on the
dominant peaks in the Fourier spectrum These side bands
are unassignable in terms of the nonresonant frequencies.
Because these side bands make a relatively minor contribu-

tion to the actions, the actions computed with the old fre-

however, is

quencies are similar to those outside the resonance zone, the

minor discontinuity being due to the contribution of the un-
assigned side bands to the actions. In light of the above dis-
cussion, it is clear that the error introduced by using the old
assignment of the fundamental frequencies within a"reso-
nance zone is small. The error is minimized by the fact that
the energy of states in the Hénon-Heiles Hamiltonian is
mainly dependent on J;. We minimize the effect of the minor
discontinuities in J, by abandoning the attempt to converge -
to the actions corresponding to individual states. Instead, the
actions are determined for a large number of trajectories. The
energy surface as a function of J; and J5 is fit to a low order
polynomial in each of the two regions (circulating and librat-
ing). This fitting smooths out the effects of resonances which
would be magnified if individual states were sought. This

procedure is explained in detail in Sec. VI below. .
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FIG. 7. This figure shows J, as a function of the initial conditions of the
trajectory from which it was computed. The initial conditions were slowly
varied so that they passed across one of the hyperbolic (a), the elliptic (b),
fixed points along the fivefold resonance island chain shown in Fig. 6.
Within the resonance zone in (b), the action was computed by assigning the
'npalm in the Fourier spectrum mnnnna the resonance’s presence

Resonance zones grow in size with increasing energy.
When two neighboring resonance zomes start to overlap,

41 51
chaos appears.” ™"

V. CHAOS

While the Founer transform method has been shown to
produce semiclassical energy levels which are excellent ap-
proximations to the exact quantum-eigenstates, the method
requires that the classical trajectory be quasiperiodic so that
the Fourier representation has assignable peaks Such quasi-
pcuuuu, classical Li‘&jéCLOi‘ies fali ‘on the surface of an invari-
ant torus in phase space. 52 At low energies, the phase space
of the Hénon—Heiles Hamiltonian is filled with such tori. As
the energy increases some trajectories are no longer quasi-
periodic, but chaotic in nature. Chaos increases in impor-
tance with increasing energy. A composite surface of section
is shown in Fig. 8. It is clear that at this energy (£=0.75 D)
some of phase space.is filled with tori and some is chaotic.
The chaotic points which do not fali on simple closed curves

in Fig. 8 come from a single trajectory.
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FIG. 8. Coniposite surface of section at an energy of E=10.0 (£=0.75 D).
Regions of quasiperiodic and chaotic structure can be seen.

A careful observation of a surface of section in the cha-
otic regime reveals that while the corresponding classical
trajectory may not lie on the surface of an invariant torus,
there is considerable structure remaining over intermediate
times (10—100 vibrational periods). Shirts and Reinhardt'?
referred to this structure as a vague torus, the connotation
being that the trajectory evolves near a torus-like manifold in
phase space. Chaotic trajectories appear more-or-less regular
for a short time and then make a transition to a different
vague torus. Kosloff ez al.>* and Jaffé and Reinhardt®® have
suggested that the source of the irregularity in these chaotic
trajectories may be highly localized in configuration space,
although they disagree over the exact location of these ori-
gins of stochasticity. Gomez ez al.>* have also noted that cha-
otic trajectories occasionally sample regions of phase space
near resonance zones and during these encounters have

_ nearly regular behavior. They termed these encounters “in-
serts of regularity.” The term resonant trapping is also in
usage. In earlier work Contopolous™ also discussed the be-
havior of chaotic trajectories near periodic orbits. Davis®®
also investigated the almost quasiperiodic motion of trajec-
tories due to remnants of tori (cantori) which serve as bottle-
necks to phase space mixing. We believe that the short-term
regularity of chaotic motion commonly seen in coupled os-
cillator motion will allow a description by approximate tori
as described below, regardless of the nature and source of
that regularity. Regularity over the short term is best seen in
the surface of section.'? The open circles in Fig. 9 show a
surface of section constructed from a chaotic trajectory 35 as
long as those used in Fig. 8. Clearly, over the short term, the
chaotic trajectory has approximately quasiperiodic behavior.
The solid circles in Fig. 9 show intersections of an approxi-
mating torus, constructed from the coefficieits of a Fourier
representation of the short-time trajectory as described in the
next paragraph. The agreement is excellent. Short-time tra-
jectory analysis has been used previously to compute semi-
classical transition frequencies,”’ but not for quantization.
Note also that our approximating torus is more satisfactory
and smoother than those developed by Ramachandran and
Kay using adiabatic switching.>®
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FIG. 9. Shown here is a surface of section from a short-time trajectory at
E=10 (open circles) and its corresponding approximating torus (solid dots).

Just as the surface of section for a short-time chaotic
trajectory is much like that of a quasiperiodic trajectory, the
Fourier spectrum of a short-time chaotic trajectory shows
prominent peaks as does that of a quasiperiodic trajectory.
This characteristic is exhibited in Fig. 10. Figure 10(a) shows
the Fourier spectrum of the chaotic trajectory shown in Fig.
8. Figure 10(b) shows the Fourier spectrum of the first 5 of
the same trajectory. It is clear that while the FFT of the full
trajectory is unassignable, that of the short-time trajectory
has definite peaks which are sufficiently resolved to assign
and be used to compute the classical actions using Eq. (6).
As shown in Sec. III, only the most prominent peaks in the
Fourier spectrum need to be assigned in order to compute a
reasonable approximation to the invariant torus and its asso-
ciated actions. This-is very helpful because the low resolu-
tion of the Fourier spectrum of a short-time trajectory limits
the number of peaks that can be resolved. Fortunately, in
many cases, the residual quasiperiodic structure of a chaotic
trajectory remains for enough time that an assignable Fourier
spectrum can be computed. Therefore, the Fourier transform
of a short-time chaotic trajectory can have its major peaks
assigned and actions computed. The peaks are then easily
used to reconstruct the approximating torus. This technique
was used in Fig. 9.

Miller’® and de Leon® have developed methods of ob-
taining semiclassical eigenvalues from arbitrary, single clas-
sical trajectories. In light of these developments it was ini-
tially hoped that semiclassical eigenvalues could be
extrapolated from the closest remaining invariant tori. Unfor-
tunately, the success of such a method relies on the actions of
the “‘arbitrary” classical trajectory being sufficiently close to
the quantizing actions. At some energies, a large fraction of

- phase space is chaotic and no such quasiperiodic trajectories

can be located.

We have employed a two pronged attack to apply the
Fourier approach to semiclassical quantization in the sto-
chastic regime. First, we took advantage of the remaining
quasiperiodic trajectories at energies where chaotic trajecto-
ries are present by interpolating across chaotic regions (see
Fig. 8). Second, in the chaotic regime, we employed short-
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FIG. 10. (a) gives the Fourier spectrum of the chaotic trajectory used in the
construction of the composite surface of section shown in Fig. 8. (b) shows
the Fourier spectrum of the first ﬁ of that trajectory. (See the corresponding
surface of section in Fig. 9.) Note that the short-time trajectory has a Fourier
representation with assignable peaks. The frequency is given in multiples of
the fundamental frequency of the uncoupled (e=0) system.

time dynamics to capitalize on the residual quasiperiodic na-
ture of chaotic trajectories.

VI. RESULTS

The techniques described above were used to find semi-
classical approximations to the vibrational energy levels of
the Hénon—Heiles Hamiltonian. At iow energies where phase
space is quasiperiodic, a quasi-Newton method® was used to

avaa 11nan initial sanditiane which A 1
converge upon initial conditions which produce a classical

trajectory with primitive or tunneling corrected. quantizing
actions. First, a trajectory was integrated from initial condi-
tions thought to produce a trajectory with actions reasonably
close to the desired values. A composite surface of section at
the correct zero-order energy is very helpful in choosing
these initial conditions. Next, partial derivatives of the ac-
tions with respect to the initial conditions were computed
numerically by incrementing each initial condition in turn by

a small cmn (1(\ 4 wag used hprp\ Thege narha] derivatives

were then used to compute new 1mt1al condltlons and the
process was iterated until the actions agreed with the desired

7775

TABLE V. Optimized c; coefficients for the interpolating function given by

Eq. (26). The circulating (circ.)- and penduiar {pend.)-type states were
treated separately.
Circ. ~ - Pend.

1 0.296x1072 —0.394X107!

ca 0.351%x107! —0.152

4 0.100x 10! 0.102x 10!

cs 0.535x107! ~0.465%107!

cs 0.142x1072 -0.832x1072

cq —0.297x107! 0.391x107!

values to within some tolerance (10~°). When a resonance
zone was encountered, this search procedure usually failed to
converge. Equally problematic were chaotic regions. In spite
of our success in computing classical actions for chaotic tra-
jectories with the Fourier method using short-time trajecto- -
ries, not all chaotic frajectories weie successfully treated

writh th T ot _£3 h Tn ath
with the short-time approach. In other words, we could com-

pute actions for some trajectories in the chaotic regime, but
we could not find trajectories which gave any prescribed ac-
tion. In order to achieve semiclassical quantization in the
chaotic regime, we therefore utilized those trajectories for
which we could compute actions to interpolate the energy of
a trajectory with quantizing actions.

In order to interpolate, we assumed that the energy sur-
face as a function of the two actions can be approximated by

PRI, DU PR VS, R NP PAS.

L[lC 1UllUWlug qual.udub LuubuUu
E=CI+02J2+03]1+C4J2+C5J%+CGJ1J2..4 (28)

Actions were then computed for a large number of trajecto-
ries. In most cases the actions could be computed easily with

" the Fourier method. Chaotic trajectories had to be treated

with the short-time approach however. Some trial and error
was required to locate trajectories in the chaotic regime for
which actions could be computed. After a large number (183)
of points on the energy surface E(J,J,) were compuied, the
c; coefficients in the intérpolating function were found by
ﬁfhno the internolatine function to the comnputed nmnfc hv

AUy ulC MRCIpOiaililyg 21U 10 N0 LUILPRLS pRiiiss

the method of least absolute error.. Those points on the en-
ergy surface arising from trajectories whose motion was of
the circulating type were used to compute one set of ¢; co-
efficients, and points on the energy surface arising from tra-
jectories whose motion was of the pendular type were used
to compute a second set. The resulting values of the c; coef-

ficients are given in Tabie V. Note that ¢; is approximately 1

for both sets. This is expected from Egs. (17) and (24). The

coefficient ¢, micht be exnected to be 0 based on the ap-

wotdnbiviie O gt UL UApPTLITU W vastil Uil Wil

proximate Hamiltonians. In fact, setting co=0 for circulating
motions gives better agreement for low-energy states. The
values in Table V represent the best global fit to the func-

tional form chosen. Sumpter and Noid®' and Ramaswamy®

have applied similar interpolation methods to compute semi-
classical eigenvalues for systems of two or three nonreso-
nant, weakly coupled oscillators.

With the ¢, coefficients calculated, semiclassical eigen-
values for the system were obtained by inserting the appro-
priate (quantizing) actions into the interpolating function. In

this case, the tunneling corrected quantizing actions pro-
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FIG. 11. Histogram of the absolute values of the relative errors in comput-
ing the energy levels of the Hénon-Heiles system with four different semi-
classical methods. WKB represents results of this paper using tunneling-
corrected, graphically determined actions in the approximate Hamiltonian.
SS represents results of this paper using tunneling-corrected, FFT deter-
mined actions of the full Hamiltonian. AS represents results from Ref. 19.
US represents results from Ref. 30. The average error for each method is SS
0.122%, US 0.098%, WKB 0.331%, and AS 0.195%.

duced with the WKB treatment of the approximate Hamilto-
nians were used. Table I summarizes the results. It can, be
seen that the semiclassical energies are very good approxi-
mations to the exact quantum energies with the average rela-
tive error being less than 0.13%. Figure 11 gives a histogram
of the absolute values of the relative error for this and pre-
vious methods. It is clear that employing the Fourier method
to find semiclassical energy levels of the full Hamiltonian
gives notably improved results over the WKB eigenenergies
of the approximate Hamiltonians. Note also that this method
is comparable in accuracy to the adiabatic switching method
of Skodje,' and the uniform semlclasswal method of Jaffé.?

It should be noted that the same method was tried with-
out using the E(J,J,) points in the chaotic regime obtained
with the short-time trajectory technique. While the semiclas-
sical energies which resulted were of good accuracy in the
quasiperiodic regime, upon extrapolation into the chaotic, the

results were quite poor with relative errors as high as several
percent. It follows that in order to obtain good results, the
results must be interpolated. Extrapolating does not produce
accurate semiclassical approximations to the quantum energy
levels. This fact necessitates finding sufficiently many points
on the E(J,,J,) surface in the chaotic regime.

In addition to enabling one to compute semiclassical ap-
proximations to the energy levels in the chaotic regime, a
second feature of this global fitting technique is that small
resonances can be ignored. As long as the (J/,,J,) points
have been calculated taking careful account of resonance
structures, (as described in Sec. IV B), the interpolating func-
tion can be used for all quantizing actions, even those which
correspond to “tori” which would lie within a resonance
zone. '

Unlike the adiabatic switching method, our global fitting
method gives information about the splitting of energy levels
which are degenerate in the zero-order limit. Such splittings
are also given by the uniform semiclassical method of
Jaffé.?® Splittings calculated by the two methods are com-
pared to the exact quantum values, and those computed with
the WKB method applied to the approximate Hamiltonian in
Table VI. It can be seen that the splittings given by our
method are systematically too small. This is not a failure of
the global fitting step, but of the WKB eigenvalue expression
for the energy levels of a double-well potential which was
used to find the tunneling corrected J, actions. It may be
possible to improve the accuracy of the splittings by using a
quantum corrected WKB eigenvalue expression for the
double-well problem to find tunneling corrected actions.*>%
The difficulty of such an approach is exacerbated by the fact
that the approximate Hamiltonians do not separate into a
kinetic energy term and a potential energy one. Nevertheless,
the possibility of employing a quantum correction is under
investigation.

One inaccuracy appearing in the approximate Hamilto-
nians is not yet understood. The threefold symmetry of the
pendulum states is broken by the terms containing cos(26)
and cos(46) in the € part of Eq. (24). One possibility is that
the flexibility of the Birkhoff—Gustavson normal form could

TABLE VI. Shown here are the splittings of states which are degenerate in the zero-order limit. The zero-order
classical actions are given by J; and J,. Our results are given under SS. The exact quantum results are given
under QM. US are the uniform semiclassical results of Jaffé (Ref. 29). WKB are the results of our WKB
calculations [see Eqgs. (19) and (25)]. Martens and Ezra (Ref. 28) have also used a phase integral method and -
their result is giveri under ME. All of the states are of the circulating type except the one indicated with the f,
which is near the separatrix between the circulating and pendular.

Ji Jy Ss Us WKB ME
4 —0.5 0.003 09 0.003 34 0.005 50 0.003 00
6 —-1.5 0.01091 0.014 43 0.017 00 0.011 36 0.198
7 -0.5 0.000 28 0.000 46 0.000 05 0.000 28
8 ~25 0.019 19 0.039 16 0.037 60 0.02076
9 -1L5 000184 0.003 86 0.004 40 0.001 88

10 o —0.5 0.000 02 0.000 18 0.000 10 0.000 02

10 -3.5 0.02274 0.085 61 0.063 60 0.017 46

11 —2.5 0.006 80 0.017 99 0.019 00 0.006 99

12 -L5 0.000 60 0.002 78 0.000 20 0.000 63

12% -4.5 0.084 28 0.164 95 0.139 00 0.142 85

13 -3.5 0.017 86 - 0.056 68 0.058 0D 0.01892
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be used to preserve the symmetry of the Hamiltonian.'>*

It is important to note that calculating the actions of a
classical system using the Fourier method (6) does not tell

you WUdL ulc dl.uuub meail. I‘UL GAaluPlC, wucu Lu.c Luuua-

mental frequencies are chosen to be the harmonic frequency
and the frequency for precession around the central circulat-

ana o IICQUCHC)Y 1060 PITCCSSI0N AlOUA0 WG LLlllial LALiiat

ing orbit, the actions calculated using Eq. (6) are actions
which are, to zero-order, J, and 1/27[J, d@ [where J; and
J, are defined by Egs. (13)—(16)]. This fact was not obvious
to us when the calculations reported here were commenced.
Likewise, choosing the fundamental frequencies to be the
harmonic frequency and the frequency for precession around
the centrai penduium orbit resuits in actions which are-J; and
1/27fJ, d6 [where J, and J, are defined by Egs. (20)—(23)].

T N h tn 1
In either case, one has to know enough about the structure of

phase space to apply these quantization rules and seek tun-
neling corrected actions. .

VIi. CONCLUSIONS

We have demonstrated the extension of the Fourier
method of EBK quantization to chaotic motion. Results for
the Hénon-Heiles system are comparable to those: using
Birkhoff—Gustavson normal form quantization or adiabatic
switching methods. With this development, the many advan-
tages of the Fourier method (see, e.g., Ref. 6) can be utilized
in the energy regime where the classical motion is chaotic.
This is particularly important because most molecular sys-

ems are chaotic at uigu levels of excitation.

Our method is the numencal analog of the uniform semi-

classical mmnh'mtmn of Tafﬁa l'a_ffé. qua_ntize.d an i_nte.grab]_e.

approximate Hamiltonian, effectively truncating any nonin-
tegrability including chaos. Our method uses the most domi-
nant terms of a Fourier expansion which describes short-time
motion to give a numerically truncated approximate torus.
An approximate torus provides approximate classical actions
for quantization as well as phase space information about the
nature of the motion (see Fig. 9).

The application of the techniques discussed here to sys-

tems of nhvcmn] interest ig, in nrincinle, straichtforward. Anv

LIS O pilysical HICICST 15, A0 PIMLAPEC, SUQig il W Fa by

vibrational or vibrational-rotational system can be studied
by trajectory methods and analyzed using discrete Fourier
transforms. As the number of degrees of freedom increases,
the number of fundamental frequencies increases linearly,
but the number of possible overtones and combinations in-
creases much more rapidly. It will be important to test

Wﬂc[ﬂef bUlll(.]C[ll. accuracCy can DC d.LIllCVt:U to dllUW ubc1u1

information to be extracted in systems of molecular interest.
The Hmcpnhpro r-nrrpennndenr‘e nrmr‘mle connects ma-=

trix elements of spectroscopic importance to particular Fou-

rier components of the time development of classical func- -

tions like the dipole moment.>*%*~%7 The combination of this
principle and the methods developed here to assign peaks
and actions, may have considerable potential for understand-
ing the spectra of small molecules using classical methods.

We are investigating the application of this idea to realistic

molecular spectra.

The most common method used to Pmmlmsmally qu

14
tize chaotic systems is Gutzwiller’s periodic orbit method.
In this method, the density of states is found using a semi-

n-

15 -

7777

classical approximation to the Green’s function. The quan-
tum energies ‘are deita functions in the density of states.
Berry and Tabor®® showed how the periodic orbit method

~rild lan s3on ~d: Ahta
qulu e UDCU ,lLl qua.mycuuutu o_yotuum I.U UUlaJ.J.l Luoulto

equivalent to those of the EBK technique. The Gutzwiller

technique is not limited to quasiperiodic systems but, unfor-

CHDIGUC 15 1OV 1MIHTeA 151pICLY SLCETLS

tunately, requires an exhaustive search for all of the periodic
classical orbits which have a period less than Planck’s con-
stant divided by the required energy accuracy. The period of
each orbit must be parametrized as a function of energy as
well as the action integral along the trajectory and the stabil-
ity parameters describing linearized motion in the neighbor—

hood of the orbit. As yet no one has dLLOHlplleCU this feat
for a system requiring numerical trajectories. Success has

been limited to model problems which can be simplified ana-

tytically (by scaling or coding schemes, for example) or
questions requiring only a small number of low period
orbits.® In order to achieve, using periodic orbit techniques,
the same energy resolution as the typical accuracy we have
obtained in the Henon—Heiles system, one would need to
analyze all of the periodic orbits with periods less than about
25 vibrations, and no systematic method exists for finding
such orbits. (See Ref. 69 for examples where a relatively

bllldll llUlllUCl Ul PUU.UU].\« Ul.Ull.b WwEeIC UDCU } 1.11 aity Lasc, LhG

prevailing opinion is that EBK quantization is more accurate
as well as more efficient when it ig applicable. In addition,

the periodic orbit techmque yields only energies, not tori, the
semiclassical analog of wave functions. The method we have
presented attempts to expand the scope of applicability of
EBK techniques. Future work will need to clarify just how
far the method can be extended into the chaotic part of phase
space.
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